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Abstract 

Study Objectives:  Using the necessary replicate-crossover design, we investigated whether there is interindividual variability in 
home-assessed sleep in response to acute exercise.

Methods:  Eighteen healthy men (mean [SD]: 26[6] years) completed two identical control (8 hour laboratory rest, 08:45–16:45) and 
two identical exercise (7 hour laboratory rest; 1 hour laboratory treadmill run [62(7)% peak oxygen uptake], 15:15–16:15) trials in 
randomized sequences. Wrist-worn actigraphy (MotionWatch 8) measured home-based sleep (total sleep time, actual wake time, 
sleep latency, and sleep efficiency) two nights before (nights 1 and 2) and three nights after (nights 3–5) the exercise/control day. 
Pearson’s correlation coefficients quantified the consistency of individual differences between the replicates of control-adjusted 
exercise responses to explore: (1) immediate (night 3 minus night 2); (2) delayed (night 5 minus night 2); and (3) overall (average post- 
intervention minus average pre-intervention) exercise-related effects. Within-participant linear mixed models and a random-effects 
between-participant meta-analysis estimated participant-by-trial response heterogeneity.

Results:  For all comparisons and sleep outcomes, the between-replicate correlations were nonsignificant, ranging from trivial to 
moderate (r range = −0.44 to 0.41, p ≥ .065). Participant-by-trial interactions were trivial. Individual differences SDs were small, prone 
to uncertainty around the estimates indicated by wide 95% confidence intervals, and did not provide support for true individual 
response heterogeneity. Meta-analyses of the between-participant, replicate-averaged condition effect revealed that, again, heteroge-
neity (τ) was negligible for most sleep outcomes.

Conclusions:  Control-adjusted sleep in response to acute exercise was inconsistent when measured on repeated occasions. 
Interindividual differences in sleep in response to exercise were small compared with the natural (trial-to-trial) within-subject vari-
ability in sleep outcomes.

Clinical trials information:   https://clinicaltrials.gov/study/NCT05022498. Registration number: NCT05022498.

Key words: actigraphy; sleep; exercise; individual variability; replicate crossover
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Graphical Abstract 

Statement of Significance

Single exercise bouts have been shown to elicit modest but positive effects on sleep, including improvements in sleep duration 
and sleep quality, but the magnitude of true individual response heterogeneity has not been quantified. We adopted a robust and 
novel study design, the replicate crossover, and associated statistical approaches to quantify the consistency and magnitude of 
interindividual variability in home-based, actigraphy-derived sleep in response to an afternoon bout of treadmill running. Our 
findings revealed substantial trial-to-trial within-subject variability which inhibited the detection of any consistent and mean-
ingful exercise- related response heterogeneity in sleep outcomes. Inferences on interindividual variability in sleep responses to 
an (exercise) intervention may be misleading if patient-by-treatment response heterogeneity is not appropriately separated from 
other sources of variability.

Sleep is crucial for preserving physiological and cognitive func-
tion across the lifespan [1]. Accumulating an average of 7–9 
hours of sleep per night is recommended for most adults [2, 3] 
but, despite its biological necessity, many adults fail to achieve 
sufficient duration and/or quality of sleep for health [4, 5]. This 
presents a major public health concern given that curtailed (<7 
hours/night), excess (>9 hours/night), and/or disrupted sleep has 
been associated with a myriad of adverse health consequences, 
including obesity, type 2 diabetes, cardiovascular disease, and 
all-cause mortality [6–8]. Furthermore, accumulating evidence 
suggests that achieving consistent day-to-day sleep patterns is 
important for enhancing health [9], with sleep regularity iden-
tified as a stronger predictor of all-cause mortality than sleep 
duration [10].

Physical activity is widely promoted as a nonpharmacological 
strategy for enhancing sleep [11]. Evidence from observational 
work has demonstrated that higher levels of physical activity 
may mitigate the elevated cardiometabolic health and mortality 
risk associated with poor sleep patterns [12, 13]. Comprehensive 
reviews suggest that acute (single bouts) and short-term exercise 
(<1 week in duration) performed at any time of day elicits modest 
but positive effects on sleep, including increasing total sleep time 
and sleep efficiency, reducing sleep onset latency and improving 

aspects of sleep architecture [14, 15]. Furthermore, contrary to 
sleep hygiene recommendations advocating that exercise proxi-
mal to bedtime is detrimental to sleep quality [16], the consensus 
of evidence suggests that single bouts of evening physical activity 
or structured exercise completed ~15 minutes to 4 hours before 
bedtime do not disrupt sleep during the subsequent night [17–19].

The notion that individual differences exist in response to the 
same intervention has become a popular avenue of inquiry within 
the context of precision medicine [20]. However, reliable inferences 
can only be obtained with appropriate research designs and sta-
tistical models [21, 22]. One such approach is the replicate crosso-
ver design, which involves repeated administration of control and 
intervention conditions to quantify the participant-by-treatment 
interaction defined as the extent that the treatment response 
differs between participants [23–25]. This design allows the esti-
mation of various components of variation to examine whether 
genuine treatment response heterogeneity can be distinguished 
from random within-subject variability allowing researchers to 
arrive at appropriate conclusions on the presence and consist-
ency of interindividual differences [21–24]. Several studies have 
adopted this framework with associated statistical approaches 
[21–27] to identify true interindividual variability in appetite 
responses to acute exercise and standardized meal intake [28, 29], 
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and blood pressure responses to antihypertensive medications 
[30]. Conversely, adopting a similar design and analysis approach, 
genuine interindividual heterogeneity could not be identified 
in cardiovascular disease risk marker responses to acute exer-
cise [31], highlighting the importance of accounting for trial-to-
trial within-subject variability and measurement error [21–24]. 
Existing work suggests substantial night-to-night variability is 
evident in subjective perceptions of sleep and objective meas-
ures of sleep duration and quality [32–35]. However, it remains 
unknown whether there is true interindividual variability in sleep 
in response to acute exercise beyond random within-subject var-
iability over time.

This study examined the consistency of home-assessed sleep 
using actigraphy (total sleep time, actual wake time, sleep latency, 
and sleep efficiency) in response to acute bouts of moderate- 
intensity exercise and quantified the magnitude of interindivid-
ual differences in responses using a replicate crossover research 
design. It was hypothesized that exercise-induced changes in 
sleep outcomes would be consistent on repeated occasions, and 
true interindividual variability in exercise-related sleep would be 
observed in young healthy men.

Materials and Methods
Ethical approval and participants
This manuscript presents secondary outcomes from a replicate 
crossover trial investigating interindividual variability in post-
prandial cardiovascular disease risk marker responses to acute 
exercise (ClinicalTrials.gov identifier: NCT05022498). No changes 
to the study methods or outcomes were made after the study 
commenced. A detailed description of the study protocol and 
primary study results have been published previously [31]. The 
study received approval from the Loughborough University Ethics 
Advisory Committee (R19-P103) before any study-related meas-
ures commenced. Twenty healthy young men were recruited from 
the local community and provided written informed consent to 
participate in the study at Loughborough University. All partic-
ipants were nonsmokers, reported being weight stable (defined 
as ≤3 kg change in body mass in the previous 3 months), had 
no diagnosed cardiometabolic diseases or sleep disorders, and 
were not taking any medications. The recruitment of men for the 
study was based on recognition that postprandial triacylglycerol 
concentrations, the primary outcome of the study [31], are typi-
cally greater in men than premenopausal women [36] and fluc-
tuate across the menstrual cycle [37]. Study methods and results 
are reported in accordance with the Consolidated Standards of 
Reporting Trials (CONSORT) 2010 statement extended to rand-
omized crossover trials [38].

Preliminary measures
During a preliminary visit, participants completed questionnaires 
to assess health status, anthropometric measurements (stature, 
body mass, and body fat percentage) and completed treadmill 
familiarization (RUN RACE, Technogym, Gambettola, Italy) and 
exercise testing. The latter comprised a treadmill-based 16 min-
ute submaximal incremental test and a ramped (+1% gradient 
each minute) peak oxygen uptake test as described previously 
[31], with the data used to identify the treadmill speed estimated 
to predict 60% of peak oxygen uptake for the main experimental 
trials. Throughout both tests, expired air samples were sampled 
continuously for oxygen consumption using an online breath-
by-breath gas analyzer (MetaMax 3B; Cortex, Leipzig, Germany), 

and peak oxygen uptake was calculated as the highest 30 sec-
ond rolling average. Heart rate (Polar T31; Polar Electro, Kempele, 
Finland) and ratings of perceived exertion (Borg CR-10 [39]) were 
also measured throughout.

Study design
Using a replicate crossover design [24], participants completed 
two identical exercise and two identical control trials in a ran-
domized order separated by at least 5 days. The randomization 
sequence for the four experimental trials was obtained from 
an online software tool (http://www.sealedenvelope.com/) by 
a researcher who was not involved directly in data collection 
(G.A.). Other researchers (T.S., T.F.A., T.M.A.) enrolled partici-
pants and assigned participants to the sequence of interven-
tions. Main trials involved four 2 day (days 1 and 2) laboratory 
visits, but the analysis presented in this paper involves sleep 
assessments collected during the two nights before day 1 
(nights 1 and 2), the night of day 1 (night 3), and two nights after 
day 1 (nights 4 and 5). Participants were informed of the trial 
allocation upon arrival at the laboratory on day 1 of each main 
trial. Alcohol, caffeine, and strenuous physical activity (outside 
the laboratory) were not permitted for 24 hours before day 1 or 
until the laboratory measures were completed at 16:45 on day 
2 of each main trial. A weighed dietary record was completed 
in the 48 hours before the first main trial day which was repli-
cated in the same period before subsequent trials. Adherence 
to the standardization procedures was confirmed verbally upon 
attendance at the laboratory. A schematic of the trial protocol 
is shown in Figure 1.

Main trials
On day 1, participants arrived at the laboratory at 08:00 after fast-
ing overnight for 10 hours. Participants rested in the laboratory 
until 16:45 throughout all trials apart from performing 1 hour of 
treadmill running (1% gradient, 60% peak oxygen uptake) between 
15:15 and 16:15 in the two exercise trials. Expired air samples 
were measured continuously to monitor exercise intensity and 
estimate exercise energy expenditure and substrate utilization 
[40]. Heart rate and ratings of perceived exertion were recorded at 
10 minute intervals, and the treadmill speed was adjusted period-
ically to ensure that the target intensity was achieved.

Standardized breakfast and lunch meals were consumed 
within 10 minutes at ~08:35 and ~12:45, respectively, and plain 
water was provided ad libitum during the trials. Breakfast con-
sisted of plain croissants, milk chocolate spread, double cream, 
and chocolate milkshake, providing 60 kJ energy per kilogram of 
body mass (57% fat, 35% carbohydrate, 8% protein). Lunch con-
sisted of white bread, Cheddar cheese, butter, double cream, and 
chocolate milkshake, which provided 60 kJ energy per kilogram of 
body mass (60% fat, 28% carbohydrate, 12% protein). Participants 
were provided with a standardized evening meal (Margherita 
pizza; 2511 kJ, 32% fat, 52% carbohydrate, 16% protein) and were 
asked to consume the meal before 22:00. After the meal, only 
plain water was allowed until the participants arrived at the lab-
oratory the next morning (i.e. day 2) at 08:00 where they rested 
throughout the day in all experimental trials until 16:45 and con-
sumed the same standardized breakfast and lunch meals at 08:35 
and 12:45, respectively.

Sleep assessment
Habitual sleep was assessed using a wrist-worn actigraphy device 
(MotionWatch 8; CamNTech, Cambridge, UK) in combination with 
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a sleep diary. Participants wore the watch on their nondominant 
wrist for five consecutive nights in each trial to capture sleep dur-
ing: (i) the two nights before day 1 of the main trials (nights 1 and 
2); (ii) the same night of the exercise and rest interventions on 
day 1 of the main trials (night 3); and (iii) the two nights after day 
1 of the main trials (nights 4 and 5) (Figure 1). Participants were 
instructed to follow their usual sleep routine with no restrictions 
on sleep time, location, or screen use before sleep. Due to collect-
ing five consecutive nights of sleep data on four repeat occasions, 
the start day of data collection in each trial could not be con-
trolled either within or between participants. The MotionWatch 
8 was initialized to record in tri-axial mode 1 and raw data 
were analyzed in 30 second epochs (MotionWare version 1.2.5; 
CamNTech, Cambridge, UK) to derive four sleep variables: total 
sleep time (actual time spent in sleep), actual wake time (time 
awake after sleep onset), sleep latency (time between lights out 
and sleep onset) and sleep efficiency (total sleep time expressed 
as a percentage of time in bed). The device uses an algorithm val-
idated against the criterion polysomnography method for sleep 
detection [41, 42] (further details of the sleep scoring process 
are provided in the Supplementary Methods). Participants were 
asked to press the event marker on the actigraphy device at sleep 
and wake times, which was used in conjunction with a sleep diary 
documenting daily sleep time, awakenings, and sleep quality to 
help identify sleep time.

Statistical analyses
The data reported in this manuscript are secondary outcomes 
from a previous study [31] where a pragmatic approach to sam-
ple size justification was adopted due to the onerous nature of 
the study design (for further details, see 31). The statistical anal-
ysis framework consisted of a four-step approach in line with 
existing research [23, 24, 28, 29, 31] and more recent advances 
[43] for the appropriate examination of continuous data from 
a replicate crossover experiment. All statistical analysis was 
performed upon study completion once the target sample had 
completed the study requisites. Response pairs were formu-
lated by calculating the control-adjusted treatment effect for 
the first exercise and control pair in each participant’s sequence 
(response 1; exercise 1 minus control 1) along with the second 
exercise and control pair (response 2; exercise 2 minus con-
trol 2). The first and second replicates were calculated as the 

difference between the exercise and control trial pre-to-post 
change scores in three comparisons:

(1) The immediate impact of exercise was explored by calcu-
lating the pre-to-post change score of night 3 minus night 2;

(2) The delayed effect of exercise was explored by calculating 
the pre-to-post change score of night 5 minus night 2; and

(3) The overall influence of exercise was explored by calculat-
ing the pre-to-post change score of the average of nights 
3–5 (post-intervention) minus the average of nights 1 and 2 
(pre-intervention).

First, we calculated Pearson’s product-moment correlation coef-
ficients (r) between the two replicates of the exercise and control 
pre-to-post change for each sleep outcome [24]. This provides 
an indication of the consistency of the exercise effect between 
the replicate trials, with thresholds of 0.1, 0.3, and 0.5 indicating 
small, moderate, and large coefficients, respectively [44].

Second, a naïve estimate (estimate 1) of the SD for individual 
responses (SDIR) was determined by calculating the difference in 
SDs of the pre-to-post change between the exercise and control 
trials as follows:

SDIR=
»

SD2
E - SD2

C

where the SDIR is the SD of the true (control adjusted) individual 
variability in the exercise effect, and SDE and SDC are the SDs of 
the pre-to-post change in the exercise and control trials, respec-
tively [21, 22, 26]. These calculations utilized the appropriate 
equation for pooling SDs across the two replicates of the exercise 
and control trials [45]. A positive SDIR indicates greater heteroge-
neity in the exercise response compared with any random within- 
subject variability.

Given the above naïve estimation of the SDIR (estimate 1) 
was originally designed to compare variances between groups 
in parallel arm trials rather than between conditions in cross-
over trials, we also employed within-participant linear mixed 
models, conducted in SAS OnDemand for Academics [46]. These 
models derived the participant-by-trial interaction for each 
sleep outcome and comparison by modeling trial, period (trial 
sequence), and the period-by-trial interaction as fixed effects, 
whereas participant and the participant-by-trial interaction 
were modeled as random effects (see SAS base code presented 

Control 1

Control 2

Exercise 1

Exercise 2

Day 1: Intervention day Day 2

08:45 16:45 08:45 16:45

Night 3 Night 4 Night 5 Night 2 Night 1 

Meal intake Rest Exercise Free living actigraphy sleep assessment

Minimise strenuous physical activity and no caffeine or alcohol

48 h dietary record

Figure 1. Schematic of the study protocol. Experimental trials were completed in a randomized order separated by at least 5 days.
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in Supplementary Methods). Estimate 2 of the true individual 
differences SD was derived from the participant-by-trial inter-
action term. Standard residual diagnostics were performed to 
assess the adequacy and stability of the modeled covariance 
parameter estimates [47, 48], and a sensitivity analysis was 
conducted excluding outliers that were >3 times higher or 
lower than the sample SD.

Fourth, we calculated a sample estimate of within-subjects var-
iance and converted it to a standard error (SE) using appropriate 
degrees of freedom given the completed cycles to derive per partic-
ipant replicate-averaged treatment effects [43]. A random- effects 
meta-analysis with Hartung–Knapp adjustment [49] summarized 
individual-participant, replicate-averaged treatment effects, and 
respective sampling errors [43] conducted using the metagen() 
function [50]. Because our study design was a fully “balanced” rep-
licate crossover design rather than an n-of-1 trial involving a vary-
ing number of condition repeats between participants, a consistent 
SE, and 95% confidence interval (CI), for all participants resulted. 
Senn [43] provides more details about this SE component of the 
meta-analysis approach. The restricted maximum- likelihood 
estimation method determined the tau- statistic (τ) value describ-
ing the between-participant, replicate- averaged treatment effect 
response variability across the distribution of true acute exercise- 
related effects [51, 52]. The uncertainty surrounding the point 
τ-statistic estimate was described using 95% CIs derived using 
the generalized Q-statistic method [53]. Weighted raw replicate- 
averaged treatment effects were reported as descriptive statistics 
alongside the respective 95% prediction interval illustrating the 
range for the distribution of true mean differences expected for 
95% of similar trials [54, 55]. Meta-analyses were conducted in R 
(version 4.2.2, R Foundation for Statistical Computing; see R base 
code in Supplementary Methods).

Mean differences and correlation coefficients are reported with 
their corresponding 95% CI. In the absence of a clinical anchor to 
ascertain meaningful between-trial differences in sleep, absolute 
standardized effect sizes (Cohen’s d) were calculated [56] and 
thresholds of 0.2, 0.5, and 0.8 were considered small, moderate, 
and large effects, respectively [44]. A minimal clinical important 
difference (MCID) of ±30 minutes was adopted for total sleep time, 
actual wake time, and sleep latency, and ±5% was adopted for 
sleep efficiency. These values are in line with proposed thresholds 
defining the acceptable difference in sleep outcomes between 
actigraphy and polysomnography devices [57, 58] and are broadly 
consistent with the expected night-to-night variability in these 
outcomes [32, 33]. An alpha value of p < .05 was considered sta-
tistically significant.

Results
Participants and sleep data
Eligible participants were recruited to take part in the study 
between October 2019 and July 2021. Study completion was deter-
mined once the target sample size was reached, and there were 
no adverse events to report relating to the study protocol. Due 
to technical issues with the actigraphy device, the sleep data in 
this manuscript are reported for 18 participants. The character-
istics of participants (n = 18) were as follows (mean [SD]): age 26 
(6) years; body mass 76.3 (9.2) kg; body mass index 23.9 (2.5) kg/
m2; body fat percentage 19.3 (7.2)%; and peak oxygen uptake 44 
(10) mL/kg/min.

Most participants provided sleep data on either all weekday 
nights or all weekend nights for night 3 (immediate exercise 
effect; n = 14, 78%) and night 5 (delayed exercise effect; n = 15, 
83%) across all four trials, but for some participants (≤22%), these 
nights fell on a combination of weekday and weekend nights 
across the trials. Two participants had missing sleep data on night 
5 in one of the experimental trials; therefore, the correlation coef-
ficients for comparison 2 (delayed exercise effect) are presented 
for n = 16 with 32 replicates of the control-adjusted exercise 
response, and the modeling approaches are presented for n = 18 
with 70 observations/trials. The flow of participants through the 
study is presented in Supplementary Figure 1.

Exercise responses
The 95% CIs for the mean difference in exercise responses on the 
two occasions overlapped zero (all p ≥ .168), and the standardized 
effect sizes were trivial (d = 0.01–0.19) apart from the small effect 
size for fat oxidation (d = 0.27) (Table 1).

Consistency and individual variability in sleep in 
response to exercise
Comparison 1: night 3 minus night 2
Pearson’s correlation coefficients between the two replicates of 
control-adjusted exercise responses were not statistically sig-
nificant and ranged in magnitude from trivial (total sleep time: 
r = 0.005 [95% CI = −0.46 to 0.47], p = .985) to small-to-moderate 
(actual wake time: r = 0.36 [95% CI = −0.13 to 0.71], p = .143; sleep 
latency: r = −0.44 [95% CI = −0.75 to 0.03], p = .065; and sleep effi-
ciency: r = −0.14 [95% CI = −0.57 to 0.35], p = .587) (Figure 2). For 
all sleep outcomes, the 95% CI for the period-adjusted mean dif-
ference between exercise and control trials overlapped zero with 
small-to-moderate standardized effect sizes (all main effects 

Table 1. Treadmill exercise responses

Variable Exercise trial 1 Exercise trial 2 95% CI* Cohen’s d P-value

Oxygen uptake (L/min) 2.07 (0.49) 2.08 (0.48) −0.07, 0.06 0.01 .850

Peak oxygen uptake (%) 62 (7) 62 (7) −2, 2 0.03 .821

Heart rate (bpm) 156 (11) 156 (10) −7, 7 0.01 .986

Rating of perceived exertion 6 (1) 6 (1) −1, 1 0.07 .842

Respiratory exchange ratio 0.96 (0.04) 0.97 (0.06) −0.03, 0.02 0.07 .750

Fat oxidation (g) 9.7 (6.5) 11.5 (7.4) −4.6, 0.9 0.27 .168

Carbohydrate oxidation (g) 157.3 (34.2) 159.5 (44.7) −17.1, 12.6 0.06 .755

Gross energy expenditure (kJ) 2895 (520) 3003 (593) −274, 58 0.19 .188

All values are mean (SD) for n = 18 healthy men.
*95% CI of the mean absolute difference between the exercise trials derived from a paired sample t-test.
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of trial p ≥ .111, d = 0.34–0.55), and participant-by-trial inter-
actions were not statistically significant (all p ≥ .157) (Table 2). 
The SDIR for estimate 1 and estimate 2 was small with wide 95% 
CIs for all outcomes, and the SDIR (estimate 2) for sleep latency 
and sleep efficiency was negative (Table 2). The τ statistic from 
the random-effects meta-analysis provides some evidence of 
between-participant variability for actual wake time (τ statistic 
[95% CI]: 19 [9, 35] minutes), but corresponding values for the 
other sleep outcomes were zero (Figure 3). Inspection of the indi-
vidual data plots revealed that the proportion of participants 
exhibiting the mean control-adjusted exercise response beyond 
the MCID was 56% above and 17% below for total sleep time, 11% 
above and 17% below for actual wake time, 0% above and 6% 

below for sleep latency, and 33% above and 6% below for sleep 
efficiency (Figure 3).

Outliers were identified for five trials (n = 5 participants) 
for actual wake time, seven trials (n = 6 participants) for sleep 
latency, and three trials (n = 3 participants) for sleep effi-
ciency. A sensitivity analysis removing outliers yielded similar 
small-to-moderate correlations for actual wake time (r = 0.24 
[95% CI = −0.36 to 0.70]), sleep latency (r = −0.34 [95% CI = −0.76 
to 0.29]), and sleep efficiency (r = −0.12 [95% CI = −0.60 to 0.42]) 
that were not statistically significant (all p ≥ .285). The exclusion 
of these data did not markedly alter the interpretation of the 
participant-by-trial interactions (all p ≥ .340), the SDIR for esti-
mate 1 or 2, or the estimated between-participant heterogeneity 

Figure 2. Relationship between exercise and control pre-to-post change scores (night 3 minus night 2) on the two occasions for: (A) total sleep time; 
(B) actual wake time; (C) sleep latency; and (D) sleep efficiency in 18 men (36 replicates of the control-adjusted exercise response). “Response 1” 
calculated from the first pair of trials (exercise 1 minus control 1) and “Response 2” calculated from the second pair of trials (exercise 2 minus control 
2). Dashed lines depict the mean responses and gray-shaded region represents the 95% CI of the regression line (black solid line).
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from the random effects meta-analysis (τ range 0–15 minutes) 
(Supplementary Table 1).

Comparison 2: night 5 minus night 2.
Small but statistically nonsignificant Pearson’s correlation coef-
ficients were identified between the two replicates of control- 
adjusted exercise responses for total sleep time (r = 0.16 [95% 
CI = −0.37 to 0.61], p = .563), actual wake time (r = −0.12 [95% CI = 
−0.58 to 0.40], p = .660), sleep latency (r = −0.23 [95% CI = −0.65 to 
0.30], p = .395), and sleep efficiency (r = −0.10 [95% CI = −0.57 to 
0.42], p = .719) (Figure 4). For all sleep outcomes, the 95% CI for the 
period- adjusted mean difference between exercise and control 
trials overlapped zero (all main effects of trial p ≥ .545) and stand-
ardized effect sizes were trivial apart from the small effect size 
for sleep latency (d = 0.35). Participant-by-trial interactions were 
identified for sleep latency and sleep efficiency (both p ≤ .007) but 
not total sleep time or actual wake time (both p ≥ .190) (Table 2). 
All SDIR estimates were relatively small with a negative SDIR identi-
fied for actual wake time, sleep latency, and sleep efficiency (based 
on estimate 2) and inconsistency in the direction of SDIR was evi-
dent between estimates 1 and 2 for actual wake time and sleep 
efficiency (Table 2). This is consistent with the τ statistic from 
the random-effects meta-analysis showing that the estimated 
between-participant variability was negligible (Figure 5). The pro-
portion of participants exhibiting the mean control- adjusted exer-
cise response beyond the MCID was 22% above and 33% below for 
total sleep time, 11% above and 6% below for actual wake time, 
6% above and 0% below for sleep latency, and 22% above and 22% 
below for sleep efficiency (Figure 5).

Outliers were identified for five trials (n = 4 participants) for 
total sleep time, four trials (n = 3 participants) for actual wake 
time, five trials (n = 4 participants) for sleep latency, and four tri-
als (n = 3 participants) for sleep efficiency. Interpretation of the 
Pearson’s correlation coefficients between the two replicates of 
control-adjusted exercise responses after outlier removal was sim-
ilar for total sleep time (r = 0.12 [95% CI = −0.46 to 0.63], p = .699), 
actual wake time (r = 0.17 [95% CI = −0.42 to 0.66], p = .575), sleep 
latency (r = −0.05 [95% CI = −0.59 to 0.51], p = .863), and sleep effi-
ciency (r = 0.27 [95% CI = −0.31 to 0.70], p = .356). The exclusion of 
these data did not alter the significance of the participant- by-trial 
interactions (all p ≥ .115), and the SDIR for estimates 1 and 2, and 
the τ statistic from the random-effects meta-analysis (τ range 
4–47 minutes) remained similar (Supplementary Table 1).

Comparison 3: average post-intervention (nights 3–5) 
minus average pre-intervention (nights 1 and 2).
Pearson’s correlation coefficients between the two replicates of 
control adjusted exercise responses were not statistically sig-
nificant and ranged in magnitude from trivial (total sleep time: 
r = −0.04 [95% CI = −0.50 to 0.43], p = .867; sleep latency: r = 0.07 
[95% CI: −0.41 to 0.52], p = .784) to small-to-moderate (actual 
wake time: r = 0.41 [95% CI = −0.07 to 0.74], p = .090; sleep effi-
ciency: r = 0.27 [95% CI = −0.23 to 0.65], p = .281) (Figure 6). For 
all sleep outcomes, the 95% CIs for the period-adjusted mean 
difference between exercise and control trials overlapped zero 
(all main effects of trial p ≥ .322) and standardized effect sizes 
were trivial except for the small effect size for total sleep time 
(d = 0.27). Participant-by-trial interactions were not identified 

Table 2. Estimated marginal means and SEs of the pre-to-post change scores for sleep outcomes in the exercise and control conditions 
with the true individual differences SD

Sleep variable N 
(obs)

Exercise 
change, 
Mean (SE)

Control 
change, 
Mean (SE)

Main effect of trial* Estimate 1† Estimate 2‡

Mean difference 
(95% CI)

Cohen’s 
d

P-value Individual 
differences SD

Individual 
differences SD 
(95% CI)

P-value

Comparison 1: night 3 minus night 2

  Total sleep time (min) 18 (72) 39.5 (15.3) 5.6 (11.1) 34.0 (−8.4, 76.3) 0.51 0.111 48.0 47.1 (−40.0, 77.7) 0.255

  Actual wake time 
(min)

18 (72) 1.7 (3.8) 8.4 (3.8) −6.7 (−18.0, 4.5) 0.34 0.235 −12.3 4.8 (−12.9, 14.5) 0.812

  Sleep latency (min) 18 (72) −6.0 (3.0) −1.8 (3.9) −4.2 (−14.6, 6.2) 0.55 0.420 −12.3 −9.1 (−16.3, 10.0) 0.376

  Sleep efficiency (%) 18 (72) 2.3 (0.9) −0.5 (1.3) 2.7 (−0.7, 6.1) 0.52 0.116 −3.2 −3.5 (−5.4, 2.2) 0.157

Comparison 2: night 5 minus night 2

  Total sleep time (min) 18 (70) 22.6 (18.0) 28.2 (15.8) −5.5 (−47.3, 36.3) 0.08 0.788 44.4 39.7 (−49.5, 74.8) 0.443

  Actual wake time 
(min)

18 (70) 13.8 (5.3) 15.3 (6.8) −1.5 (−15.2, 12.2) 0.08 0.823 7.4 −16.5 (−26.0, 11.6) 0.190

  Sleep latency (min) 18 (70) −3.5 (2.7) −1.2 (4.4) −2.3 (−10.1, 5.5) 0.35 0.545 −5.7 −13.8 (−18.1, −7.2) 0.007

  Sleep efficiency (%) 18 (70) −2.0 (1.3) −2.4 (2.1) 0.4 (−3.0, 3.8) 0.09 0.810 4.7 −6.4 (−8.1, −3.8) 0.002

Comparison 3: average post-intervention (nights 3–5) minus average pre-intervention (nights 1 and 2)

  Total sleep time (min) 18 (72) 21.9 (9.7) 7.5 (8.9) 14.4 (−14.8, 43.7) 0.27 0.322 26.4 19.9 (−33.6, 43.8) 0.612

  Actual wake time 
(min)

18 (72) 6.7 (3.6) 3.7 (4.0) 3.0 (−6.6, 12.6) 0.17 0.530 −5.6 −5.0 (−14.1, 12.2) 0.776

  Sleep latency (min) 18 (72) −4.4 (3.1) −5.7 (2.9) 1.3 (−6.2, 8.8) 0.12 0.725 −7.3 5.8 (−9.5, 12.5) 0.596

  Sleep efficiency (%) 18 (72) 0.2 (0.9) 0.5 (1.1) −0.4 (−2.5, 1.8) 0.06 0.736 −1.7 −2.1 (−3.8, 2.5) 0.412

N (obs) refers to the number of participants (N) and observations/trials (obs) included in the analysis for each comparison and outcome.
*Estimated from a within-participant random effects linear mixed model.
†Estimate 1: Individual differences SD estimated using SDIR =

»
SD2

E − SD2
C where SDIR is the SD of the true individual response, and SDE and SDC are the SDs of 

the pre-to-post change scores for the exercise and control trials (averaged over both replicates), respectively [21].
‡Estimate 2: Period-adjusted individual differences SD estimated using a random effects statistical model [23]. The SD was calculated from the participant-by-
trial interaction term modeled as a random effect (refer to the SAS code supplied in Supplementary Methods). The P-value shown is also for this interaction term.
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for any sleep outcome (all p ≥ .412) (Table 2). The SDIR for esti-
mate 1 and estimate 2 was small with wide 95% CIs for all 
outcomes, and the SDIR (estimate 2) for actual wake time and 
sleep efficiency was negative (Table 2). The τ statistic from the 
random-effects meta-analysis was close to zero for total sleep 
time, sleep latency, and sleep efficiency but was higher for 
actual wake time (τ statistic [95% CI]: 17 [8, 30] minutes) (Figure 
7). Most participants exhibited mean control-adjusted exercise 
responses that did not exceed the MCID (total sleep time: 33% 
above, 11% below; actual wake time: 11% above, 6% below; sleep 
latency: 6% above, 6% below; and sleep efficiency: 11% above, 
17% below) (Figure 7).

Outliers were identified for 4 trials (n = 1 participant) for actual 
wake time, 12 trials (n = 3 participants) for sleep latency, and 8 
trials (n = 2 participants) for sleep efficiency. A sensitivity analysis 
removing outliers improved the Pearson’s correlation coefficient 
of the control-adjusted exercise response between replicates for 

actual wake time (r = 0.55 [95% CI = 0.09 to 0.81], p = .023). The 
correlation coefficients after outlier removal were moderate 
but not statistically significant for sleep latency (r = –0.33 [95% 
CI = –0.72 to 0.22], p = .227) and sleep efficiency (r = 0.34 [95% 
CI = –0.18 to 0.72], p = .193). Interpretation of the participant- 
by-trial interactions (all p ≥ .353), the SDIR for estimates 1 and 
2, and the estimated between-participant heterogeneity from 
the random-effects meta-analysis (τ range 0–19 minutes) were 
unchanged after outlier removal (Supplementary Table 1).

Discussion
This study adopted a replicate crossover design to investigate 
the consistency of sleep in response to acute exercise bouts per-
formed on repeated occasions and to examine the extent of true 
interindividual variability in responses. The primary findings from 
this study demonstrate that the consistency of control-adjusted 

Figure 3. Forest plot displaying the individual participant replicate-averaged exercise effect (night 3 minus night 2) from the random-effects meta-
analysis for: (A) total sleep time; (B) actual wake time; (C) sleep latency; and (D) sleep efficiency in 18 men (72 observations/trials). CI, confidence 
interval; SE, standard error; FE, fixed effect; RE, random effects; PI, prediction interval; τ, tau statistic describing between-participant variability.
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sleep measured objectively in the home environment to repeated 
single bouts of exercise is low, and interindividual differences 
in sleep were small compared with the natural (trial-to-trial) 
within- subject variability in sleep outcome measures. These 
findings were evident irrespective of whether sleep was analyzed 
the night after exercise (immediate), three nights after exercise 
(delayed), or as an average across the three nights after exercise.

In this study, the mean effects of exercise on total sleep time, 
actual wake time, sleep latency, and sleep efficiency were rel-
atively low, with 95% CIs that overlapped zero and trivial-to- 
moderate standardized mean differences. Although beneficial 
effects of acute exercise have been reported for subjective and 
objective metrics of sleep quantity and quality [14, 15], the evi-
dence is inconsistent, and the magnitude of response is typically 

trivial-to-small (Cohen’s d = 0.17–0.38) [14]. Notably, there is little 
experimental evidence that evening physical activity or exercise 
concluding ~15 minutes to 4 hours before bedtime is detrimental 
to night-time sleep [17–19]. The mean treatment effect observed 
in this study appears consistent with existing evidence suggesting 
that the impact of acute exercise on sleep variables is generally 
modest but, importantly, is unlikely to negatively impact sleep 
on the subsequent night. Our study recruited young healthy men 
without any pre-existing sleep complaints, so it is possible that 
exercise may promote greater acute sleep benefits in individuals 
with poor sleep or diagnosed sleep disorders that have a greater 
capacity for improvement [59, 60].

Analysis of the between-replicate correlation coefficients did 
not indicate any clear relationship between the paired responses 

Figure 4. Relationship between exercise and control pre-to-post change scores (night 5 minus night 2) on the two occasions for: (A) total sleep time; 
(B) actual wake time; (C) sleep latency; and (D) sleep efficiency in 16 men (32 replicates of the control-adjusted exercise response). “Response 1” 
calculated from the first pair of trials (exercise 1 minus control 1) and “Response 2” calculated from the second pair of trials (exercise 2 minus control 
2). Dashed lines depict the mean responses and gray-shaded region represents the 95% CI of the regression line (black solid line).
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for any sleep outcome, suggesting an inconsistency in the effect 
of exercise on sleep patterns on repeated occasions. This obser-
vation was apparent when the immediate, delayed, and average 
exercise effect was interrogated and persisted after the removal 
of outliers. Additionally, across the comparisons and outcomes 
assessed, there were multiple instances where the difference 
between the replicated control-adjusted exercise responses for 
a given participant was large and/or in opposing directions on 
the two occasions. The lack of consistency in sleep in response 
to acute exercise is likely underscored by measurement error 
and biological variability resulting from the exercise protocol, 
free-living sleep assessment, and differences in environmen-
tal factors such as circadian variations, diet, and psychological 
stress [20, 61].

Although no previous studies have investigated the consistency 
in sleep outcomes after acute exercise, it is well documented that 
considerable night-to-night variability exists in sleep duration, 

quality, and timing [32, 33, 35]. Such intra-individual variability 
appears greater in adults at a younger age possibly due to fluc-
tuating social, working, and family commitments influencing the 
consistency of sleep–wake cycles [33, 34, 62]. The magnitude of 
night-to-night variability in wake after sleep onset and number 
of awakenings appears lower after four months of moderate- 
intensity walking in older women [63]. Consequently, the extension 
of the current research design to older adults could be of interest 
to determine whether meaningful exercise-related response het-
erogeneity exists in sleep when the level of night-to-night variabil-
ity in sleep is expected to be lower. Due to the large night-to-night 
variability in sleep within individuals, it is recognized that single-
night-only measures of sleep are unlikely to provide an accurate 
representation of habitual sleep behavior [32]. Therefore, in addi-
tion to focusing on the night immediately after exercise when the 
influence on sleep was expected to be most pronounced, we also 
derived a multiple-night average of sleep for the pre-intervention 

Figure 5. Forest plot displaying the individual participant replicate-averaged exercise effect (night 5 minus night 2) from the random-effects meta-
analysis for: (A) total sleep time; (B) actual wake time; (C) sleep latency; and (D) sleep efficiency in 18 men (70 observations/trials). CI, confidence 
interval; SE, standard error; FE, fixed effect; RE, random effects; PI, prediction interval; τ, tau statistic describing between-participant variability.
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(nights 1 and 2) and post-intervention (nights 3–5) estimates to 
improve the stability of the sleep assessment.

Another feature of our study design that could contribute to 
the degree of inherent within-subject variability is whether sleep 
was assessed on weekdays or weekend days. It was not feasi-
ble to control the sleep assessment days across the four trials 
either within or between participants due to the complexity of 
the study design, but it is recognized that intra-individual var-
iability in sleep characteristics is typically greater when meas-
ured at the weekend than on weekdays [64, 65]. Importantly, sleep 
data for night 3 (immediate exercise effect) and night 5 (delayed 
exercise effect) were collected on either all weekday nights or all 

weekend nights for most participants across the four trials, albeit 
these nights did consist of a combination of weekday and week-
end nights for some participants (≤22%). Arguably, the impact 
of performing sleep assessments on weekday versus weekend 
days is likely to be lower in the immediate exercise effect com-
parison given participants were required to attend the laboratory 
during the day and follow study protocols until 17:00 on day 2. 
Furthermore, the inclusion of a multi-night replicate-averaged 
exercise effect comparison which encompassed a combination of 
sleep on weekday and weekend nights for all participants, was 
important to minimize night-to-night variability in the analy-
sis and yielded similar findings to the immediate and delayed 

Figure 6. Relationship between exercise and control pre-to-post change scores (average postintervention [nights 3–5] minus average pre-intervention 
[nights 1 and 2]) on the two occasions for: (A) total sleep time; (B) actual wake time; (C) sleep latency; and (D) sleep efficiency in 18 men (36 replicates 
of the control-adjusted exercise response). “Response 1” calculated from the first pair of trials (exercise 1 minus control 1) and “Response 2” calculated 
from the second pair of trials (exercise 2 minus control 2). Dashed lines depict the mean responses and gray-shaded region represents the 95% CI of 
the regression line (black solid line).
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exercise effect comparisons. Given the diversity of factors that 
contribute to night-to-night variability in sleep [34, 62], account-
ing for natural fluctuations in sleep that occur in the absence of 
an intervention is paramount when exploring the consistency 
and magnitude of interindividual differences in response.

Importantly, the adoption of a replicate crossover design per-
mits a formal separation of the participant-by-treatment inter-
action from random within-participant variability over time 
[66]. This is the first study to investigate individual differences 
in sleep in response to acute exercise and therefore contributes 
novel findings to the literature using a robust study design and 
analytical approaches [21–24, 43]. Most of the participant-by-trial 
interactions were trivial, the individual differences SDs were 
relatively small with large uncertainty around the estimates, 
and the estimated between-participant heterogeneity from the 
random- effects meta-analysis was negligible for most outcomes. 
As an exception, a statistically significant participant-by-trial 

interaction was identified for sleep latency and sleep efficiency for 
the delayed effect of exercise. However, the τ statistic was close to 
zero, and the individual differences SDs for these outcomes, along 
with several other outcomes (≥50% of outcomes within each com-
parison), were negative in direction indicating greater variabil-
ity in the control than exercise trials. It is also notable that the 
direction of the SDIR calculated from the naïve (estimate 1) and 
modeling (estimate 2) approaches was inconsistent for several 
variables, which most likely reflects an imprecision in the esti-
mates due to the degree of measurement error associated with 
the sleep variables. These findings do not provide any evidence 
of meaningful interindividual response heterogeneity in sleep in 
response to acute exercise, which could not be detected due to 
substantial natural within-subject variability and measurement 
error over time.

Although this study has several strengths, including the robust 
study design and statistical approaches and the assessment of 

Figure 7. Forest plot displaying the individual participant replicate-averaged exercise effect (post- minus pre-intervention) from the random-effects 
meta-analysis for: (A) total sleep time; (B) actual wake time; (C) sleep latency; and (D) sleep efficiency in 18 men (72 observations/trials). CI, confidence 
interval; SE, standard error; FE, fixed effect; RE, random effects; PI, prediction interval; τ, tau statistic describing between-participant variability.
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home-based sleep using actigraphy, it is important to highlight 
some limitations. Our findings may not generalize to other popu-
lations including women, older adults, and those with pre-existing 
sleep conditions. Due to the arduous nature of the study design 
requiring repeated exercise protocols and multiple outcome 
assessments, it was not possible to control whether the sleep data 
were collected on weekday or weekend nights across the trials. 
Furthermore, participants were instructed to follow their usual 
sleep routine with no restrictions placed on screen use before 
sleep, social interactions, or sleep location. After participants left 
the laboratory on day 2, we were unable to impose restrictions on 
physical activity engagement or dietary intake which may have 
influenced the sleep results obtained in the delayed and average 
comparisons. It is also recognized that wrist-worn actigraphy is 
a reasonable, albeit imperfect, tool for assessing sleep compared 
with polysomnography with the low ability for actigraphy devices 
to detect wakefulness whilst immobile during sleep representing 
the main limitation [58]. Finally, we did not measure any biolog-
ical variables implicated in the circadian control of the sleep–
wake cycle including melatonin and orexin, which may present a 
potential direction for future investigations.

In conclusion, the findings of this study suggest that free- 
living sleep in response to acute exercise was inconsistent when 
measured on repeated occasions. Considerable trial-to-trial 
within- subject variability and measurement error prevented the 
identification of meaningful interindividual response heterogene-
ity in sleep in response to acute exercise. These findings highlight 
the importance of researchers accounting for night-to-night var-
iability in sleep before making any inferences on interindividual 
differences in sleep in response to an intervention.

Supplementary material
Supplementary material is available at SLEEP Advances online.
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