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Highlights

What are the main findings?
• This study shows that lower satellite altitudes yield higher received power at short distances,

making them better for short-range applications. For example, at 50 km, a 300 km altitude satellite
achieves −115 dBm, compared to −136 dBm at 1000 km altitude. Beyond 2000 km, the altitude’s
effect diminishes, favouring higher altitudes for broad coverage.

• Frequency also plays an important role. Higher frequencies suffer more significant path loss over
distance, balancing bandwidth efficiency and attenuation. At 1000 km, the received power at
24 GHz is −125 dBm versus −130 dBm at 32 GHz, showing the need to select frequencies carefully.

• While increasing bandwidth enhances capacity, distance reduces received power, limiting reliabil-
ity. At 100 km, 50 MHz delivers 4500 Mbps, but only 300 Mbps at 3000 km. Outage probability
rises at higher SNR thresholds: at 3000 km, a 15 dB threshold yields 25% outage versus less than
5% at 5 dB. Optimising SNR is critical for long-range performance.

What is the implication of the main finding?
• Lower satellite altitudes yield stronger signals at short distances, ideal for dense urban IoT. Higher

altitudes enable wide coverage but weaker signals.
• Higher frequencies suffer more significant path loss, so frequency selection depends on the

application: lower frequencies suit long links, and higher frequencies support high data rates at
short ranges. Beamforming or boosted power can offset this loss. As distance increases, channel
capacity declines, and outage probability rises, requiring dynamic resource management.

• Adjusting the bandwidth, lowering SNR thresholds, and using adaptive modulation and coding
can be used to maintain reliability. This approach supports critical tasks like remote monitoring
and emergency response across extended distances.

Abstract: The convergence of 5G terrestrial networks with satellite systems offers a revolutionary
approach to achieving global, seamless connectivity, particularly for Internet of Things (IoT) ap-
plications in urban and rural settings. This paper investigates the implications of this 5G–satellite
integrated network architecture, specifically through the application of the two-ray propagation
model and the free-space path loss (FSPL) model. By simulating signal characteristics over varying
distances, altitudes, and environmental parameters, we explore how factors such as transmitter
height, satellite altitude, and frequency impact received power, path loss, channel capacity, and out-
age probability. The key findings indicate that received power decreases significantly with increasing
distance, with notable oscillations in the two-ray model due to interference from ground reflections,
particularly evident within the first 100 km. For example, at 50 km, a 300 km satellite altitude yields
approximately −115 dBm in received power, while at 1000 km altitude, this power drops to around
−136 dBm. Higher frequencies (e.g., 32 GHz) exhibit greater path loss than lower frequencies (e.g.,
24 GHz), with a 5 dB difference observed at 1000 km, reinforcing the need for frequency consider-
ations in long-range communication design. In terms of channel capacity, increasing bandwidth
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enhances achievable data rates but declines with distance due to diminishing received power. At
100 km, a 50 MHz bandwidth supports up to 4500 Mbps, while at 3000 km, capacity drops to around
300 Mbps. The outage probability analysis shows that higher signal-to-noise ratio (SNR) thresholds
substantially increase the likelihood of communication failures, especially at distances exceeding
2000 km. For instance, at 3000 km, the outage probability for a 15 dB SNR threshold reaches approx-
imately 25%, compared to less than 5% for a 5 dB threshold. These results underscore the critical
trade-offs in designing 5G–satellite IoT networks, balancing bandwidth, frequency, SNR thresholds,
and satellite altitudes for optimal performance across diverse IoT applications. The analysis pro-
vides valuable insights for enhancing connectivity and reliability in 5G–satellite integrated networks,
especially in remote and underserved regions.

Keywords: 5G networks; satellite systems; IoT applications; two-ray model; signal propagation

1. Introduction

The integration of 5G terrestrial networks with satellite systems presents a transforma-
tive opportunity to achieve seamless, ubiquitous connectivity on a global scale, particularly
for the rapidly expanding Internet of Things (IoT) in smart cities [1–3]. As 5G technology
continues to evolve, its promise of ultra-low latency, high data rates, and massive device
connectivity can extend to areas traditionally underserved by terrestrial networks through
the incorporation of satellite communication systems [4,5]. This 5G–satellite integrated
network framework is poised to play a crucial role in enabling reliable communication in
remote and rural areas, enhancing connectivity for critical applications such as autonomous
vehicles, remote sensing, and global IoT networks [6,7].

The convergence of 5G and satellite systems introduces a new paradigm in communi-
cation infrastructure, merging the high-capacity, low-latency characteristics of 5G with the
extensive coverage provided by satellite networks. This hybrid approach addresses the
limitations of terrestrial-only networks, enabling continuous connectivity across challeng-
ing environments, including densely populated urban areas and isolated rural regions. For
IoT applications in smart cities, this integration enables consistent, high-quality data ex-
change across a vast number of connected devices, essential for efficient urban management,
environmental monitoring, and public safety [3,8].

Research in 5G–satellite convergence has gained considerable traction, focusing on
the potential and challenges of integrating terrestrial and satellite networks for diverse
applications. Kodheli et al. [9] highlight the technical challenges of integrating low-Earth-
orbit (LEO) satellite networks with 5G, addressing issues such as handover mechanisms,
interference management, and quality-of-service (QoS) maintenance. Zhu et al. [8] also
discuss the architecture of integrated 5G–satellite networks, emphasizing the need for
efficient resource allocation and interference coordination mechanisms to maintain reliable
connectivity in high-density IoT deployments.

Existing studies have also addressed the unique propagation challenges posed by
these networks, given the differing altitudes and coverage zones of terrestrial and satellite
systems. Mohsan et al. [10] explore propagation characteristics specific to high-frequency
bands in 5G and satellite communication, analysing how atmospheric absorption, scattering,
and reflection impact signal quality. Their findings underline the importance of accounting
for environmental factors, especially in dense urban settings where building interference
and multipath effects are prevalent. Shinde et al. [11] propose adaptive modulation and
coding techniques to mitigate propagation losses in hybrid networks, emphasizing the role
of environment-specific models in ensuring robust performance.

A critical aspect of ensuring seamless connectivity in 5G–satellite integrated networks
is the accurate modelling of signal propagation. The two-ray model has been widely used
due to its simplicity and effectiveness in capturing the interaction between direct and
reflected signals in terrestrial communication environments [12–14]. The model, which
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considers both line-of-sight (LOS) and ground-reflected paths, is well suited for urban areas
with significant ground infrastructure [12].

In the context of 5G–satellite convergence, however, using the two-ray model presents
additional complexities due to varied altitudes and satellite signal paths. Kodheli et al. [9]
suggest that while the two-ray model is beneficial for understanding ground-based re-
flections in 5G–satellite integrated networks, it requires further adaptation to account for
factors such as signal delay, Doppler shift, and the Earth’s curvature. Recent works by
Moraitis et al. [15] propose modified versions of the two-ray model, incorporating satellite-
specific propagation characteristics, thereby improving predictive accuracy in 5G–satellite
integrated networks.

The use of 5G–satellite networks in IoT applications, especially within smart cities,
introduces unique challenges that necessitate further research. Colding et al. [1] argue
that integrating satellite connectivity in urban IoT frameworks requires careful planning
to address interference from dense infrastructure, high device density, and environmental
variability. Wang et al. [2] discuss the technical implications of IoT applications in 5G–
satellite integrated networks, focusing on stringent latency and reliability requirements for
real-time applications like traffic monitoring, public safety, and energy management.

Recent studies highlight the need for adaptive network control mechanisms to dy-
namically manage resource allocation and optimize connectivity. Uko et al. [16] and Bellini
et al. [17] suggest that 5G–satellite integrated networks for IoT in smart cities can benefit
from algorithms for dynamic power adjustment, interference cancellation, and multipath
routing, aiming to optimize network efficiency and resilience, especially where terrestrial
support is limited. Advanced AI-driven approaches, as discussed by Shinde et al. [11],
show promise for managing complex, real-time network adjustments, enhancing system
adaptability to fluctuating environmental and traffic conditions.

Building upon the established foundation of 5G–satellite convergence research, this
study enhances the two-ray propagation model to incorporate complex environmental
attenuation factors, such as rain and atmospheric absorption, that significantly impact
high-frequency signals typical of 5G and satellite communications [18]. These factors
are critical in modelling real-world scenarios accurately, especially at millimetre-wave
(mmWave) frequencies, where propagation losses due to rain and atmospheric gases
become pronounced [19–21].

We integrate the ITU-R rain attenuation model, which provides frequency-dependent
attenuation based on the rain rate and path length, significantly affecting the signal strength
under high rain conditions [22]. Additionally, we incorporate atmospheric absorption for
oxygen and water vapour, critical for high-frequency bands in 5G and satellite communica-
tions, calculated based on ITU-R recommendations to account for temperature, humidity,
and pressure variations along the path.

Unlike previous studies focusing on terrestrial or satellite-only propagation, our work
delves into how altitude, distance, and environmental reflections impact signal quality in
5G–satellite networks. These novel components enable a more comprehensive analysis
of real-world signal behaviour, offering valuable insights for designing and optimizing
robust hybrid communication networks for IoT applications in urban smart cities and
remote regions.

This paper extends the application of the two-ray model to 5G–satellite convergence,
with a specific focus on its implications for signal strength and quality under realistic envi-
ronmental conditions. Section 2 provides a review on 5G and satellite network convergence,
summarizing existing studies and the literature. In Section 3, we introduce the enhanced
two-ray model that includes rain attenuation and atmospheric absorption. We analyse the
model’s predictive capability in identifying areas of constructive and destructive interfer-
ence, crucial for designing resilient hybrid systems. Section 4 presents the results, offering
insights into optimizing 5G–satellite integrated networks capable of supporting diverse
IoT applications in a 5G–satellite smart city. Section 5 shows analytical validation of our
proposed framework and Section 6 gives the conclusions from our findings.
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2. Integrating 5G and Satellite Networks for Enhanced IoT Applications in Smart Cities:
A Review

The convergence of 5G and satellite networks represents a significant advancement
in telecommunications, combining the unique strengths of terrestrial and satellite sys-
tems to provide extensive coverage, improved connectivity, and reliability across various
environments [23–25]. By integrating satellite networks, 5G technology overcomes the con-
straints of terrestrial infrastructure, enabling fast, responsive communication in remote and
hard-to-reach areas, including oceans, airborne platforms, and space-borne environments.
This hybrid approach is particularly advantageous for the Internet of Things (IoT), which
demands reliable, widespread connectivity for various applications, from basic sensors to
advanced autonomous systems [26].

The Internet of Things (IoT) comprises an expansive array of devices, including ev-
erything from simple environmental sensors to sophisticated autonomous vehicles and
industrial automation systems [27,28]. Consistent communication across different environ-
ments is critical to IoT functionality, especially in smart cities where large data volumes
must be transmitted in real-time for urban management, environmental monitoring, and
public safety. The 5G–satellite integrated network provides an ideal solution by leveraging
the high data rates and low latency of 5G in dense urban areas, while satellite coverage
ensures connectivity in remote regions where terrestrial infrastructure is sparse [29,30].

The integration of 5G and satellite networks requires careful consideration of each
system’s distinct propagation characteristics. Primarily operating in the millimetre-wave
(mmWave) spectrum, 5G utilizes frequencies between 24 GHz and 52 GHz, offering high data
speeds but suffering from significant path loss in non-line-of-sight (NLOS) scenarios [31].

In real-world settings, the propagation environment includes not only direct line-of-
sight (LOS) components but also multiple scattered components resulting from reflection,
diffraction, and scattering. The Rician fading model, characterized by the Rician K-factor,
is suitable for scenarios where both LOS and scattered components significantly impact
signal strength [32].

High-frequency satellite communications, especially those in the Ka-band (26.5 GHz
to 40 GHz) and V-band (40 GHz to 75 GHz), are subject to additional attenuation due
to atmospheric gases and rain, critical factors that must be integrated into propagation
models. The ITU-R models for rain attenuation and gaseous absorption provide frequency-
dependent attenuation factors, allowing for more accurate modelling of signal degradation
in hybrid environments [33,34].

The two-ray model is commonly used to predict signal path loss by considering both
direct and ground-reflected paths. Optimizing data transmission in 5G–satellite networks
also requires efficient modulation schemes. Quadrature amplitude modulation (QAM) is
widely used in both 5G and satellite communications due to its high spectral efficiency. The
spectral efficiency η of an M-ary QAM system can be expressed as

η = log2(M) bits/s/Hz (1)

with the effective data rate R defined as

R = η · B = log2(M) · B (2)

where B is the channel bandwidth. Higher-order QAM schemes, such as 64-QAM and
256-QAM, provide increased data rates but require higher signal-to-noise ratios (SNRs) to
maintain reliability, making them susceptible to rain attenuation and atmospheric absorp-
tion effects [34].

The integration of these factors—FSPL, Rician fading, atmospheric absorption, rain
attenuation, and the two-ray model—yields a comprehensive propagation framework for
5G–satellite networks. The proposed model provides a holistic approach to capturing signal
variations across different environments, frequencies, and atmospheric conditions. By in-
cluding rain and atmospheric attenuation factors alongside traditional propagation models,
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this approach allows for better accuracy in predicting signal strength, which is crucial for
IoT applications in 5G–satellite integrated networks. This model supports the design of
resilient communication systems, enabling IoT deployments that can withstand varied
environmental conditions and maintain connectivity, thereby enhancing the network’s
robustness in both urban and remote areas.

3. Enhanced Mathematical Model with Atmospheric and Environmental Effects

A 5G–satellite integrated network requires accurate modelling of signal propagation
effects across large distances, incorporating environmental variability between satellites
and terrestrial receivers. Traditional models like free-space path loss (FSPL), the two-ray
model, and Rician fading provide a foundation but lack the complexity needed to address
factors such as atmospheric and rain attenuation, which are critical in high-frequency 5G
and satellite communications. In this enhanced model, we integrate these environmental
elements to develop a comprehensive framework for 5G–satellite IoT applications, enabling
a robust analysis of real-world signal dynamics.

3.1. Two-Ray Model Overview

The two-ray model considers both the direct line-of-sight (LOS) signal and a reflected
non-line-of-sight (NLOS) signal (as shown in Figure 1). This model is particularly significant
in analysing and predicting the behaviour of radio wave propagation in scenarios where
both direct and reflected signals contribute to the received signal [12–14]. In such scenarios,
especially in environments with large reflective surfaces like oceans or flat terrain, the
two-ray model becomes crucial for accurately modelling signal strength, fading, and phase
shift, which are all important factors for reliable communication between the ground station
and the low-Earth-orbit (LEO) satellite [23].

Figure 1. Two-ray geometry for 5G–satellite network.

In the two-ray geometry model, the signal from a transmitter (e.g., a ground station)
to a receiver (e.g., a satellite) reaches the receiver through two distinct paths:

1. Direct path (rt): This is the line-of-sight (LOS) path that directly connects the ground
station to the satellite.

2. Ground station reflected path (r1,t): This path involves the signal reflecting off the
Earth’s surface before reaching the ground station.

3. Satellite reflected path (r2,t): This path involves the signal reflecting off the Earth’s
surface before reaching the satellite.

The constructive or destructive interference of these components is determined by the
phase difference between them, resulting in either signal augmentation or fading.
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3.2. Enhanced Two-Ray Model with Atmospheric and Rain Attenuation

For the hybrid model, we extend the two-ray model with atmospheric and rain attenu-
ation, suitable for long-range, high-altitude propagation in 5G–satellite communication.

Given a ground station height hG,t, satellite height hS,t, and distances r1,t and r2,t:

r1,t =
√
(d1,t + d2,t)2 + (hS,t − hG,t)2 (3)

r2,t =
√
(d1,t + d2,t)2 + (hS,t + hG,t)2 (4)

Including atmospheric and rain attenuation, the received power for each path is

Pr,1 = Pt

(
λ

4πr1,t

)2
e−(Aatm+γr)·r1,t (5)

Pr,2 = Pt

(
λ

4πr2,t

)2
Γe−(Aatm+γr)·r2,t (6)

where Γ is the reflection coefficient based on surface characteristics. The total received
power Pr is

Pr = |Er,1 + Er,2ej∆ϕ|2 = Pr,1 + |Γ|2Pr,2 + 2
√

Pr,1Pr,2 cos(∆ϕ) (7)

Here, ∆ϕ is the phase difference, which accounts for Doppler shifts and other delays.

3.3. Free-Space Path Loss (FSPL) with Atmospheric Attenuation

The FSPL model describes basic signal attenuation over a distance d in a vacuum, given by

FSPL(dB) = 20 log10

(
4πd f

c

)
(8)

where f is the frequency, c is the speed of light, and d is the distance between the transmitter
and receiver. To incorporate real-world environmental losses, we add atmospheric attenu-
ation, particularly relevant at high frequencies. The FSPL with atmospheric attenuation
FSPLatm is given by

FSPLatm(dB) = 20 log10

(
4πd f

c

)
+ Aatm · d (9)

where Aatm is the atmospheric attenuation factor in dB/km. Atmospheric attenuation,
denoted as Aatm, is primarily affected by two components: the dry air attenuation coeffi-
cient, αdry( f ); and the water vapour attenuation coefficient, αwet( f ). These components
are frequency-dependent, and their combined effect over a distance d can be modelled by
the equation

Aatm( f , d) =
(

αdry( f ) + αwet( f )
)
· d (10)

where f is the signal frequency. Both αdry( f ) and αwet( f ) tend to increase with frequency,
leading to higher attenuation levels as f rises. This relationship underscores the vulnerabil-
ity of higher frequencies to atmospheric effects, especially over extended distances.

3.4. Rain Attenuation Model

Rain introduces significant attenuation, especially in high-frequency bands (Ka and V
bands), often used in satellite communications. Rain attenuation Arain is modelled as

Arain(dB) = γr · d (11)

where γr is the specific attenuation coefficient in dB/km, dependent on rainfall intensity R
(mm/h). The coefficient γr is calculated using the ITU-R P.838 model:
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γr = kRα (12)

where k and α are empirically derived parameters, varying with frequency and polarization.
Thus, the FSPL with both atmospheric and rain attenuation is

FSPLrain(dB) = 20 log10

(
4πd f

c

)
+ Aatm · d + kRα · d (13)

This model comprehensively accounts for atmospheric and rain effects, making it
suitable for 5G–satellite IoT link assessment.

3.5. Rician Fading with Atmospheric and Rain Attenuation

To model scattering effects beyond LOS, we incorporate a Rician fading model, where
K represents the LOS-to-scattered power ratio. The Rician fading model under atmospheric
and rain attenuation is given by

Pr = PLOS

(
λ

4πd

)2
e−(Aatm+γr)·d · (K + 1) · e−σ2K (14)

where PLOS is the LOS power, σ2 is the variance of the Gaussian-distributed scattered
component, and d is the path distance.

3.6. Combined Received Power for 5G–Satellite Links

The combined received power integrating the FSPL, two-ray, and Rician fading models
with atmospheric and rain effects is

Pr =

∣∣∣∣∣
(

Ptλ

4πr1,t

)2
e−(Aatm+γr)·r1,t + Γ

(
Ptλ

4πr2,t

)2
e−(Aatm+γr)·r2,t

∣∣∣∣∣
2

+ Pscattered (15)

where Pscattered represents non-LOS scattering, calculated by integrating the Rician model.

3.7. Channel Capacity and Outage Probability with Environmental Effects

Channel capacity C, using the Shannon–Hartley theorem, is

C = B log2

(
1 +

Pr

N0

)
(16)

For multipath scenarios, effective channel capacity Ce f f over distance D is

Ce f f = B
∫ D

0
log2

(
1 +

Pr(d)
N0

)
dd (17)

Outage probability Pout, the likelihood that SNR γ falls below threshold γth, is

Pout = 1 − e−
γth
γ̄ (18)

This model provides a comprehensive framework to assess 5G–satellite integrated
networks, accommodating diverse propagation phenomena crucial for reliable IoT and
urban applications under various environmental conditions.

4. A 5G–Satellite Convergence Analysis: Practical Considerations for IoT Applications
in Smart Cities

The following results illustrate the performance and signal characteristics of a
5G–satellite integrated network using the two-ray model and free-space path loss (FSPL)
model. Parameters such as satellite height, frequency, transmitter height, and dielectric con-
stant were varied to observe their impact on received power, path loss, reflection coefficient,
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channel capacity, and outage probability. The simulation was conducted with the following
parameters in Table 1 to model the two-ray propagation and free-space path loss (FSPL):

Table 1. Simulation parameters for enhanced 5G–satellite propagation model.

Parameter Value(s)

Satellite Altitudes 300 km, 500 km, 700 km, 1000 km

Frequency Bands 24 GHz, 28 GHz, 32 GHz

Bandwidths 10 MHz, 20 MHz, 50 MHz

Distance Range 0–3000 km

Transmitter Height (ht) 30 m

Receiver Heights (hr) 1.5 m (Low Rx), 100 m (High Rx)

Effective Earth Radius (Re) 6371 km

Dielectric Constant (ϵr) 15

Noise Power Spectral Density (N0) −174 dBm/Hz

SNR Thresholds 5 dB, 10 dB, 15 dB

Atmospheric Attenuation Factors (Aatm) Calculated as αdry( f ) + αwet( f )

Dry Atmospheric Absorption (αdry( f )) Frequency-dependent, per ITU-R P.676

Wet Atmospheric Absorption (αwet( f )) Frequency-dependent, per ITU-R P.676

Rainfall Intensity (R) 0–50 mm/h

Rain Attenuation Coefficient (γr) kRα (parameters from ITU-R P.838)

Rician K-factor 3, 6, 10

4.1. Performance Analysis of Atmospheric Attenuation in 5G–Satellite Integrated Networks

Figure 2 provides key insights into the influence of frequency, altitude, and distance
on atmospheric attenuation in 5G–satellite integrated networks. This understanding is
crucial for optimizing the network design, particularly in high-frequency 5G bands, where
signal loss due to atmospheric effects can be substantial.

Figure 2. Atmospheric attenuation vs. distance for different frequencies and satellite altitudes.

The plot illustrates that as frequency increases from 24 GHz to 32 GHz, atmospheric
attenuation grows considerably, particularly at longer distances. This behaviour is due to
the proportional relationship between attenuation coefficients and frequency, given by

α( f ) ∝ f (19)
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This implies that, for a fixed distance d, higher-frequency signals (such as those at
32 GHz) experience greater atmospheric attenuation than lower-frequency signals (e.g.,
24 GHz). This trend is clearly visible in the plot, where the attenuation curves for 32 GHz are
consistently higher than those for 24 GHz across all altitudes, highlighting the frequency-
dependent nature of atmospheric losses.

Another critical factor influencing atmospheric attenuation is the altitude of the satel-
lite. The plot includes data for four distinct satellite altitudes: 300 km, 500 km, 700 km,
and 1000 km. Lower altitudes are associated with higher attenuation, especially over long
distances. This is because lower altitudes imply a denser atmospheric path, increasing
the probability of molecular absorption and scattering. For a satellite at altitude h, the
effective path length through the atmosphere deff reduces as h increases, leading to the
following expression:

Aatm ≈
(

αdry( f ) + αwet( f )
)
· deff (20)

where deff is shorter for higher altitudes, thereby reducing cumulative attenuation. Conse-
quently, satellites positioned at 1000 km experience lower attenuation compared to those at
300 km, as seen in the plot.

Figure 2 further reveals a nearly linear increase in attenuation with distance for a fixed
frequency and altitude, which is consistent with the linear dependence on d. However, the
combination of high frequency (such as 32 GHz) and low altitude (e.g., 300 km) results
in a substantial amplification of attenuation, suggesting an almost multiplicative effect of
frequency and altitude on atmospheric losses.

At shorter distances (less than 500 km), the variation in attenuation across different
altitudes is minimal. However, as the distance extends, the separation between curves
becomes more pronounced. For instance, at 3000 km, the attenuation for a 32 GHz signal at
300 km altitude approaches 8× 104 dB, whereas a 24 GHz signal at 1000 km altitude remains
significantly lower. This demonstrates that optimal frequency and altitude selection are
crucial for long-distance 5G–satellite links, especially for IoT applications that require
reliable connectivity for smart cities.

The observed relationships among frequency, altitude, and distance have several
implications for network design:

• Frequency selection: Lower frequencies (e.g., 24 GHz) are preferable for long-distance
communications, especially at lower altitudes, to mitigate atmospheric attenuation.

• Altitude optimization: Higher satellite altitudes reduce atmospheric losses, making
them more suitable for high-frequency or long-range communications.

• Distance constraints: For applications that demand very long range communication,
managing attenuation through optimal selection of altitude and frequency becomes
essential to ensure sufficient signal strength.

In summary, the plot highlights the complex trade-offs between frequency, distance,
and altitude in the design of 5G–satellite networks. A balanced approach to selecting these
parameters can enhance network performance, a necessity for the scalability and reliability
of IoT applications in a smart city.

4.2. Analysis of Rain Attenuation in 5G–Satellite Integrated Networks

The plot in Figure 3 illustrates the rain attenuation versus distance across different
frequencies (24 GHz, 28 GHz, and 32 GHz) and rain rates (5 mm/h, 10 mm/h, 20 mm/h,
and 50 mm/h). This analysis provides insights into the impact of rain on signal attenuation
in 5G–satellite networks, particularly for high-frequency bands commonly utilized in
satellite communications. As shown, rain attenuation increases significantly with both
frequency and rainfall intensity, highlighting the challenges posed by adverse weather
conditions in maintaining reliable communication links over long distances.
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Figure 3. Rain attenuation vs. distance for different frequencies and rain rates.

The linear relationship between Arain and d implies that for a given rain rate and
frequency, attenuation increases proportionally with distance. This is evident across all
plots in Figure 3, where the attenuation curves exhibit a linear trend as distance extends
from 0 to 3000 km.

Higher frequencies result in greater rain attenuation, as demonstrated by the sepa-
ration of curves for 24 GHz, 28 GHz, and 32 GHz. This effect is due to the proportional
relationship between the frequency and the attenuation coefficient γr, which generally
increases with frequency. At a given rain rate, the 32 GHz signal experiences the highest
attenuation, followed by 28 GHz and 24 GHz. For instance, at a rain rate of 5 mm/h and
a distance of 3000 km, the rain attenuation at 32 GHz reaches nearly 4000 dB, while at
24 GHz, it remains below 2000 dB. This demonstrates that for long-distance communication,
higher frequencies suffer considerably more loss due to rain attenuation, making them less
suitable for adverse weather conditions.

The influence of rain rate on attenuation is also apparent in Figure 3. As the rain rate
increases from 5 mm/h to 50 mm/h, the attenuation grows substantially for all frequencies.
The relationship between rain rate R and specific attenuation γr follows a power-law
function γr = kRα, meaning that even small increases in R can lead to significant rises in
γr, particularly at higher frequencies where k and α are larger. This phenomenon is evident
at a rain rate of 50 mm/h, where attenuation at 32 GHz approaches 8 × 104 dB at a distance
of 3000 km, compared to about 1.5 × 104 dB at 24 GHz under the same conditions.

The observed pattern indicates that the rain rate plays a critical role in determining
signal loss. For example, in a heavy-rain scenario (50 mm/h), even a lower-frequency signal
like 24 GHz experiences severe attenuation, which can reach values around 1.5 × 104 dB
over long distances. Thus, rain intensity directly impacts link reliability, especially in high-
frequency bands where attenuation is already exacerbated by frequency-dependent factors.

The analysis of rain attenuation reveals essential considerations for 5G–satellite
networks, particularly in regions prone to heavy rainfall. Higher frequencies, such as
32 GHz, though useful for bandwidth efficiency, may not be viable for long distances or
high-rainfall areas due to the high attenuation values observed. Instead, lower frequencies
like 24 GHz, while still impacted by rain, offer relatively lower attenuation, suggesting a
trade-off between data rate and weather resilience.

For IoT applications in smart cities, this trade-off is significant. In dense urban areas,
where high-frequency bands are preferred for their data handling capabilities, the presence
of rain can substantially degrade the link quality, impacting real-time data transmission
essential for critical services. To mitigate this, adaptive frequency management, such as
dynamically shifting to lower frequencies during heavy rain, could be implemented to
sustain network reliability.
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4.3. Effect of Satellite Height on Received Power

Figure 4 illustrates the relationship between satellite height and received power over a
range of distances in the two-ray model. In this model, received power is influenced by
the path length and ground reflection effects. As the height of the satellite increases from
300 km to 1000 km, the received power generally decreases, particularly at shorter distances.
This is due to the increased path length associated with higher altitudes, which leads to
greater free-space path loss and a reduced influence of ground reflections.

Figure 4. Effect of satellite height on received power in two-ray model.

As distance increases, the received power values for different satellite heights converge.
Beyond 2000 km, the differences between satellite heights become less noticeable, with all
curves following a similar decreasing trend. For instance, at a distance of 2500 km, the
received power for a satellite height of 300 km is approximately −153 dBm, while it is
about −154 dBm for a satellite height of 700 km. This indicates that at greater distances, the
dominant factor influencing received power is the path length, and the impact of satellite
height diminishes. This trend suggests that for applications requiring connectivity over
very long distances, the choice of satellite height has a smaller effect on received power
compared to applications with shorter ranges.

Figure 5 provides a closer examination of received power at shorter distances (up to
100 km) across different satellite heights. Here, the differences in received power due to
satellite height are particularly evident. For instance, at a distance of 50 km, the received
power for a satellite height of 300 km is approximately −115 dBm, while it is around
−124 dBm, −129 dBm, and −136 dBm for satellite heights of 500 km, 700 km, and 1000 km,
respectively. This detailed view highlights that lower satellite altitudes provide substan-
tially higher received power at short distances, making them preferable for applications
where high power levels and signal strength are critical over short ranges.

These findings suggest that lower satellite altitudes are advantageous for applications
requiring robust signal strength at shorter distances, such as IoT deployments, remote
sensing, and certain emergency communications, where reliable connectivity is required
within a limited area. However, for applications focused on wide-area coverage over long
distances, higher satellite altitudes may be sufficient, as the effect of height on received
power becomes less significant at extended ranges.

Figure 6 provides a heatmap of received power across varying distances and satellite
heights. As the satellite height increases, received power decreases, with more pronounced
losses at longer distances. This heatmap offers a comprehensive visualization, supporting
system design decisions regarding optimal satellite height based on coverage area and
power requirements.
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Figure 5. Effect of satellite height on received power (short range).

Figure 6. Heatmap of received power (dBm) vs. distance and satellite height.

4.4. Received Power vs. Distance Across Frequencies in the FSPL Model

Figure 7 illustrates the impact of frequency on received power. The analysis compares
three frequencies: 24 GHz, 28 GHz, and 32 GHz, which represent typical 5G mmWave
frequencies. The results clearly show that higher frequencies are associated with increased
path loss, particularly over longer distances, due to the relationship between frequency and
free-space attenuation.

Figure 7. Effect of frequency on path loss in free-space model.
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At 1000 km, the received power at 24 GHz is approximately −125 dBm, whereas it
drops to around −128 dBm at 28 GHz and −130 dBm at 32 GHz. This 5 dB difference
between 24 GHz and 32 GHz highlights the increasing sensitivity of higher frequencies
to path loss over longer distances. By 3000 km, the received power at 24 GHz falls to
around −145 dBm, while at 28 GHz and 32 GHz, it reaches approximately −148 dBm and
−150 dBm, respectively. The cumulative increase in path loss with frequency becomes evi-
dent over long-range communication, as higher frequencies experience greater attenuation.

4.5. Path Loss vs. Transmitter–Receiver (Tx-Rx) Separation Distance

Figures 8 and 9 model compare different path loss models as a function of the
transmitter–receiver (Tx-Rx) separation distance. These models illustrate the path loss for
both high and low receiver antenna heights using various path loss models. The two-ray
model is employed to account for the ground reflection in addition to the direct LOS path.
This model is calculated separately for high and low receiver heights to observe how the
reflection affects path loss at different altitudes.

Figure 8. Path loss vs. Tx-Rx separation (high Rx).

Figure 8 illustrates the relationship between path loss and the separation distance
between the transmitter (Tx) and receiver (Rx) for a high receiver height. The graph is
essential for comprehending the predictions of route loss by different propagation models
at different distances, particularly in situations with raised receiver positions. This is
particularly critical for 5G–satellite network applications and elevated terrestrial receivers.
The FSPL model, is the simplest model and serves as a baseline, showing a continuous
and gradual increase in path loss as the Tx-Rx separation increases. The two-ray model,
shown by the red curve, considers both the direct path and a reflected path (typically from
the ground) between the transmitter and receiver. This model introduces a more complex
behaviour, particularly noticeable in the oscillatory pattern of the path loss. The periodic
fluctuations are due to constructive and destructive interference between the direct and
reflected paths, which result in alternating regions of higher and lower path loss. This model
is particularly important in environments where ground reflection plays a significant role.

Furthermore, from Figure 8, the log-distance path loss model, depicted by the blue
curve, is a more empirical model that accounts for factors like the environment and the
terrain. It shows a more gradual increase in path loss compared to the FSPL model and
tends to be smoother than the two-ray model. This model is vital for analysing urban or
suburban environments where multiple obstacles affect the signal propagation. The high
receiver height in this simulation likely reduces the impact of ground reflections to some
extent, as indicated by the fact that the two-ray model’s oscillations decrease in amplitude
as distance increases. However, the high receiver height also means that any interference
effects are more pronounced over longer distances, as the direct and reflected paths can
differ significantly in length, leading to greater phase differences. The two-ray model’s
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ability to predict the oscillatory behaviour of path loss due to multipath interference is
crucial for designing robust communication links, particularly in 5G–satellite integrated
networks, where such effects can be pronounced. This model is particularly relevant for
ground stations communicating with satellites, where reflections from the ground or water
surfaces can lead to significant variations in signal strength.

Figure 9. Path loss vs. Tx-Rx separation (low Rx).

Figure 9 provides a detailed analysis of the path loss experienced at various separation
distances between the transmitter (Tx) and receiver (Rx) when the receiver is at a lower
elevation. This is crucial for understanding how different propagation models behave
under the condition of a low receiver height, which is a common scenario in ground-based
IoT devices or terrestrial communication systems. The analysis involves comparing several
path loss models, namely, the free-space path loss (FSPL) model, the two-ray model, the
log-distance path loss model, and the parabolic equation path loss model. The FSPL model
is represented by the green dashed line and assumes an idealized scenario where the signal
propagates in a straight line through free space without any obstructions or reflections.
The path loss increases steadily with the distance between the Tx and Rx. This model is
often used as a baseline because it only considers the distance and frequency but not the
environment. The two-ray model is shown with the red curve. This model accounts for both
the direct path and a reflected path (typically from the ground) between the transmitter
and the receiver. The characteristic feature of this model is the oscillatory behaviour in
the path loss curve, which results from constructive and destructive interference between
the direct and reflected signals. The oscillations are particularly pronounced at shorter
distances and gradually diminish as the distance increases. This behaviour is due to
the phase difference between the direct and reflected paths becoming more significant at
shorter ranges.

With a low Rx height, ground reflections play a significant role, as evidenced by the
pronounced oscillations in the two-ray model. This suggests that in low-height applications,
such as ground-based IoT devices, reflections from the ground or nearby surfaces can
lead to significant variations in signal strength, potentially causing areas of strong signal
(constructive interference) or weak signal (destructive interference). The low Rx height
also means that the effective path difference between the direct and reflected waves is
smaller, leading to more frequent interference patterns. This is particularly important when
designing systems for ground-based applications, where maintaining consistent signal
strength is crucial for reliable communication.

4.6. Channel Capacity vs. Distance with Bandwidth Variations

Figure 10 illustrates the relationship between channel capacity and distance for three
different bandwidths: 10 MHz, 20 MHz, and 50 MHz. Channel capacity is a critical metric
for applications that require high data rates, such as Internet of Things (IoT) devices com-
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municating over satellite links. As expected, channel capacity increases with bandwidth,
highlighting the benefits of allocating wider bandwidths to support high-data-rate require-
ments. However, the capacity decreases significantly with distance due to the reduction in
received power, demonstrating the impact of path loss over extended ranges.

Figure 10. Channel capacity vs. distance for different bandwidths.

At shorter distances (within 100 km), the channel capacity is relatively high across all
bandwidths. For a 50 MHz bandwidth, the channel capacity reaches approximately 4500 Mbps
at close range, while for 20 MHz and 10 MHz bandwidths, the channel capacities are around
2000 Mbps and 1000 Mbps, respectively. This difference emphasizes the strong dependence
of channel capacity on bandwidth, as wider bandwidths allow for higher data rates, thereby
supporting more demanding applications in close-proximity communications.

As the distance increases, the channel capacity decreases sharply. For example, at a
distance of 500 km, the capacity for 50 MHz has already dropped to around 800 Mbps,
while the 20 MHz and 10 MHz bandwidths offer only 300 Mbps and 150 Mbps, respectively.
This decline is due to the significant loss in signal strength over longer distances, which
reduces the signal-to-noise ratio (SNR) and thereby limits the achievable data rates. This
trend suggests that, for satellite-IoT applications requiring high data rates, maintaining
adequate channel capacity becomes increasingly challenging as the distance grows.

Beyond 1000 km, the channel capacities continue to diminish, stabilizing at very
low values as the received power falls to levels that cannot support high data rates. At
3000 km, the channel capacities for the 50 MHz, 20 MHz, and 10 MHz bandwidths have
dropped to approximately 300 Mbps, 120 Mbps, and 60 Mbps, respectively. These values
indicate that, while wider bandwidths initially provide higher capacities, their advan-
tage diminishes over very long distances, where path loss becomes the dominant factor,
outweighing the benefits of increased bandwidth.

The analysis in Figure 10 underscores a key trade-off in satellite–IoT communication
design: while higher bandwidths can provide greater channel capacity, their effectiveness
is constrained by distance due to signal attenuation. For IoT applications that require
extended range, lower bandwidths may be more efficient in terms of power and spectral
efficiency, albeit at the cost of reduced data rates. Conversely, for high-data-rate applications
within shorter ranges, maximizing bandwidth can significantly enhance capacity, making it
suitable for high-throughput IoT and real-time applications in 5G–satellite networks.

4.7. Outage Probability vs. Distance for Different SNR Thresholds

Figure 11 illustrates the variation in outage probability with respect to distance for
three different SNR thresholds: 5 dB, 10 dB, and 15 dB. Outage probability is a critical
metric in evaluating link reliability, as it represents the likelihood that the received signal
quality will fall below a specified SNR threshold, resulting in a communication failure. In
scenarios involving satellite or long-range IoT communications, achieving a sufficiently
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high SNR is often challenging due to distance-induced path loss, making outage probability
a significant factor in the design and operation of these systems.

Figure 11. Outage probability vs. distance for different SNR thresholds.

The plot reveals that as the SNR threshold increases, the outage probability also rises
across all distances, but the effect becomes more pronounced at greater distances. For
instance, at a distance of 2000 km, the outage probability is approximately 0.005 (0.5%) for
an SNR threshold of 5 dB, but this increases to around 0.01 (1%) for a threshold of 10 dB
and reaches nearly 0.04 (4%) for a threshold of 15 dB. This trend highlights that higher SNR
requirements make the system more susceptible to outages, particularly over extended
distances, where signal attenuation is significant.

The exponential increase in outage probability with distance is especially notable
at distances beyond 2500 km. For example, at 3000 km, the outage probability for a
5 dB SNR threshold remains below 0.05 (5%), while for a 10 dB threshold it exceeds 0.05
(5%) and for a 15 dB threshold it approaches 0.25 (25%). This substantial rise in outage
probability indicates the critical impact of distance on signal quality, emphasizing the
difficulty of maintaining reliable communications in long-range or rural IoT applications
where terrestrial infrastructure is sparse or non-existent.

These results underscore the need for careful consideration of SNR thresholds in
system design, particularly in rural or remote IoT deployments where maintaining a robust
link over long distances is crucial. Lowering the SNR threshold may improve reliability by
reducing outage probability, but this could come at the expense of reduced data rates or
compromised performance. Thus, a balance must be struck between SNR requirements
and the intended application, especially in scenarios where high reliability is paramount,
such as in emergency or environmental monitoring systems.

5. Analytical Validation and Comparison with Existing Systems

The proposed framework for the 5G–satellite integrated network was validated
through analytical comparison with established models and performance benchmark-
ing relative to existing systems. To validate the proposed model, its outputs were com-
pared against established theoretical frameworks, specifically the ITU-R P.676 and ITU-R
P.838 recommendations for atmospheric and rain attenuation, respectively [35–38]. These
recommendations provide tabulated data and equations widely adopted in the telecommu-
nications industry for high-frequency signal propagation.

5.1. Atmospheric Attenuation Validation

The analytical model for atmospheric attenuation integrates frequency-dependent
dry-air and wet-air absorption coefficients as follows:

Aatm( f , d) = (αdry( f ) + αwet( f )) · d, (21)
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where αdry( f ) ∝ f 2 and αwet( f ) ∝ f 1.6.
A comparison was conducted for frequencies of 24 GHz, 28 GHz, and 32 GHz over

distances ranging from 10 km to 3000 km. Figure 12, shows close alignment between the
proposed model and ITU-R tabulated values, with a mean absolute error (MAE) of less
than 0.35 dB.

Figure 12. Atmospheric attenuation validation and comparison.

5.2. Rain Attenuation Validation

Rain attenuation was modelled using the ITU-R P.838 empirical equation:

Arain( f , d) = kRα · d, (22)

where k and α are frequency-dependent constants, R is the rain rate, and d is the path length.
The proposed model closely matched the ITU-R tabulated results for rain intensities of

5 mm/h, 10 mm/h, 20 mm/h, and 50 mm/h, as shown in Figure 13.

Figure 13. Rain attenuation validation for 32 GHz. The proposed model aligns closely with ITU-R
tabulated values for various rain intensities.

6. Conclusions

This paper investigated the performance of 5G–satellite integrated networks using
the two-ray and free-space path loss (FSPL) models, with an emphasis on IoT appli-
cations. The two-ray model, which accounts for both direct and reflected paths, high-
lighted significant oscillations in received power at short distances due to interference
effects. For instance, at 50 km and a 300 km satellite altitude, the received power reached
−115 dBm, but it dropped to −136 dBm at 1000 km altitude, illustrating that lower altitudes
are preferable for high-power, short-range applications. The analysis showed that higher
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frequencies increase path loss, especially at long distances. At 1000 km, the received power
at 24 GHz was approximately −125 dBm, compared to −130 dBm at 32 GHz, emphasizing
the importance of frequency selection in achieving extended coverage. Channel capacity,
influenced by bandwidth, was also shown to decrease with distance: at 3000 km, a 50 MHz
bandwidth provided 300 Mbps, whereas 10 MHz offered only 60 Mbps, demonstrating
the trade-off between bandwidth and range. An outage probability analysis revealed that
higher SNR thresholds lead to greater outage probabilities, particularly at long distances.
For an SNR threshold of 15 dB, the outage probability at 3000 km reached 25%, highlighting
the challenge of maintaining reliable connections over long distances. In summary, our
findings suggest that network configurations must be optimized for satellite height, fre-
quency, bandwidth, and SNR requirements to achieve reliable 5G–satellite IoT connectivity
across various scenarios. Future work could explore adaptive algorithms to further enhance
network performance in dynamic environments.
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