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Abstract 23 

The recent development of deep learning (DL) techniques has created opportunities for 24 

classifying wetlands from remote sensing data (mainly optical data). However, the methods 25 

for accurately and efficiently classifying large-scale wetlands using DL and radar data that 26 

can be more effective than optical data still needs evaluation. In this study, we developed 27 

an end-to-end depth-adaptive convolutional neural network (CNN) for mapping wetlands 28 

using leaf-off time-series Sentinel-1 Synthetic Aperture Radar (SAR) imagery along with 29 

ancillary data. We examined the inclusion of multi-land cover proximity information and a 30 

CNN-based self-supervised SAR denoising procedure for enhancing wetland classification 31 

accuracy. The depth-adaptive CNN based on U-Net architecture was designed to classify 32 

wetland classes (emergent wetland, scrub-shrub wetland, forested wetland, and open water) 33 

in Delaware, U.S. while achieving optimization between model complexity (network 34 

depths) and accuracy. Results show that our proposed DL method (OA=0.93, MIoU=0.60) 35 

not only produced a higher classification accuracy than the traditional RF method (OA = 36 

0.89, MIoU=0.18) but also had a significantly reduced computational cost compared to 37 

established state-of-the-art CNNs (e.g., DeepLabV3+ and DANet) without loss of 38 

accuracy. The inclusion of multi-land cover proximity information (especially distances to 39 

forest and water) and the CNN-based self-supervised SAR denoising procedure can both 40 

enhance wetland classification accuracy, especially for forested wetland using traditional 41 

RF methods. These results demonstrated the novelty and efficiency of our proposed DL 42 

method for classifying wetlands by combing denoised SAR imagery and ancillary 43 

information, which provides insights on integration of DL approach and radar data for 44 

supporting operational wetland mapping at large spatial scales. 45 

Keywords: wetland classification, deep learning, leaf-off SAR, proximity information, 46 

SAR denoising 47 
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1. Introduction 48 

Wetlands cover only 5-8% of the terrestrial land surface but provide essential ecosystem services 49 

to human society, such as water storage, flood regulation, and mitigation of climate change (Junk 50 

et al. 2012; Mitsch et al. 2012). They also provide habitats for various plants and animals (Cohen 51 

et al. 2016). However, wetlands can be extremely difficult to map compared to other permanent 52 

or open-surface water wetlands, due to the interplay among water, soils, and vegetation (Gallant 53 

2015). This may be especially true for extensive wetlands in the eastern U.S. where they are 54 

heavily vegetated (i.e., from sparse emergent herbaceous species to dense woody plants) with 55 

significant seasonality (Tiner 2003). These wetlands have been subject to loss in recent decades 56 

due to drainage and conversion for large scale agriculture and development, which strongly 57 

influences hydrological and biochemical cycles at watershed scale (Lang et al. 2024). Accurate 58 

and efficient wetland mapping approaches are critical for quantifying wetland changes due to 59 

climate change or human activity and assessing their impacts on regional hydrological and 60 

biochemical cycles in earth system modelling. 61 

Synthetic Aperture Radar (SAR) can provide observation under most weather conditions 62 

and can penetrate through vegetation canopy to some extent, making it a promising data source 63 

for large-scale wetland mapping (Adeli et al. 2020; Lang et al. 2008; Li et al. 2014; 64 

Mohammadimanesh et al. 2019; Scepanovic et al. 2021). As reported by many studies, with the 65 

presence of water underneath vegetation, like-polarized SAR backscatter (i.e., HH and VV) can 66 

significantly increase due to the double-bounce interaction between the water surface and 67 

vertical structures of the vegetation, providing a useful tool for distinguishing inundated 68 

vegetation, especially during the leaf-off season (Henderson and Lewis 2008; Hess et al. 1990; 69 

Lang and Kasischke 2008). Cross-polarized channels (i.e., HV and VH) are suitable to describe 70 
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variations in volume scattering from vegetation, allowing for discriminating different vegetation 71 

structures (Baghdadi et al. 2001; Henderson and Lewis 2008). However, SAR data reprocessing 72 

is notably more computation intensive than optical image processing due to speckle noise 73 

originated from coherent imaging systems. Neglecting speckle noise degrades the radiometric 74 

quality of the image and thus hinders image segmentation and classification. Many traditional 75 

denoising methods such as filter-based methods (both in spatial and transform domains) have 76 

been performed on SAR images as one of preprocessing steps (Argenti et al. 2013; Jamali et al. 77 

2021a; Mahdavi et al. 2017). However, these methods usually require a noise-free image for 78 

training and usually introduce a “wash out” effect that substantially decreases spatial detail 79 

(Frost et al. 1982). Recently, self-supervised denoising methods that do not require clean images 80 

have been demonstrated effective for SAR image denoising in terms of noise reduction and fine 81 

feature preservation (Lin et al. 2023; Tan et al. 2022). The effectiveness of these advanced SAR 82 

denoising procedures in wetland classification could be further examined. 83 

Ancillary spatial data layers that provide descriptive information such as topographic and 84 

proximity/adjacency characteristics can enhance wetland classification. The topographic 85 

information such as light detection and ranging (LiDAR) derived topographic metrics has been 86 

demonstrated to slightly or significantly improve wetland classification (Du et al. 2020; Hogg 87 

and Holland 2008; Lang et al. 2012; O'Neil et al. 2018). Additionally, wetlands have both 88 

hydrological and biotic characteristics that connect with their surroundings. It has been reported 89 

that with the distance to the nearest stream or water body decreasing, the proportion of wetlands 90 

increased significantly, and the geographic proximity to water represented an essential data layer 91 

in wetland and land cover classification (Clewley et al. 2015; Hermosilla et al. 2022; Whitcomb 92 

et al. 2014). Moreover, wetland vegetation composition gradients can be affected by adjacent 93 
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land covers that influence the sources/dispersal of plant propagules and physicochemical 94 

conditions of wetlands (Houlahan et al. 2006; Kraft et al. 2019). For instance, the more abundant 95 

a species is in nearby upland forest types, the more likely it is to occur in a swamp (Pitman et al. 96 

2014). We hypothesize that the inclusion of distance-to information with regards to other land 97 

cover features besides water can also enrich the features of wetland classes and constrain the 98 

classification result. 99 

In last decade, deep learning (DL) techniques, notably convolutional neural network 100 

(CNN)-based methods, have led to great success in image segmentation and outperformed 101 

traditional pixel- and object-oriented classification methods, due to their ability to capture 102 

contextual information from images (Du et al. 2020; Gonzalez-Perez et al. 2022; Zhang et al. 103 

2020). For wetland mapping, applications of DL methods have been mostly limited to use or 104 

incorporation of optical data  (Dang et al. 2020; DeLancey et al. 2019; Du et al. 2020; Dutt et al. 105 

2024; Gonzalez-Perez et al. 2022; Gunen 2022; Hosseiny et al. 2021; Hu et al. 2021; Jamali et al. 106 

2021b; Li et al. 2021; Lv et al. 2023; Mainali et al. 2023) and have been investigated to a lesser 107 

extent using radar data exclusively, due to complex scattering mechanisms for landcover classes 108 

and speckle noise of radar imaging (Guo et al. 2023; Lam et al. 2023; Mohammadimanesh et al. 109 

2019; Scepanovic et al. 2021). CNN-based architecture like U-Net remains popular for its 110 

simplicity and effectiveness and has been widely introduced in landscape monitoring and 111 

wetland mapping (Du et al. 2020; Dutt et al. 2024; Gonzalez-Perez et al. 2022; Li et al. 2021). 112 

Recently, various innovative DL techniques such as attention mechanisms for enhancing model 113 

focus on relevant features and transformers allowing models trained on large datasets have also 114 

emerged for improving wetland classification performance (Jamali and Mahdianpari 2022; 115 

Jamali et al. 2023; Marjani et al. 2024; Radman et al. 2024). However, these advanced DL 116 
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techniques tend to become computationally intense by introducing massive number of 117 

parameters. Thus, when developing DL models, attention also needs to focus on the trade-off 118 

between model complexity (e.g., network depths) and accuracy.  119 

This study aims to propose a DL-based wetland classification method by integrating 120 

Sentinel-1 Synthetic Aperture Radar (SAR) imagery and ancillary data. The innovations and 121 

contributions of the methodology include:  122 

I. A depth-adaptive CNN model based on U-Net architecture with various depths (U-123 

Net A, B, C, D) was proposed, taking into account the trade-off between model 124 

computational cost and accuracy. 125 

II. Time-series SAR data during leaf-off season and a CNN-based self-supervised SAR 126 

denoising procedure [Enhanced Noise2Noise (EN2N) model] (Tan et al. 2022) were 127 

employed, allowing for large-scale wetland mapping without considering weather 128 

conditions. 129 

III. Multi-land cover proximity information that quantifies the nearest neighbour 130 

distances was introduced for the first time to enhance classification accuracy.  131 

The updated U.S. Fish and Wildlife Service National Wetlands Inventory (NWI) product in 132 

Delaware was employed to verify model for distinguishing typical wetland classes, i.e., emergent 133 

(EM) wetlands, scrub-shrub (SS) wetlands, forested (FO) wetlands, and open waters. We also 134 

evaluated the method generalizability at a larger spatial extent (i.e., the entire Delmarva 135 

Peninsula including portions of Maryland and Virginia) through comparisons with existing NWI 136 

and land cover products. 137 
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2. Materials and methods 138 

2.1 Study area 139 

The study area is within the Delmarva Peninsula, adjacent to the Chesapeake Bay, U.S. (Figure 140 

1). It is characterized by a low relief landscape with an average elevation of 26 m above sea 141 

level. The temperature ranges from an average of approximately 2 °C in January and February to 142 

25 °C in July and August (Shedlock et al. 1999). Annual precipitation is ~1200 mm with an even 143 

distribution throughout the year, and the annual evapotranspiration is ~600mm, with a peak in 144 

the summer and a trough in winter. Abundant water supply and poorly drained soil on lowlands 145 

together contribute to the widespread vegetated wetlands in this region (Lowrance et al. 1997). In 146 

this region, many wetlands are inundated or saturated for a short period with a peak normally 147 

occurring in early spring before leaf-out (March/April) with low evapotranspiration conditions. 148 

Land cover of this area is dominated by croplands (~32%), forests (~25%), and grasslands 149 

(~5%), according to the 2019 National Land Cover Database (NLCD), (Figure 1b). A 150 

considerable portion (~60%) of forested areas are forested wetlands which is the predominant 151 

wetland class in the study area. This region also has other nontidal wetlands distributed over the 152 

inland portion of the Delmarva, including EM wetlands (i.e., marshes and wet meadows 153 

dominated by emergent plants), SS wetlands (i.e., swamps with shrubs or trees), and open 154 

shallow water bodies (Figure 1c). 155 



8 

 

 156 

Figure 1. Location of study area (a). Panels (b) and (c) respectively display the land cover map 157 

derived from 2019 National Land Cover Database (NLCD) and wetland classes extracted from 158 

Delaware NWI updated in 2017. 159 

2.2 Data and processing 160 

2.2.1 SAR imagery and denoising 161 

We used C-band SAR imagery from Sentinel-1 satellite with ground range detected (GRD) 162 

projection as the primary data input to classify wetlands (Table 1). The Sentinel-1 SAR mission 163 

has a regular revisit interval (12 days) and high spatial resolution (typically 10-m grid). Images 164 

in the winter-spring (from November 1st, 2017 to March 1st, 2018, 11 dates in total) with VH and 165 

VV polarizations and ascending orbit were downloaded. The selection of winter-spring is a time 166 

of year when the expression of wetland inundation is maximized in the study area. The original 167 
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records downloaded from the ESA were calibrated and ortho-corrected using the Sentinel-1 168 

Toolbox (S1TBX) and the Graph Processing Framework from ESA’s Sentinel Application 169 

Platform. SAR reprocessing included the application of precise orbit files, border and thermal 170 

noise removal, radiometric calibration, and orthorectification to project the images from slant 171 

range to ground range. Finally, backscatter coefficient (𝜎°) was converted to a decibel (dB) scale 172 

by 10 × 𝑙𝑜𝑔10𝜎°. The mean values of VV and VH (VV_mean, and HH_mean) were also 173 

calculated as data input to of wetland classification. 174 

The leaf-off time-series SAR imagery was denoised using the EN2N model, a CNN-175 

based self-supervised SAR denoising procedure (Tan et al. 2022) (Figure S1-S2). This denoising 176 

method introduced a self-supervised training strategy that time-series SAR data were denoised 177 

without clean reference images, and a feature loss function was used to repair the spatial details 178 

(Figure S2). This denoising method can also save a significant amount of time in image 179 

processing while achieving good quality denoising performance (Tan et al. 2022). 180 

2.2.2 Topographic information 181 

Topographic information including elevation and slope derived from the elevation were 182 

employed as ancillary datasets (Table 1). The elevation information was provided from 3D 183 

Elevation Program (3DEP) bare earth Digital Elevation Model (DEM) with 1/3 arcsecond grid 184 

(~10m) (Thatcher and Lukas 2021). The 3DEP data holdings provide seamless multi resolution 185 

elevation data for earth science studies and mapping applications in the United States.  186 

2.2.3 Proximity information 187 

Multi-land cover proximity information that quantifies the distance of a location to the nearest 188 
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land covers were also introduced as additional data layers (Table 1). Maps of proximity to four 189 

relevant land covers (i.e., forest, shrubland, herbaceous/grassland, and permanent water surface) 190 

were derived based on the existing 30-m land cover product (2019 NLCD). The 2019 NLCD is 191 

available via the Multi-Resolution Land Characteristics Consortium.  192 

Specifically, we defined the Euclidean distance of a location to a particular proximal land 193 

cover category as its proximity metric. First, we calculated the distance of each pixel to all 194 

polygon objects belonging to a particular land cover type. Then, for each pixel, the proximity to 195 

a particular land cover type was calculated as the sum of the distance to nearest and second 196 

nearest targeted land cover polygons by use of a pixelwise sort (Figure S3). Once the pixel was 197 

assigned to a given land cover category, the distance was set as 0. Finally, the proximity to each 198 

land cover was normalized by the image size during model training (Equation 1). 199 

                         𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑐, 𝑊, 𝐻) =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝1

𝑐 (𝑥,𝑦)+𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝2
𝑐 (𝑥,𝑦)

√𝑊2+𝐻22                                        (1) 200 

where 𝑊 and 𝐻 are the width and height of the image, respectively. 𝑝𝑐 refers to the polygons 201 

belonging to a specific land cover type 𝑐. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝1
𝑐  and 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝2

𝑐  refer to the distance of 202 

each pixel (𝑥, 𝑦) to the nearest and second-nearest land cover polygons.  203 

2.2.4 Reference data 204 

The reference data used for model verification were wetland polygons derived from the updated 205 

2017 NWI dataset in Delaware (Table 1). There are five major categories in NWI classification 206 

system, i.e., Marine, Estuarine, Riverine, Lacustrine, and Palustrine (Cowardin, 1979). We 207 

extracted four wetland classes (i.e., EM, SS, FO wetlands, and open waters) from these 208 

categories based on the “attribute” field of wetland polygons. Extracted wetland polygons were 209 
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converted into binary rasters (hereinafter referred to wetland labels) to align with SAR imagery. 210 

To evaluate the generalizability of our DL method at a large spatial extent (e.g., entire 211 

Delmarva Peninsula), we also downloaded the newly released NWI dataset in Maryland and 212 

Virginia (updated in 2019) as well as the 10-m 2020 ESA WorldCover dataset (https://esa-213 

worldcover.org/en) for comparisons. It should be noted that the 2020 ESA WorldCover only 214 

includes one similar wetland class for comparison (i.e., herbaceous wetland which we treated as 215 

being similar to EM wetlands). This ESA WorldCover product was generated based on 131 216 

spatial localizing features including Sentinel-1 and 2 data, topographic features, and positional 217 

features using machine learning algorithms and demonstrated a higher accuracy than other land 218 

cover products, e.g., ESRI land cover product (Wang et al. 2022). 219 

Table 1. Datasets used in this study. 220 

Data Description Source Acquisition 

Data 

SAR 

imagery 

Time-series C band 

imagery (VV, VH, 

VV_mean, and 

HH_mean) 

Sentinel-1 from European 

Space Agency  

Nov. 1st, 2017-

Mar. 1st, 2018 

Topographic 

information 

DEM USGS 3DEP products 
 

Slope Derived from DEM 

Proximity 

information 

Distance to water 

(Distance_W)  

Calculated from 30-m 

NLCD 

 

  

2019  

Distance to forest 

(Distance_F)  

Distance to shrub 

(Distance_S)  

Distance to herbaceous 

(Distance_H) 

Reference 

data 

NWI National Wetlands 

Inventory dataset for 

Delaware (2017), Maryland 

and Virginia portions of 

Delmarva (2019) 

2017&2019 

ESA WorldCover 2020 ESA WorldCover  2020 

 221 

https://esa-worldcover.org/en
https://esa-worldcover.org/en
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 222 

Figure 2. Deep learning framework for wetland classification.  223 

 224 

 2.3 Methods 225 

2.3.1 Proposed depth-adaptive U-Net 226 

U-Net is a popular semantic segmentation model characterized by a symmetric U-shaped 227 

architecture, which includes an encoder-decoder structure with long skip connections (Figure 3). 228 

The encoder part is a feature extraction process implemented using multiple convolution 229 

operations, in which the spatial dimension is reduced while the channel information is enhanced. 230 

The decoder part is an expanding process that combines the feature and spatial information 231 

through a sequence of transposed convolution operations and concatenations with high-232 

resolution features from the encoder path. By utilizing the concatenations that bypass layers in 233 

the encoder part, high-resolution features from earlier stages can be directly integrated. This 234 

enhances localization and prevents loss of spatial information. 235 

2.3.1.1 Depth-adaptive U-Net architecture. The full U-Net is designed with five stages of 236 

convolution operations (i.e., U-Net D), which requires massive computational resources, 237 



13 

 

especially when the input image is large. To optimize computational resources and accuracy, we 238 

developed a depth-adaptive U-Net network with three strengths: automatic depth optimization, 239 

multiscale fusion, and model compression. Four different depths of U-Net (U-Net A, B, C, and 240 

D) (Figure 4 and Figure S4) were integrated in one encoder part, and the output of each model 241 

becomes the hidden layer in the ensemble model. The depth that achieves best accuracy was 242 

automatically determined during training. A full U-Net can be represented as a recursive 243 

structure: 244 

𝑈𝑖 = 𝐷𝑖(𝑈𝑖−1,𝐸 + 𝑈𝑖−2,𝐸)                                                     (2) 245 

𝑈𝑖−1,𝐸 = 𝐸𝑖(𝑈𝑖−2,𝐸)                                                         (3) 246 

Where i= 1,2,3,4,5.  𝐸 and D refer to the encoder and decoder parts, respectively, 𝑈𝑖,𝐸 refers to 247 

the output of the encoder part in 𝑈𝑖. 248 

 249 

Figure 3. Recursive structure of a U-Net 250 

Each encoder part contains a max-pooling layer and two repeat convolution operations 251 

(Conv). The max-pooling down-sampling the input representation to half size. The Conv 252 

operation has a 3×3 convolution kernel followed by a rectified linear unit (ReLU) and a 253 

BatchNorm layer. The operation can be formulated as:  254 

                                        𝐸𝑖,𝑗 = 𝑓𝑝𝑜𝑜𝑙(𝑓𝐶𝑜𝑛𝑣2(𝑓𝐶𝑜𝑛𝑣1(𝐸𝑖−1,𝑗)))                                            (4) 255 
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where the 𝐸𝑖𝑗 is the hidden feature in 𝑗 th of depth 𝑖. The 𝐸𝑖−1,𝑗 is the upper hidden feature of 𝐸𝑖𝑗. 256 

The 𝑓pool represents the downsampling operation by max-pooling and 𝑓𝐶𝑜𝑛𝑣 represents the Conv 257 

operation. 258 

This decoder adopts a structure similar to the encoder by replacing the max-pooling layer 259 

with an up-sampling layer to bilinearly extend the in-depth feature to the original size. For each 260 

decoder block, the upscale was set to 2 to ensure that the output size is the same as the forward 261 

encoder output. A skip connection was used to concatenate the encoder and decoder at each 262 

layer. The original skip connection was simply as the residual learning. The hidden feature from 263 

the encoder was directly concatenated to the decoder part. The decoder operation can be 264 

formulated as: 265 

                                   𝐷𝑖,𝑗 = (𝑓𝑇𝐶𝑜𝑛𝑣2(𝑓𝑇𝐶𝑜𝑛𝑣1(𝐷𝑖+1,𝑗−1))) + 𝐸𝑖,0                                    (5) 266 

where the D𝑖,𝑗 is the hidden feature of decoder part in 𝑗 th of depth 𝑖. The D𝑖+1,𝑗−1 is the 267 

lower hidden feature of D𝑖,𝑗. The 𝑓𝑇𝐶𝑜𝑛𝑣presents the transposed convolution that up-sampling the 268 

feature. 𝐸𝑖,0 presents the output of encoder in the same depth. 269 

 270 
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Figure 4. Diagram of depth-adaptive U-Net with four different depths (U-Net A, B, C, and D) (a) 271 

and structure of each encoder/decoder node (b). Each encoder/decoder node includes a 3×3 272 

convolution block, two batch norm blocks, a ReLU block, and a Max Pooling block (for encoder) 273 

or Up-Sampling block (for decoder). 274 

2.3.1.2 Fusion loss function with deep supervision. A fusion loss function was introduced by 275 

supervising all outputs of models with different depths: 276 

                                                    𝐿𝑓𝑢𝑠𝑖𝑜𝑛 = 𝐿2 + 𝐿3 + 𝐿4 + 𝐿5                                               (6) 277 

For each model, a hybrid segmentation loss, including a pixelwise loss-based Cross-Entropy loss 278 

with class weight, an intersection over union (IoU) based Dice Loss, and an edge loss based on 279 

Binary Cross-Entropy loss, is introduced: 280 

𝐿 = 𝛼𝐿𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 + (1 − 𝛼)𝐿𝐷𝑖𝑐𝑒 + 𝐿𝐸𝑑𝑔𝑒                                  (7-a) 281 

𝐿𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑦, 𝑦̂) = − ∑ ∑  𝐶
𝑐=1 𝑤𝑐𝑙𝑜𝑔(𝑦̂)𝑦ℎ×𝑤

𝑖=0                                (7-b) 282 

𝐿𝐷𝑖𝑐𝑒(𝑦, 𝑦̂) = 1 −
2𝑦𝑦̂+1

𝑦+𝑦̂+1
                                                   (7-c) 283 

𝐿𝐸𝑑𝑔𝑒(𝑒, 𝑒̂) = ∑ 𝑒 ⋅ 𝑙𝑜𝑔 𝑒̂ + (1 − 𝑒) ⋅ 𝑙𝑜𝑔 (1 − 𝑒̂)ℎ×𝑤
𝑖=0                             (7-d) 284 

Here, 𝑦̂ is the predicted confidence value for one class by the model. 𝑒̂ is the predicted 285 

confidence value for the edge. 𝑤𝑐 It is the class weight that can be calculated as: 286 

𝑤𝑐 = 1 +  1 / 𝑆𝑖𝑧𝑒𝑐                                                       (8) 287 
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where 𝑆𝑖𝑧𝑒𝑐 is the covering area of different wetland classes. By training 𝐿𝑓𝑢𝑠𝑖𝑜𝑛, we can 288 

simultaneously monitor models' performance with different depths and select the best model 289 

structure. 290 

2.3.2 Comparison with other classifiers 291 

A comprehensive comparison experiment was designed in this study. We started by a 292 

comparison with traditional classification methods. Machine learning algorithms such as the 293 

random forest (RF), support vector machine, and boosted regress trees have been commonly 294 

used in land cover classification tasks from remote sensing data (Zhang et al. 2020). In 295 

particular, the RF was considered to outperform other machine learning classifiers due to its 296 

ability to handle high-dimensional datasets and mitigate overfitting and has been widely applied 297 

in wetland mapping (Adugna et al. 2022; Amani et al. 2019; Jamali et al. 2021a; Rodriguez-298 

Galiano et al. 2012). In our study, we examined the inclusion of multi-land cover proximity 299 

information and a CNN-based self-supervised SAR denoising procedure in our proposed DL 300 

method and the RF method for classifying different wetland classes. Moreover, because DL 301 

models require a significantly higher number of parameters, it is inadequate to only compare 302 

with machine learning methods. Therefore, we additionally compared the efficiency of our 303 

proposed DL model against two established state-of-the-art CNN-based models: DeepLabv3+ 304 

(Chen et al. 2018) and DANet (Fu et al. 2019) in terms of accuracy, number of parameters, and 305 

processing time. We have not chosen any transformer-based model for comparison, because this 306 

type of model often requires massive training samples to achieve optimum performance, which 307 

does not apply to our datasets. 308 
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2.3.3 Model training and classification schemes 309 

For DL model training, wetland labels combined with all data inputs were split into small image 310 

patches using a moving window (512*512 pixels) to allow for model training and classification. 311 

Based on all image patches that contain wetland categories, we randomly generated training, 312 

validation, and testing image sets according to the 6:2:2 ratio (Figure S5 shows the distribution 313 

of validation and test sets). The proposed DL model was written by PyTorch and trained with the 314 

AdamW optimizer (Loshchilov and Hutter 2017). A batch size of 64, distributed over 3 GPUs 315 

(GeForce RTX 2080 Ti) was used. The learning rate was linearly ramped up during the first ten 316 

epochs as 1e-3. After this warmup, we decayed the learning rate with a cosine schedule. The 317 

weight decay also followed a cosine schedule from 0.04 to 0.4. These parameters were applied to 318 

all DL models used in this study. 319 

For RF model training, we generated a total of 8,000 random sample points (2,000 for 320 

each category: open water, EM, SS, and FO) from the DL training image patches. To enhance 321 

RF training data quality, the random selection of training sample points also followed the 322 

criterion that the neighbouring 3×3 domain (i.e., 30m×30m) around each sample point has 323 

uniform land cover . The validation and test data used for assessing accuracy of RF were the 324 

same as those used for DL to make model accuracy metrics comparable. In RF classification, we 325 

used constant ntree (the number of trees) of 500, and mtry (the number of variables at each split) 326 

equal to the square root of the number of total inputs.  327 

2.3.4 Accuracy evaluation metrics 328 

To evaluate the classification performance of each method, five accuracy metrics: precision, 329 

recall, overall accuracy (OA), F1-score, and mean IoU (MIoU), were calculated on test set to 330 
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assess model accuracy.  331 

OA is the most intuitive performance measure, and it is simply a ratio of correctly 332 

predicted observations to the total observations, which can be written as: 333 

𝑂𝐴 =  𝑆𝑑 𝑛⁄ × 100                                                       (9) 334 

where 𝑆𝑑 is the total number of correctly classified targets, 𝑛 is the total number of validation 335 

targets.  336 

The Precision measures the fraction of true positive detections (𝑋𝑖𝑗 𝑋𝑗⁄ × 100), and the 337 

Recall measures the fraction of correctly identified positives (𝑋𝑖𝑗 𝑋𝑖⁄ × 100), where 𝑋𝑖𝑗 is the 338 

observation in row 𝑖 column 𝑗 in the confusion matrix, 𝑋𝑖 is the marginal total of row 𝑖 and 𝑋𝑗 is 339 

the marginal total of column 𝑗 in the confusion matrix. F1-score is the harmonic average of 340 

Precision and Recall:  341 

F1 − score =  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
× 2                                          (10) 342 

The segmentation performance was evaluated by IoU, which is the ratio of overlapped 343 

area to the area of union between predicted and ground truth categories, and is written as: 344 

𝐼𝑜𝑈(𝐴, 𝐵) =  
𝐴𝑟𝑒𝑎(𝐴∩𝐵)

𝐴𝑟𝑒𝑎(𝐴∪𝐵)
                                                     (11) 345 

where A and B correspond to ground truth and predicted wetland objects, respectively. IoU 346 

ranges from 0 to 1, where 0 represents no overlap and 1 represents perfect segmentation. The 347 

MIoU is calculated by averaging the IoU of all wetland classes.  348 
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3. Results 349 

3.1 Wetland classification performance 350 

The overall classification performance of our DL method was satisfactory (OA = 0.93), which 351 

was higher than that of RF (OA = 0.89) (Table 2 and Figure 5) using all denoised SAR and 352 

topographic and proximity information. The F1-score of each wetland class using DL was 353 

significantly higher than that using RF, especially for SS and FO wetlands (e.g., F1-score was 354 

0.54 and 0.78 for SS and FO, respectively, using DL, and was 0.00 and 0.41 for SS and FO, 355 

respectively, using RF). RF generated high Precision estimates but very low Recall estimates for 356 

SS and FO. Based on the confusion matrix shown in Figure 5, there was a considerable amount 357 

of SS and FO wetlands classified into other categories in RF.  358 

At the object level, the wetland types predicted by the DL method was more comparable 359 

with the NWI wetland labels than RF predicted wetland types. The RF presented extensive “salt-360 

and-pepper” appearance in its results (Figure 6). This was also demonstrated by the higher MIoU 361 

of our DL method (0.60) than RF (0.18) for all wetland classes (Table 2). Additionally, by visual 362 

check, the pattern of DL predicted EM wetland was also comparable with the herbaceous 363 

wetland from 2020 ESA WorldCover (Figure 6). 364 

 365 

 366 

 367 

 368 

 369 
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Table 2. Classification accuracy of the proposed deep learning (DL) method and random forest 370 

(RF) method using denoised SAR, topographic data, and proximity information.  371 

Category 
DL (this study)   RF 

Precision Recall F1-score   Precision Recall F1-score 

Water 0.76 0.96 0.85  0.89 0.80 0.84 

EM 0.82 0.94 0.87  0.73 0.74 0.74 

SS 0.44 0.71 0.54  0.25 0.00 0.00 

FO 0.71 0.87 0.78  0.64 0.30 0.41 

Others 0.98 0.94 0.96  0.91 0.97 0.94 

OA 0.93  0.89 

MIoU 0.60   0.18 

 372 

 373 

 374 

Figure 5. Confusion matrix of the proposed DL method (a) and random forest (RF) method (b). 375 

y axis represents actual, and x axis represents predicted categories.376 
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 377 

Figure 6. Comparison of our deep learning (DL) predicted wetland types with random forest (RF) output, 2020 ESA WorldCover 378 

product (only herbaceous wetland), and NWI wetland labels. The first column shows the true colour combination of Red-Green-Blue 379 

(RGB) bands from Google Earth; The second column shows denoised SAR images with VH polarization. 380 
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3.2 Inclusion of multi-land cover proximity information 381 

The inclusion of multi-land cover proximity information was investigated in both DL and RF 382 

methods by comparing classification accuracy using (Table 2) and without using (Table 3) 383 

proximity information. As we expected, excluding proximity information resulted a decrease in 384 

classification accuracy for all wetland classes in both methods by comparing Table 3 to Table 2. 385 

For example, the MIoU of DL decreased from 0.60 to 0.54, and the MIoU of RF decreased from 386 

0.18 to 0.16. There was a significantly decreased accuracy for FO wetland in RF method without 387 

using proximity information, e.g., the F-1 score of FO decreased from 0.41 to 0.03. According to 388 

the relative importance score generated from RF, the proximity to forest (Distance_F) and 389 

proximity to water (Distance_W) contributed most in classification, following topographic 390 

information (DEM and slope) (Figure 7). 391 

Table 3. Classification accuracy of the proposed deep learning (DL) method and random forest 392 

(RF) method without using proximity information. 393 

Category 
DL (this study)   RF 

Precision Recall F1-score   Precision Recall F1-score 

Water 0.72 0.95 0.82  0.89 0.76 0.82 

EM 0.82 0.93 0.87  0.76 0.73 0.73 

SS 0.51 0.71 0.60  1.00 0.00 0.00 

FO 0.70 0.78 0.74  0.46 0.01 0.03 

Others 0.97 0.94 0.96   0.86 0.99 0.92 

OA 0.93  0.86 

MIoU 0.54   0.16 

 394 
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 395 

Figure 7. Relative importance of all data input from random forest model. Distance_H, 396 

Distance_S, Distance_F, and Distance_W represent the distance to herbaceous, shrubland, forest, 397 

and open water, respectively. VV_x (or VH_x) represents the 11 time series SAR images with 398 

VV (or VH) polarization acquired during the leaf-off period. VV_mean and VH_mean are mean 399 

values of VV bands and VH bands, respectively. 400 

3.3 Effectiveness of CNN-based self-supervised denoised SAR imagery 401 

The effectiveness of the SAR denoising procedure using EN2N was also investigated in both DL 402 

and RF methods by comparing classification accuracy using (Table 2) and without using (Table 403 

4) the SAR denoising procedure. There was also decreased classification accuracy when 404 

excluding the denoising procedure (i.e., using the raw SAR) in both methods. The MIoU of DL 405 

and RF decreased from 0.93 to 0.47, and from 0.18 to 0.15, respectively (Table 2 and Table 4). It 406 

is also notable that, without the SAR denoising procedure, there was a significantly decreased 407 
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accuracy for FO wetland in RF method, e.g., the F-1 score decreased from 0.41 to 0.07. 408 

Table 4. Classification accuracy of the proposed DL method (this study) and RF method without 409 

the SAR denoising procedure. “Others” represents all other land cover categories. 410 

Category 
DL (this study)   RF 

Precision Recall F1-score   Precision Recall F1-score 

Water 0.73 0.92 0.82  0.87 0.76 0.81 

EM 0.81 0.87 0.87  0.70 0.70 0.70 

SS 0.55 0.71 0.61  0.00 0.00 0.00 

FO 0.73 0.75 0.76  0.52 0.04 0.07 

Others 0.95 0.91 0.94   0.89 0.98 0.93 

OA 0.89  0.86 

MIoU 0.47   0.15 

 411 

3.4 Computational cost and accuracy  412 

Table 5 provides a comparison of computational cost and accuracy obtained from the proposed 413 

depth-adaptive U-Net and two CNN-based DL models (DeepLabV3+ and DANet) using all data 414 

put. As seen, as the depth of U-Net increases, the resulting accuracy increased while requiring 415 

more calculation resources. The U-Net A with relatively simple network structure (104,064 416 

parameters) had the lowest accuracy (MIoU = 0.33, OA = 0.88), and the U-Net D with relatively 417 

complex network structure (8,854,176 parameters) achieved the best resulting accuracy (MIoU = 418 

0.60, OA = 0.93). By comparison, model application could be pruned to U-Net C to achieve a 419 

satisfactory performance at large scale, because U-Net C achieved a MIoU of 0.58 close to that 420 

of U-Net D (MIoU=0.60) but had less than one quarter of parameters and a significantly reduced 421 

processing time. A pattern worth noticing is that, when compared to our U-Net C, the two CNN-422 

based DL models (DeepLabV3+ and DANet) that comprise of much higher number of 423 

parameters (>20 times) demonstrated the same level accuracy (MioU of 0.58~0.60). 424 

 425 
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Table 5. Computational cost and model accuracy based on U-Net with different depth (A, B, C, 426 

and D), DeepLabV3+, and DANet. Unit of inference time is seconds per Sentinel-1 scene 427 

(25341×19433 px). 428 

U-Net depth MACs (GB) Parameters Inf. Time MIoU OA 

U-Net A 17.83 104,064 73 Sec 0.33 0.88 

U-Net B 31.19 473,856 79 Sec 0.51 0.92 

U-Net C 44.50 1,950,720 88 Sec 0.58 0.93 

U-Net D 57.81 8,854,176 137 Sec 0.60 0.93 

DeepLabV3+ 101.787 41,292,390 367 Sec 0.58 0.93 

DANet 115.816 50,081,850 390 Sec 0.60 0.93 

 429 

3.5 Method generalizability 430 

To further test the generalizability of our DL method at a large spatial extent, we predicted 431 

wetland classes for the entire Delmarva Peninsula during the leaf-off season between 2017-2018 432 

using the trained model and compared it with the newly released 2019 NWI wetland and the 433 

2020 ESA WorldCover (only herbaceous wetland) products (Figure S6 and Figure 8). Generally, 434 

the spatial extent of the DL predicted wetland classes was comparable with that from NWI and 435 

2020 ESA WorldCover for the entire Delmarva. For example, EM wetlands mostly occurred 436 

along the coastal areas, and FO/SS wetlands were distributed within the inland portion of the 437 

Delmarva (Figure S6). The total area of open water surface in Delmarva was 459,360 ha from 438 

our DL prediction, which was close to that from NWI (464,660 ha) and 2020 ESA WorldCover 439 

products (455,540 ha) (Table 6). There was a conservative pattern of wetland extent predicted for 440 

the entire Delmarva in our DL method compared to NWI (Figure 8), with an underestimation by 441 

20%-30% for EM and FO wetlands and 60% for SS wetlands. We observed numerous cases 442 

where SS wetlands in NWI were omitted or classified as FO wetlands in our DL prediction (e.g., 443 
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Figure 8d).  444 

 445 

Figure 8. Comparison of wetland classes predicted from our deep learning (DL) model, 2019 446 

NWI, and 2020 ESA WorldCover (only herbaceous wetland available) within the Delmarva 447 

Peninsula. The locations of a-d are illustrated in Figure S6. 448 

 449 

 450 
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Table 6. Comparisons of wetland areas (Unit: ha) from the proposed deep learning (DL) method 451 

with NWI and 2020 ESA WorldCover products in the Delmarva Peninsula. 452 

Category 

Entire Delmarva Peninsula 
Delmarva Peninsula excluding 

Delaware 

NWI 
DL(This 

study) 

2020 ESA 

WorldCover  
NWI 

DL(This 

study) 

2020 ESA 

WorldCover  

Water 464,660 459,360 455,540 402,010 398,850 400,250 

EM 146,020 112,310 121,230 114,380 86,410 93,990 

SS 31,160 12,070  27,770 9,110  

FO 214,530 150,400  156,880 102,550  

 453 

4. Discussion 454 

4.1 Significance of this study 455 

 Compared to optical data, design of a robust method for mapping wetlands based on SAR data is 456 

challenging, due to complex scattering mechanisms and the speckle noise caused by the coherent 457 

nature of the SAR imaging. Recent development of DL techniques has shown great advantages 458 

in learning complex contextual information from images, but its application with remote sensing 459 

imagery like SAR usually require prediction over a massive area, making computational 460 

efficiency a critical factor to be considered. In this study, we were able to classify wetland 461 

classes based on depth-adaptive U-Net by combining leaf-off Sentinel-1 C-band SAR imagery 462 

and ancillary data in eastern U.S.. We found that our model not only outperformed the traditional 463 

RF methods in terms of accuracy but also had a significantly reduced computational cost 464 

compared to state-of-the-art CNN models (e.g., DeepLabv3+ and DANet) without loss of 465 

accuracy. The inclusion of multi-land cover proximity information and CNN-based self-466 

supervised SAR denoising procedure (EN2N) can both be means to enhance classification 467 

accuracy. These indicate that our proposed DL method is efficient and could be integrated for 468 
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automatic recognition of wetland classes for supporting operational wetland mapping.  469 

An important innovation of this study involves inclusion of multi-land cover proximity 470 

metrics (i.e., distances to water, forest, shrub, and herbaceous) as additional data layers to 471 

constrain classification models. These proximity metrics helped capture hydrological 472 

connectivity (e.g., distance to water) and ecological dispersal dynamics (e.g., distance to forest), 473 

which are known drivers of wetland type distribution and composition. To the best of our 474 

knowledge, the incorporation of multi-land cover proximity to constrain wetland classification in 475 

DL methods has not been explored to any significant extent. Our results showed that adding 476 

these proximity layers improved the mean MIoU and F1-score in both DL and RF methods, with 477 

a more pronounced improvement in FO detection using RF (Table 2-3). This finding underlines 478 

the importance of contextual information regarding wetland adjacency effects for pixel-oriented 479 

classifiers like RF, which benefited significantly from additional geographic data to constrain 480 

and refine classification decisions. Moreover, the relative importance of topographic information 481 

was the highest, followed by proximity to forest (Distance_F) and proximity to water 482 

(Distance_W), which highlight the importance of understanding the local environmental 483 

condition and mesoscale adjacency effects in effective classification. 484 

The CNN-based self-supervised denoising method (EN2N) employed in our study 485 

bypasses the need for clean SAR images and has an acceptable computational efficiency cost, 486 

and thus can be easily transplanted in other geographic locations for SAR denoising. When 487 

excluding use of the SAR denoising method in wetland classification, both the DL and RF 488 

methods generated decreased accuracy compared to those using denoised SAR data (Table 2 and 489 

Table 4). There was also significantly decreased accuracy for FO wetlands in RF without using 490 

denoised SAR, which demonstrated the importance of SAR denoising for woody wetland 491 
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classification when using pixel-oriented classification methods. Use of the CNN-based U-Net in 492 

the DL classifier can actually help capture the contextual feature information and thus reduce the 493 

speckle noise. This result indicated that the inherent denoising characteristic of CNN did not 494 

perform noise reduction as well as the EN2N. Thus, the individual CNN-based self-supervised 495 

SAR denoising procedure is recommended for DL classification tasks with SAR imagery. 496 

4.2 Limitations and future work 497 

This study employed leaf-off C-band SAR imagery from Sentinel-1, which can penetrate cloud 498 

and sparse canopy with medium penetration depth. However, the penetration capacity of C-band 499 

measurements is not sufficient to penetrate dense canopies such as evergreen broadleaf forests. 500 

In our study area, inundated wetlands are principally covered by deciduous forests (Lang et al. 501 

2020), and the winter season with leaf-off condition was focused on. Therefore, the limited 502 

capacity of C-band SAR to penetrate high-density canopy had substantially less influence on the 503 

mapping result. However, to improve the applicability of the method, SAR images from sensors 504 

with broader wavebands (i.e., L-band and P-band SAR) could be preferred over C-band images 505 

in areas with high-density canopies.  506 

The accuracy for SS wetland class was not high, although it was improved in our DL 507 

model compared to the RF model, indicating the difficulty of SS wetland detection. There was an 508 

omission of SS to some degree (especially in RF), i.e., a number of SS wetlands classified into 509 

FO and other categories (Figure 5). The lack of SS training labels relative to other wetland 510 

classes as well as the backscattering similarity between SS and FO/other ecosystems could be the 511 

causes for the misclassification especially when they mixed with each other. Other ancillary 512 

information like canopy height could further contribute to recognition of different wetland 513 
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classes (Gonzalez-Perez et al. 2022). Concerns related to how to more adequately group wetland 514 

classes together to improve accuracy could also be addressed in future studies. In addition, the 515 

DL method also generated a conservative/underestimated pattern of wetland classes (especially 516 

SS) for the entire Delmarva, compared to 2019 NWI and 2020 ESA WorldCover products. A 517 

model retraining using local samples in different geographic areas may be further tested to 518 

improve model generalizability (Mainali et al. 2023). 519 

A lack of sufficient ground truth labels for training and validation is a common issue that 520 

hampers the application and limits the performance of DL-based classification approaches. 521 

Annotating labels manually, especially polygon objects to feed CNN, usually costs considerable 522 

human labour and requires prior knowledge. In this study, we benefited from the availability of 523 

the updated 2017 NWI product for Delaware as the source of training and validation labels. 524 

However, such high accuracy datasets may not be available for national or global scale 525 

applications. Also, there often exist insufficient training samples for certain categories, e.g. the 526 

training labels of SS wetland were less relative to other classes in the NWI reference. Self-527 

Supervised Learning (SSL) technology is an innovative unsupervised approach poised to solve 528 

the challenges posed by the over-dependence of labelled data in DL and is now considered to be 529 

the future of machine learning (Tao et al. 2023; Zhang and Han 2023). SSL can learn 530 

intermediate representation of data, which is useful in understanding the underlying semantic or 531 

structural meanings that benefit a variety of practical downstream tasks. Recently, the emergence 532 

of diffusion models also provides opportunities for generating controllable samples consistent 533 

with real scenes (Yuan et al. 2023). A future direction of our work will be to find a more 534 

conventional way to improve the efficiency in data organizing tasks based on these technologies. 535 
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5. Conclusions 536 

To accurately and efficiently map different wetland classes with readily available datasets and 537 

ensure robust methodology under clouds, a novel CNN-based DL classification method 538 

incorporating denoised Sentinel-1 SAR and topographic and multi-land cover proximity 539 

information was developed in this study. This method was verified in a typical wetland 540 

landscape in Delaware using the updated NWI product and was further evaluated at a larger 541 

spatial extent (i.e., the Delmarva Peninsula). The DL method significantly outperformed the 542 

traditional RF methods for mapping different wetlands in terms of accuracy and was more 543 

efficient than two well-known, state-of-the-art CNN-based models. Moreover, both the CNN-544 

based self-supervised SAR denoising procedure and inclusion of multi-land cover proximity 545 

information further enhanced the classification accuracy of wetland classes, with a significant 546 

improvement in forested wetland detection using RF methods. The depth-adaptive CNN 547 

developed in this study helped to address trade-off between model performance and 548 

computational cost and showed a reasonable generalizability when extended to the Delmarva 549 

Peninsula. Our study demonstrates that this method holds promise for operational wetland 550 

mapping using SAR at large scales. 551 
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