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A B S T R A C T

Soil ecoacoustics is a rapidly emerging field heralded as a non-invasive method for monitoring soil fauna.
Ecoacoustic analysis commonly uses acoustic indices to analyse soundscapes, linking them to ‘traditional’
biodiversity value metrics such as species richness and abundance, but it is not clear if this approach is appro-
priate for soil soundscapes. Furthermore, there are very few controlled experiments assessing how commonly
used acoustic indices respond to different sound types, and none belowground. We address this by synthesising
soil soundscapes with differing levels of acoustic richness, abundance, and evenness using soil recordings from
the UK, France, and Brazil.

Applying 14 acoustic indices on 1-minute soundscapes, we assessed: 1) how changes in acoustic diversity
impact acoustic indices and 2) how accurately combinations of indices predict biodiversity metrics. Finally we
assessed 3) whether gamma acoustic richness can be predicted accurately using multiple acoustic index scores
from repeated surveys, whilst experimentally altering the alpha and beta diversity components.

We find that acoustic abundance strongly affects values of acoustic indices designed to quantify the number of
sound events in a soundscape, and that a combination of these indices can accurately predict abundance at 1-
minute timescales. Combinations of indices could predict acoustic richness when richness values were low,
but were ineffective for evenness. Additionally, acoustic indices were poor predictors of gamma diversity,
especially when gamma was driven solely by beta diversity. Overall, we found that acoustic indices were good
predictors of acoustic abundance, but should be used with caution for other diversity metrics.

1. Introduction

The use of ecoacoustic techniques belowground is an emerging field
(Sutherland et al., 2024). This non-invasive monitoring of soil fauna and
ecosystem processes could be widely applied in agricultural and
ecological investigations. Whilst soil acoustics has been used to detect
individual species, usually pests in agricultural settings, recent soil
ecoacoustic studies have addressed whole soundscapes (e.g., Maeder

et al., 2022, Robinson et al., 2023, Metcalf et al., 2024). Ecoacoustics
assumes that the combination of geophony (sounds generated by non-
living environmental sources), anthropophony (human-generated
sounds), and biophony (biotically-generated sound) creates an acoustic
signature that is consistent between sites with similar ecologies.
Soundscapes can be ecologically informative in above ground acoustic
surveys, usually through either the detection and classification of spe-
cific sounds, or the use of acoustic indices summarising variation in the
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sound energy of recordings (Sueur et al., 2014, Bradfer-Lawrence et al.,
2024).

Acoustic indices are generally used either as broad descriptors of a
soundscape that can be used to classify habitat types and describe
temporal trends, or as a proxy for more traditional forms of biodiversity
metric, like species richness (Bradfer-Lawrence et al., 2023). Both ap-
proaches have been applied to soil ecoacoustics, with significant dif-
ferences in acoustic index values between habitat types (Maeder et al.,
2022, Robinson et al., 2023, Metcalf et al., 2024) and temporal patterns
in activity (Maeder et al., 2022, Metcalf et al., 2024). Studies have also
found significant correlations between acoustic index values and tradi-
tional measures of soil invertebrate diversity, with positive relationships
between species richness and community composition (Acoustic
Complexity Index (ACI), Maeder et al., 2022), abundance (Bioacoustic
Index (BI), Robinson et al., 2023), and invertebrate abundance and
richness (ACI/BI, Robinson et al., 2024a). These findings are consistent
with results from above ground studies correlating acoustic indices with
traditional biodiversity metrics. In that context, a large number of
studies have found positive relationships between indices such as ACI,
BI, and Acoustic Entropy (H), and species richness (e.g. Eldridge et al.,
2018, Bateman and Uzal, 2022, Bradfer-Lawrence et al., 2020, Budka
et al., 2023).

Despite the associations between acoustic indices and diversity
above ground, there are three key reasons why acoustic indices may not
be suitable for assessing diversity in belowground soundscapes. First,
many of the most widely applied indices are philosophically predicated
on the Acoustic Niche Hypothesis (Krause, 1987). This assumes animals
compete for ‘acoustic space’ to avoid signal interference from over-
lapping communications, and therefore evolve so that their sounds are
emitted in a unique niche in time, frequency, and space. The hypothesis
postulates that a more saturated soundscape has fewer vacant acoustic
niches and thus reflects higher species richness. Indices can therefore
reflect high species diversity if calculations are reflective of the satura-
tion or occupancy of a soundscape. Much of the belowground sound-
scape is derived from incidental sound − reflecting the movement of
animals in the soil substrate. Unlike communicative sounds, these inci-
dental sounds are not subject to selection pressures for acoustic space,
hence breaking the potential link between soundscape saturation and
diversity. Second, in above ground studies indices show inconsistent
performance as diversity proxies, with variable and declining effect sizes
over time (Alcocer et al., 2022). Other studies have shown that none of
the commonest acoustic indices have a consistent relationship with
avian species richness that can be generalised across differing biophys-
ical and biogeographic gradients (Sethi et al., 2023). Hence, it is unclear
whether acoustic indices can be considered a reliable tool for assessing
belowground biodiversity, without clarifying the links between sound-
scape characteristics and index responses. Third, there is a lack of vali-
dation from controlled experiments assessing how even the most
commonly used acoustic indices respond to particular sonotypes (i.e.,
unique sound types analogous to a species morphotype). Those studies
that do exist tend to be focussed primarily on bird calls (e.g. Gasc et al.,
2015, Zhao et al., 2019). Understanding how acoustic indices respond to
different sonotypes, and in particular differing levels of acoustic di-
versity and abundance at different temporal scales, is vital to understand
the utility of acoustic indices for ecological assessments of the soil.

We address these knowledge gaps by synthesising soil soundscapes
with differing levels of acoustic richness, evenness, diversity, and
abundance using biophony from real-world soil recordings from
temperate (UK and France) and tropical (Brazil) locations. We examine:

1. How does variation in a. acoustic richness, b. single-sonotype
abundance, c. multi-sonotype abundance, and d. acoustic evenness
affect 14 acoustic indices?

2. Are combinations of indices able to predict a. acoustic richness, b.
multi-sonotype abundance, and c. acoustic evenness in 1 min
recordings?

Understanding the link between richness and indices at 1 min
timescales is foundational. Yet biodiversity monitoring is often more
concerned with gamma diversity, to compare land-uses and inform
conservation policy and legislation. Consequently we also tested:

3. How does variation in gamma richness affect 14 acoustic indices
when gamma richness is driven by a. both alpha and beta diversity
components and b. mostly beta diversity?

4. Can the mean values of multiple acoustic index scores predict gamma
richness when it is driven by a. both alpha and beta diversity com-
ponents and b. mostly beta diversity?

2. Methods

2.1. Acoustic indices

We tested a total of 14 acoustic indices from the scikit-maad package
(Ulloa et al., 2021, v1.4.2) reflecting different aspects of the soundscape.
These indices fall into four groups. The first group are simple descriptors
intended to capture broad information about the distribution of sound:
Temporal Median, Peak Frequency, Spectral Bandwidth, and Spectral
Signal-to-Noise Ratio (Towsey, 2013) (Table 1). We hypothesised that
these would not correlate strongly with any of our acoustic diversity
metrics. The second group are event detectors, providing information on
the number of sound events per file: Mean Temporal Events-per-Second
(Towsey, 2013), Spectral Event Counts (Towsey, 2013), and Surface
Roughness. We hypothesised these would positively correlate with
acoustic abundance − at least at the one minute timescale. Mean Tem-
poral Event Duration (Towsey, 2013) is similar but unlikely to correlate
with abundance on its own, but may be useful when considering mul-
tiple indices as predictors of acoustic diversity. Indices in the third group
identify clusters of events: Spectral Event Fraction (Towsey, 2013), the
Fraction of Spectral Activity above a 6 dB threshold (Towsey, 2017) and
Region of Interest Cover. This may be useful for stridulations where

Table 1
An overview of acoustic indices used in this study.

Index name Index group Hypothesised
correlation

Abbreviation

Temporal Median Simple sound
descriptor

None Temp. median

Peak Frequency Simple sound
descriptor

None Peak freq.

Spectral
Bandwidth

Simple sound
descriptor

None Spec.
bandwidth

Spectral Signal-to-
Noise Ratio

Simple sound
descriptor

None Spec. S/N

Mean Temporal
Events-per-
Second

Event detection Positive correlation with
alpha abundance

Temp. events

Spectral Event
Counts

Event detection Positive correlation with
alpha abundance

Spec. events

Surface
Roughness

Event detection Positive correlation with
alpha abundance

Surf.
roughness

Mean Temporal
Event Duration

Event detection Positive correlation with
alpha abundance

Event duration

Spectral Event
Fraction

Event clusters Positive correlation with
richness and abundance

Spec. event
frac.

Fraction of
Spectral
Activity

Event clusters Positive correlation with
richness and abundance

Spec. activity

Region of Interest
Cover

Event clusters Positive correlation with
richness and abundance

ROI cover

Acoustic
Complexity
Index

Soundscape
descriptor

Positive correlation with
richness

ACI

Bioacoustic Index Soundscape
descriptor

Positive correlation with
richness

BI

Total entropy Soundscape
descriptor

Positive correlation with
richness

H
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individual elements are too brief to be reflected in the second group of
indices, and so these indices may correlate with acoustic richness or
abundance. Finally, we included three acoustic indices that have been
widely used in the above ground ecoacoustic literature as soundscape
descriptors that may correlate with species richness; the Acoustic
Complexity Index (ACI, Pieretti et al., 2011), the Bioacoustic Index (BI,
Boelman et al., 2007) and Total Entropy (H, Sueur et al., 2008a). We
hypothesise these should correlate positively with acoustic richness.

We calculated acoustic indices using the scikit-maad package in
Python. All index values were calculated over 1 min files. Each file was
resampled to 22,050 Hz − a window size of 512 was used where
required, and spectrograms were produced with an overlap of 256. Full
index parameters can be found in Appendix 1, including whether indices
were calculated over waveform (n = 5), spectrogram (n = 5) or noise-
reduced spectrogram (n = 4). All computed index values were scaled
between zero and one using the scales package (Wickham et al., 2023) in
R (R Core Team, 2024, v4.4.1).

2.2. Soundscape synthesis

2.2.1. Selection of sonotypes
To test acoustic indices in a controlled manner, whilst making soil

soundscapes as realistic as possible, we synthesised soundscapes from
real soil biophony recordings. To maximise the geographic general-
isability of our results, we used twenty sonotypes from two regions; ten
sonotypes recorded in tropical rainforest close to Manaus, Amazonas,

Brazil and ten sonotypes from a range of temperate habitats in the UK
and France (Fig. 1A). Recordings were made with the recordist present
using a Sound Devices Mix-Pre 3, Mix-Pre 6, Mix-Pre 10 (https://www.
sounddevices.com/mixpre/), or an Elekon Allsounder (https://www.
allsounder.com/en/). We used contact microphones − JrF C-series
(https://jezrileyfrench.co.uk/contact-microphones.php) with Mix-Pre
recorders; the Elekon Allsounder includes a proprietary contact micro-
phone. In all but one case, a waveguide was used to aid transfer of vi-
brations from the soil to the microphone. We recorded in wav format
and with gain adjusted to a suitable level by the recordist (see Table A1
for full details of each sonotype).

The novelty of soil ecoacoustics and subsequent paucity of re-
cordings makes it very difficult to assess what a representative soil
soundscape would consist of in any habitat. Consequently the authors
(Carlos Abrahams/Oliver Metcalf for UK and France, Érica do Vale/
Oliver Metcalf for Brazil) selected sonotypes that met both of the
recording quality requirements (i.e., had high a signal-to-noise ratio and
only contained a single sonotype that could be isolated in a 1 s clip). The
twenty clips comprised sonotypes from Blattodea (n = 5, all Brazil),
Hymenoptera (n = 4, Brazil), Hemiptera (n = 1, Brazil), Opisthopora (n
= 1, UK), Rodentia (n = 1, France), Coleoptera (n = 1 identified, France
and n= 1, presumed, UK) and unknown sources (n= 6, UK). The choice
of using 1 s clips allowed us to include very short sounds without them
being swamped by silence either side (e.g., Fig. 1 G and S), but also
enough pulses and emissions from organism movement that represented
sounds that continue for more than 1 s. (e.g., Fig. 1 E, F and H). Full

Fig. 1. An overview of data synthesis and soundscape simulation. Panels inside the blue box show the 20 unique sonotypes used to generate 1 min soundscapes.
Panels inside the green box show 1 min soundscapes with varying diversity attributes. Top row shows soundscapes with acoustic richness values of 1, 10 and 20 (left
to right) all with acoustic abundance of 60. The second row shows soundscapes with a single-sonotype abundance of 5, 30, and 55, the third row shows multi-
sonotype abundances of 5, 30 and 55 and acoustic richness of 3. Bottom row shows soundscapes with Pielou’s Evenness values of 0.139, 0.501 and 0.96 calcu-
lated on acoustic abundances. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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details of the sonotypes used are available in Appendix 2.
Due to the lack of publicly available soil acoustic libraries from

which to identify sounds, it was impossible to only use sonotypes
emitted by known species whilst including a representative sample of
soil biophony. In Brazil, sonotypes were clipped from targeted re-
cordings in which the sonifying taxon was identified after, but most of
the UK recordings were from passive recordings. Consequently, six of the
sonotypes used are from unknown sources, but judged to be biophony by
the authors. We therefore refer to ‘acoustic’ rather than ‘species’ rich-
ness, evenness, diversity, and abundance throughout, as it is currently
not possible to know whether multiple sonotypes were generated by the
same species.

We edited each of the 1 s sonotype clips to standardise recording
quality. We used Adobe Audition (Adobe, 2023 v 24.03.3) to remove as
much background noise as possible, before matching amplitude using
the ‘Match Loudness’ setting. Next, we imported all clips into Audacity
(Audacity Team, 2023, v3.6.0), applied a 20 Hz High-pass filter and
normalised the peak amplitude to − 1.0 dB. Finally, we used the Au-
dacity ‘White noise generator’ tool to create 1 s of white noise with a
relative amplitude of 0.01 (unitless), and combined it with our sonotype
files using the ‘Mix and Render’ tool, before downsampling where
required, and exporting as a wav file with a 44,100 Hz sampling rate. We
retained a 1 s wav file of the white noise to use as ‘quiet’ periods without
sonotype presence in the synthesised soundscapes.

2.2.2. Relating indices to diversity at alpha scales
To answerQuestions 1 and 2, testing how acoustic diversity impacts

acoustic index values at alpha temporal scales (i.e., at the level of in-
dividual recordings), we synthesised a series of acoustic datasets
following approaches used in above ground studies (Sueur et al., 2008a,
Gasc et al., 2015, Chen et al., 2022). We varied the occurrences of 1 s
sonotypes across 1 min soundscapes to simulate differing levels of
acoustic richness (a), single-sonotype abundance (b), multi-sonotype
abundance (c) and acoustic evenness (d). To assess how changes in
acoustic diversity impacted index values (Question 1), we used the
diversity values from each 1 min soundscape as predictors for acoustic
index values. To test how well a combination of indices can predict
acoustic diversity (Question 2), we used the index values as predictors
in lasso models.

For acoustic richness (both Question 1a and Question 2a), each 1
min file contained 60 1 s units, and each unit was assigned a sonotype, so
that acoustic abundance (i.e., total number of sound events per file − see
below) was constant at 60. We created 100 1 min replicates for each
level of acoustic richness: 1, 2, 3, 4, 5, 6, 10, 12, 15, and 20, with
sonotypes randomly selected and randomly assigned a position in the 1
min file using the sample function in R. This meant that replicates with
richness of one contained a single sonotype replicated 60 times, repli-
cates with richness of two contained two randomly selected sonotypes
repeated 30 times and randomly distributed across the 1 min file, and
replicates with richness of 20 contained all 20 sonotypes with each
repeated three times. The 100 replications of 60 sonotypes with 1 call
each necessarily required duplication of some 1 min files. Sound file
manipulation in R was conducted with the tuneR (Ligges et al., 2023)
and Seewave packages (Sueur et al., 2008b).

For acoustic abundance, or the total number of sound events per file,
we assessed both the impact of variation in the number of calls in a
soundscape containing only a single sonotype, and the number of calls
from multiple sonotypes. For single sonotype abundance (Question 1b)
we created 1 min files with 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and
60 replicates of each sonotype, with spaces filled with the 1 s white noise
file. We replicated each of these files 60 times, randomly varying the
temporal location of the sonotype replicates and white noise within each
1 min file − except those containing 60 sonotype replicates which could
not vary temporally. This resulted in 3,605 1 min soundscapes. For
multi-sonotype abundance (both Question 1c and Question 2b), we
created 1 min files with a fixed acoustic richness of 3 and acoustic

abundance of 3, 6, 9, 15, 21, 30, 45, 40, and 60, with the three sonotypes
randomly selected from the global pool of 20 for each file. Each incre-
ment of abundance was replicated 100 times, giving a total of 900 1 min
soundscapes.

For acoustic evenness (both Question 1d and Question 2c), we first
generated all possible 1 min scenarios with between two and five
sonotypes present, and with abundance of each sonotype ranging from
0, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50. Pielou’s evenness values
(Pielou, 1966) were calculated for each scenario, and 10 scenarios were
randomly sampled from each decile of evenness score, giving 100 sce-
narios. Each scenario was then replicated ten times, with one of the 20
sonotypes randomly assigned to each sonotype present per scenario,
giving a total of 1,000 1 min files. Where total abundance of all the
sonotypes in a scenario was less than 60, the remaining 1 s periods were
filled with white noise. The order of the sonotype sounds and white
noise was randomly determined for each 1min file. In addition we tested
the impact of temporal evenness (i.e., the clustering of sonotypes in the
soundscape) − for further details see Appendix 3.

For all of the above synthesised datasets, we added 101 1 min
soundscapes containing only white noise to represent periods without
soil biophony. We generated a 1 min clip of white noise in Audacity
using the default settings, then varied the gain from − 10 to + 10 by
increments of 0.2, giving 101 files.

To assess the impact of varying diversity in our simulated sound-
scapes on acoustic index values (Question 1), we built generalised ad-
ditive models (GAMs) in R. Each acoustic index was modelled against
each diversity metric (acoustic richness, single-sonotype acoustic
abundance, multi-sonotype acoustic abundance, and acoustic evenness)
respectively, resulting in 56 GAMs. In each model, the diversity metric
values from each 1min file was used as the explanatory variable, and the
corresponding acoustic index values as the response variable. All GAMs
were fitted using the mgcv package (Wood, 2017) called through the
geom_smooth function in ggplot2 (Wickham, 2016) with cubic splines
subject to shrinkage and allowing for the maximum number of basis
functions.

To test how effective combinations of indices were at predicting each
biodiversity metric (Question 2), we built four lasso models using the
glmnet package (Friedman et al., 2010) with all 14 acoustic indices used
as linear predictors, with each biodiversity metric as the response. For
acoustic abundance, we only tested multi-sonotype abundance, as it
seemed a more plausible real-world scenario, and that the predictive
capacity of the indices for single sonotype abundance would be intui-
tively apparent from these results. We used lasso models as they allowed
us to keep all indices in the model and use the absolute value of the effect
size of each acoustic index as a measure of variable importance.

2.2.3. Gamma diversity
Whilst understanding the relationship between acoustic diversity

and acoustic indices at alpha scale (i.e., within 1 min file) can be useful
in some scenarios, many temporal replicates will usually be necessary to
ensure adequate sample representation. Similarly, spatial replication
will be required to understand the total diversity of a heterogenous site
or region (Buckland and Johnston, 2017). In both cases, we need to
determine whether acoustic indices can predict total richness of multiple
replicates, which we define here as gamma diversity (Question 3).
Gamma diversity consists of two components: species richness in each of
the individual communities in the survey pool (alpha diversity), and the
turnover in species between the surveys (beta diversity). As acoustic
index scores have no species identities associated with them, accounting
for beta components is problematic and potentially hinders accurate
estimation of gamma diversity.

We simulated two scenarios to test whether multiple acoustic indices
could predict gamma diversity when gamma is driven by both alpha and
beta diversity (Question 3a), and when it is driven mainly by beta di-
versity (Question 3b). For each scenario, we predicted the gamma
richness from index scores calculated on 1,440 1 min simulated
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soundscapes, replicated 100 times. We chose to use 1,440 sound files to
simulate a ten-day passive acoustic monitoring survey, estimating
richness at a single site − the recorder location − and using a sampling
regime of recording 1 min every 10 mins. However, it is important to
note that the 1,440 samples (hereafter referred to as a ‘survey’) could
also represent spatial replication (e.g. 1,440 spatially distinct samples)
or any combination of spatial and temporal combinations used to ensure
an adequate balance of replication and representation.

For each survey, we randomly set a gamma richness of between one
and 20. To increase realism, we set half the files in each survey to
contain only white noise (i.e., acoustic richness = 0). For the remaining
720 files, we used simulated 1 min soundscapes containing our soil
sonotypes. Using a unique 1 min soundscape for each sample in both
scenarios would require generating and analysing 144,000 files. Instead
we generated a pool of 2,000 1 min soundscapes (hereafter ‘soundscape
pool’), resampling this pool to obtain appropriate gamma diversity.
Each of the 2,000 clips in the soundscape pool contained between one
and three sonotypes randomly sampled from our pool of 20, and a total
acoustic abundance of six, with any combination of sonotype repetitions
possible within these limitations. These restrictions allowed us to isolate
the effect of acoustic richness from abundance for both components of
Question 3.

For Question 3a, where gamma diversity was driven by both alpha
and beta diversity, we allowed both alpha and beta to vary by randomly
sampling the soundscape, summing the sonotypes contained in each
selected file until we reached the predetermined gamma richness for
that survey. If the predetermined gamma richness was reached in less
than 720 files, we restricted the pool of 2,000 files to those containing
only the sonotypes previously sampled, and continued to randomly
sample from the restricted pool until we had 720 files. For Question 3b,
where gamma was mainly driven by beta diversity, we held alpha
constant by limiting the soundscape pool to only files with a single
sonotype, thus fixing alpha richness at 1.

We repeated the same statistical analysis for gamma diversity as we
did with alpha diversity. First, we assessed the impact of gamma di-
versity on mean index values from each survey (Question 3), using
GAMs for both scenarios a and b. GAMs were fitted with cubic splines
with shrinkage and allowing for the maximum number of basis func-
tions. We used gamma diversity as the explanatory variable and mean
values of each index as the response variable. To test the predictability of
gamma richness based on index mean values in both scenarios (Ques-
tion 4), we built lasso models with all 14 acoustic indices as linear
predictors of gamma diversity.

3. Results

3.1. The effect of acoustic diversity on acoustic indices

The response of acoustic indices to increasing acoustic richness
(Question 1a) was highly variable and differences among sonotypes had
a much larger effect on index values than total acoustic richness.
However, a visual assessment reveals two broad groupings (Fig. 2).
Temporal Median, Peak Frequency, Spectral Bandwidth, Temporal
Events and Total Entropy seem to show almost no relationship with
acoustic richness. The other indices appear to show positive relation-
ships with acoustic richness at low values, before saturating as richness
increases, often at values as low as three sonotypes. Of this latter group,
Surface roughness, Region of Interest Cover, and ACI continue to show a
slight increase in mean value as acoustic richness increases up to 20.

The relationships between single sonotype abundance and acoustic
index value (Question 1b) was highly variable, both by index and by
sonotype (Fig. 3A). Indices quantifying the number of sound events
(Temporal Events, Spectral Events, Surface Roughness, but not Event
Duration) and indices detecting clusters of events (Spectral Event
Fraction, Spectral Activity and Region of Interest Cover) had strong
positive relationships with acoustic abundance. Some of the simplest
indices (e.g,. Peak Frequency, Spectral Bandwidth) and some of the most
commonly used indices (e.g., ACI, BI) were almost entirely insensitive to
acoustic abundance.

All indices with strong relationships with acoustic abundance
showed high variability across sonotypes. Some index values saturated
at higher abundances of certain sonotypes, with other indices even
decreasing at higher values, with the peak values typically occurring
around 30––50 % of the available time slots in the spectrogram
(Fig. 3A). Which sonotypes saturated or peaked varied among indices.
To investigate the cause of this, we visually inspected spectrograms with
detected events and acoustic activity highlighted in the scikit-maad
package. This suggested that at higher abundances, index parameters
were causing events from certain sonotypes to either be combined into a
single event, or to go undetected as background noise. The exception to
this was Surface Roughness, which maintained a near linear positive
relationship for all sonotypes, although the magnitude of the relation-
ship still varied greatly among sonotypes. Index relationships with
multi-sonotype abundance (Question 1c) showed very similar re-
lationships as for single sonotypes, with the variation caused by different
sonotype communities being apparent through the spread in observation
points (Fig. 3B).

Acoustic evenness had little effect on acoustic index scores (Ques-
tion 1d, Fig. 4). Most indices showed a weak positive relationship
(Spectral Bandwidth, Spectral Signal-to-noise Ratio, Spectral Events,
Surface Roughness, Spectral Event Fraction, Spectral Activity, Region-
of-Interest Cover, ACI, and BI) whilst the rest showed no clear

Fig. 2. The effect of alpha acoustic richness on acoustic index values. The point colours indicate acoustic indices with similar qualities (see Table 1 for details).
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relationship.

3.2. Predicting soil acoustic diversity with acoustic indices

The multi-index prediction of acoustic richness (Question 2a) was
fairly accurate at lower values of richness (Fig. 5a), with predictions at
richness values between 3 and 6 being overestimated by 2.2 sonotypes.
At higher values the model considerably underestimated acoustic rich-
ness, so that the predictions for richness of 20 were averaging just 13.38
sonotypes. However, there was high variation in predictive accuracy;
the standard deviation for acoustic richness values between 3 and 6 was
± 1.95 and 2.5 sonotypes.

Multi-index prediction of multi-sonotype abundance (Question 2b)
was far more accurate than for sonotype richness (Fig. 5c), suggesting

that acoustic indices can accurately predict sonotype abundance at
alpha scales. Average predictions were close to the observed abundance
for all values. However, standard deviation in prediction error increased
considerably as observed abundance increased, particularly for values
over 30. As expected, acoustic indices that quantify the number of sound
events in a spectrogram had the largest effect sizes in the lasso model
(Fig. 5d).

For acoustic evenness (Question 2c), multi-index predictions with
the lasso model showed a similar trend to acoustic richness. Evenness
was overestimated at low values and underestimated at high values, but
overall had higher error and larger variance in predictions. This suggests
that acoustic indices are not effective predictors of acoustic evenness
(Fig. 5e).

Fig. 3. The effect of sonotype abundance on acoustic index values. Panel A shows the effect on single sonotype abundance, with a line plotted for each sonotype. Line
colour and legend labels refer to the sonotype spectrogram panels in Fig. 1. Panel B shows the index response to multi-sonotype abundance, with sonotype richness
set at 3. Note the spread of points reflects the patterns of individual sonotypes in Panel A. The point colours indicate acoustic indices with similar qualities (see
Table 1 for details).

Fig. 4. The effect of acoustic evenness on acoustic index values. The point colours indicate acoustic indices with similar qualities (see Table 1 for details).
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3.3. Acoustic index response to gamma richness

Acoustic indices were largely unresponsive to changes in gamma
acoustic richness without a fixed alpha diversity component (Question
3a). Spectral Signal-to-Noise Ratio and Surface Roughness showed a
strong positive relationship at low richness values before saturating,
whilst ACI and BI showed weaker but linear positive relationships
(Fig. 6A). When the alpha component of gamma diversity was fixed

(Question 3b), all positive relationships disappeared, so that gamma
diversity did not have a strong impact on any index values (Fig. 6B).

3.4. Predicting gamma richness with acoustic indices

The lasso models predicted gamma richness well when increases in
richness were derived from both alpha and beta diversity (Question 4a)
− i.e., when mean sonotype richness per minute increased (Fig. 7A).

Fig. 5. Predictions of acoustic diversity using all indices as predictors. Panels a, c, and e show lasso model predictions against actual diversity values. Red dots show
mean predictions, in panels a and d for each diversity value, and in panel e for every decile of simulated evenness. Error bars show standard deviation. The dotted line
shows where perfect predictions would lie. Panels b,c, and f show the absolute value of the effect size (equivalent to variable importance) for each acoustic index in
the model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Predicted values closely matched observed values at all values of rich-
ness, with low error and variance. However, when gamma diversity was
driven by sonotype turnover rather than alpha acoustic richness
(Question 4b) − i.e., when the mean richness per minute remains the
same but there are different sonotypes present between minutes − the
relationship between acoustic index values and acoustic richness dis-
appeared (Fig. 7B).

4. Discussion

4.1. The efficacy of acoustic indices for monitoring soil diversity

4.1.1. Single indices
Our results show that acoustic indices are good predictors of the

abundance of soil sonotypes at alpha scales, with many showing strong
and near-linear relationships with single andmulti-sonotype abundance.
The indices with the strongest responses to sonotype abundance were, as

expected, those intended to count events. However, in most cases, index
values saturated or peaked below the maximum abundance value for at
least some of the sonotypes tested. Visual inspection of spectrograms
suggested this was mostly due to the event detection parameters in the
index calculations. As events became more abundant, gaps between
individual events decreased, so that multiple events merged into single
events. Surface Roughness was the exception and did not saturate across
all sonotypes and abundance values tested here. This was likely because
the index calculation does not include an event detection process based
on predetermined amplitude thresholds and instead reflects fine-scale
temporal variations in amplitude across the whole recording.

Saturation of index values at higher levels of sonotype abundance
could potentially be resolved by fine-tuning index parameters against a
test data set. However, this is time-consuming and, as most event
detection processes use relatively unsophisticated methods, it is unlikely
to fully resolve this issue without creating additional problems of
overcounting in other scenarios. This complication may be particularly

Fig. 6. The effect of gamma acoustic richness on mean acoustic index values. The point colours indicate acoustic indices with similar qualities. Panel A shows gamma
acoustic richness values derived from increasing both alpha and beta diversity − i.e., when mean sonotype richness per minute was allowed to vary. Panel B shows
gamma acoustic richness values derived from increasing beta diversity only − i.e., when mean richness per minute was fixed, but there were different sonotypes
present between minutes.

Fig. 7. Lasso model predictions of gamma acoustic richness using the mean index values calculated for each site as predictors. Panel A shows richness derived from
varying alpha and beta diversity whilst Panel B shows richness derived from varying only beta diversity. The dotted lines in both panels show the 1:1 line where
perfect predictions would lie.
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prevalent in soil recordings containing a variety of stridulations that
occur at different speeds.

Even where index responses to abundance take similar shapes, the
magnitude of the effect differed across sonotypes for all indices
(Fig. 3A). This sensitivity is perhaps not surprising given previous
studies have shown that indices are impacted by sonotype characteris-
tics of birds (Gasc et al., 2015, Zhao et al., 2019), although variation in
bird calls and song is much greater than the variation among sonotypes
used in our simulations. As it is likely that a far greater range of soil
biophony exists globally than we were able to test here, we urge caution
in the use of single acoustic indices to assess alpha abundance. Sensi-
tivity to sonotype form could be accounted for with either a priori
knowledge of the sonotypes likely to be encountered and knowledge of
the corresponding index response (for instance derived from mesocosm
experiments) or, as with most above ground use-cases for acoustic
indices, case-by-case validation using manual counts of sonotype
abundance. Fortunately, this sensitivity did not strongly reduce indices’
predictive capacity, which showed low error at all but the highest
values.

Acoustic indices could effectively predict sonotype richness at rela-
tively low levels (<10 sonotypes per minute), although at the risk of a
degree of overestimation. There is very limited evidence for rates of
acoustic richness in real soil recordings, but this seems to be a plausible
level of richness over 1 min recordings in most scenarios based on the
authors’ own data and the few published studies (Maeder et al., 2022,
Robinson et al., 2023, Robinson et al., 2024a). Greater predictive ac-
curacy at lower richness values could initially appear contradictory,
given that variation in the effect of richness on individual indices ap-
pears to decrease at higher values (Fig. 3). However, this reduction is
likely because there are fewer possible permutations of the sonotype
community at these values, rather than stabilisation of variation in index
values, and this would likely not occur if a larger pool of sonotypes were
available.

In addition, we found that acoustic indices are unaffected by varia-
tions in acoustic evenness and, even in combination, acoustic indices
only poorly predict this metric. That is perhaps unsurprising, given the
calculation of Pielou’s evenness includes both richness and abundance
of sonotypes, and the rather basic descriptions of soundscapes provided
by acoustic indices.

4.1.2. Multi-index prediction
Our results suggest that saturating individual index responses need

not be an issue for multi-index prediction accuracy. These predictions
showed only limited evidence for saturation, despite increased error
rates above a sonotype abundance of 40, the central tendency remained
accurate across all values. Presumably the combination of different
indices saturating or peaking at different abundance values provided
sufficient predictive power. This finding highlights both the importance
of selecting acoustic indices appropriate for the task (Bradfer-Lawrence
et al., 2023), and the benefits of using multiple indices, even when they
are calculating similar acoustic features.

Somewhat surprisingly, the lasso model for acoustic richness showed
the greatest effect sizes for indices that showed little relationship be-
tween richness and index score at the individual level, with Total En-
tropy having the largest effect size (Fig. 3B). This is most likely because
so many of the other indices showed a similar relationship that the small
amount of additional information provided by these weak relationships
is disproportionately useful. It is worth noting here that all of the effect
sizes for the lasso models are relative, and are specific to the use case and
dataset. It should not be assumed that the top ranked indices would be
effective predictors of biophonic diversity in isolation. Additionally, it is
possible that using other statistical approaches, such as generalised
linear models with backward model selection or Random Forest may
produce better predictive performance than the lasso models which
retain collinear predictors.

4.1.3. Predicting gamma diversity
We found that a combination of indices can predict gamma richness,

but only when both alpha and beta diversity drive gamma together, and
not when beta diversity alone drives gamma richness. As long as mean
alpha diversity correlates with gamma diversity, our results showed that
gamma diversity can be predicted by the average values of indices.
However, it is important to note that alpha and beta contributions to
gamma diversity in natural communities depend on several factors
ranging from environmental heterogeneity, sampling strategy, func-
tional groups of target organisms and spatio-temporal scales used in the
study (Barton et al 2013, Maaß et al 2014). For instance, in situations
where turnover of species and/or sonotypes is high, there is a higher
chance that average values of indices will not correlate to gamma di-
versity, and therefore the utility of indices will be limited. This is
applicable for both temporal and spatial gamma, where higher temporal
and spatial beta diversity would make the relationship between mean
alpha and gamma diversity weak. As in most cases, collecting sufficient
field data to understand the relative contributions of alpha and beta
diversity would render the use of acoustic indices redundant, it is likely
that there are only limited circumstances when indices should be used to
predict gamma richness, and using an average of alpha richness may
generally be more appropriate.

4.2. Linking acoustic diversity to taxonomic diversity

Whilst predicting soil sonotype abundance may be of direct utility,
this study did not assess whether sonotype abundance correlates directly
with faunal abundance. However, previous studies have shown corre-
lations between soil invertebrate abundance and acoustic index values
(Maeder et al., 2022, Robinson et al., 2023, 2024a), and it is difficult to
think of alternative plausible mechanisms for such relationships if in-
creases in faunal abundance do not result in increased acoustic activity.
Assuming sonotype abundance relates to species abundance, richness,
and/or macrofaunal activity rate − or perhaps more likely a combina-
tion of these − then it seems plausible that acoustic indices could be used
to predict at least some facets of soil function (Bardgett and Van Der
Putten, 2014, Görres and Kammann, 2020). Of these, bioturbation and
nutrient cycling seem the most likely to be reflected by faunal abun-
dance (Gabet et al., 2003). Further research would also be useful to test
whether time-series of sonotype abundance could track the degradation
or recovery of soil under land use change, forest regeneration (Robinson
et al., 2024a, Robinson et al., 2024b) or the impact of environmental
stressors such as deforestation (Franco et al., 2019), or recovery from
wildfire (de Andrade et al., 2014, Metcalf et al., 2024). Extending
acoustic richness to taxonomic richness may be evenmore challenging −
although it seems likely that, in comparison to birds, for which it is most
common to compare (Alcocer et al., 2022), sonotypes from individual
taxa will be less variable, especially when considering incidental sounds
as well as communication. Initial soil acoustic studies (Maeder et al.,
2022, Robinson et al., 2024a) have found positive relationships between
soil macrofaunal richness and ACI and BI, suggesting acoustic richness
and taxonomic richness are correlated.

4.3. Future research in using acoustic indices to monitor soil biodiversity

This study assessed the response of acoustic indices to various as-
pects of diversity, using simulated soil soundscapes that allowed us to
directly relate index scores to changing biophony. However, while we
attempted to maintain ecologically plausible variation in the simula-
tions, there is a need to further investigate how acoustic indices respond
in more complex sonic environments before being confident of perfor-
mance under real-world conditions. This includes varying the distance
of sonifying organisms from the microphone, varying amplitudes of
sonification at source, and varying the amplitude of background noise −
all of which will impact the recording’s signal-to-noise ratio. Previous
studies have shown that ACI, BI, and H values are impacted by signal-to-
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noise ratio (Gasc et al., 2015, Chen et al., 2022), although it is worth
noting that the simple indices we tested that are most likely to be
directly affected by varying signal-to-noise ratio, such as Spectral Signal-
to-Noise Ratio and Peak Frequency, were poor predictors of diversity
metrics. Other indices, in particular those aimed at event detection
which include amplitude thresholds in the calculation, could be sub-
stantially impacted by varying background noise levels. Fortunately,
four of these, Spectral Event Counts, Spectral Event Fraction, Fraction of
Spectral Activity and Region-of-Interest Cover are intended for use on
spectrograms post-noise reduction (Appendix 1, Table 1). This pre-
processing should greatly limit the effect of variation in background
noise level. In this study, Spectral Event Counts and Spectral Event
Fraction were two of the top five most important predictors for alpha
richness, and Fraction of Spectral Activity and Spectral Event fraction
are the first and fourth most important predictors of alpha abundance.
This strongly supports the use of noise reduction prior to calculating
acoustic indices. Future studies should further investigate the various
methods of noise reduction (Xie et al., 2021) and how effectively this can
limit the impact of variable background noise on index values in com-
plex sonic environments.

The presence of non-biophonic sound, absent in these simulations,
may challenge the fidelity of index responses to changes in biodiversity.
We know from a range of above ground studies that acoustic index re-
sponses can be masked by geophony (e.g., Ross et al., 2021, Turlington
et al., 2024). However, it may be possible to identify periods in soil
recordings dominaed by geophony or anthropophony. A range of tools to
identify wind (Terranova et al., 2024), rain (Brown et al., 2019,
Sánchez-Giraldo et al., 2020), and anthropophony (Quinn et al., 2022)
already exist for above ground soundscapes. Additional research is
needed to determine what forms of above ground biophony, geophony
and anthropophony exist in soil acoustic recordings. This will clarify
which existing methods can effectively detect and/or remove
non-biophonic sound from recordings, or whether new methods are
required specifically for soil ecoacoustics.

There is also a need to develop accessible libraries of soil sounds and
soundscapes, in order to better understand the sort of sounds which are
commonly encountered in the soil and link them with the organisms
creating them. This may be best conducted through recording ex-situ
mesocosms containing known faunal communities. Such ex-situ
research may help to better understand identifying characteristics of
species’ sonifications, and environmental and behavioural factors
affecting the cue rates of individual organisms (Teuben and Verhoef,
1992, Keen et al., 2022). It can also help in filtering out sounds that are
not informative of soil ecological condition, such as above ground bio-
phony and geophony. In turn this will improve understanding of varying
community detectability levels in the field (Görres and Chesmore, 2019;
Harvey et al., 2011).

4.4. Summary

Acoustic indices are potentially important analytical tools for soil
ecoacoustic data − especially given current limits to our knowledge of
characteristic sounds from different taxa. This study provides the first
steps in showing which acoustic diversity metrics and indices work the
best, and which are unreliable. Further research is required to investi-
gate the relationship between acoustic diversity metrics and biodiversity
metrics, as well as confirming that acoustic indices are responsive to

acoustic diversity metrics in real world conditions and mesocosm ex-
periments. Should further studies be able to demonstrate this, acoustic
indices could complement existing manual approaches to assessing soil
diversity by allowing non-invasive monitoring of belowground biodi-
versity over long time periods.
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Appendices

Appendix 1. Methods to compute acoustic indices

.

Table A1
Acoustic Indices.

Index name Function Parameters Computed on Additional processes

Temporal Median temporal_median Defaults Waveform1 ​
Peak Frequency peak_frequency nperseg = 512 Waveform1 ​
Spectral Bandwidth spectral_bandwidth nperseg = 512 Waveform1 ​
Spectral Signal-to-Noise
Ratio

spectral_snr Defaults Spectrogram2 ​

Mean Temporal Events-
per-Second

temporal_events dB_threshold = 6 Waveform1 Use EVNcount

Spectral Event Counts spectral_events dt = tn[1] − tn[0], dB_threshold = 6, rejectDuration = 0.05 Noise-reduced
spectrogram3

sum
(EVNspCount_per_bin)

Surface Roughness surface_roughness norm=’global’ Spectrogram2 ​
Mean Temporal Event
Duration

temporal_events dB_threshold = 6 Waveform1 Use EVNmean

Spectral Event Fraction spectral_events dt = tn[1] − tn[0], dB_threshold = 6, rejectDuration = 0.05 Noise-reduced
spectrogram3

mean
(EVNspFract_per_bin)

Fraction of Spectral
Activity

spectral_activity dB_threshold = 6 Noise-reduced
spectrogram3

mean
(ACTspFract_per_bin)

Region of Interest Cover region_of_interest_index smooth_param1 = 1, mask_mode=’relative’, mask_param1 = 6,
mask_param2 = 0.5

Noise-reduced
spectrogram3

​

Acoustic Complexity
Index

acoustic_complexity_index Defaults Spectrogram2 ​

Bioacoustic Index bioacoustics_index flim=(20, 10000), R_compatible=’soundecology’ Spectrogram2 ​
Total entropy Frequency_entropy (Hf)

Temporal_entropy (Ht)
compatibility=’seewave’ Spectrogram2 Hf*Ht

1. Waveform produced by reading a wave file into Python using wave.open and resampling to 22050 kHz using sound.resample().
2. Spectrogram computed using
sound.spectrogram(s_resamp, fs, nperseg = 512, noverlap = 512 / 2).
3. Noise-reduced spectrogram computed using:
Sxx_noNoise = sound.median_equalizer(Sxx, display = False, extent = ext) Sxx_dB_noNoise = util.power2dB(Sxx_noNoise).

Appendix 2. Sonotype details

.

Label
Fig. 1

File name Species Location/
Country

Habitat Date Time Lat/Long Recording
device

Microphone Waveguide Recordist

A 2207_wav Atta sexdens UFAM Farm,
Brazil

Rainforest 08/
02/
2024

00:00:00 − 2.64788,
− 60.05118

MIX_PREII JRF C-series Aluminium
probe

EdV

B 2213_wav Termite sp UFAM Farm,
Brazil

Rainforest 09/
02/
2024

07:22:00 − 2.64765,
− 60.05092

MIX_PREII JRF C-series Aluminium
probe

EdV

C 2219_wav Termite sp UFAM Farm,
Brazil

Rainforest 09/
02/
2024

07:54:00 − 2.64755,
− 60.05060

MIX_PREII JRF C-series Aluminium
probe

EdV

D 2241_wav Fidicina chlorogena UFAM Farm,
Brazil

Rainforest 09/
02/
2024

09:55:00 − 2.65627,
− 60.06351

MIX_PREII JRF C-series Aluminium
probe

EdV

E 2277_wav Termite sp. UFAM
Fragment,
Brazil

Rainforest 05/
03/
2024

15:53:00 − 2.65616,
− 60.06320

MIX_PREII JRF C-series Aluminium
probe

EdV

F 2272_wav Termite sp. UFAM
Fragment,
Brazil

Rainforest 05/
03/
2024

15:29:00 − 2.65616,
− 60.06343

MIX_PREII JRF C-series Aluminium
probe

EdV

G 2331_wav Atta sp. UFAM Farm,
Brazil

Rainforest 01/
04/
2024

16:45:00 − 2.65611,
− 60.06282

MIX_PREII JRF C-series Aluminium
probe

EdV

H 2332_wav Termite sp. UFAM Farm,
Brazil

Rainforest 02/
04/
2024

09:55:00 − 2.65610,
− 60.06277

MIX_PREII JRF C-series Aluminium
probe

EdV

I 2404_wav Eciton burchellii UFAM Farm,
Brazil

Rainforest 08/
05/
2024

09:54:00 − 2.65605,
− 60.06293

MIX_PREII JRF C-series Aluminium
probe

EdV

(continued on next page)
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(continued )

Label
Fig. 1

File name Species Location/
Country

Habitat Date Time Lat/Long Recording
device

Microphone Waveguide Recordist

J 2433_wav Odontomachus sp. UFAM Farm,
Brazil

Rainforest 08/
05/
2024

15:47:00 − 2.65611,
− 60.06270

MIX_PREII JRF C-series Aluminium
probe

EdV

K Soil_Earthworm.wav Lumbricus terrestris Rothamsted,
UK

Experimental
mesocosm

12/
04/
2023

15:00:00 51.808,
− 0.356

MIX_PRE_10 JRF C-series Aluminium
tripeg

CA

L Soil_Stridulation.wav Unknown, presumed
Coleoptera sp.

Wirksworth, UK Garden lawn 19/
07/
2023

18:50:00 53.078,
− 1.574

MIX_PRE_10 JRF C-series Aluminium
tripeg

CA

M Soil_Unident_01230012.wav Unknown Wirksworth, UK Garden lawn 20/
02/
2024

01:01:00 53.078,
− 1.574

Elekon
Allsounder

Elekon
Allsounder

Elekon
Allsounder

CA

N Soil_Unident_01230018.wav Unknown Wirksworth, UK Garden lawn 19/
02/
2024

10:20:00 53.078,
− 1.574

Elekon
Allsounder

Elekon
Allsounder

Elekon
Allsounder

CA

O Soil_Unident_01230019.wav Unknown Wirksworth, UK Garden lawn 19/
02/
2024

10:25:00 53.078,
− 1.574

Elekon
Allsounder

Elekon
Allsounder

Elekon
Allsounder

CA

P Soil_Unident_01230072.wav Unknown Wirksworth, UK Garden lawn 19/
02/
2024

14:51:00 53.078,
− 1.574

Elekon
Allsounder

Elekon
Allsounder

Elekon
Allsounder

CA

Q Soil_Unident_01230130.wav Unknown Wirksworth, UK Garden lawn 19/
02/
2024

19:40:00 53.078,
− 1.574

Elekon
Allsounder

Elekon
Allsounder

Elekon
Allsounder

CA

R Soil_Unident_01230178.wav Unknown Wirksworth, UK Garden lawn 19/
02/
2024

23:40:00 53.078,
− 1.574

Elekon
Allsounder

Elekon
Allsounder

Elekon
Allsounder

CA

S Soil_Vole.wav Arvocolinae sp. Reims, France Vineyard 10/
03/
2023

15:05:00 49.193,
4.067

MIX_PRE_6 JRF C-series Steel 2 mm
wire

CA

T Soil_Wireworm_Stridulation.
wav

Elateridae sp. Wirksworth, UK Experimental
mesocosm

29/
04/
2024

13:07:00 53.078,
− 1.574

MIX_PRE_10 JRF C-series None CA

Appendix 3. Temporal evenness

To test the effect of the temporal distribution of sonotypes across 1 min soundscapes, we created soundscapes with sonotypes clustered to varying
extents. We created 100 1 min soundscapes per sonotype (n = 2000), so that acoustic richness in each 1 min soundscape was always 1. Each 1 min
soundscape contained 20 repetitions of the sonotype, so that acoustic abundance always equalled 20. Clusters consisted of 1, 2, 4, 5, or 10 repetitions
of a 1 s sonotype in a row and after each event, a single second of white noise was inserted to separate consecutive events. We randomly allocated the
temporal distribution of clusters across the soundfile and the remaining time was filled with white noise. Therefore a cluster length of 1 resulted in 20
1 s sonotypes randomly distributed across the minute, with at least 1 s of white noise proceeding each of them, whilst a cluster length of 5 resulted in
four clusters of ten 1 s sonotypes in a row with at least 1 s of white noise between them. Each combination of sonotype and cluster duration was
repeated 20 times to ensure the precise temporal placement of clusters was varied for each combination. To ensure uniqueness, each simulated
sequence was compared to previously generated sequences, and only non-redundant sequences were retained. Analysis thereafter was the same for
other diversity metrics, except that we only tested the effect of acoustic evenness on acoustic indices, and did not examine indices predictive capacity
as that seemed to have limited real-world application.

Results
Almost all of the indices showed limited or no response to increasing clump size in the 1 min soundscapes. The exception was Event Duration,

which linearly increased with increasing cluster size for one sonotype, likely due to event detection viewing the entire cluster as a single event for that
sonotype but maintaining differentiation between each sound event for the other sonotypes.

Overall, this suggests that the acoustic indices we tested are reasonably robust to the temporal dispersion of sound events in a soundscape.
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Data availability

The audio files used in generating the syethsised soundscapes are
available on Zenodo. DOI 10.5281/zenodo.14277136.

References

Adobe Inc., 2023. Adobe Audition (Version 24.0.03) [Computer software]. https://www.
adobe.com/products/audition.html.

Alcocer, I., Lima, H., Sugai, L.S.M., Llusia, D., 2022. Acoustic indices as proxies for
biodiversity: a meta-analysis. Biol. Rev. 1, 000. https://doi.org/10.1111/brv.12890.

Audacity Team, 2023. Audacity (Version 3.6.3) [Computer software]. https://www.
audacityteam.org/.

Bardgett, R.D., Van Der Putten, W.H., 2014. Belowground biodiversity and ecosystem
functioning. Nature 515 7528, pp. 505–511). Nature Publishing Group. Doi:
10.1038/nature13855.

Barton, P.S., Cunningham, S.A., Manning, A.D., Gibb, H., Lindenmayer, D.B., Didham, R.
K., 2013. The spatial scaling of beta diversity. Glob. Ecol. Biogeogr. 22 (6), 639–647.
https://doi.org/10.1111/geb.12031.

Bateman, J., Uzal, A., 2022. The relationship between the Acoustic Complexity Index and
avian species richness and diversity: a review. Bioacoustics 31 (5), 614–627. https://
doi.org/10.1080/09524622.2021.2010598.

Boelman, N.T., Asner, G.P., Hart, P.J., Martin, R.E., 2007. Multi-trophic invasion
resistance in Hawaii: bioacoustics, field surveys, and airborne remote sensing. Ecol.
Appl. 17 (8), 2137–2144. https://doi.org/10.1890/07-0004.1.

Bradfer-Lawrence, T., Bunnefeld, N., Gardner, N., Willis, S.G., Dent, D.H., 2020. Rapid
assessment of avian species richness and abundance using acoustic indices. Ecol. Ind.
115, 106400. https://doi.org/10.1016/j.ecolind.2020.106400.

Bradfer-Lawrence, T., Desjonqueres, C., Eldridge, A., Johnston, A., Metcalf, O., 2023.
Using acoustic indices in ecology: guidance on study design, analyses and
interpretation. Methods Ecol. Evol. 14 (9), 2192–2204. https://doi.org/10.1111/
2041-210X.14194.

Bradfer-Lawrence, T., Duthie, B., Abrahams, C., Adam, M., Barnett, R.J., Beeston, A.,
Darby, J., Dell, B., Gardner, N., Gasc, A., Heath, B., Howells, N., Janson, M.,
Kyoseva, M.V., Luypaert, T., Metcalf, O.C., Nousek-McGregor, A.E., Poznansky, F.,
Ross, S.R.P.J., Froidevaux, J.S.P., 2024. The Acoustic Index User’s Guide: a practical
manual for defining, generating and understanding current and future acoustic
indices. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.14357.

Brown, A., Garg, S., Montgomery, J., 2019. Automatic rain and cicada chorus filtering of
bird acoustic data. Applied Soft Computing Journal 81, 105501. https://doi.org/
10.1016/j.asoc.2019.105501.

Buckland, S.T., Johnston, A., 2017. Monitoring the biodiversity of regions: key principles
and possible pitfalls. Biol. Conserv. 214, 23–34. https://doi.org/10.1016/j.
biocon.2017.07.034.
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