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A B S T R A C T
Personalized Federated Learning (PFL) aims to train machine learning models on decentralized,
heterogeneous data while preserving user privacy. This research survey examines the core communi-
cation challenges in PFL and evaluates optimization strategies to address key issues, including data
heterogeneity, high communication costs, model drift, privacy vulnerabilities, and device variabil-
ity. We provide a comprehensive analysis of key communication optimization techniques; Model
Compression, Differential Privacy, Client Selection, Asynchronous Updates, Gradient Compression,
and Model Caching, by their efficiency and effectiveness under diverse PFL conditions. Our study
quantitatively compares these methods, identifies limitations, and proposes enhanced strategies to
improve communication efficiency, reduce latency, and maintain model accuracy. This research
delivers actionable insights for optimizing PFL communication, enhancing both model performance
and privacy safeguards. Overall, this work serves as a valuable resource for researchers and practi-
tioners, offering practical guidance on leveraging advanced communication techniques to drive PFL
improvements and highlighting promising directions for future research.

1. Introduction
Personalized federated learning (PFL) is a subset of fed-

erated learning (FL) that aims to develop machine learning
models that are customized to the unique characteristics and
preferences of individual devices or users within a federated
network. In PFL, an initial global model is trained on a
central server and serves as a shared starting point for all
clients. Each client then fine-tunes this global model using
its local data, thus creating a personalized model that reflects
its specific data distribution and user preferences. This ap-
proach preserves data privacy while leveraging the collective
knowledge and experiences of all clients. This interest is
fueled by the growing necessity to tailor global models to
individual user preferences while ensuring privacy, espe-
cially in domains such as healthcare, finance, and mobile
applications [1, 2, 3, 4, 5]. Despite its promise, PFL remains
an emerging research area, necessitating a thorough survey
to evaluate the current state of the art, identify challenges,
and suggest future research directions. This survey aims to
enhance the understanding of PFL and its potential research
areas, particularly concerning communication optimization.

Bhosle & Musande [6] emphasizes the effectiveness of
CNN in character and digit recognition tasks, achieving
high accuracy levels. They highlighted how CNN-based
approaches, which handle both structured and unstructured
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data effectively, can inspire communication-efficient PFL
models, particularly for resource-constrained devices. Sun
et al. [7] introduced a GNN-DCGAN model to predict ice
resistance in polar ship navigation, demonstrating improved
accuracy through data augmentation and graph neural net-
works. Song et al. [8] proposed a dual-population evolution-
ary algorithm that outperforms traditional optimization tech-
niques in maintaining diversity and convergence. This work
provides insights into multi-objective optimization, which
relates to optimizing client selection and communication
strategies in PFL to balance resource utilization and model
performance.

Akande et al. [9] explored how deep learning models
can improve the accuracy and efficiency of computer-aided
engineering simulations for vehicle wheels. The study by
Chai et al. explored a multi-objective evolutionary algo-
rithm (MOEA/D) to enhance communication efficiency in
FL. This method focused on optimizing the structure of
the global model, thereby achieving efficient evolution in
neural networks, which ultimately reduces communication
overhead without sacrificing accuracy. The authors con-
firmed that MOEA/D outperformed traditional algorithms
like NSGA-II by achieving faster convergence and better
scalability for model structure optimization [10]. To address
the issues of personalization in FL, Fan et al. introduced
MiniPFL, a hierarchical model that leverages a two-layered
approach to balance client heterogeneity. MiniPFL decom-
poses FL into shallow and deep layers, with each layer
holding common and personalized information, respectively.
Experimental results indicate that MiniPFL reduces com-
munication rounds by up to 30% while enhancing model
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accuracy by 2.7% on various datasets, including CIFAR-10
and Tiny-Imagenet [11].

In addressing the statistical heterogeneity among clients,
Tu et al. proposed a PFL method, pFedLT, that incorporates
meta-learning strategies and layer-wise feature transforma-
tions. This approach utilizes scaling and shifting operations
to capture client-specific data distributions, significantly im-
proving accuracy and reducing communication costs under
non-IID settings [12]. The practical integration of FL with
edge computing has been advanced by Song et al. with their
personalized federated deep reinforcement learning (PF-
DRL) model. This model adapts deep reinforcement learn-
ing for trajectory optimization in multi-UAV systems, ensur-
ing robust performance in heterogeneous environments. The
authors reported that PF-DRL offers improved convergence
rates and higher service quality for edge-based applications
compared to traditional methods [13].

In order to improve the efficiency of client communi-
cation in FL, Wu et al. developed an adaptive client and
communication optimization algorithm. This solution dy-
namically adjusts client selection and communication in-
tervals based on runtime data, effectively reducing conver-
gence time for FL models and enhancing their scalability
[14]. Meanwhile, Wu et al. proposed FedKD, a knowledge
distillation-based FL model, which employs gradient com-
pression and mutual knowledge distillation to cut down
on communication costs by nearly 95%, while maintaining
performance comparable to centralized learning [15]. To
address issues of resource limitations in edge FL, Yuan et
al. proposed a lightweight FL model that utilizes pruning and
masking techniques to optimize communication and compu-
tation costs. This approach allows for efficient deployment
on edge devices and improves model accuracy by 9.36% over
state-of-the-art techniques [16].

In the domain of wireless networks, Fan et al. intro-
duced a PFL model that allocates local fine-tuning learning
rates and optimizes communication resources, leading to a
faster convergence and improved accuracy in wireless en-
vironments [17]. Complementing these efforts, Wang et al.
proposed a self-knowledge distillation framework tailored
for digital twins in Industrial IoT. This model addresses
the challenges posed by heterogeneous industrial data and
mitigates issues of historical knowledge forgetting, enabling
high performance in digital twin applications [18]. Another
critical area of FL research focuses on optimizing commu-
nication pathways to reduce latency and unnecessary model
updates. Traditional FL systems, relying on cloud servers,
often encounter high transmission delays when handling
concurrent client updates, leading to inefficiencies. Wang et
al. address this by introducing an edge-based communica-
tion framework that employs mobile edge nodes to act as
communication hubs, thereby reducing the load on central
servers. The framework also employs cosine similarity to
filter out unnecessary model updates, achieving significant
reductions in communication costs and faster convergence
rates [19].

PFL has been proposed to address the varying data
distributions across clients, yet many PFL algorithms suffer
from negative knowledge transfer and high communication
costs. To tackle these limitations, Wu et al. propose the
FEDORA framework, which reframes PFL as a privacy-
preserving transfer learning problem. The FEDORA frame-
work incorporates adaptive parameter propagation based on
client task similarity and selective regularization, effectively
enhancing generalization and reducing communication costs
by preventing negative knowledge transfer [20].

In this survey, we offer a detailed overview of commu-
nication optimization strategies in PFL, encompassing their
definitions, algorithms, architectures, challenges, and future
research directions. We begin by introducing the fundamen-
tal concepts of personalization, followed by a discussion of
various communication optimization techniques, focusing
on their architectures and communication methods. We em-
phasize future directions and open research questions in PFL
strategies. Finally, we summarize the key contributions and
limitations of existing PFL research and propose directions
for future studies. We believe this survey will be a valuable
resource for researchers and practitioners interested in PFL
and will help advance the state-of-the-art (SOTA) in this
exciting research field.
1.1. Definition of PFL

Figure 1 shows the basic architecture of PFL which is
a type of FL in which the goal is to train machine learning
models that are tailored to the individual characteristics of
each device or user in a federated network [21, 22]. Generally
in PFL, a global model is initially trained on a central server,
which serves as a starting point for all clients. Then, each
client further fine-tunes the global model using its local data,
while preserving the privacy of its data. As a result, the
global model is personalized for each client, based on its
unique data and preferences, while still benefiting from the
collective knowledge of all clients [23].

Figure 1: Basic Personalized Federated Learning Architecture
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Figure 2: Communication process in PFL

Figure 2 shows the communication process of PFL,
following are the details of each step involved, especially the
communication steps shown in red:

Let, � be the total number of clients. �� ⊆ {1, 2,… , �}
be the subset of clients selected in round �. ��

� represents the
local model weights of client � after local training in round �.
Δ��

� = ��
� −��

global is the model update (i.e., the difference
between the local model and the global model at round �).
��

global is the global model at round �.
In each communication round �, a subset of clients �� is

selected based on certain criteria such as availability, trust
level, or network bandwidth. The number of clients selected
is denoted as |��|.Each selected client � ∈ �� updates its local model ��

�using its local data ��. The update follows the optimization
of the client’s personalized objective:

��+1
� = ��

� − �∇��(��
�, ��) (1)

Where, � is the learning rate, and ��(��
�, ��) is the loss

function for client � with respect to its local data ��.After local training, each client sends its model update
Δ��

� to the server. The communication cost is proportional
to the size of the model parameters, denoted by |Δ��

�|, which
represents the number of parameters or bytes exchanged.

The total communication cost from the selected clients
to the server in round � is:

��
client-server =

∑

�∈��

|Δ��
�| (2)

The server aggregates the model updates from the se-
lected clients. A common aggregation method is Federated
Averaging (FedAvg), where the global model is updated as
the weighted average of the client updates:

��+1
global = ��

global +
1

|��|

∑

�∈��

Δ��
� (3)

This aggregation can also be weighted by the number of
local data points |��| on each client, if the data sizes are
heterogeneous:

��+1
global = ��

global +
1

∑

�∈��
|��|

∑

�∈��

|��|Δ��
� (4)

Once the global model is updated, the server broadcasts
the updated global model ��+1

global to all or a subset of the
clients. The communication cost for broadcasting is given
by:

��
server-client = |��+1

global| (5)
The total communication cost per round �, considering

both client-to-server and server-to-client communication, is
the sum of both:

��
total = ��

client-server + ��
server-client (6)

which expands to:
��

total =
∑

�∈��

|Δ��
�| + |��+1

global| (7)

After receiving the global model, each client � personal-
izes the model further using its local data:

��+1
� = ��+1

global − �∇��(��+1
global, ��) (8)

1.2. Motivations
Despite substantial progress in various applications, per-

sonalized federated learning (PFL) still faces several chal-
lenges. A primary concern is the increasing number of
edge servers participating in federated learning (FL), which
results in significant communication overheads in current
PFL methods [24]. These challenges are due to multiple
factors. In deep learning tasks typical of FL, model param-
eters can range from tens to hundreds of megabytes, and FL
training convergence often requires hundreds or thousands
of communication rounds. The frequent long-distance trans-
mission, global model aggregation, and backhaul of model
parameters collectively contribute to substantial communi-
cation overhead, limiting the scalability of PFL systems.
To overcome these challenges, it is essential to design PFL
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systems that emphasize communication efficiency and scal-
ability. Developing techniques that reduce communication
overhead while ensuring effective collaboration and conver-
gence in FL training processes is crucial [25, 26]. These
motivations underscore the need for a research survey on
communication architectures in PFL.

• Emerging Research Area: Personalized federated
learning (PFL) is an emerging research area, as this
field continues to evolve, there is a need to review
and analyze the existing communication optimization
strategies employed in PFL [4]. Our research survey
provides a timely and comprehensive analysis that fills
a gap in current literature by focusing specifically on
communication efficiency.

• Diverse Communication Optimization Approaches:
A wide range of communication optimization ap-
proaches and algorithms are employed in personalized
federated learning (PFL), such as model compression,
differential privacy, client selection, asynchronous
updates, gradient compression, and model caching.
A research survey can offer a thorough overview of
these approaches, detailing their strengths, limita-
tions, and applicability across various scenarios [27].
Our research survey is distinct in that it covers a
diverse set of communication techniques, providing
a comprehensive view of the current state of the art.

• Key Insights for Future Developments: A survey
can provide the existing gaps and challenges in com-
munication optimization strategies for personalized
federated learning (PFL). By recognizing the limita-
tions of current approaches, researchers can propose
new techniques and avenues for future development
[28, 29]. Our detailed analysis pinpoints key areas
for future research, fostering the innovation of more
efficient communication methods in PFL.

• Practical Implications: Personalized federated learn-
ing (PFL) has numerous applications in fields such as
healthcare, finance, and other domains where privacy
and personalization are critical. A research survey on
communication optimization strategies can offer valu-
able insights and guidelines for practitioners and poli-
cymakers to effectively implement PFL systems and
overcome potential communication challenges [30,
31, 32]. This research survey not only explores the-
oretical aspects but also provides practical guidelines
and algorithms for implementing these methods.

1.3. Contributions
There are several surveys that provide an overview of

the general concepts [33], methods, and applications of FL.
Some of them specifically delve into FL from the perspec-
tives of privacy [34], security [30] and robustness [35].
However, there is a lack of a comprehensive survey that
focuses specifically on models and communication architec-
tures in PFL. This survey aims to fill this gap in the current

literature on PFL. The main objective of this paper is to pro-
vide a systematic perspective i.e. characteristics, graphical
overview, algorithms used, advantages, disadvantages and
challenges in models and communication architectures in
PFL for the researchers. The contributions of this survey can
be summarized as follows:

• Comprehensive overview: This research survey of-
fers a comprehensive overview of the existing com-
munication optimization techniques used in person-
alized federated learning (PFL). It catalogs various
approaches, algorithms, and methods employed in the
field, providing researchers and practitioners with a
holistic understanding of the optimization landscape.

• Communication Architectures: This research sur-
vey explores communication architectures specifically
designed for personalized federated learning (PFL). In
PFL, communication challenges arise not only from
standard FL constraints (e.g., model size, bandwidth
limitations) but also due to the need for personaliza-
tion on the client side. Thus, we discuss approaches
such as model compression, differential privacy, client
selection, asynchronous updates, gradient compres-
sion, and model caching, all in the context of ensuring
efficient and scalable communication while enabling
client-specific model training.

• Identifying research gaps: By reviewing the liter-
ature, this survey identifies research gaps and open
challenges in the field of communication optimization
in personalized federated learning (PFL). These gaps
include unexplored optimization techniques, limited
evaluation on specific data types or applications, and
particular issues related to scalability, fairness, and
privacy.

• Inspiring future research: This research survey
inspires and stimulates further research in the field
by highlighting promising directions and emerging
trends. It proposes novel research avenues, such as hy-
brid optimization approaches, adaptive learning rate
scheduling, compression schemes, or personalized
aggregation methods.

In summary, this research survey contributes by providing
a comprehensive overview, classification of existing ap-
proaches in PFL for communication optimization. It also
identifies research gaps, offers guidelines, and inspires fu-
ture research directions. These contributions collectively
enhance the understanding, development, and application of
these strategies in PFL.
1.4. Structure of this Paper

Introduction: This section presents an overview of per-
sonalized federated learning (PFL), its basic architecture,
and algorithm. We discuss our motivation for conducting
this research survey and outline our contributions. Commu-
nication Models for Personalized Federated Learning:
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The main contributions of this survey include the classifi-
cation and analysis of existing research on PFL communi-
cation optimization techniques. This section provides the re-
search problem statement and and research questions. Then
in section; Communication Optimization Techniques we
provide detailed descriptions and algorithmic forms of each
technique, highlighting their advantages and applications.
Challenges and Open Research Directions: This section
discusses potential future directions for research in PFL and
identifies key challenges and limitations that need to be
addressed. Conclusion: This section summarizes the key
findings and contributions of the paper and discusses the
implications of the study for future research and practical
applications of PFL.

2. Communication Optimization Models for
Personalized Federated Learning
As referenced in the Introduction section, there is still

a gap of comprehensive reviews that assess communication
models within the context of personalized federated learning
(PFL). In response to this gap, we conducted a systematic
mapping review (SMR) with the aim of delineating the
prevailing research challenges and identifying discernible
voids, providing a comprehensive overview of the research
landscape in this domain. Owing to the limited depth of eval-
uation typically assigned to articles in practical application
of the SMR protocol, allowing for the potential inclusion of
a broader spectrum of articles, our initial approach involved
using the SMR methodology to elucidate the interaction
between the body of literature and pertinent categories,
ultimately revealing research gaps.
2.1. Research Questions

Following are the research questions we used for our
survey:

• RQ1: What are the communication optimization mod-
els in PFL?

• RQ2: What issues are addressed by these models and
what mechanisms are employed?

• RQ3: On the basis research survey and gaps identified,
which areas should be focused on?

The schematic representation of our review’s methodologi-
cal framework and proposed categorical schema is depicted
in Figure 3.

3. Communication Optimization Techniques
In this section, we classify research work related to com-

munication architectures in personalized federated learning
(PFL), as shown in Figure 3. In PFL, each client has its
own locally collected data, and the goal is to collaboratively
train a global model that can make accurate predictions for
each client’s specific needs. Communication optimization
techniques play a crucial role in improving the efficiency

Figure 3: Classification of Communication Optimization
Strategies in PFL

and effectiveness of PFL. Following sections discuss the
techniques used to optimize communication in PFL.
3.1. Model compression

A technique which plays a crucial role in PFL by reduc-
ing the size of the models and improving communication ef-
ficiency between the central server and participating clients.
By compressing the model, the amount of information trans-
mitted during communication is reduced, resulting in lower
latency and bandwidth requirements. Figure 4 shows model
compression and Algorithm 1 presents the working of model
compression in PFL.
Algorithm 1 Model Compression in PFL
Input(s): Global model � , Compression rate �
Output(s): Compressed global model �compressed
Algorithm:
1: Initialization
2: while not converged do
3: Client Selection
4: for each selected client do
5: Receive � from server
6: Perform local model training using client data
7: Compute local model update Δ�local8: end for
9: Aggregate local model updates

10: Compress aggregated model update Δ�aggregated11: Update global model � using Δ�aggregated12: end while
13: Compressed global model � to �compressed with rate �

Let, � be the global model, �� global model at iteration
�,Δ��

local is the local model update for client �,Δ�aggregatedis the aggregated model update across clients, Δ�compressedbe the compressed aggregated update, (� ;�) the loss
function for client � on data �, � be the regularization
parameter, � be the set of selected clients at iteration �,
(⋅, �) is compression function with rate � and � be the
learning rate.

Local Model Update (for client k using its data � ):

Δ��
local = argmin

�

(

(� ;�) +
�
2
‖� −��‖

2
)

(9)
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Aggregation of Local Updates:

Δ�aggregated = 1
|�|

∑

�∈�

Δ��
local (2)

Compression of Aggregated Update (compression rate C):
Δ�compressed = (Δ�aggregated, �) (3)

Global Model Update:
��+1 = �� + � ⋅ Δ�compressed (4)

Final Model Compression:
�compressed = (�,�) (5)

Figure 4: An Example of Model Compression

Snowball [36] is a novel approach to compression-based
training within the realm of FL. The primary objective of
Snowball is to significantly reduce the energy consumption
associated with parameter transmission while maintaining
the global model’s accuracy. This is achieved through a
coarse-to-fine grained compression mechanism, which re-
duces the volume of data that needs to be communicated
between clients and server. By implementing such a mech-
anism, Snowball effectively optimizes the use of compu-
tational and communication resources. The framework’s
ability to maintain accuracy while reducing communica-
tion overhead exemplifies its potential in energy constrained
environments such as mobile or edge computing scenar-
ios. Personalized Sparsification with Element-wise Aggre-
gation for Federated Learning (FedPSE) [37] focuses on
enhancing FL performance on non-independent and iden-
tically distributed (non-IID) datasets through an innovative
element wise aggregation method. Traditional FL systems
often struggle with heterogeneous data distributions, which
can degrade model performance. FedPSE addresses this
challenge by performing aggregation at a more granular
level, ensuring that the communication costs are minimized
while the model’s performance on non-IID data is enhanced.
This element-wise approach reduces the data transmission
required and also ensures that the model updates are more

representative of the diverse data distributions across differ-
ent clients.

Table 1 shows the summary of contributions in PFL
communication optimization techniques using Model Com-
pression with respect to their main ideas and applica-
tions. Federated Learning for Multiple Personalized Tasks
(FedMPT) [41] is another technique, designed to optimize
personalized models for clients engaged in multiple tasks,
balancing the accuracy of each task with the efficiency of
communication. In FL, handling multiple tasks simultane-
ously while ensuring efficient communication is a significant
challenge. FedMPT tackles this by using regularization
techniques to balance the model accuracy for each task
against the overall communication costs. This personalized
approach allows clients to achieve high accuracy across
various tasks without adding excessive communication over-
head. By optimizing the trade-off between accuracy and
communication, FedMPT provides a solution which en-
hances the individual task performance and the overall
efficiency of the system.

Quantized Personalization via Distillation (QuPed) [44]
offers a dual-layer personalization strategy aimed at address-
ing both data heterogeneity and resource diversity among
clients in FL. This technique integrates model compression
with resource-efficient training methods to adapt models to
the unique data characteristics and computational capabili-
ties of each client. By focusing on these two critical aspects,
QuPed ensures that the FL process is both efficient and
scalable. The model compression aspect reduces the amount
of data that needs to be transmitted, while the resource-
efficient training methods ensure that even clients with lim-
ited computational resources can participate effectively. This
dual-layer approach makes QuPed a versatile and robust
solution for diverse FL environments.

Federated Learning for Non-intrusive load monitoring
(FedNILM) [45] addresses the challenge of data privacy in
F through the use of efficient model compression techniques
like filter pruning and multi-task learning. Additionally, it
employs unsupervised transfer learning to build personal-
ized models. This method is particularly effective for ap-
plications such as energy disaggregation, where accurate
and personalized model predictions are necessary without
compromising user privacy. By combining these techniques,
FedNILM not only preserves privacy but also reduces the
communication overhead, making the learning process more
efficient. The integration of filter pruning and multi-task
learning ensures that the model remains lightweight and ca-
pable of handling multiple tasks simultaneously, further en-
hancing its applicability in privacy-sensitive environments.

FedSUMM [49] introduces a dynamic gradient adapter
designed to provide locally tailored parameters for individu-
alized models at the client level. This technique accelerates
model convergence by dynamically adjusting gradients to
better fit local data distributions. By tailoring the gradients
to the specific characteristics of the local data, FedSUMM
ensures that each client’s model updates are more effective,
leading to faster overall convergence. This approach not only
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Table 1
Summary of contributions in PFL Communication Optimization Techniques using Model Compression

Technique(s) Main Idea/Contribution Dataset(s) Clients Communication
Rounds

Accuracy
(%)

Snowball [36] A novel compression-based training framework
for FL, to reduce the energy consumption of
parameter transmission.

Fashion-MNIST [38]
CIFAR-10 [39] 60 500 91.65

83.56

FedPSE [37] An element-wise aggregation method to enhance
performance on non-IID datasets while reducing
communication costs.

Fashion-MNIST
IMDB [40] 100 300 87.72

99.75

FedMPT [41] Optimizing personalized models for clients with
multiple tasks, balancing both the accuracy of
each task and the communication efficiency.

Multi-MNIST [42]
CelebA [43] 75 10 and 5 89.1

90.8

QuPed [44] Dual-layer personalization for both data hetero-
geneity and resource diversity.

CIFAR-10
FEMNIST 50, 66 250 96.64

74.64

FedNILM [45] Realized data privacy-preserving through FL,
efficient model compression via filter pruning
and multi-task learning, and personalized model
building by unsupervised transfer learning.

REFIT [46]
UK-DALE [47]
REDD [48]

6 - -

FedSUMM [49] A dynamic gradient adapter designed to offer
locally tailored parameters for the individualized
model at the local level.

CSL [50]
CLTS [51]
LCSTS [52]
THUCNEWS [53]
EDUCATION [49]

50 200

48.0
49.6
37.7
33.8
49.5

L2GD [54] Bidirectional compression mechanism to further
reduce the communication bottleneck between
the local devices and the server.

CIFAR-10 10 20000 82.3
(MobileNet)

SoteraFL [55] The combination of general compression opera-
tors and local differential privacy. Applies com-
pression directly to differentially private stochas-
tic gradient descent and identifies its limitations.

MNIST - 1000 85 (SGD)

Dis-PFL [56]

A decentralized sparse training approach, termed
Dis-PFL, is employed in which each local model
maintains a constant number of active parame-
ters throughout the local training and peer-to-
peer communication phases.

CIFAR-10
CIFAR-100
Tiny-Imagenet

100
500
500
300

85.70
53.48
16.95

LSGD-PFL,
ACD-PFL, and
ASVRCD-PFL
[57]

Universal optimizers, rendering the design of
task-specific optimizers unnecessary in many in-
stances.

MNIST
KMINIST [58]
Fashion-MINST
CIFAR-10

20 1000 -

CMP-Fed [59] Combines communication compression with pri-
vacy protection, achieving agent-level differential
privacy while maintaining high model accuracy.

Fashion-MNIST 100 180 77.93

iECS-FL [60] Compressed sensing for model compression, iter-
ative reconstruction and retraining.

MNIST
Fashion-MNIST
SVHN
CIFAR-10

100 50 to 500

97.75
86.51
85.70
86.01

improves the efficiency of the F process but also enhances
the performance of the individualized models. The ability to
dynamically adapt gradients makes FedSUMM particularly
suitable for environments where data distributions vary sig-
nificantly across clients.

In [54] authors introduced the Loopless Gradient Descen
(L2GD) algorithm for PFL, addressing data heterogeneity
across edge devices. L2GD balances global and local mod-
els and reduces communication overhead with bidirectional
compression. Experimental results validate its efficiency

in reducing communication while maintaining convergence
rates similar to those of traditional SGD. Traditional central-
ized approaches can be vulnerable and have high communi-
cation pressure. In [55], authors introduced the SoteriaFL
framework, which addresses the challenges of large-scale
machine learning in bandwidth intensive environments. It
combines communication efficient FL with communication
compression and privacy preservation at the client level.
The framework leverages general compression operators and
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local differential privacy, offering better communication ef-
ficiency without compromising privacy or utility compared
to other private FL algorithms. The comprehensive analysis
demonstrates the advantages of SoteriaFL in terms of com-
munication complexity, privacy, and utility. In summary,
SoteriaFL provides a unified solution for communication ef-
ficient FL with compression and client level privacy preser-
vation. Decentralized sparse training based Personnalized
Federated Learning (Dis-PFL) a method proposed by [56],
utilized a decentralized communication protocol and per-
sonalized sparse masks to customize local models. Reduced
communication and computation costs by maintaining a
fixed number of active parameters throughout the training
and communication process.

In [57], the authors introduced three universal optimiz-
ers: Local Stochastic Gradient Descent for Personalized FL
(LSGD-PFL), Accelerated Block Coordinate Descent for
Personalized FL (ACD-PFL), and Accelerated Stochastic
Variance Reduced Coordinate Descent for Personalized FL
(ASVRCD-PFL). These optimizers are designed to be uni-
versally applicable, eliminating the need for task-specific
optimizers in many instances. They provide the best-known
communication and computation guarantees, making them
highly efficient for PFL scenarios. In [59], authors intro-
duced CMP-Fed, a new FL scheme that addresses chal-
lenges of privacy and communication efficiency. Existing
approaches treat privacy and communication independently,
leading to accuracy degradation and limited exploration
of privacy impact on compression techniques. CMP-Fed
combines communication compression with privacy protec-
tion, achieving agent-level differential privacy while main-
taining high model accuracy. The key component is the
compressed model perturbation (CMP) approach, which
compresses shared model updates and applies random noise
perturbation. Experimental results on the Fashion-MNIST
dataset demonstrate CMP-Fed’s superiority in model accu-
racy compared to existing differentially private FL schemes,
while enjoying the communication benefits of model com-
pression. In [60], authors proposed an enhanced compressed
sensing FL algorithm (iECS-FL) to improve communication
efficiency in FL. By leveraging compressed sensing to com-
press local network models trained on clients, it significantly
reduces the communication bandwidth required. Through it-
erative reconstruction and retraining method it also improves
the learning performance of compressed models.

In summary methods like snowball and FedPSE use
compression to lower transmission energy and aggregation
costs on datasets such as Fashion-MNIST and CIFAR-10,
achieving high accuracy across numerous communication
rounds. Techniques like FedMPT and QuPed focus on
multi-task personalization and resource diversity, while
FedNILM and FedSUMM introduce privacy-preserving,
gradient-adaptive methods for tailored local models. So-
lutions like L2GD and SoteraFL incorporate bidirectional
compression and differential privacy, addressing communi-
cation bottlenecks for large datasets. Dis-PFL and iECS-FL
enhance performance with sparse decentralized training and

compressed sensing. Overall, these approaches showcase
the diversity in compression methods that balance data het-
erogeneity, client constraints, and communication efficiency
across varied datasets.
3.2. Differential Privacy

Differential privacy (DP) techniques involve adding
noise to model updates before sharing them. This allows
updates to be shared less frequently without compromising
privacy. The reduced update frequency directly decreases
the amount of data transmitted [1, 4]. DP can be combined
with techniques such as secure aggregation, where updates
from multiple clients are aggregated and noise is added
to the combined result. This reduces the number of com-
munication rounds needed, optimizing the communication
process [24, 61], but these techniques have implications for
communication efficiency, as they involve additional compu-
tations and potentially increased communication overhead.
It involves adding carefully calibrated noise or perturbations
to the computations performed during the FL process.
Figure 5 illustrates a shuffler-based differential privacy
approach in FL, where the shuffler significantly enhances
privacy by anonymizing client updates before they reach the
server. While this architecture can reduce the frequency of
communication rounds and minimize direct communication
between clients and the server, potential overhead may
arise from the need to manage the shuffling process and
maintain synchronization across clients. These factors can
contribute to communication complexity, particularly in
asynchronous settings. Nonetheless, the method remains
effective in reducing the total communication volume due
to its privacy-preserving design. Algorithm 2 describing the
differential privacy technique in PFL.
Algorithm 2 Differential Privacy in PFL
Input(s): Global model 𝑀 , Privacy parameter 𝜖
Output(s): Privatized global model 𝑀privatized
Algorithm:
1: Initialization
2: while not converged do
3: Client Selection
4: for each selected client do
5: Receive 𝑀 from server
6: Perform local model training using client data
7: Compute local model update Δ𝑀local8: Apply noise to Δ𝑀local with Laplace or Gaussian method 𝜖
9: end for

10: Aggregate privatized local model updates
11: Update global model 𝑀 using aggregated updates
12: end while
13: Privatize final global model 𝑀 to 𝑀privatized

1. Local Model Update is similar to equation 9
2. Differential Privacy with Noise Addition:

Δ𝑀𝑘,priv
local = Δ𝑀𝑘

local+ (𝜎2) or Δ𝑀𝑘
local+(𝜖) (10)

3. Aggregation of Privatized Local Updates:
Δ𝑀aggregated = 1

|𝑡|

∑

𝑘∈𝑡

Δ𝑀𝑘,priv
local (11)
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4. Global Model Update:
��+1 = �� + � ⋅ Δ�aggregated (12)

5. Final Model Privatization:
�privatized = � + (�2) or � + (�) (13)

Where, � : Global model, ��: Global model at iteration
�, Δ��

local: Local model update for client �, Δ��,priv
local : Priva-

tized local model update for client �, Δ�aggregated: Aggre-
gated model update across clients, (� ;�): Loss function
for client � on data �, �: Regularization parameter, �: Set
of selected clients at iteration �,  (�2): Gaussian noise with
variance �2, (�): Laplace noise with privacy parameter
�, �: Learning rate, �: Privacy parameter, �privatized: Final
privatized global model.

Figure 5: Personalized local differential privacy in Federated
Learning [62]

The addition of noise can facilitate model compression
techniques (e.g., quantization or sparsification) since noise
masks finer details, making it easier to compress updates.
This reduces the size of the data that is transmitted [63].
DP enables selective sharing of critical information while
adding noise to less important details. This selective ap-
proach ensures that only necessary updates are commu-
nicated, thus optimizing communication. By incorporating
these aspects, DP enhances both privacy and communi-
cation efficiency in FL systems. These optimizations are
particularly relevant in PFL, where frequent updates and
communication costs are significant concerns.

CMP-Fed [59], technique compresses model updates
before adding random noise, thereby reducing the data
sent during each communication round. This strategy effec-
tively addresses communication overhead while maintaining
model accuracy. Compression also leads to agent-level
differential privacy, ensuring privacy without sacrificing
performance.

In [62], authors proposed privacy Amplification frame-
work for PErsonalized private federated learning with Shuf-
fle model (APES), a comprehensive framework that en-
hances privacy in FL by leveraging the privacy amplifica-
tion effect of the shuffle model while respecting person-
alized local privacy. APES quantifies the contributions of
each user to central privacy and introduces neighbor diver-
gence and clip-laplace mechanism to measure their pertur-
bation’s ability to generate “echos". The S-APES (APES
with post-Sparsification technique) framework incorporates
post sparsification techniques to reduce privacy loss in high-
dimensional scenarios. These models introduce the concept
of generating ‘echoes’ through data perturbation, enhancing
the accuracy of the global model. While the method is
geared toward improving model accuracy, it also indirectly
optimizes communication by improving the efficiency of
model updates.

In [64], the authors introduced DP-FedSAM, a novel
FL algorithm that addresses the challenges of client-level
differentially private federated learning (DPFL). Existing
DPFL methods suffer performance degradation due to a
sharp loss landscape and lack of robustness against weight
perturbations. DP-FedSAM leverages gradient perturbation
and incorporates the Sharpness Aware Minimization (SAM)
optimizer to generate stable local models that are resistant to
weight perturbations. This improves performance by reduc-
ing local update norms and enhancing robustness against DP
noise. The paper also introduced DP-FedSAM-����, which
further enhances the performance by employing local update
sparsification. Through gradient perturbation, DP-FedSAM
aims to counteract the negative impact of DP on model per-
formance. By focusing on minimizing the trade-offs between
privacy and utility, this method ensures communication ef-
ficiency by reducing the number of communication rounds
needed to achieve high accuracy.

In [65], authors presented a comprehensive review of
FL in the healthcare domain. FL has gained popularity in
medical settings due to its ability to analyze data from
individual devices while ensuring data privacy. However, FL
poses unique challenges in healthcare, particularly in safe-
guarding sensitive patient information and complying with
regulations like Health Insurance Portability and Account-
ability Act(HIPAA) and General Data Protection Regulation
(GDPR). The paper discusses the structure of FL tech-
niques, regulatory frameworks, and challenges associated
with privacy, performance, implementation, computation,
and adversaries.

The authors in [66], addressed privacy concerns in chat-
bot applications by introducing Fedbot, a proof-of-concept
(POC) privacy-preserving chatbot. Traditional methods of
training deep learning models on shared data raise privacy
concerns, but FL offers a solution. Fedbot combines Deep
Bidirectional Transformer models with FL algorithms to
protect customer data privacy during collaborative model
training. The POC demonstrates the potential of privacy-
preserving chatbots in transforming the customer support

Page 9 of 29



industry, providing personalized and efficient customer ser-
vice while complying with data privacy regulations. This
method combines deep bidirectional transformers with FL
algorithms, ensuring robust privacy protection over time.
The integration of transformers improves both communi-
cation efficiency and accuracy in customer data protection
applications.

In [67], authors presented a novel FL framework that
addresses the personalized privacy needs of clients by in-
corporating local differential privacy (LDP). Existing stud-
ies on FL with LDP often overlook the diverse privacy
requirements of individual clients. The proposed framework
considers both independent and non-independent identically
distributed datasets, employing tailored model perturbation
methods for each scenario. Additionally, two model aggre-
gation techniques are introduced to mitigate the impact of
privacy-conscious clients on the overall federated model.
Experimental evaluations on MNIST, Fashion-MNIST, and
forest cover-types datasets demonstrate the effectiveness of
the proposed aggregation methods in preserving personal-
ized privacy while maintaining model accuracy. LDP fo-
cuses on managing privacy budgets for clients and ensures
a better balance between privacy preservation and commu-
nication performance. It is particularly beneficial in person-
alized privacy-preserving scenarios, where communication
can be optimized according to privacy constraints.

In [69], authors introduced Personalized Privacy-Preserving
Federated Learning (PPPFL), a novel framework that ad-
dresses challenges related to privacy breaches and non-
IID data in FL. PPPFL focuses on cross-silo FL and em-
ploys a stabilized variant of the Model-Agnostic Meta-
Learning (MAML) algorithm. The framework utilizes syn-
thetic data generated by Differential Private Generative
Adversarial Networks (DP-GANs) for collaborative training
of a global initialization. Once convergence is achieved,
each client adapts the global initialization locally to their
private data. Extensive experiments conducted on datasets
such as MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-
100 demonstrate the superiority of PPPFL over various
FL baselines. This technique uses a differentially private
generative adversarial network (DP-GAN) to handle the
challenges of non-IID data. By stabilizing the model’s
initialization, PPPFL reduces the communication rounds
required for model convergence, enhancing both efficiency
and performance.

Communication efficient and Utility aware Adaptive
Gaussian Differential Privacy for Personalized Federated
Learning (CUAG-PFL) [70] proposed a dynamic layer
compression scheme for model gradients with improved
communication efficiency and reduced loss of model utility.
CUAG-PFL implements dynamic layer compression, opti-
mizing communication by reducing the amount of data sent
during each round. This technique is particularly effective
at maintaining high model utility while minimizing commu-
nication overhead. The authors in [71], introduced a novel
approach called blockchain-enabled distributed edge cluster
for PFL (BPFL), taking advantage of blockchain and edge

computing. Using blockchain technology, client privacy and
security can be enhanced through the use of immutable
distributed ledgers. BPFL leverages blockchain and edge
computing to improve communication latency and real-
time performance in PFL. Blockchain integration ensures
data privacy while reducing the number of rounds required
for communication, enhancing both efficiency and security.
Another technique; CE-PFML [72], was proposed to reduce
communication overhead by extracting lower-dimensional
updates via representation learning. This not only minimizes
communication requirements but also improves convergence
speed and model accuracy.

Addressing FL’s challenges in personalization and com-
munication efficiency, [72] proposed a communication-
efficient personalized federated meta-learning algorithm. It
employs auto-encoders to reduce communication overhead,
while privacy is ensured with differential privacy. In [73],
authors introduced the Personalized Differential Privacy
Mechanism (PDPM), a novel perturbation algorithm that
enhances FL by providing personalized local differential
privacy (PLDP). Traditional FL approaches often lack suf-
ficient privacy protection, while secure FL schemes based
on local differential privacy overlook personalized privacy
requirements for individual clients. PDPM addresses these
limitations by allowing clients to adjust privacy parameters
based on the sensitivity of their data, ensuring person-
alized privacy protection. PDPM addresses the challenge
of uniform privacy budget allocation by tailoring privacy
budgets to individual clients, thus enhancing communication
efficiency while maintaining high model quality.

In [84], authors proposed a PFL framework called Per-
sonalized Federated Local Differential Privacy (PFed-LDP)
that aims to mitigate the accuracy loss caused by privacy-
preserving techniques. The framework specifically targets
IoT sensing data and incorporates LDP to ensure privacy
protection. It introduces a dynamic layer sharing mechanism
that separates the local model into global layers and per-
sonalized layers. LDP noise is applied to the global layers,
which are then transmitted to the FL framework for aggrega-
tion. Each local client updates their model by incorporating
both the local personalized layers and the aggregated global
layers, enabling them to perform IoT tasks effectively. This
model separates local and global model layers, reducing the
amount of data that needs to be transmitted. This dynamic
layer-sharing mechanism ensures that the worst-performing
clients still benefit from personalized privacy while reducing
overall communication costs. In [74], authors proposed a
novel algorithm called Personalized Local Update Federated
Learning with Optimal Aggregation (PLU-FedOA), which
introduces personalized local differential privacy into the
optimization of deep neural networks in horizontal FL. Their
algorithm consists of two key components: PLU and Fe-
dOA. PLU allows individual clients to upload their local
updates while adhering to personally selected privacy levels
under differential privacy guarantees. FedOA, on the other
hand, facilitates server-side aggregation by optimizing the
weighting of local parameters in scenarios involving mixed
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Table 2
Summary of contributions in PFL Communication Optimization Techniques using Differential Privacy

Technique(s) Main Idea/Contribution Dataset(s) Used Clients Communication
Rounds

Accuracy
(%)

CMP-Fed [59] Involves compressing the shared model updates
before introducing random noise during each
communication round within the FL process.

Fashion-MNIST 100 180 77.93

APES, S-APES
[62]

The capacity to generate ’echos’ through the per-
turbation of individual users’ data is meticulously
quantified using the devised methodologies.

QMNIST - 40 79.67

DP-FedSAM
[64]

Leverages gradient perturbation to mitigate the
negative impact of DP.

EMNIST
CIFAR-100
CIFAR-100

10 30
84.80
57.00
21.24

Fedbot [66] Integrates Deep Bidirectional Transformer mod-
els and FL algorithms to ensure the preservation
of customer data privacy.

Twitter dataset 30 10 32

LDP [67] The primary concept revolves around mitigating
the influence of privacy-conscious clients, who
opt for relatively constrained privacy budgets.

MNIST
Fashion-MNIST
Forest cover-types [68]

10
10
10
20

75
72
45

PPPFL [69] A stabilized variant of the MAML algorithm to
collaboratively train a global initialization from
synthetic data generated by differential private
generative adversarial networks (DP-GAN).

MNIST
Fashion-MNIST
CIFAR-10

5 30
98.26
86.87
71.33

CUAG-PFL [70] A dynamic layer compression scheme for model
gradients.

CIFAR-10
CIFAR-100 - - 83

BPFL [71] Combines the benefits of blockchain and edge
computing.

MNIST - 50 84

CE-PFML [72] Incorporates representation learning to diminish
communication overhead by extracting efficient
and condensed local updates with lower dimen-
sionality.

MNIST
FEMNIST
CIFAR-10

100 1000
96.36
85.43
48.95

PLDP-FL [73] Addresses the challenge of uniform privacy bud-
get allocation across all clients.

MNIST
Fashion-MNIST 100 100 98.2

87.3

PLU-FedOA
[74]

Designed two methodologies: PLU enables
clients to upload local updates under personal-
ized differential privacy constraints, and FedOA
facilitates server-side aggregation of local param-
eters with optimized weighting.

MNIST 100
1000 600 94

98

PDP [75] A personalized Differential Privacy (PDP) frame-
work that caters to each client’s unique privacy
requirements and combines PDP with sampling
to minimize noise addition.

MNIST 10 50 -

𝑑-privacy [76] Incorporates a metric-based obfuscation method
to preserve the original data’s topological distri-
bution.

MNIST - 60 85

FLUP [77] Provides user-level personalized privacy protec-
tion while maintaining high data utility.

MNIST
CIFAR-10 100 50 -

55.1

UM-PFSSL [78] A personalized semi-supervised learning
paradigm that allows clients with partial or
unlabeled data to enhance local data perception
with helper agents.

Fashion-MNIST
CIFAR-10 100 30 79

51.14

PGC-LDP [79] Allows users to select privacy levels via federated
stochastic gradient descent with local differential
privacy.

MNIST
CIFAR-10 200 50 -

-

FedEmbed [80] Utilizes sub-populations and personal embed-
dings for global model personalization.

MNIST 900 - 77

OPFL [81] An online personalized FL framework for privacy-
preserving indoor localization.

UJIndoorLoc [82]
Shopping Mall [83] 10 100 -
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privacy preservation. PLU enables clients to upload local
updates under personalized differential privacy constraints,
while FedOA improves server-side aggregation. This dual
mechanism improves communication efficiency by reducing
the data sent and optimizing server computations.

Table 2 shows the contributions made so far in PFL
communication optimization. In [75], a personalized differ-
ential privacy (PDP) framework is introduced, catering to
each client’s unique privacy requirements. A novel approach
is proposed, combining PDP with sampling to minimize
noise addition while upholding clients’ privacy needs. The
paper also presents a client selection mechanism integrat-
ing a new metric score that simultaneously considers lo-
cal loss and privacy demands. The PDP framework min-
imizes noise addition through selective sampling, leading
to more efficient communication while preserving privacy.
By reducing unnecessary noise, this approach ensures better
communication efficiency and utility. In [76], the concept
of 𝑑-privacy, a variant of local differential privacy, is pre-
sented. This technique incorporates a metric-based obfus-
cation method to preserve the original data’s topological
distribution. The approach has a dual purpose: safeguarding
client data privacy and facilitating personalized model train-
ing to enhance fairness and utility within the FL framework.
By leveraging the inherent attributes of 𝑑-privacy, group
privacy assurances are achieved, enabling the creation of
personalized models within the FL paradigm, accommodat-
ing the diverse characteristics of client communities. This
method uses a topological obfuscation technique to preserve
data privacy while optimizing communication in PFL. By
focusing on maintaining the topological structure of the
data, this method reduces communication costs and supports
personalized model training.

The authors in [77], proposed a novel FL framework
called Federated Learning with User-level Personalization
(FLUP) that provides user-level personalized privacy pro-
tection while maintaining high data utility. The framework
incorporates a personalized DP mechanism that combines
a personalized sampling algorithm and Gaussian perturba-
tion to meet each user’s unique differential privacy needs.
FLUP achieves user-level personalized privacy protection
using a combination of personalized sampling and Gaus-
sian perturbation. This combination ensures high utility
and communication efficiency by catering to the individ-
ual privacy needs of users. UM-PFSSL [78], the semi-
supervised learning approach allows clients with limited la-
beled data to collaborate with helper agents. This method re-
duces network communication while maintaining high accu-
racy by ensuring reliable pseudo-labels. In [78], authors in-
troduced a personalized semi-supervised learning paradigm
enabling clients with partial or unlabeled data to enhance
local data perception through helper agents. An uncertainty-
based data-relation metric ensured reliable pseudo-labels
from selected helpers. A helper selection protocol mitigated
network overload during helper search. Addressing varying
privacy needs in FL participants, [79] proposed Personalized

Gradient Clipping with Local Differential Privacy (PGC-
LDP), a PFL approach. Users could select privacy levels via
federated stochastic gradient descent with local differential
privacy. A novel client-side computation algorithm and opti-
mized server-side aggregation method were developed. This
method enables clients to select their privacy levels during
federated stochastic gradient descent, allowing for dynamic
adaptation of communication based on privacy needs. As
a result, it handles varying privacy requirements while en-
suring communication efficiency. In [80], “FedEmbed" was
presented as a novel PFL approach using sub-populations
and personal embeddings for global model personalization.
FedEmbed uses personal embeddings and sub-population
strategies to personalize global models. This technique im-
proves performance by 45% compared to baseline PFL meth-
ods, optimizing communication by reducing unnecessary
exchanges.

In [81], authors introduced OPFL, designed for privacy-
preserving indoor localization, OPFL combines artificial
noise via DP with a focus on performance preservation,
addressing communication efficiency by balancing privacy
and utility in an online framework. For PFL with joint differ-
ential privacy, [85] focused on user-level privacy constraints
for local and global models. They introduced coordination
between local and private centralized learning, achieving
improved accuracy and privacy trade-off with generically
useful results. Generalization guarantees were supported by
experiments on real-world and synthetic datasets.

In their research [86], authors extensively evaluated vari-
ous FL and differential privacy techniques using the MIMIC-
III dataset. Their analysis focused on the impact of param-
eters like data distribution, communication strategies, and
federation approaches on model performance. The study
also compared two differential privacy methods: stochastic
gradient descent-based differential privacy algorithm (DP-
SGD), and a sparse vector differential privacy technique
(DP-SVT). The results highlighted that extreme data dis-
tribution imbalances could affect the performance of the
FedAvg strategy, whereas the FedProx strategy with suitable
hyperparameter tuning effectively mitigated this issue.

Differential privacy in PFL ensures the privacy of client
data during model updates by adding noise to gradients or
model parameters. CMP-Fed and APES minimize privacy
leakage through compressed updates and noise generation,
requiring around 180 and 40 communication rounds, respec-
tively. DP-FedSAM adds gradient perturbation, achieving
notable accuracies (84.8% on EMNIST, 57% on CIFAR-100)
within only 30 rounds. PLDP-FL and PLU-FedOA provide
adaptive privacy budgets and constrained privacy uploads
over 100 to 600 rounds, ensuring client-specific adjustments.
Techniques like CE-PFML and PGC-LDP employ local dif-
ferential privacy and representation learning, reducing com-
munication rounds to a maximum of 50 while preserving
data utility. Finally, OPFL and FedEmbed offer unique, low-
frequency updates in online and personalized applications,
respectively, with up to 900 rounds for enhanced localization
or embedding-based model personalization. Each approach
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thus emphasizes communication frequency as a trade-off
with privacy and model performance. Applications range
from healthcare to chatbots, leveraging strategies like dy-
namic layer compression, blockchain integration, and per-
sonalized privacy settings to improve communication effi-
ciency and model performance.
3.3. Client Selection

In PFL, not all clients participate in each round of
model updates. The client selection techniques aim to select
a subset of clients for participation in a round based on
various criteria, such as heterogeneity of the data, computa-
tional resources, and communication capabilities as shown
in Figure 6. By carefully selecting clients, communication
overhead can be reduced without compromising the quality
of the global model. Using client selection techniques that
consider data heterogeneity, computational resources, com-
munication constraints, performance tracking, and adapt-
ability, PFL can optimize communication efficiency. The
selection of an appropriate subset of clients for each round
of communication reduces communication overhead while
ensuring the effectiveness and accuracy of the global model.
The algorithm 3 shows the simple implementation of client
selection in PFL.
Algorithm 3 Client Selection in PFL
Input(s): List of clients � , Client data heterogeneity, Computational re-
sources, Communication constraints
Output(s):Selected client subset �
Algorithm:
1: Initialization
2: Compute client scores based on data heterogeneity, computational

resources, and communication constraints
3: Sort clients in descending order of scores
4: � ← Empty list
5: for each client  in � do
6: if fits communication constraints and computational resources then
7: Append  to �
8: end if
9: if termination condition met then

10: break
11: end if
12: end for

Let � represent the complete list of clients, and � denote
the subset of selected clients. Each client  in the list � is
assigned a score, denoted by score(), which is calculated
based on factors such as data heterogeneity, computational
resources, and communication constraints. This score calcu-
lation is performed through a function � (⋅), which combines
these factors to yield a single score value for each client. The
list of clients is then sorted by these scores in descending
order, resulting in �sorted, which prioritizes clients with
higher scores. To determine the final selected subset �, each
client  in �sorted is evaluated to check if it meets specific
communication constraints and has sufficient computational
resources to participate in FL. Only clients that satisfy
both the communication and computational requirements
are added to �.

1. Client Score Calculation:
score() = � (data heterogeneity(),

computational resources(),
communication constraints())

(14)

2. Client Sorting:
�sorted = sort(�, by descending score) (15)

3. Client Selection with Constraints:
� = { ∈ �sorted ∣ communication constraints() and

computational resources() are satisfied} (16)

Figure 6: Clients Selection [87].

Table 3 summarizes the contributions made in PFL for
communication optimization using clients selection. In [90],
Han et al. presented a confidence-based similarity-aware
personalized FL algorithm (FedCS), which combines public
average confidence (PAC) measure, a client grouping strat-
egy with dynamic sampling (CGDS), and a sequential ag-
gregated weight (SAW) strategy to address the challenges of
global model convergence and personalization in FL under
non-identically distributed (non-IID) data. These methods
collectively improve the convergence of the global model
and improve personalization by effectively selecting and
aggregating client updates.

A Communication efficient and Fair personalized Feder-
ated Sequential Recommendation (CF-FedSR) implements
a communication efficient scheme that employs adaptive
client selection and clustering based sampling to accelerate
the training process. This technique aids clients in making
personalized recommendations and enhances recommenda-
tion performance through local fine-tuning and model adap-
tation, thereby optimizing the balance between communica-
tion efficiency and model accuracy [87]. Adaptive quantiza-
tion in device selection strategy (AQUILA) integrates a so-
phisticated device selection method that prioritizes the qual-
ity and usefulness of device updates. This method enables
precise device selection by storing the exact global model on
devices, reducing model deviation, and limiting the need for
hyperparameter adjustments, leading to a more stable and
effective training process [93]. A federated dynamic client
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Table 3
Summary of contributions in PFL Communication Optimization Techniques using Client Selection

Technique(s) Main Idea/Contribution Dataset(s) Used Clients Communication
Rounds

Accuracy

CF-FedSR [87] A communication-efficient scheme that employs
adaptive client selection and clustering-based
sampling to accelerate the training process.

Amazon [88]
Wikipedia [89] 10 200 42.23

87.22

FedCS [90] Introduces PAC measure, client grouping with
dynamic sampling, and a sequential aggregated
weight strategy.

CIFAR10
OrganS-MNIST [91]
COVID [92]

20 300
87.60
86.45
91.19

AQUILA [93] Integrates a device selection method prioritizing
quality and usefulness of updates, with exact
global model storage for precision.

CIFAR-10
CIFAR-100
WikiText-2 [94]

100
200
1000
1000

91.3
70.12
-

FedSDR [95] Clusters clients by computational efficiency, tar-
geting fair selection in edge computing.

MNIST-Fed
CIFAR-10-Fed 100 200

300
94.51
65.44

pFedCAS [96] Control unit adapts model sparsity for privacy
protection, with reduced communication costs.

HAM10000 - 400 92.53

CFFR [97] Fair-aware model aggregation that adjusts for
performance and data distribution disparities.

MovieLens 100K
Movielens 1M [98] 200 50 -

FedeRiCo [99] Allows clients to learn from others based on
optimal fit for local data.

CIFAR-10
CIFAR-100
Office Home2 [100]

8
150
150
400

78.22
41.41
93.76

FedRec++
[101]

Lossless federated recommendation with denois-
ing client allocation for privacy.

MovieLens 943 100 -

FCFL, MAFL
[102]

Full-stack learning system tailored for wearable
computers, enhancing communication efficiency
and personalization.

FEMNIST
Google Speech

3600
2600

350
800

82.33
65.89

selection method based on data representativity (FedSDR)
addresses the issue of unfair federated client selection in
edge computing by clustering clients into groups based on
their local computational efficiency. This approach ensures
a fairer distribution of computational tasks and resources,
thereby improving overall system fairness and efficiency
[95].

Personalized FL framework based on Communication
quality and Adaptive Sparsification (pFedCAS) enhances
privacy protection and training efficiency by introducing
a control unit that adjusts the sparsity of the local model
adaptively, and a selection unit that selects suitable clients
for parameter updates during global model aggregation. This
method achieves a 15% improvement in training accuracy
and a 30% reduction in training costs, demonstrating ro-
bustness to non-IID data and effective communication op-
timization [96]. In [97], authors proposed a communication-
efficient and fair PFL approach (CFFR). CFFR used adaptive
client group selection to personalize models while accel-
erating the training process. The authors proposed a fair-
aware model aggregation algorithm that adaptively captures
performance and data imbalance among different clients to
address the unfairness problem.

In [99], authors proposed a model; PFL with the Right
Collaborators (FedeRiCo), a decentralized framework that
allows each client to determine the optimal extent of learning
from other clients based on their local data distribution.

FedeRiCo employs an expectation-maximization algorithm
to estimate the utility of other participants’ models on each
client’s data, enabling the selection of appropriate collabo-
rators for learning. Notably, FedeRiCo is the only approach
that consistently surpasses the performance achieved by
training with local data alone. In [103], the authors intro-
duced the CF-FedSR (communication efficient and fair per-
sonalized federated sequential recommendation) algorithm.
This approach incorporates adaptive client selection and
clustering-based sampling to enhance the efficiency of com-
munication during the training process. To tackle fairness
concerns, a model aggregation algorithm was designed to
account for imbalances in data and performance among
diverse clients. The personalization module integrates local
fine-tuning and model adaptation, aiding clients in generat-
ing personalized recommendations and elevating the overall
recommendation performance.

In [101], authors proposed a novel lossless federated
recommendation method, FedRec++, which assigns de-
noising clients to eliminate noise in a privacy-preserving
manner. The authors analyzed FedRec++ in terms of se-
curity, losslessness, and generality compared to existing
works. Extensive experiments demonstrate the effectiveness
of FedRec++ in providing accurate and privacy-preserving
recommendations with minimal additional communication
cost. In [102], authors proposed Fair and Communication-
efficient Federated Learning (FCFL), a full-stack learning
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system specifically designed for wearable computers that
improves SOTA performance in communication efficiency,
fairness, personalization, and user experience. The authors
introduced a technique named ThrowRightAway (TRA) to
loosen the network capacity constraints, enabling clients
with poor networks to participate and improve representa-
tion while guaranteeing fairness. They also propose Move-
ment Aware Federated Learning (MAFL) to aggregate only
the model updates with top contributions for communication
efficiency.

Client selection in PFL involves choosing a subset of
clients for model updates based on criteria such as data
heterogeneity, computational resources, and communica-
tion capabilities, aiming to optimize communication ef-
ficiency without compromising model quality. CF-FedSR
uses adaptive client clustering to reduce communication
rounds, achieving accuracies like 87.22% on Wikipedia with
200 rounds. FedCS introduces PAC measures and dynamic
sampling, showing competitive accuracy across datasets
with 300 rounds. AQUILA prioritizes high-quality device
updates, with exact model storage achieving 91.3% accuracy
on CIFAR-10 in 200 rounds. Techniques like FedSDR and
CFFR focus on fair client selection, considering computa-
tional efficiency and data distribution disparities. pFedCAS
adapts model sparsity to optimize privacy while reducing
communication to 400 rounds. FedeRiCo and FedRec++
emphasize personalized recommendations through optimal
client matching, with FedRec++ achieving high commu-
nication efficiency even with a large client base. Lastly,
FCFL and MAFL offer full-stack solutions for wearable
devices, handling up to 800 rounds for effective personal-
ization. Each approach balances communication frequency,
accuracy, and data privacy, illustrating different methods
for optimizing client selection in FL. These client selection
strategies collectively improve communication efficiency,
model accuracy, and fairness in PFL.
3.4. Asynchronous Updates

Asynchronous updates allow clients to transmit their
updates independently, reducing the waiting time and en-
abling clients with faster computation capabilities to proceed
without waiting for slower clients. Algorithm 4 shows the
implementation of asynchronous updates in PFL which can
significantly improve the communication efficiency in PFL.
Algorithm 4 Asynchronous Updates in PFL
Input(s): List of clients 𝐶 , Communication and computational resources
Output(s): Global model update 𝑈global
Algorithm:
1: Initialization
2: 𝑈global ← Empty update
3: for each client 𝑐 in 𝐶 do
4: if fits communication and computational resources then
5: Perform local model training on client 𝑐
6: Compute local model update 𝑈𝑐7: Transmit 𝑈𝑐 to server asynchronously
8: end if
9: end for

10: Receive and aggregate updates from clients asynchronously

1. Global Model Initialization Define the initial global
model as:

𝑀 (0)
global = initialize model (17)

2. Local Model Update on Client 𝑐 For each selected
client 𝑐 that meets the communication and compu-
tational resource constraints, the local update 𝑈𝑐 is
computed based on local data 𝐷𝑐 :

𝑈𝑐 = train(𝑀 (𝑡)
global, 𝐷𝑐) (18)

3. Asynchronous Update Transmission Each client 𝑐
asynchronously transmits the local update 𝑈𝑐 to the
server.

4. Global Model Aggregation The server asynchronously
aggregates updates received from clients. Let 𝑈 (𝑡+1)

globalbe the updated global model after aggregation:

𝑈 (𝑡+1)
global = 𝑈 (𝑡)

global +
1
|𝐶|

∑

𝑐∈𝑆𝑡

𝑈𝑐 (19)

where 𝑆𝑡 is the set of clients that sent updates in
iteration 𝑡.

5. Output of Global Model The final aggregated update
for the global model, 𝑈final

global, is obtained after the
desired number of iterations or convergence criterion
is met.

Personalized Moreau Envelopes-based Asynchronous
Federated Learning (APFedMe) leverages the Moreau En-
velopes technique to address optimization challenges by uti-
lizing asynchronous weight updates to enhance communica-
tion efficiency and handle data heterogeneity. The approach
creates a personalized learning environment by combining
these elements, resulting in improved convergence speed and
communication efficiency in FL settings [105]. Resource
efficient Federated Recommender System (ReFRS) proposes
a lightweight, self-supervised local model based on the vari-
ational autoencoder to capture users’ temporal preferences
from sequences of interacted items. This method excels in
both accuracy and scalability, making it a potent solution for
personalized recommendation systems where learning from
temporal data is crucial [106].

In [108], authors addressed the challenge of conducting
FL on demand in heterogeneous edge devices with vary-
ing resource constraints. The proposed solution is a cost-
adjustable FL framework called AnycostFL, which enables
efficient local updates on various edge devices with dif-
ferent efficiency constraints. The framework incorporates
model shrinking to support local model training with ad-
justable computation cost, gradient compression for dy-
namic parameter transmission with varying communication
overhead, and enhanced element-wise parameter aggrega-
tion to enhance model performance. An optimization de-
sign is proposed to minimize global training loss while
satisfying personalized latency and energy constraints. In
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Figure 7: Overview of Asynchronous Updates [104]

[109], authors investigated the problem of PFL with asyn-
chronous updates, where each client aims to achieve a per-
sonalized model that outperforms both local and global mod-
els. They proposed; personalized asynchronous federated
learning (PersA-FL) considering two optimization frame-
works, namely Model-Agnostic Meta-Learning (MAML)
and Moreau Envelope (ME), for achieving personalization.
MAML involves fine-tuning a joint model for each client,
while ME utilizes a bi-level optimization problem with
regularized losses to enforce personalization. The main fo-
cus is on improving the scalability of PFL by relaxing the
assumption of synchronous communication. Furthermore,
they extend the class of functions considered by removing
the requirement of boundedness on the gradient norm.

To address the privacy concerns, in [110] proposed an
FL based deep learning model for identifying household
characteristics. The proposed hybrid model combines con-
volutional neural networks (CNNs) and long short-term neu-
ral networks (LSTMs) to effectively learn spatial-temporal
features from load profiles. The model is implemented in
a decentralized manner using the FL framework, which
enables collaborative model training without sharing raw
data. To improve the efficiency and accuracy of the training
process, the study introduces an asynchronous stochastic
gradient descent with delay compensation method to update
the global model parameters. This approach enhances the
training speed by allowing clients to perform local updates
asynchronously while compensating for the potential delays
in parameter synchronization.

In [104], authors introduced, a novel semi-asynchronous
FL framework; FedSEA (Figure 7), tailored for extremely
heterogeneous devices. Theoretical analysis reveals that the
accuracy drop in semi-asynchronous FL (SAFL) is caused
by unbalanced aggregation frequencies. Building on this
insight, a training configuration scheduler is designed to

balance the aggregation frequency of devices, leading to im-
proved accuracy. To enhance efficiency in realistic scenarios
where devices exhibit dynamic on-device resource availabil-
ity, a scheduler is proposed that predicts the arrival time of
local updates from devices and adjusts the synchronization
time point accordingly.

In [112], authors introduced An Adaptive Communica-
tion Efficient Asynchronous Framework (FedACA), which
is an asynchronous FL approach that incorporates feedback
loops at two levels. FedACA includes a self-adjusting local
training step with active participant selection to expedite the
convergence of the global model. It also utilizes an adaptive
uploading policy that reduces communication overhead by
leveraging model similarity and L2-norm differences be-
tween current and previous local gradients. Moreover, con-
trastive learning is employed to regulate local training and
measure model similarity in the uploading policy, thereby
addressing data heterogeneity. To address the issue of stal-
eness effects caused by asynchrony, in [113], authors pro-
posed an optimized solution called hyper-mix Async-DFL
(Asynchronous Dynamic Federated Learning). This solution
incorporates a hyper parameter to mitigate the impact of
staleness. Through experimental evaluations, the feasibility
of these approaches is demonstrated and it is shown that the
hyper-mix solution outperforms the underlying Async-DFL
algorithm.

In [114], authors introduced Federated Learning with
Concept Drift (FedConD), a novel approach for detecting
and handling concept drift on local devices in asynchronous
FL while minimizing its impact on model performance.
This approach utilizes an adaptive mechanism to detect drift
based on historical performance of local models. Adjusts
the regularization parameter of the objective function on
each device to adapt to the detected drift. Furthermore, a
communication strategy is designed on the server side to
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Table 4
Summary of contributions in PFL Communication Optimization Techniques using Asynchronous Updates

Technique(s) Main Idea/Contribution Dataset(s) Used Clients Communication
Rounds

Accuracy

APFedMe [105] Combines Moreau Envelopes for optimization
with asynchronous updates, enhancing communi-
cation efficiency and handling data heterogeneity.

MNIST 20 500 94.79

ReFRS [106] Lightweight self-supervised model using varia-
tional autoencoder to learn user preferences from
interaction sequences.

MovieLens 100K
Last.fm 1K [107]

1,682
1090 - 48.51

35.66

AnycostFL
[108]

Allows localized updates across diverse edge
devices, optimizing for device efficiency.

FMNIST
CIFAR-10 60 214

372
90.32
84.91

PersA-FL [109] Applies controlled staleness, usable with both
MAML and Moreau Envelope frameworks.

MNIST
CIFAR-10 30 - 86

67

FL-CNN-LSTM
[110]

Integrates CNN and LSTM to capture spatial-
temporal features from data profiles.

commission for
energy regulation
(CER) [111]

10 200 75.51

FedSEA [104] Mixes synchronous and asynchronous updates to
optimize efficiency and model accuracy.

MNIST
CIFAR-10 - 2000 96.36

54.13

FedACA [112] Dynamic asynchronous aggregation adapting to
client capabilities and data distributions.

CIFAR-10
CIFAR-100
Fashion-MNIST

-
50
60
40

67.48
66.51
89.51

hyper-mix
Async-DFL
[113]

Combines hyperparameter tuning with asyn-
chronous FL for flexible training efficiency.

MNIST
Fashion-MNIST 10 100 88

72

FedConD [114] Employs conditional updates, reducing commu-
nication by sending only significant updates.

Fashion-MNIST
CIFAR-10
FitRec [115]
Air Quality [116]
ExtraSensory [117]

- 1000

0.907
0.953
0.822
0.430
0.721

ASTW_FedAVG
[118]

Enhances FedAVG with controlled staleness tol-
erance for flexible client participation.

human activity
recognition (HAR)
MNIST

20
1000

200

95.9

98.1

carefully select local updates, thereby accelerating model
convergence. In [118], the authors proposed an enhanced FL
technique that combines an asynchronous learning strategy
on client devices with a temporally weighted aggregation
strategy on the server named; Asynchronous Model Up-
date and Temporally Weighted (ASTW). The asynchronous
learning strategy updates the parameters of deep layers less
frequently compared to the shallow layers, taking into ac-
count the computational requirements of different layers.

In [119], authors proposed an asynchronously weight
updating FL framework. The framework is designed to be
efficient, reliable, and privacy-preserving while meeting the
requirements of low latency and low network overhead.
The proposed approach allows accurate resource allocation
decisions for different 5G users without compromising their
privacy or adding additional load to the network. Specifi-
cally, the proposed technique achieves a reduction in network
overhead while maintaining a consistent and significantly
high prediction accuracy, thus validating its advantages in
terms of low latency and efficiency. In [120], authors pro-
posed an asynchronous FL system that uses the principles of
FL to train models on local data without the need to share it.
Each participant trains a personalized ML model using their

private data to improve leak identification. These personal
models are then merged into a global model, which learns
from the collective knowledge of all participants, while pre-
serving data privacy. To optimize the performance of local
models, the authors employed personalization techniques
tailored to each participant’s unique dataset. They also de-
velop merging and benchmarking algorithms to effectively
combine the personal models into a robust global model.

Through Table 4 it can be concluded that asynchronous
updates in PFL enhance communication efficiency by reduc-
ing synchronization overhead, enabling overlapping compu-
tation and communication, facilitating scalability, mitigat-
ing the impact of stragglers, and supporting adaptive com-
munication strategies. Techniques like APFedMe combine
Moreau Envelopes with asynchronous updates, efficiently
handling data heterogeneity and achieving 94.79% accuracy
on MNIST with 500 communication rounds. ReFRS uses
a lightweight self-supervised model with a variational au-
toencoder to learn user preferences, achieving accuracies of
48.51% on MovieLens 100K and 35.66% on Last.fm. Mean-
while, AnycostFL introduces localized updates to enhance
efficiency across heterogeneous edge devices, achieving up
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to 90.32% accuracy on FMNIST with 214 rounds. PersA-
FL applies controlled staleness, suitable for MAML frame-
works, to achieve 86% accuracy on MNIST.

Further innovations include FedSEA, which integrates
synchronous and asynchronous updates to improve effi-
ciency and achieve a high accuracy of 96.36% on MNIST
with 2000 rounds, and FedACA, which dynamically adapts
aggregation based on client heterogeneity, resulting in ro-
bust accuracies on CIFAR-10 and Fashion-MNIST datasets.
hyper-mix Async-DFL leverages hyperparameter tuning for
efficient training, achieving 88% accuracy on MNIST in
just 100 rounds. FedConD emphasizes conditional updates
to reduce communication by transmitting only significant
changes, demonstrating high performance across datasets
such as CIFAR-10 (95.3%) and ExtraSensory (72.1%).
Lastly, ASTW_FedAVG enhances FedAVG with staleness
tolerance, allowing flexible client participation and achiev-
ing an impressive 98.1% accuracy on MNIST with only 200
rounds.

Each of these methods highlights different approaches
to balance communication efficiency and model accuracy
while accommodating diverse device capabilities and dataset
requirements. Together, they represent significant steps for-
ward in making PFL both scalable and effective across varied
environments. These techniques leverage the distributed
nature of FL to maximize the use of computational and
communication resources while minimizing communication
delays.
3.5. Gradient Compression

Instead of sending the full gradients, gradient compres-
sion techniques can be employed to transmit compressed
versions of the gradients. Techniques such as sparsity and
quantization, both of which are critical in reducing commu-
nication overhead in FL. Sparsity involves sending only the
most important gradient updates and skipping the rest, while
quantization reduces the precision of the transmitted gradi-
ents. Although these approaches function differently, they
share a common goal of minimizing communication costs.
Sparsity reduces the number of communicated elements,
while quantization lowers the communication bandwidth
per element, both contributing to efficient communication
in PFL. Algorithm 5 shows the basic implementation of
Gradient Compression in PFL.

1. Quantization: If the compression technique is quanti-
zation, the local gradient�local is quantized to produce
the compressed gradient �compressed as:

�compressed = quantize(�local) (20)
2. Sparsification: If the compression technique is spar-

sification, then �local is sparsified, retaining only sig-
nificant gradient values:

�compressed = sparsify(�local) (21)
3. Randomized Quantization: For randomized quanti-

zation, a random quantization function is applied to

Algorithm 5 Gradient Compression in PFL
Input(s):Local gradients �local, Compression technique
Output(s):Compressed gradients �compressed
Algorithm:
1: if Compression technique is Quantization then
2: Perform quantization on �local3: �compressed ← Compressed gradients using quantization
4: end if
5: if Compression technique is Sparsification then
6: Perform sparsification on �local7: �compressed ← Compressed gradients using sparsification
8: end if
9: if Compression technique is Randomized Quantization then

10: Perform randomized quantization on �local11: �compressed ← Compressed gradients using randomized quantiza-
tion

12: end if
13: if Compression technique is Error Feedback then
14: Compute the difference between �local and server gradients
15: �compressed ← Compressed gradients using error feedback
16: end if
17: if Compression technique is Differential Compression then
18: Compute the difference between consecutive �local19: �compressed ← Compressed gradients using differential compres-

sion
20: end if

�local:
�compressed = random_quantize(�local) (22)

4. Error Feedback: When using error feedback, the
error between the local gradient �local and the server
gradient �server is computed and compressed:

�compressed = �local − �server (23)
5. Differential Compression: In differential compres-

sion, the difference between consecutive local gradi-
ents �(�)

local and �(�−1)
local is computed:

�compressed = �(�)
local − �(�−1)

local (24)

Figure 8: Overview of Gradient Compression [121].

In [122], authors proposed the ClusterGrad algorithm,
which compresses gradients and considerably reduces the
volume of computations communicated. Their design is
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based on the observation that only a small fraction of gra-
dients have values that are far away from the origin in each
round of interaction in FL. They used the K-means algorithm
to identify these crucial gradients that are far away from
zero. These gradient values are approximated using a novel
clustering-based quantization algorithm. Furthermore, they
approximate the rest of the gradients, which lie close to zero,
with a single value. Wang et al. [123], tackled the constraints
of PFL and introduced an economical approach that centers
on weight gradients, the pivotal parameters exchanged in
FL. The authors noted that these weight gradients, com-
puted by the clients, exhibit notable sparsity and can be
forecasted through straightforward bit-wise operations on a
bit-stream, circumventing resource-intensive high-precision
computations. Moreover, the uploaded weight gradient from
each client displays a distinctive pattern influenced by its
localized training data distribution.

The concept of a hub-and-spoke network topology was
introduced by Kuo et al. [121], where clients interact with
a central server and data compression techniques are em-
ployed to alleviate communication overhead, shown in Fig-
ure 8. Nevertheless, the challenge of unbalanced data distri-
bution, particularly in scenarios where data on each client
are non-Independent and Identically Distributed (non-IID),
persists. In response, the authors introduced a novel com-
pression compensation strategy termed Global Momentum
Fusion (GMF), aimed at diminishing communication over-
head while preserving model accuracy amidst non-IID data
conditions. Wu et al. introduced Personalized Federated
Learning via Gradient Fusion (pFedGF) in their work [124],
a PFL method centered on gradient fusion. In each pFedGF
round, clients maintain global gradients for collective insight
and local gradients for individual distribution representa-
tion. These gradients amalgamate to update the personalized
model’s direction for each client.

In [125], authors introduced the first analysis of gradient
compression methods using without replacement sampling.
The authors propose a distributed version of the RR method
with gradient compression, called Q-RR, and demonstrate
how to reduce compression variance using control iterates.
To better suit FL applications, they introduced a variant
called Q-NASTYA that includes local computation with
different local and global stepsizes. They also show how
to reduce compression variance in this setting. In [126],
authors introduced a novel communication efficient adaptive
FL approach (FedCAMS), that provides theoretical conver-
gence guarantees. Their approach achieves the same conver-
gence rate as non-compressed counterparts in the nonconvex
stochastic optimization setting.

In [127], the authors introduced a gradient compression
strategy named FedOComp (Two-Timescale Online Gra-
dient Compression for Over-the-Air Federated Learning).
This scheme capitalizes on the inherent correlations among
stochastic gradients within FL systems, enabling effective
compression of high-dimensional gradients during over-the-
air aggregation. The devised approach capitalizes on the
structural relationships present in the gradients, resulting

in a reduced impact on training convergence speed and
facilitating direct over-the-air aggregation to conserve com-
munication resources. In [128], authors proposed a novel
upstream communication scheme where instead of transmit-
ting the model update, each client generates and transmits
a lightweight synthetic dataset that leads to similar perfor-
mance as the real training data. The server recovers the local
model update through the synthetic data and applies standard
aggregation. The authors also introduced Gradient Compres-
sion via Synthetic Data in Federated Learning (FedSynth), a
new algorithm for learning the synthetic data locally.

In their work [129], Jiang et al. introduced adaptive
client selection and gradient compression (FedCG), an FL
framework that embraces heterogeneity awareness through
adaptive client selection and gradient compression. The
parameter server (PS) identifies a subset of representative
clients utilizing statistical heterogeneity and transmits the
global model to them. Post local training, these chosen
clients upload compressed model updates tailored to their
capacities, subsequently aggregated by the PS. This ap-
proach substantially minimizes communication load and al-
leviates the straggler effect. In another study [130], Cui et al.
proposed Federated Learning Method Based on Knowledge
Distillation and Deep Gradient Compression (Fed-KDDGC-
SGD). Clients train a teacher network, generating soft labels
for a student network. During training, compressed gradient
vectors are sent from the student network to the central server
using a deep gradient compression algorithm. This process
transmits only the top R% of the gradient values according
to magnitude, reducing the communication bandwidth while
maintaining training efficiency.

In their work [131], Nikoloutsopoulos et al. proposed
a novel approach to PFL called; Personalized Federated
Learning with Exact Gradient based Optimization (PFLEGO),
that achieves exact stochastic gradient descent (SGD) min-
imization. Their method, built upon the FedPer neural
network architecture, involves selecting random clients in
optimization rounds for client-specific weight updates, ul-
timately enabling precise and unbiased SGD steps across
the entire parameter set in a distributed manner. In a sep-
arate study [132], Melas Kyriazi et al. established a link
between intrinsic dimension and gradient compressibility.
This insight underpins the development of low-bandwidth
FL strategies, coined as intrinsic gradient compression
algorithms.

Addressing the issue of non-IID and imbalanced data
distributions in FL, Yang et al. [133], devised an adaptive
gradient compression algorithm. This approach tailors a
unique compression rate for each client, enhancing com-
munication efficiency while upholding model accuracy. In
the context of stochastic gradient descent, adjacent rounds
often exhibit high gradient correlation due to shared model
learning. Exploiting this characteristic, Liang et al. [134],
proposed a pragmatic gradient compression mechanism for
FL. Their approach employs historical gradients for com-
pression, employing Wyner-Ziv coding without necessitat-
ing probabilistic assumptions.
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Table 5
Summary of contributions in PFL Communication Optimization Techniques using Gradient Compression

Technique(s) Main Idea/Contribution Dataset(s) Used Clients Communication
Rounds

Accuracy

ClusterGrad [122] Utilizes K-means clustering to identify im-
portant gradients, reducing computational
volume.

CIFAR-10 100 300 87

BS-pFL [123] Uses bit-streams for predicting gradient
sparsity, optimizing device training cost-
effectively.

MNIST
CIFAR-10 10 100 97.45

86.23

GMF [121] Compensation strategy for gradient compres-
sion.

CIFAR-10
Shakespeare

20
100

220
80

72.46
41.9

PFLFM/PPGC
[135]

Uses feature fusion-based mutual-learning
for communication efficiency.

MNIST
CIFAR-10 10 500 -

67.7

AnycostFL [136] Executes localized updates on edge devices,
meeting diverse efficiency requirements.

FMNIST
CIFAR-10 60 214

372
90.32
84.91

pFedGF [124] Implements dual-gradient scheme per client
round, for global and local insights.

MNIST
Fashion-MNIST
CIFAR-10.

100 120
94.57
91.21
69.59

SPFL [137]
Uses Softmax Normalized Gradient Similarity
(SNGS) for personalized global model distri-
bution.

CIFAR-10
CIFAR-100
MNIST
EMNIST

- -

67.22
24.97
98.33
87.49

Q-RR, Q-NASTYA
[125]

Introduces gradient compression with
without-replacement sampling.

mushrooms
w8a
a9a

20 5000 -

FedCAMS [126] Communication-efficient adaptive FL with
convergence guarantees.

CIFAR-10
CIFAR-100 100 500 90.2

82.4

FedOComp [127] Correlates stochastic gradients for high-
dimensional compression. Fashion-MNIST - 3000 90

FedSynth [128]
Clients send synthetic datasets instead of
model updates; server reconstructs local up-
dates.

FEMNIST
MNIST
Reddit [138]

1000
60
100

- -

FedCG [129]
Combines adaptive client selection and gradi-
ent compression to reduce load and mitigate
stragglers.

MNIST
CIFAR-10
CIFAR-100
Tiny-ImageNet

30 -

90
74
54
37

Fed-KDDGC-SGD
[130]

Transmitting only top gradients. MNIST - 120 95.9

PFLEGO [131] Personalized FL with exact SGD minimiza-
tion.

Omniglot [139]
CIFAR-10
MNIST
Fashion-MNIST
EMNIST

-

5000
200
200
200
200

78
87.81
98.43
96.34
98.49

Intrinsic Gradient
Compression [132]

Links intrinsic dimension to gradient com-
pressibility for low-bandwidth FL.

CIFAR-10
Stanford Sentiment
Treebank-v2
(SST-2) [140]

10000
500

8000
30

75
88

Adaptive Gradient
Compression [133]

Assigns client-specific compression rates for
non-IID and imbalanced data.

MNIST - 1000 99.09

Wyner-Ziv [134] Gradient compression with historical gradi-
ents using Wyner-Ziv coding.

CIFAR-10
CIFAR-100 8 100 94.53

76.45
FedGreen [141] Fine-grained compression for energy-efficient

MEC deployment, with device-side reduction
and server aggregation.

CIFAR-10 16 300 84

Gaussian Compres-
sion [142]

Compresses updates by learning Gaussian
distributions for gradient parameters.

CIFAR-10
CIFAR-100 5 50 87

72

In their paper [141], Li et al. introduced FedGreen, an FL
framework incorporating fine grained gradient compression
to enhance energy-efficient Mobile Edge Computing (MEC)
deployment. They utilized device-side gradient reduction

and server side element wise aggregation to enable effec-
tive compression. They evaluated the impact of compressed
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gradients on learning accuracy and energy efficiency, de-
termining optimal compression ratios and computing fre-
quencies for each device. In [142], authors proposed a novel
method of model-update compression. The method learns
multiple Gaussian distributions that best describe the high-
dimensional gradient parameters, and in the FL server, these
parameters are used to repopulate high dimensional gradi-
ents. Since the distribution information parameters make
up a small percentage of values compared to the high-
dimensional gradients themselves, the method can signifi-
cantly save uplink bandwidth while preserving model accu-
racy.

The Table 5 shows the summary of contributions made
in gradient compression approach for PFL. Techniques such
as ClusterGrad leverage K-means clustering to select key
gradients, optimizing computations with an accuracy of 87%
on CIFAR-10. BS-pFL utilizes bit-stream predictions for
gradient sparsity, achieving 97.45% on MNIST and 86.23%
on CIFAR-10 with only 100 clients, while GMF incorporates
a compensation strategy for gradient compression, recording
accuracies of 72.46% and 41.9% on CIFAR-10 and Shake-
speare datasets, respectively.

Other notable methods include PFLFM/PPGC, which
employs feature fusion-based mutual learning to enhance
communication efficiency, achieving an accuracy of 67.7%
on CIFAR-10 with 500 rounds. AnycostFL focuses on lo-
calized updates across edge devices, achieving 90.32% ac-
curacy on FMNIST and 84.91% on CIFAR-10. pFedGF
introduces a dual-gradient approach, achieving up to 94.57%
accuracy on MNIST and significant results on Fashion-
MNIST and CIFAR-10.

Techniques like SPFL utilize Softmax Normalized Gra-
dient Similarity (SNGS) for distributing personalized global
models, reaching accuracies as high as 98.33% on MNIST
and 87.49% on EMNIST. Q-RR and Q-NASTYA explore
gradient compression with without-replacement sampling
for smaller datasets like mushrooms and a9a. FedCAMS op-
timizes adaptive aggregation, attaining 90.2% on CIFAR-10,
while FedOComp correlates stochastic gradients to enhance
high-dimensional data compression, achieving a 90% accu-
racy on Fashion-MNIST. More advanced methods include
FedSynth, where clients send synthetic datasets rather than
model updates, and FedCG, which integrates adaptive client
selection to mitigate stragglers. PFLEGO personalizes FL
with exact SGD, yielding accuracies of up to 98.43% on
MNIST and Fashion-MNIST, and Intrinsic Gradient Com-
pression links compressibility to intrinsic dimensions, re-
porting 88% on SST-2. Techniques like Adaptive Gradient
Compression and Wyner-Ziv coding further optimize per-
formance, achieving high accuracy on various datasets, such
as 99.09% on MNIST and 76.45% on CIFAR-100. Overall
these techniques are used in FL to reduce communication
overhead by transmitting compressed gradients instead of
full gradients.

3.6. Model Caching
Model caching is a technique used in PFL to improve

communication efficiency by reducing the amount of data
transmitted between clients and the central server. It involves
caching and reusing certain model components on the client
side, which eliminates the need to send them repeatedly
during each round of communication. In subsequent rounds,
instead of transmitting the entire model, only the model
differences or updates need to be communicated. This tech-
nique minimizes redundant communication and speeds up
the convergence process. The Algorithm 6 shows the basic
implementation of Model Caching technique for PFL.
Algorithm 6 Model Caching in PFL
Input(s): Global model 𝑀global, Personalized model 𝑀personalized, Commu-
nication round 𝑡
Output(s): Local model update 𝑈local, Cached model 𝑀cache
Algorithm:
1: if not first communication round then
2: Load cached model 𝑀cache from previous round
3: end if
4: if Global model not in cache then
5: Cache global model 𝑀global6: end if
7: Update personalized model 𝑀personalized using local data
8: Calculate local model update 𝑈local as the difference between

𝑀personalized and 𝑀cache9: Cache 𝑀personalized as 𝑀cache for future rounds
10: Transmit 𝑈local to the central server

1. Cached Model Check:
If this is not the first communication round, load the
cached model 𝑀cache from the previous round:

𝑀cache ← 𝑀 (𝑡−1)
cache (25)

2. Global Model Caching:
If the global model 𝑀global is not yet in cache, cache
it for the current round:

𝑀cache = 𝑀global (26)
3. Personalized Model Update:

Update the personalized model 𝑀personalized using lo-
cal data at client 𝑖:
𝑀 (𝑡)

personalized = update(𝑀 (𝑡−1)
personalized, local data𝑖) (27)

4. Local Model Update Calculation:
Calculate the local model update 𝑈local as the differ-
ence between the personalized model𝑀 (𝑡)

personalized and
the cached model 𝑀cache:

𝑈local = 𝑀 (𝑡)
personalized −𝑀cache (28)

5. Update Cache:
Cache the updated personalized model for future com-
munication rounds:

𝑀cache = 𝑀 (𝑡)
personalized (29)
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Table 6
Summary of contributions in PFL Communication Optimization Techniques using Model Caching

Technique(s) Main Idea/Contribution Dataset(s) Used Clients Communication
Rounds

Accuracy

FM-DRL/FLCC
[143]

Federated Multi-agent Deep Reinforcement
Learning for Edge Caching, enhancing edge co-
operation for personalized service retrieval.

CIFAR10 100 5000 -

FedFilter [144] Personalized FL using model decomposition and
hierarchical aggregation, caching tailored con-
tent based on individual preferences.

ML100K - 70 -

CREAT [145] Integrates IoT, edge nodes, and blockchain to
streamline caching in distributed environments.

MovieLens 30 100 -

FedCache [146] Optimizes cache allocation, focusing on minimal
communication while ensuring fair resource dis-
tribution.

IoT Data - 1000 -

Edge Caching in
IoV [147]

Edge caching framework for Internet of Vehicles
(IoV), enhancing scalability and supporting de-
centralized region-to-region data exchanges.

Vehicle Location
Data

- - -

Federated-CNN
[148]

Proactive cache algorithm leveraging FL and
CNN models to predict and cache popular con-
tent.

Movielens-1M 10 100 96.3

User-Centric
Aggregation
Rules [149]

Implements user-centric aggregation at the
server, balancing personalization with commu-
nication efficiency through tailored aggregation
rules.

EMNIST
CIFAR-10
BigQuery [150]

20/100
20
35

100
200
150

73.2/76.4
48.8
84

FedQNN [151] FL framework with ultralow-bitwidth quantiza-
tion, integrating sparsification for efficient IoT
communication.

MNIST
Fashion-MNIST
CIFAR10

100
5000
10000
20000

99.10
90.69
89.42

6. Transmit Local Update:
Transmit the local model update 𝑈local to the central
server for aggregation.

Federated Multi-agent Deep Reinforcement Learning
(FM-DRL) [143] integrates a cache-enabled FL system
(FREC) designed for efficient data retrieval to provide
personalized services. This method leverages model caching
to minimize learning latency and ensure good convergence
of the learning process. By caching frequently accessed
data, FM-DRL can quickly retrieve necessary information,
reducing the overall time required for training and up-
dates in FL environments. Federated Learning and edge
Cache-assisted Cybertwin (FLCC) [143] focuses on edge
cooperation and optimization using a FM-DRL algorithm.
This method customizes edge computing services to tackle
specific challenges, such as data heterogeneity and dynamic
network conditions. By coordinating multiple edge nodes,
FLCC optimizes resource allocation and data caching, im-
proving the overall efficiency and effectiveness of the FL
process.

FedFilter [144] is an edge caching solution based on FL,
addressing the challenges of content caching in diverse user
environments. It uses a personalized FL approach involving
model decomposition and hierarchical aggregation to cache
content according to individual user preferences. FedFilter
enhances the cache hit rate, reduces backhaul load, and min-
imizes service latency. Additionally, it detects and mitigates

the effects of invalid data on the global model, ensuring the
robustness and efficiency of the caching system.

CREAT [145] combines Internet of Things (IoT) de-
vices, edge nodes, remote cloud, and blockchain technology
to improve the efficiency of caching in FL systems. This
approach improves the cache hit rate and reduces the time
required to upload data by leveraging a distributed caching
framework supported by blockchain for secure and efficient
data management. Chilukuri et al. [146] introduced Fed-
Cache, a dynamic Cache allocation technique based on FL
designed for edge caches in dynamic, resource-constrained
networks. FedCache employs FL to acquire insights into op-
timal cache allocations with minimal communication over-
head. Through local learning, edge nodes adapt to vary-
ing network conditions and collaboratively exchange this
knowledge, eliminating the need to transmit all data to a
central location. This FL-based approach enables nodes to
determine resource allocations that maximize fairness or
efficiency in terms of cache hit ratio, aligning with the
current network state.

The study conducted by Oualil et al. [147] evaluated the
application of advanced machine learning (ML) paradigms
to enhance the precision of personalized edge caching and
replacement decisions. Their focus included maintaining
data privacy, accommodating vehicle mobility, accounting
for the popularity of content that changes over time, and
incorporating location awareness. The research demon-
strated that conventional FL-based approaches struggle to
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maintain satisfactory performance in these conditions. To
address this, the authors introduced a scalable-by-design
edge caching scheme tailored for the Internet of Vehicles
(IoV) context. This scheme harnesses decentralized ex-
changes among region-to-region Road Side Units (RSUs)
to enhance local models within each region, thus optimizing
edge caching effectiveness.

Zhu et al. [148] introduced a proactive cache algorithm
based on the FL framework. In this approach, distributed
virtual Content Delivery Network (vCDN) nodes utilize
their respective data to train convolutional neural network
(CNN) models, predicting the popularity of upcoming con-
tent. Through federated averaging of these node models, a
global popularity prediction model is derived. Each vCDN
node then employs this global model to forecast incoming
requests, enhancing caching efficiency by preemptively pre-
dicting content popularity. The Federated-CNN approach
ensures localized training instead of centralizing user data,
reducing transmission requirements while preserving user
privacy. The simulation results highlight the benefits of
federated aggregation, with Federated CNN achieving ap-
proximately 22% higher accuracy in popularity prediction
compared to other caching algorithms.

The study by Mestoukirdi et al. [149] focuses on over-
coming the limitations of PFL by introducing the capa-
bility for personalization through the utilization of multi-
ple user-centric aggregation rules at the parameter server.
This approach offers the potential to generate personalized
models for individual users, albeit with added downlink
communication overhead. To balance the trade-off between
personalization and communication efficiency, the authors
propose a broadcast protocol that restricts the number of
personalized streams while retaining the crucial benefits of
their learning approach.

Excessive communication between the server and the
clients can lead to demanding bandwidth prerequisites and
increased energy consumption in various IoT systems. Ad-
dressing this, in [151], a framework named federated learn-
ing of quantized neural network (FedQNN) is introduced.
This marks the pioneering incorporation of ultralow-bitwidth
quantization into the FL context. This innovation enables
clients to execute lightweight fixed-point computations with
reduced power consumption.

In summary, Table 6 presents model caching techniques
which are used in PFL to enhance communication efficiency
by reducing the data transmitted between clients and the cen-
tral server. Techniques like FM-DRL/FLCC utilize Feder-
ated Multi-agent Deep Reinforcement Learning for efficient
edge caching, enhancing edge cooperation to retrieve per-
sonalized services on the CIFAR10 dataset with 100 clients
and 5000 rounds. FedFilter focuses on model decomposition
and hierarchical aggregation to personalize cached content
based on user preferences, applied on ML100K with 70
communication rounds. CREAT integrates IoT, edge nodes,
and blockchain to streamline caching in distributed setups,
using MovieLens with 30 clients and 100 rounds.

Other methods include FedCache, which optimizes cache
allocation by minimizing communication while maintaining
fair resource distribution, applied to IoT data with 1000
rounds. In the Edge Caching in IoV framework, edge caching
supports decentralized exchanges of vehicle location data,
improving scalability for medium-to-large client groups.
Federated-CNN employs a proactive cache algorithm with
FL and CNN to predict popular content on Movielens-1M,
reaching 96.3% accuracy.

The User-Centric Aggregation Rules approach provides
user-specific aggregation at the server, balancing person-
alization and efficiency. This was applied on datasets like
EMNIST and CIFAR-10, achieving accuracies of 73.2%,
76.4%, and 84% across different datasets and communication
rounds. Finally, FedQNN integrates ultralow-bitwidth quan-
tization with sparsification for IoT, reaching high accuracy
rates such as 99.1% on MNIST and 90.69% on Fashion-
MNIST over large-scale communication rounds, highlight-
ing the potential of caching strategies in reducing commu-
nication load in PFL scenarios. These techniques leverage
model caching to enhance edge caching efficiency, reduce
service latency, maintain data privacy, and accommodate
dynamic network conditions and user preferences.

4. Challenges and Open Research Directions
This section discusses challenges and potential future re-

search directions in PFL communication optimization tech-
niques. The table 7 presents the challenges and open research
directions in PFL communication optimization techniques.

For Model Compression, challenges include high com-
putational demands, particularly for resource-constrained
devices, and the difficulty of balancing personalized tasks
with communication efficiency. Techniques like FedMPT
and QuPed attempt to address these issues, but still struggle
with privacy and bandwidth. Future research should focus
on enhancing multi-task performance in sensitive fields,
exploring adaptive communication protocols, and investigat-
ing larger datasets. Methods like FedNILM and FedSUMM
show promise in improving accuracy while reducing over-
head.

Differential Privacy faces the challenge of balancing
robust privacy with communication efficiency, especially
in the context of non-IID data. Techniques such as PPPFL
and PDPM tackle these issues but encounter scalability
and adaptability concerns across clients. Future work could
emphasize dynamic privacy mechanisms that optimize com-
munication, adaptive methods, and integrating differential
privacy with blockchain for secure FL.

In Client Selection, ensuring model accuracy and fair-
ness while managing data heterogeneity and resource con-
straints is essential. Approaches like FedCS enhance client
selection but still struggle with privacy issues. Future re-
search should refine client selection through real-time per-
formance metrics, improve clustering techniques, and de-
velop decentralized frameworks for personalized recom-
mendations.
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Table 7
PFL Communication Optimization Techniques, Challenges and Open Research Directions

Model/Method Challenges Open Research Directions

Model
compression

Model compression in FL can demand significant com-
putational resources, often unsuitable for resource-
constrained devices. Handling multiple personalized tasks
simultaneously while maintaining efficient communica-
tion remains challenging [57, 55].

Future work could focus on enhancing multi-task perfor-
mance in privacy-sensitive applications such as healthcare
and finance, where balancing data privacy with compu-
tational efficiency is crucial. Research should investigate
performance on larger datasets and explore adaptive,
energy-efficient communication protocols that leverage
model compression techniques [37, 41, 45, 49].

Differential
Privacy

Achieving both robust privacy and communication ef-
ficiency in FL is complex, particularly with non-IID
data and diverse client privacy requirements. Techniques
such as PPPFL tackle these by using differentially
private GANs to reduce communication rounds while
maintaining high data utility, especially in cross-silo FL
[69, 73, 84, 74, 76, 67].

Adaptive privacy-preserving methods like CUAG-PFL and
PGC-LDP offer promising avenues to improve both
privacy and communication efficiency, as they adjust to
client resource constraints and minimize communication
for specific model updates [70, 71, 81, 64], Compre-
hensive personalized privacy protection, performance and
scalability, efficient and secure FL algorithms, extension
to other healthcare applications [66].

Client Selection

Accurate device selection based on model quality and
efficient client clustering based on computational effi-
ciency are essential, but their effectiveness can vary with
different datasets and participants. Challenges include
the assumption of cooperative clients and concerns about
privacy protection during training. The FCFL approach
addresses biases, aggregation inefficiencies, and privacy
issues, but it has limitations compared to other methods
[93, 95, 96, 102].

Future work could focus on refining client selection by
integrating real-time performance metrics and commu-
nication capabilities to dynamically adjust client partici-
pation [93, 95, 96, 99]. Enhance client grouping strate-
gies to better handle extreme data heterogeneity [90],
generalization of FedRec++ [101], Denoising strategy
applicability, FedeRiCo for limited resources [99].

Asynchronous
Updates

Asynchronous updates in Personalized Federated Learn-
ing (PFL) bring diverse approaches to handling client
heterogeneity and communication efficiency, with each
technique presenting unique challenges and opportunities
for future research [105, 106]. Design for heterogeneous
edge devices, employs cost-adjustable local updates, but
refining model shrinking techniques tailored to device-
specific constraints remains an open direction [136, 109,
104].

Further advancements in asynchronous PFL include
FedACA, which introduces a two-level feedback system
to reduce communication costs amidst data heterogene-
ity; context-aware adaptive policies could advance its
resilience [112, 113, 114, 118].

Gradient
Compression

Many existing techniques struggle to maintain model
accuracy when clients’ data are highly heterogeneous
[121, 133]. The efficiency of various methods can fluctu-
ate based on specific client conditions and data distribu-
tions [125, 123]. Moreover, while adaptive compression
strategies that account for client capacities have shown
promise [129, 127], highlighting the need for strategies
that balance communication efficiency with effective
model training.

Ensuring consistent model performance across diverse
client environments [126, 128]. There is also a need
for more comprehensive studies on reducing compression
variance to enhance the reliability of gradient updates
[125]. Exploring adaptive compression methods that
consider client-specific conditions could yield improved
communication efficiency while maintaining training ef-
fectiveness [133, 129, 132, 131].

Model Caching

Despite the potential benefits of model caching in
federated learning (FL), several challenges persist. One
significant issue is the management of data heterogeneity,
as client devices may have varying data distributions
that complicate effective caching strategies [143, 144].
Additionally, dynamic network conditions can affect the
performance of caching algorithms, leading to increased
latency and reduced service quality [143].

Exploring decentralized caching strategies that leverage
the collaborative nature of FL can enhance efficiency
while preserving data privacy [146]. Additionally, in-
tegrating advanced machine learning paradigms with
caching solutions could improve the accuracy of content
prediction and allocation decisions, especially in rapidly
changing environments [147].

Asynchronous Updates present challenges in managing
client heterogeneity and ensuring efficient communication.
Techniques like APFedMe and ReFRS show potential but re-
quire further real-time adaptability and scalability improve-
ments. Innovations such as FedACA and hyper-mix Async-
DFL could enhance performance by balancing feedback and
communication costs, while also addressing concept drift
and staleness.

The challenges of Gradient Compression include man-
aging non-IID data distributions and compression variance
without sacrificing model accuracy. There is a significant
trade-off between the degree of compression and conver-
gence speed. Future research should focus on developing
robust algorithms that effectively manage data variability,
reduce compression variance, and explore the interactions
between gradient compression and other optimization tech-
niques like model caching.
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Lastly, Model Caching faces challenges in managing
data heterogeneity and dynamic network conditions while
ensuring data privacy. The trade-off between personaliza-
tion and communication efficiency remains a critical issue.
Future research should develop adaptive caching algorithms
and decentralized strategies that leverage the collaborative
nature of federated learning. Integrating advanced machine
learning paradigms with caching solutions and balancing
personalization with communication efficiency are vital ar-
eas for exploration.

5. Conclusion
In conclusion, this research survey delved into a com-

prehensive exploration of various communication optimiza-
tion techniques within the realm of personalized federated
learning (PFL). Throughout the paper, we examined the
strategies including model compression, differential privacy,
client selection, asynchronous updates, gradient compres-
sion, and model caching. These techniques collectively ad-
dress the multifaceted challenges inherent in FL, with a spe-
cific focus on enhancing communication efficiency without
compromising the quality of personalized model training.
Model compression techniques, by reducing the model’s
size, minimize communication overhead while maintaining
performance. Differential privacy mechanisms safeguard
sensitive data during the aggregation process, protecting
privacy without limiting collaborative learning. The selec-
tion of clients optimizes the subset of participants, pro-
moting efficiency in the training process. Asynchronous
updates accommodate varying client availability, allowing
for flexible and efficient model updates. Gradient compres-
sion methods reduce communication load by transmitting
compressed gradients, optimizing bandwidth usage. Lastly,
model caching leverages prior training to enhance local
updates, minimizing the need for extensive communication
during subsequent rounds.

Incorporating these communication optimization tech-
niques collectively enriches the landscape of personalized
FL, enabling efficient, secure, and precise model training
across distributed devices while mitigating the challenges
posed by communication constraints. As the field of PFL
continues to evolve, these insights into communication op-
timization strategies will undoubtedly play a pivotal role
in shaping the future of collaborative and privacy-aware
machine learning paradigms. The conclusions of our study
clearly identify a huge potential for future research in com-
munication optimization approaches for PFL.
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[3] Jakub Konecnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning:
Strategies for improving communication efficiency. arXiv preprint,
8, 2016.

[4] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith.
Federated learning: Challenges, methods, and future directions.
IEEE signal processing magazine, 37(3):50–60, 2020.

[5] Pushpa Singh, Murari Kumar Singh, Rajnesh Singh, and Narendra
Singh. Federated learning: Challenges, methods, and future direc-
tions. In Federated Learning for IoT Applications, pages 199–214.
Springer, Cham, 2022.

[6] Kavita Bhosle and Vijaya Musande. Evaluation of deep learning cnn
model for recognition of devanagari digit. Artificial Intelligence and
Applications, 1(2):114–118, Feb. 2023.

[7] Qianyang Sun, Jiaming Chen, Li Zhou, Shifeng Ding, and Sen Han.
A study on ice resistance prediction based on deep learning data
generation method. Ocean Engineering, 301:117467, 2024.

[8] Yingjie Song, Lihuan Han, Bin Zhang, and Wu Deng. A dual-
time dual-population multi-objective evolutionary algorithm with
application to the portfolio optimization problem. Engineering
Applications of Artificial Intelligence, 133:108638, 2024.

[9] Timileyin Opeyemi Akande, Oluwaseyi O. Alabi, and Sunday A.
Ajagbe. A deep learning-based cae approach for simulating 3d
vehicle wheels under real-world conditions. Artificial Intelligence
and Applications, Jan. 2024.

[10] Zheng-yi Chai, Chuan-dong Yang, and Ya-lun Li. Commu-
nication efficiency optimization in federated learning based on
multi-objective evolutionary algorithm. Evolutionary Intelligence,
16(3):1033–1044, 2023.

[11] Yuwei Fan, Wei Xi, Hengyi Zhu, and Jizhong Zhao. Minipfl: Mini
federations for hierarchical personalized federated learning. Future
Generation Computer Systems, 157:41–50, 2024.

[12] Jingke Tu, Jiaming Huang, Lei Yang, and Wanyu Lin. Personalized
federated learning with layer-wise feature transformation via meta-
learning. ACM Trans. Knowl. Discov. Data, 18(4), February 2024.

[13] Zhengrong Song, Chuan Ma, Ming Ding, Howard H. Yang, Yuwen
Qian, and Xiangwei Zhou. Personalized federated deep reinforce-
ment learning-based trajectory optimization for multi-uav assisted
edge computing. In 2023 IEEE/CIC International Conference on
Communications in China (ICCC), pages 1–6, Aug 2023.

[14] Jiagao Wu, Yu Wang, Zhangchi Shen, and Linfeng Liu. Adaptive
client and communication optimizations in federated learning. In-
formation Systems, 116:102226, 2023.

[15] Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Yongfeng Huang, and
Xing Xie. Communication-efficient federated learning via knowl-
edge distillation. Nature communications, 13(1):2032, 2022.

[16] Peiyan Yuan, Ling Shi, Xiaoyan Zhao, and Junna Zhang. A
lightweight and personalized edge federated learning model. Com-
plex & Intelligent Systems, pages 1–16, 2024.

[17] Shaoshuai Fan, Jie Ni, and Hui Tian. Fast personalized federated
learning in wireless networks with heterogeneous data and lim-
ited communication resources. IEEE Internet of Things Journal,
11(17):28555–28565, Sep. 2024.

Page 25 of 29



[18] Zhihan Wang, Xiangxue Ma, Haixia Zhang, and Dongfeng Yuan.
Communication-efficient personalized federated learning for digital
twin in heterogeneous industrial iot. In 2023 IEEE International
Conference on Communications Workshops (ICC Workshops), pages
237–241, May 2023.

[19] Tian Wang, Yan Liu, Xi Zheng, Hong-Ning Dai, Weijia Jia, and
Mande Xie. Edge-based communication optimization for distributed
federated learning. IEEE Transactions on Network Science and
Engineering, 9(4):2015–2024, July 2022.

[20] Jun Wu, Wenxuan Bao, Elizabeth Ainsworth, and Jingrui He.
Personalized federated learning with parameter propagation. In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD ’23, page 2594–2605, New York,
NY, USA, 2023. Association for Computing Machinery.

[21] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Tal-
walkar. Federated multi-task learning. In Proceedings of the
31st International Conference on Neural Information Processing
Systems, NIPS’17, page 4424–4434, Long Beach, California, USA,
2017. Curran Associates Inc.

[22] Jiajun Wu, Fan Dong, Henry Leung, Zhuangdi Zhu, Jiayu Zhou, and
Steve Drew. Topology-aware federated learning in edge computing:
A comprehensive survey. ACM Comput. Surv., apr 2024.

[23] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards
personalized federated learning. IEEE Transactions on Neural
Networks and Learning Systems, 34(12):9587–9603, 2023.

[24] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal,
and Karn Seth. Practical secure aggregation for privacy-preserving
machine learning. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS ’17, page
1175–1191, Dallas, Texas, USA, 2017. Association for Computing
Machinery.

[25] Jie Wen, Zhixia Zhang, Yang Lan, Zhihua Cui, Jianghui Cai, and
Wensheng Zhang. A survey on federated learning: challenges
and applications. International Journal of Machine Learning and
Cybernetics, 14(2):513 – 535, 2023.

[26] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J.
Reddi, Sebastian U. Stich, and Ananda Theertha Suresh. Scaffold:
stochastic controlled averaging for federated learning. In Proceed-
ings of the 37th International Conference on Machine Learning,
ICML’20, page 5132–5143, Vienna, Austria, 2020. JMLR.org.

[27] Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and Xiuqiang
He. Federated meta-learning with fast convergence and efficient
communication. arXiv preprint, 2018.

[28] Taki Hasan Rafi, Faiza Anan Noor, Tahmid Hussain, and Dong-
Kyu Chae. Fairness and privacy preserving in federated learning:
A survey. Information Fusion, 105:102198, 2024.

[29] Zihao Zhao, Yuzhu Mao, Zhenpeng Shi, Yang Liu, Tian Lan, Wenbo
Ding, and Xiao-Ping Zhang. Aquila: Communication efficient
federated learning with adaptive quantization in device selection
strategy. IEEE Transactions on Mobile Computing, 23(6):7363–
7376, 2024.

[30] Thuy Dung Nguyen, Tuan Nguyen, Phi Le Nguyen, Hieu H. Pham,
Khoa D. Doan, and Kok-Seng Wong. Backdoor attacks and de-
fenses in federated learning: Survey, challenges and future research
directions. Engineering Applications of Artificial Intelligence,
127:107166, 2024.

[31] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua
Zhang. On the convergence of fedavg on non-iid data. arXiv preprint,
2019.

[32] Hao Wang, Zakhary Kaplan, Di Niu, and Baochun Li. Optimizing
federated learning on non-iid data with reinforcement learning. In
IEEE INFOCOM 2020-IEEE conference on computer communica-
tions, pages 1698–1707, Toronto, ON, Canada, 2020. IEEE.

[33] Fahad Sabah, Yuwen Chen, Zhen Yang, Muhammad Azam, Nadeem
Ahmad, and Raheem Sarwar. Model optimization techniques in
personalized federated learning: A survey. Expert Systems with
Applications, 243:122874, 2024.

[34] Viraaji Mothukuri, Reza M Parizi, Seyedamin Pouriyeh, Yan Huang,
Ali Dehghantanha, and Gautam Srivastava. A survey on security and
privacy of federated learning. Future Generation Computer Systems,
115:619–640, 2021.

[35] Lingjuan Lyu, Han Yu, Xingjun Ma, Chen Chen, Lichao Sun, Jun
Zhao, Qiang Yang, and Philip S. Yu. Privacy and robustness in
federated learning: Attacks and defenses. IEEE Transactions on
Neural Networks and Learning Systems, pages 1–21, 2022.

[36] Peichun Li, Guoliang Cheng, Xumin Huang, Jiawen Kang, Rong Yu,
Yuan Wu, Miao Pan, and Dusit Niyato. Snowball: Energy efficient
and accurate federated learning with coarse-to-fine compression
over heterogeneous wireless edge devices. IEEE Transactions on
Wireless Communications, 22(10):6778–6792, 2023.

[37] Longfei Zheng, Yingting Liu, Xiaolong Xu, Chaochao Chen,
Yuzhou Tang, Lei Wang, and Xiaolong Hu. Fedpse: Personalized
sparsification with element-wise aggregation for federated learning.
In Proceedings of the 32nd ACM International Conference on Infor-
mation and Knowledge Management, CIKM ’23, page 3514–3523,
New York, NY, USA, 2023. Association for Computing Machinery.

[38] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a
novel image dataset for benchmarking machine learning algorithms,
2017.

[39] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers
of features from tiny images. 2009.

[40] Ji Liu and Stephen J. Wright. Asynchronous stochastic coordinate
descent: Parallelism and convergence properties. SIAM Journal on
Optimization, 25(1):351–376, 2015.

[41] Xinglin Zhang, Zhaojing Ou, and Zheng Yang. Fedmpt: Federated
learning for multiple personalized tasks over mobile computing.
IEEE Transactions on Network Science and Engineering, 10(4):2358
– 2371, 2023.

[42] Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. Dynamic
routing between capsules. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17,
page 3859–3869, Red Hook, NY, USA, 2017. Curran Associates Inc.

[43] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep
learning face attributes in the wild. In 2015 IEEE International
Conference on Computer Vision (ICCV), pages 3730–3738, 2015.

[44] Kaan Ozkara, Navjot Singh, Deepesh Data, and Suhas Diggavi.
Quped: Quantized personalization via distillation with applications
to federated learning. In Advances in Neural Information Processing
Systems, volume 5, page 3622 – 3634, virtual, 2021.

[45] Yu Zhang, Guoming Tang, Qianyi Huang, Yi Wang, Kui Wu, Keping
Yu, and Xun Shao. Fednilm: Applying federated learning to nilm ap-
plications at the edge. IEEE Transactions on Green Communications
and Networking, 7(2):857 – 868, 2023.

[46] David Murray, Lina Stankovic, and Vladimir Stankovic. An electri-
cal load measurements dataset of united kingdom households from
a two-year longitudinal study. Scientific data, 4(1):1–12, 2017.

[47] Jack Kelly and William Knottenbelt. The uk-dale dataset, domestic
appliance-level electricity demand and whole-house demand from
five uk homes. Scientific data, 2(1):1–14, 2015.

[48] J Zico Kolter and Matthew J Johnson. Redd: A public data set
for energy disaggregation research. In Workshop on data mining
applications in sustainability (SIGKDD), San Diego, CA, volume 25,
pages 59–62. Citeseer, 2011.

[49] Rong Pan, Jianzong Wang, Lingwei Kong, Zhangcheng Huang,
and Jing Xiao. Personalized federated learning via gradient mod-
ulation for heterogeneous text summarization. arXiv preprint,
abs/2304.11524, 2023.

[50] Yudong Li, Yuqing Zhang, Zhe Zhao, Linlin Shen, Weijie Liu,
Weiquan Mao, and Hui Zhang. Csl: A large-scale chinese scientific
literature dataset. arXiv preprint, 2022.

[51] Xiaojun Liu, Chuang Zhang, Xiaojun Chen, Yanan Cao, and Jinpeng
Li. Clts: a new chinese long text summarization dataset. In
CCF International Conference on Natural Language Processing and
Chinese Computing, pages 531–542. Springer, 2020.

Page 26 of 29



[52] Baotian Hu, Qingcai Chen, and Fangze Zhu. Lcsts: A large scale
chinese short text summarization dataset. arXiv preprint, 2015.

[53] Maosong Sun, Jingyang Li, Zhipeng Guo, Zhao Yu, Yabin Zheng,
Xiance Si, and Zhiyuan Liu. Thuctc: an efficient chinese text
classifier. GitHub Repository, 2016.

[54] El Houcine Bergou, Konstantin Burlachenko, Aritra Dutta, and Peter
Richt’arik. Personalized federated learning with communication
compression. arXiv preprint, abs/2209.05148, 2022.

[55] Zhize Li, Haoyu Zhao, Boyue Li, and Yuejie Chi. Soteriafl: A uni-
fied framework for private federated learning with communication
compression. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Information Pro-
cessing Systems, volume 35, pages 4285–4300, New Orleans, LA,
USA, 2022. Curran Associates, Inc.

[56] Rong Dai, Li Shen, Fengxiang He, Xinmei Tian, and Dacheng Tao.
DisPFL: Towards communication-efficient personalized federated
learning via decentralized sparse training. In Proceedings of the
39th International Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pages 4587–4604,
Baltimore, Maryland, USA, 17–23 Jul 2022. PMLR.

[57] Filip Hanzely, Boxin Zhao, and Mladen Kolar. Personalized fed-
erated learning: A unified framework and universal optimization
techniques. arXiv preprint, 2021.

[58] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex
Lamb, Kazuaki Yamamoto, and David Ha. Deep learning for
classical japanese literature. CoRR, abs/1812.01718, 2018.

[59] Yuanxiong Guo, Rui Hu, and Yanmin Gong. Agent-level differen-
tially private federated learning via compressed model perturbation.
In 2022 IEEE Conference on Communications and Network Security
(CNS), pages 127–135, Austin, TX, USA, 2022.

[60] Leming Wu, Yaochu Jin, and Kuangrong Hao. Optimized com-
pressed sensing for communication efficient federated learning.
Knowledge-Based Systems, 278:110805, 2023.

[61] Irem Ergün, Hasin Us Sami, and Başak Güler. Communication-
efficient secure aggregation for federated learning. In GLOBECOM
2022 - 2022 IEEE Global Communications Conference, pages 3881–
3886, 2022.

[62] Yixuan Liu, Suyun Zhao, Li Xiong, Yuhan Liu, and Hong Chen.
Echo of neighbors: Privacy amplification for personalized private
federated learning with shuffle model. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 11865–11872, Washing-
ton, DC USA, 2023.

[63] Kang Wei, Jun Li, Chuan Ma, Ming Ding, Wen Chen, Jun Wu,
Meixia Tao, and H. Vincent Poor. Personalized federated learning
with differential privacy and convergence guarantee. IEEE Transac-
tions on Information Forensics and Security, 18:4488 – 4503, 2023.

[64] Yi Shi, Kang Wei, Li Shen, Yingqi Liu, Xueqian Wang, Bo Yuan,
and Dacheng Tao. Towards the flatter landscape and better general-
ization in federated learning under client-level differential privacy.
arXiv preprint, abs/2305.00873, 2023.

[65] David Odera. Federated learning and differential privacy in clinical
health: Extensive survey. World Journal of Advanced Engineering
Technology and Sciences, 8(2):305–329, 2023.

[66] Addi Ait-Mlouk, Sadi Alawadi, Salman Zubair Toor, and Andreas
Hellander. Fedbot: Enhancing privacy in chatbots with federated
learning. arXiv preprint, abs/2304.03228, 2023.

[67] Xia Wu, Lei Xu, and Liehuang Zhu. Local differential privacy-based
federated learning under personalized settings. Applied Sciences,
13(7):1–17, 2023.

[68] Jock Blackard. Covertype. UCI Machine Learning Repository, 1998.
DOI: https://doi.org/10.24432/C50K5N.

[69] Van-Tuan Tran, Huy-Hieu Pham, and Kok-Seng Wong. Personal-
ized privacy-preserving framework for cross-silo federated learning.
IEEE Transactions on Emerging Topics in Computing, page 1–12,
2024.

[70] Min Li, Di Xiao, and Lü-Jun Chen. Communication-efficient and
utility-aware adaptive gaussian differential privacy for personalized
federated learning. Jisuanji Xuebao/Chinese Journal of Computers,

47(4):924 – 946, 2024.
[71] Muhammad Firdaus, Siwan Noh, Zhuohao Qian, Harashta Tatimma

Larasati, and Kyung-Hyune Rhee. Personalized federated learning
for heterogeneous data: A distributed edge clustering approach.
Mathematical Biosciences and Engineering, 20(6):10725–10740,
2023.

[72] Feng Yu, Hui Lin, Xiaoding Wang, Sahil Garg, Georges
Kaddoum, Satinderbir Singh, and Mohammad Mehedi Hassan.
Communication-efficient personalized federated meta-learning
in edge networks. IEEE Transactions on Network and Service
Management, 20:1558–1571, 2023.

[73] Xiaoying Shen, Hang Jiang, Yange Chen, Baocang Wang, and
Le Gao. Pldp-fl: Federated learning with personalized local differ-
ential privacy. Entropy, 25(3):1–20, 2023.

[74] Ge Yang, Shaowei Wang, and Haijie Wang. Federated learning
with personalized local differential privacy. In 2021 IEEE 6th
International Conference on Computer and Communication Systems
(ICCCS), pages 484–489, Chengdu, China, 2021.

[75] Yunting Xie and Lan Zhang. Federated learning with personalized
differential privacy combining client selection. In 2022 8th Inter-
national Conference on Big Data Computing and Communications
(BigCom), pages 79–87, Xiamen, China, 2022.

[76] Filippo Galli, Sayan Biswas, Kangsoo Jung, Catuscia Palamidessi,
and Tommaso Cucinotta. Group privacy for personalized federated
learning. In International Conference on Information Systems
Security and Privacy, pages 1–15, Lisbon, Portugal, 2022.

[77] Jinhao Zhou, Zhou Su, Jianbing Ni, Yuntao Wang, Yanghe Pan,
and Rui Xing. Personalized privacy-preserving federated learning:
Optimized trade-off between utility and privacy. In GLOBECOM
2022 - 2022 IEEE Global Communications Conference, pages 4872–
4877, Rio de Janeiro, Brazil, 2022.

[78] Yanhang Shi, Siguang Chen, and Haijun Zhang. Uncertainty mini-
mization for personalized federated semi-supervised learning. IEEE
Transactions on Network Science and Engineering, 10:1060–1073,
2022.

[79] Zhenyu Li. A personalized privacy-preserving scheme for federated
learning. In 2022 IEEE International Conference on Electrical
Engineering, Big Data and Algorithms (EEBDA), pages 1352–1356,
Changchun, China, 2022.

[80] Andrew Silva, Katherine Metcalf, Nicholas Apostoloff, and Barry-
John Theobald. Fedembed: Personalized private federated learning.
arXiv preprint, abs/2202.09472, 2022.

[81] Zheshun Wu, Xiaoping Wu, Xiaoli Long, and Yunliang Long. A
privacy-preserved online personalized federated learning framework
for indoor localization. In 2021 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), pages 2834–2839, Mel-
bourne, Australia, 2021.

[82] Joaquín Torres-Sospedra, Raúl Montoliu, Adolfo Martínez-Usó,
Joan P. Avariento, Tomás J. Arnau, Mauri Benedito-Bordonau, and
Joaquín Huerta. Ujiindoorloc: A new multi-building and multi-floor
database for wlan fingerprint-based indoor localization problems. In
2014 International Conference on Indoor Positioning and Indoor
Navigation (IPIN), pages 261–270, 2014.

[83] Shaojian Chen, Qiongqiong Zhu, Zihao Li, and Yunliang Long.
Deep neural network based on feature fusion for indoor wireless
localization. In 2018 International Conference on Microwave and
Millimeter Wave Technology (ICMMT), pages 1–3, 2018.

[84] Jiechao Gao, Mingyue Tang, Tianhao Wang, and Bradford Camp-
bell. Pfed-ldp: A personalized federated local differential privacy
framework for iot sensing data. In Proceedings of the 20th ACM
Conference on Embedded Networked Sensor Systems, SenSys ’22,
page 835–836, New York, NY, USA, 2023. Association for Com-
puting Machinery.

[85] Alberto Bietti, Chen-Yu Wei, Miroslav Dudik, John Langford, and
Steven Wu. Personalization improves privacy-accuracy tradeoffs in
federated learning. In Proceedings of the 39th International Confer-
ence on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 1945–1962, Baltimore, Maryland, USA,

Page 27 of 29



17–23 Jul 2022. PMLR.
[86] Aron N. Horvath, Matteo Berchier, Farhad Nooralahzadeh, Ahmed

Allam, and M. Krauthammer. Exploratory analysis of federated
learning methods with differential privacy on mimic-iii. arXiv
preprint, abs/2302.04208, 2023.

[87] Sichun Luo, Yuanzhang Xiao, Yang Liu, Congduan Li, and Linqi
Song. Towards communication efficient and fair federated per-
sonalized sequential recommendation. In 2022 5th International
Conference on Information Communication and Signal Processing,
ICICSP 2022, page 448 – 453, Shenzhen, China, 2022.

[88] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van
Den Hengel. Image-based recommendations on styles and sub-
stitutes. In Proceedings of the 38th international ACM SIGIR
conference on research and development in information retrieval,
pages 43–52, 2015.

[89] Jure Leskovec and Rok Sosič. Snap: A general-purpose network
analysis and graph-mining library. ACM Transactions on Intelligent
Systems and Technology (TIST), 8(1):1–20, 2016.

[90] Xuming Han, Qiaohong Zhang, Zaobo He, and Zhipeng Cai.
Confidence-based similarity-aware personalized federated learning
for autonomous iot. IEEE Internet of Things Journal, 11(7):13070
– 13081, 2024.

[91] Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao,
Bilian Ke, Hanspeter Pfister, and Bingbing Ni. Medmnist v2-a
large-scale lightweight benchmark for 2d and 3d biomedical image
classification. Scientific Data, 10(1):41, 2023.

[92] Unais Sait, K Lal, S Prajapati, Rahul Bhaumik, Tarun Kumar,
S Sanjana, and Kriti Bhalla. Curated dataset for covid-19 posterior-
anterior chest radiography images (x-rays). Mendeley Data, 1(J),
2020.

[93] Zihao Zhao, Yuzhu Mao, Zhenpeng Shi, Yang Liu, Tian Lan, Wenbo
Ding, and Xiao-Ping Zhang. Aquila: Communication efficient
federated learning with adaptive quantization in device selection
strategy. IEEE Transactions on Mobile Computing, 23(6):7363–
7376, 2024.

[94] Stephen Merity, Caiming Xiong, James Bradbury, and Richard
Socher. Pointer sentinel mixture models. arXiv preprint, 2016.

[95] Ying-Chi Mao, Li-Juan Shen, Jun Wu, Ping Ping, and Jie Wu. Feder-
ated dynamic client selection for fairness guarantee in heterogeneous
edge computing. J. Comput. Sci. Technol, pages 139–158, 2024.

[96] Ziqi Chen, Jun Du, Xiangwang Hou, Keping Yu, Jintao Wang, and
Zhu Han. Channel adaptive and sparsity personalized federated
learning for privacy protection in smart healthcare systems. IEEE
Journal of Biomedical and Health Informatics, page 1–9, 2024.

[97] Lingtao Wei. Communication efficient federated personalized rec-
ommendation. Frontiers in Computing and Intelligent Systems,
2(3):63–67, 2023.

[98] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets:
History and context. ACM Trans. Interact. Intell. Syst., 5(4), Decem-
ber 2015.

[99] Yi Sui, Junfeng Wen, Yenson Lau, Brendan Leigh Ross, and Jesse C
Cresswell. Find your friends: Personalized federated learning with
the right collaborators. In Workshop on Federated Learning: Recent
Advances and New Challenges (in Conjunction with NeurIPS 2022),
New Orleans, LA, USA, 2022.

[100] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting
visual category models to new domains. In Computer Vision–ECCV
2010: 11th European Conference on Computer Vision, Heraklion,
Crete, Greece, September 5-11, 2010, Proceedings, Part IV 11, pages
213–226. Springer, 2010.

[101] Guanyu Lin, Feng Liang, Weike Pan, and Zhong Ming. Fedrec:
Federated recommendation with explicit feedback. IEEE Intelligent
Systems, 36(5):21–30, 2021.

[102] Pengyuan Zhou, Hengwei Xu, Lik Hang Lee, Pei Fang, and Pan
Hui. Are you left out? an efficient and fair federated learning for
personalized profiles on wearable devices of inferior networking
conditions. In Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol., pages 1–25, New York, NY, USA, 2022. Association for

Computing Machinery.
[103] Sichun Luo, Yuanzhang Xiao, Yang Liu, Congduan Li, and Linqi

Song. Towards communication efficient and fair federated per-
sonalized sequential recommendation. In 2022 5th International
Conference on Information Communication and Signal Processing
(ICICSP), pages 1–6, Shenzhen, China, 2022.

[104] Jingwei Sun, Ang Li, Lin Duan, Samiul Alam, Xuliang Deng, Xin
Guo, Haiming Wang, Maria Gorlatova, Mi Zhang, Hai Li, and Yiran
Chen. Fedsea: A semi-asynchronous federated learning framework
for extremely heterogeneous devices. In Proceedings of the 20th
ACM Conference on Embedded Networked Sensor Systems, SenSys
’22, page 106–119, New York, NY, USA, 2023. Association for
Computing Machinery.

[105] Anwar Asad, Mostafa M. Fouda, Zubair Md Fadlullah, Mohamed I.
Ibrahem, and Nidal Nasser. Moreau envelopes-based personalized
asynchronous federated learning: Improving practicality in network
edge intelligence. In Proceedings - IEEE Global Communica-
tions Conference, GLOBECOM, page 2033 – 2038, Kuala Lumpur,
Malaysia, 2023.

[106] Mubashir Imran, Hongzhi Yin, Tong Chen, Quoc Viet Hung
Nguyen, Alexander Zhou, and Kai Zheng. Refrs: Resource-efficient
federated recommender system for dynamic and diversified user
preferences. ACM Transactions on Information Systems, 41(3),
2023.

[107] Òscar Celma Herrada et al. Music recommendation and discovery
in the long tail. Universitat Pompeu Fabra, 2009.

[108] Peichun Li, Guoliang Cheng, Xumin Huang, Jiawen Kang, Rong
Yu, Yuan Wu, and Miao Pan. Anycostfl: Efficient on-demand
federated learning over heterogeneous edge devices. arXiv preprint,
abs/2301.03062, 2023.

[109] Mohammad Taha Toghani, Soomin Lee, and César A Uribe. Persa-
fl: personalized asynchronous federated learning. Optimization
Methods and Software, pages 1–38, 2023.

[110] Jun Lin, Jin Ma, and Jianguo Zhu. Privacy-preserving household
characteristic identification with federated learning method. IEEE
Transactions on Smart Grid, 13:1088–1099, 2022.

[111] Cathy Mannion. Smart metering project commission for energy
regulation (cer) ireland. In IET Seminar on Smart Metering 2010:
Delivering a Smart UK, pages 1–12, 2010.

[112] Shuang Zhou, Yuankai Huo, Shunxing Bao, Bennett A. Landman,
and Aniruddha S. Gokhale. Fedaca: An adaptive communication-
efficient asynchronous framework for federated learning. In 2022
IEEE International Conference on Autonomic Computing and Self-
Organizing Systems (ACSOS), pages 71–80, CA, USA, 2022.

[113] Zhikun Chen, Jiaqi Pan, and Sihai Zhang. Asynchronous feder-
ated learning in decentralized topology based on dynamic average
consensus. In ICC 2022 - IEEE International Conference on
Communications, pages 2822–2827, Seoul, Korea, 2022.

[114] Yujing Chen, Zheng Chai, Yue Cheng, and Huzefa Rangwala. Asyn-
chronous federated learning for sensor data with concept drift. In
2021 IEEE International Conference on Big Data (Big Data), pages
4822–4831, Orlando, FL, USA, 2021.

[115] Jianmo Ni, Larry Muhlstein, and Julian McAuley. Modeling heart
rate and activity data for personalized fitness recommendation. In
The World Wide Web Conference, pages 1343–1353, 2019.

[116] Kdd cup of fresh air.
[117] Yonatan Vaizman, Katherine Ellis, and Gert Lanckriet. The ex-

trasensory dataset: Recognizing detailed human context in-the-
wild from smartphones and smartwatches, 2016. Available at:
[http://extrasensory.ucsd.edu/].

[118] Y. Chen, Xiao yan Sun, and Yaochu Jin. Communication-efficient
federated deep learning with layerwise asynchronous model update
and temporally weighted aggregation. IEEE Transactions on Neural
Networks and Learning Systems, 31:4229–4238, 2019.

[119] Khaled Ben Letaief, Zubair Md. Fadlullah, and Mostafa M. Fouda.
Efficient wireless network slicing in 5g networks: An asynchronous
federated learning approach. In 2022 IEEE International Conference

Page 28 of 29



on Internet of Things and Intelligence Systems (IoTaIS), pages 285–
289, Bali, Indonesia, 2022.

[120] Sabrina Kall and Slim Trabelsi. An asynchronous federated learning
approach for a security source code scanner. In 7th International
Conference on Information Systems Security and Privacy (ICISSP
2021), pages 572–579, 2021.

[121] Chun-Chih Kuo, Ted T. Kuo, and Chia-Yu Lin. Improving federated
learning communication efficiency with global momentum fusion
for gradient compression schemes. arXiv preprint, abs/2211.09320,
2022.

[122] Laizhong Cui, Xiaoxin Su, Yipeng Zhou, and Lei Zhang. Clus-
tergrad: Adaptive gradient compression by clustering in federated
learning. In GLOBECOM 2020 - 2020 IEEE Global Communica-
tions Conference, pages 1–7, Taipei, Taiwan, 2020.

[123] Lening Wang, Manojna Sistla, Mingsong Chen, and Xin Fu. Bs-
pfl: Enabling low-cost personalized federated learning by exploring
weight gradient sparsity. In 2022 International Joint Conference on
Neural Networks (IJCNN), pages 1–8, Padua, Italy, 2022.

[124] Xinghao Wu, Jianwei Niu, Xuefeng Liu, Tao Ren, Zhangmin Huang,
and Zhetao Li. pfedgf: Enabling personalized federated learning
via gradient fusion. In 2022 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 639–649, Lyon,
France, 2022.

[125] Abdurakhmon Sadiev, Grigory Malinovsky, Eduard Gorbunov, Igor
Sokolov, Ahmed Khaled, Konstantin Pavlovich Burlachenko, and
Peter Richtárik. Federated optimization algorithms with random
reshuffling and gradient compression. In 40th International Con-
ference on Machine Learning, Honolulu, Hawaii, USA, 2024.

[126] Yujia Wang, Lu Lin, and Jinghui Chen. Communication-efficient
adaptive federated learning. arXiv preprint, abs/2205.02719, 2022.

[127] Ye Xue, Liqun Su, and Vincent K. N. Lau. Fedocomp: Two-
timescale online gradient compression for over-the-air federated
learning. IEEE Internet of Things Journal, 9:19330–19345, 2022.

[128] Shengyuan Hu, Jack Goetz, Kshitiz Malik, Hongyuan Zhan, Zhe Liu,
and Yue Liu. Fedsynth: Gradient compression via synthetic data in
federated learning. arXiv preprint, abs/2204.01273, 2022.

[129] Zhida Jiang, Yang Xu, Hong-Ze Xu, Zhiyuan Wang, and Chen Qian.
Adaptive control of client selection and gradient compression for
efficient federated learning. arXiv preprint, abs/2212.09483, 2022.

[130] Haiyan Cui, Junping Du, Yang Jiang, Yue Wang, and Runyu Yu.
Federated learning method based on knowledge distillation and deep
gradient compression. In 2021 IEEE 7th International Conference
on Cloud Computing and Intelligent Systems (CCIS), pages 423–
427, Xi’an, China, 2021.

[131] Sotirios Nikoloutsopoulos, Iordanis Koutsopoulos, and Michalis K.
Titsias. Personalized federated learning with exact stochastic gradi-
ent descent. arXiv preprint, abs/2202.09848, 2022.

[132] Luke Melas-Kyriazi and Franklyn Wang. Intrinsic gradient com-
pression for scalable and efficient federated learning. In Proceedings
of the First Workshop on Federated Learning for Natural Language
Processing (FL4NLP 2022), page 27–41, Dublin, Ireland, 2022.

[133] Wei Yang, Yuan Yang, Xiaobin Dang, Hao Jiang, Yizhe Zhang,
and Wei Xiang. A novel adaptive gradient compression approach
for communication-efficient federated learning. In 2021 China
Automation Congress (CAC), pages 674–678, Beijing, China, 2021.

[134] Kai Liang, Huiru Zhong, Haoning Chen, and Youlong Wu. Wyner-
ziv gradient compression for federated learning. arXiv preprint,
abs/2111.08277, 2021.

[135] Qian Wang, Siguang Chen, and Meng Wu. Communication-efficient
personalized federated learning with privacy-preserving. IEEE
Transactions on Network and Service Management, 21(2):2374 –
2388, 2024.

[136] Peichun Li, Guoliang Cheng, Xumin Huang, Jiawen Kang, Rong Yu,
Yuan Wu, and Miao Pan. Anycostfl: Efficient on-demand federated
learning over heterogeneous edge devices. In IEEE INFOCOM
2023-IEEE Conference on Computer Communications, pages 1–10,
New York City, NY, USA, 2023. IEEE.

[137] Jing Xie, Xiang Yin, Xiyi Zhang, Juan Chen, and Quan Wen.
Personalized federated learning with gradient similarity. In 2021
18th International Computer Conference on Wavelet Active Media
Technology and Information Processing (ICCWAMTIP), pages 268–
271, Chengdu, China, 2021.

[138] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečný, H. Brendan
McMahan, Virginia Smith, and Ameet Talwalkar. LEAF: A bench-
mark for federated settings. CoRR, abs/1812.01097, 2018.

[139] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum.
Human-level concept learning through probabilistic program induc-
tion. Science, 350(6266):1332–1338, 2015.

[140] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christo-
pher D Manning, Andrew Y Ng, and Christopher Potts. Recursive
deep models for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on empirical methods
in natural language processing, pages 1631–1642, 2013.

[141] Peichun Li, Xumin Huang, Miao Pan, and Rong Yu. Fedgreen:
Federated learning with fine-grained gradient compression for green
mobile edge computing. In 2021 IEEE Global Communications
Conference (GLOBECOM), pages 1–6, Madrid, Spain, 2021.

[142] Birendra Kathariya, Zhu Li, Jianle Chen, and Geert Van der Auwera.
Gradient compression with a variational coding scheme for federated
learning. In 2021 International Conference on Visual Communica-
tions and Image Processing (VCIP), pages 1–5, Munich, Germany,
2021.

[143] Sahaya Beni Prathiba, Gunasekaran Raja, Sudha Anbalagan,
Sugeerthi Gurumoorthy, Neeraj Kumar, and Mohsen Guizani.
Cybertwin-driven federated learning based personalized service pro-
vision for 6g-v2x. IEEE Transactions on Vehicular Technology,
71(5):4632 – 4641, 2022.

[144] Pengfei Wang, Zhaohong Yan, Mohammad S. Obaidat, Zhiwei
Yuan, Leyou Yang, Junxiang Zhang, Zongzheng Wei, and Qiang
Zhang. Edge caching with federated unlearning for low-latency v2x
communications. IEEE Communications Magazine, page 1–7, 2023.

[145] Laizhong Cui, Xiaoxin Su, Zhongxing Ming, Ziteng Chen, Shu
Yang, Yipeng Zhou, and Wei Xiao. Creat: Blockchain-assisted
compression algorithm of federated learning for content caching in
edge computing. IEEE Internet of Things Journal, 9:14151–14161,
2022.

[146] Shanti Chilukuri and Dirk Pesch. Achieving optimal cache utility
in constrained wireless networks through federated learning. In
2020 IEEE 21st International Symposium on "A World of Wireless,
Mobile and Multimedia Networks" (WoWMoM), pages 254–263,
Cork, Ireland, 2020.

[147] Soufiane Oualil, Rachid Oucheikh, Mohamed El-Kamili, and Ismail
Berrada. A personalized learning scheme for internet of vehi-
cles caching. In 2021 IEEE Global Communications Conference
(GLOBECOM), pages 01–06, Madrid, Spain, 2021.

[148] Wenlan Zhu, Jia Chen, Long You, Jing Chen, Xin Cheng, Kuo
Guo, Chenxi Liao, and Xu Huang. A federated-cnn based proactive
caching algorithm for vcdn system. In 2022 Asia Conference on
Algorithms, Computing and Machine Learning (CACML), pages 50–
55, Hangzhou, China, 2022.

[149] Mohamad Mestoukirdi, Matteo Zecchin, David Gesbert, and Qianrui
Li. User-centric federated learning: Trading off wireless resources
for personalization. IEEE Transactions on Machine Learning in
Communications and Networking, 1:346–359, 2023.

[150] Stack overflow dataset, 2017. Available: https://storage.

googleapis.com/download.tensorflow.org/data/stack_overflow_16k.

tar.gz.
[151] Yu Ji and Lan Chen. Fedqnn: A computation–communication-

efficient federated learning framework for iot with low-bitwidth
neural network quantization. IEEE Internet of Things Journal,
10(3):2494–2507, 2023.

Page 29 of 29

https://storage.googleapis.com/download.tensorflow.org/data/stack_overflow_16k.tar.gz
https://storage.googleapis.com/download.tensorflow.org/data/stack_overflow_16k.tar.gz
https://storage.googleapis.com/download.tensorflow.org/data/stack_overflow_16k.tar.gz

