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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• A neural network driven model is pre-
sented for proton exchange membrane
fuel cells.

• The experimental results are replicated
with high accuracy.

• Computational speed matches existing
hierarchical models with preserved
nonlinearity.

• High gas flow rate can be detrimental to
fuel cell performance under low
humidity.

• 80% of anode catalyst layer is found to
generate little current, especially near
the inlet.
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A B S T R A C T

The computational demands of 3D continuum models for proton exchange membrane fuel cells remain sub-
stantial. One prevalent approach is the hierarchical model combining a 2D/3D flow field with a 1D sub-model for
the catalyst layers and membrane. However, existing studies often simplify the 1D domain to a linearized 0D
lumped model, potentially resulting in significant errors at high loads. In this study, we present a computa-
tionally efficient neural network driven 3D+1D model for proton exchange membrane fuel cells. The 3D sub-
model captures transport in the gas channels and gas diffusion layers and is coupled with a 1D electro-
chemical sub-model for microporous layers, membrane, and catalyst layers. To reduce computational intensity of
the full 1D description, a neural network surrogates the 1D electrochemical sub-model for coupling with the 3D
domain. Trained by model-generated large synthetic datasets, the neural network achieves root mean square
errors of less than 0.2%. The model is validated against experimental results under various relative humidities. It
is then employed to investigate the nonlinear distribution of internal states under different operating conditions.
With the neural network operating at 0.5% of the computing cost of the 1D sub-model, the hybrid model pre-
serves a detailed and nonlinear representation of the internal fuel cell states while maintaining computational
costs comparable to conventional 3D+0D models. The presented hybrid data-driven and physical modeling
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framework offers high accuracy and computing speed across a broad spectrum of operating conditions, poten-
tially aiding the rapid optimization of both the membrane electrode assembly and the gas channel geometry.

1. Introduction

Proton exchange membrane fuel cells (PEMFCs) use hydrogen as a
fuel to generate electricity with zero local carbon emissions and are
considered a promising energy conversion device for the clean energy

economy [1]. However, the widespread commercialization of PEMFCs
still faces several challenges, which include achieving higher perfor-
mance, reducing costs, and enhancing durability [2]. Over the last few
decades, numerous efforts have been made to improve PEMFCs, with
numerical models extensively used for understanding physicochemical
processes inside cells and optimizing their designs [3].

Existing PEMFC models can be classified into three categories [4]:

Nomenclature

Symbols
a Specific surface area, m2 m-3

c Concentration, mol m-3

Cp Heat capacity, J kg-1 K-1

d Diameter, m
D Diffusion coefficients, m2 s-1

Er Agglomerate effective factor
f Ionomer water volume fraction
F Faraday constant, C mol-1

h Henry’s constant, Pa m3 mol-1

H Enthalpy, kJ mol-1

i Local volumetric current density or exchange current
density, A m-3 or A cm-2

I Output current density, A m-2

j Flux, A m-2, mol m-2 s-1, W m-2

k Thermal conductivity, W m-1 K-1

K Permeability, m2

M Molar mass, kg mol-1

P Pressure, Pa
q Cathode half-cell reaction coefficient, s-1

R Gas constant, J mol-1 K-1

RH Relative humidity
s Liquid water saturation
S Source term
ΔS Entropy change, J mol-1 K-1

t Time, s
T Temperature, K
u Fluid velocity, m s-1

U Potential, V
v Volume flow rate, m3 s-1

V Molar volume or, m3 mol-1

X Molar fraction
Y Mass fraction

Greeks
β Thiele modulus
γ Evaporation/condensation coefficient, s-1

δ Film thickness, m
ε Volume fraction
η Overpotential, V
θ Coverage ratio
κ Liquid water permeability, m2

λ Ionomer water content
μ Viscosity, mPa s
ξ Electro-osmotic drag coefficient
ρ Density, kg m-3

σ Electron/proton conductivity, S m-1

τ Tortuosity
ϕ Potential, V

Subscripts
0 Reference
a Anode
ad Adsorption/desorption
agg Agglomerate
c Cathode
cc Current collector
cell Fuel cell
CH Channel
e- Electron
ec Evaporation/condensation
eff Effective
film Ionomer film
g Gas
H2 Hydrogen
H2O Water
HOR Hydrogen oxidation reaction
i Species
l Liquid water
m Mass
NN Neural network
o Outlet
O2 Oxygen
p Pore
P Proton
PtO Platinum oxide
ref Reference
sat Saturated
T Temperature
w Liquid water
λ Ionomer water content

Abbreviations
BP Bipolar plate
CL Catalyst layer
ECSA Electrochemical surface area
GDL Gas diffusion layer
HOR Hydrogen oxidation reaction
LSTM Long short-term memory network
MEA Membrane electrode assembly
MSE Mean square error
NN Neural network
ODE Ordinary differential equation
ORR Oxygen reduction reaction
PDE Partial differential equation
PSO Particle swarm optimization
PEMFC Proton exchange membrane fuel cell
RH Relative humidity
RMSE Root mean square error
RSA Response surface approximation
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empirical, physical, and data-driven models. A typical empirical model
describes the polarization losses, including the ohmic, activation, and
concentration losses [5]. Empirical models can be fitted to the polari-
zation curves measured by experiments and have very low computa-
tional cost, but their accuracy is limited to narrow ranges of operating
conditions [6]. However, despite the lack of generalizability, the low
computational demand has resulted in the use of empirical models in
many aspects of fuel cells, such as lifetime prediction [7] and system
control [8].

On the other hand, physics-based continuum models solve partial
differential equations (PDEs) or ordinary differential equations (ODEs)
for the physicochemical processes inside a fuel cell, and they usually
have high accuracy under wider ranges of operating conditions. The
continuum models can be categorized based on their dimensionality [6],
which can be 1D [9], 2D [10], or 3D [11]. Using a 1D model [12], Vetter
and Schumacher [13] conducted a parametric study on the sensitivity of
the material properties. Five membrane properties, including: mem-
brane hydration–water activity relationship, electro-osmotic drag coef-
ficient, membrane thickness, membrane water diffusion coefficient, and
proton transport resistance, were found to be the most influential pa-
rameters [14]. However, their model potentially underestimates the
influence of oxygen transport properties due to the ignored gradient in
the gas channels and the ionomer. Based on the conventional 1D PEMFC
models, Wang et al. [9] developed a 1D model with catalyst layer (CL)
agglomerates and ionomer film. The model was used to analyze the ef-
fects of oxygen and proton transport under different conditions, but the
electro-osmotic drag was ignored. Zhang et al. [15] compared the
simulation results of 1D and 3D models, finding that despite using
consistent physical parameters, the 1D model tends to predict signifi-
cantly higher voltage, even when considering a single channel.
Compared to empirical models, the 1D models included the heteroge-
neity in the thickness direction at the cost of a several magnitudes longer
computing time [4], but since it ignores the channel/land effect, the
gradient in gas channels, the in-plane transport, etc., the accuracy of
these models is limited to smaller cells with high gas flow rates or low
current densities.

3D PEMFC models directly consider the flow field designs, which
enables them to capture the large heterogeneity across the CL surface
and achieve higher precision. Yao et al. [16] developed a 3D PEMFC
model with CL agglomerates and subsequently employed the model to
train a neural network (NN) for designing the CLs, highlighting the
volume fraction of ionomer as the most influential factor. However, to
mitigate the computational cost, only a single gas channel was consid-
ered. Martín-Alcántara et al. [17] conducted a 3D PEMFC simulation,
which also considered a single gas channel, and concluded that higher
temperatures can lead to better performance due to the enhanced water
transport in the membrane. García-Salaberri and Sánchez-Ramos [18]
combined a 3D single channel continuum model with a modified
pore-network model for liquid water saturation to investigate the
channel-rib effect, and a lower GDL thermal conductivity was found to
be beneficial for reducing saturation under the rib. However, these 3D
models can have a significantly larger number of mesh elements in
comparison with the 1D models, resulting in substantially higher
computational cost. Consequently, many of these models only account
for a single gas channel [16], while models with large active areas and
multiple gas channels may encompass over ten million mesh elements
and require several days for computation [19]. Additionally, large 3D
models may also encounter numerical problems, leading to unstable
convergence and solver failure [20].

To avoid the lengthy simulation time associated with the 3D models,
a hierarchical 3D+1D method was devised by Cordiner et al. [21],
where a 3D gas channel/gas diffusion layer (GDL) model is combined
with a local electrochemical sub-model. Given that the thicknesses of the
CLs/micro porous layers (MPLs)/membrane are around two to three
magnitudes smaller than the length and width of these layers, the mass,
heat, electron, and proton transport in these thin layers are governed by

the transport in the thickness direction [19]. Thus, by neglecting the
in-plane transport and simplifying the CLs/MPLs/membrane to lumped
models or reduced order models, the hierarchical method enables the
removal of mesh elements in those layers, resulting in a significant
reduction in computational time. However, the simplifications made to
these layers also lead to homogenized current density and transport
properties along the thickness direction, thereby compromising model
accuracy, especially under high current densities, low humidity, or low
stoichiometry conditions. To date, various hierarchical models have
been developed for PEMFCs. Grimm et al. [22] established a 2D+1D
model that discretized the cell area into 2D segments with a local elec-
trochemical sub-model. The model considered the anode recirculation
loop, and its low computational cost facilitates the rapid optimization of
water management. It was observed that flow fields allowing internal
water circulation yielded benefits through a more uniform distribution
of anode humidity. However, the additional assumptions required by
this segmented method, such as linear pressure drop and ignoring
condensation, may potentially result in an overestimation of perfor-
mance under conditions of high humidity and high current density. Xie
et al. [19] developed a hierarchical model where a linearized
node-based 1D MPL/CL/membrane electrochemical model was coupled
with a 3D model via an extra data exchange layer. The model was then
used for the analysis of PEMFC performance under GDL deformation due
to the assembly pressure [23] and investigating the internal transport
under different flow field designs [24]. However, despite being signifi-
cantly faster than whole 3D models, predictions of the 3D+1D model can
diverge from those of the full 3D model by over 15% [19], possibly due
to the ignored nonlinearity in the CLs and membrane [4].

In contrast to the above physics-based models, data-driven methods
based on machine learning rely directly on the input-output relationship
of the training data without delving into detailed mechanisms [25], but
their accuracy is strongly dependent on the quantity and quality of the
data [6]. In many studies, the experimental results are directly applied
as the training data for the purpose of performance prediction [26], fault
detection [27], remaining useful life estimation [28], etc. Yet, owing to
the cost and time constraints associated with acquiring experimental
data, these models usually limit their consideration to a specific set of
operating conditions and design parameters, making them only appli-
cable to certain working scenarios.

Due to these considerations, data-driven models trained with data
generated by complex physics-based models have become increasingly
popular [6]. These data-driven surrogate models are able to accurately
capture the input-output relationship of the physics based-models with
less than 1% computing cost, thereby enabling the broader application
of continuum models [29]. Feng et al. [30], for instance, trained a NN
with the data from a 1D PEMFC model, and the operating conditions of a
fuel cell stack were optimized by the particle swarm optimization (PSO)
algorithm to achieve maximum power density. Legala et al. [31]
compared different machine learning methods based on a dataset
generated from physics-based models, with NNs found to have higher
accuracy, whereas support vector machines were advantageous when
focusing on a single output. While the above models only considered
steady-state conditions, methods like long short-term memory network
(LSTM) are also applicable to dynamic scenarios. In the study of Wang
et al. [32], three data-driven approaches, namely multivariate poly-
nomial regression, support vector machine, and LSTM, were compared
on a dynamic dataset synthesized with a transient electrochemical
model. While all methods showed comparable accuracy in predicting
cell voltage, LSTM notably outperformed the other two methods for the
prediction of resistance.

To extend the generalizability of the surrogate models, some studies
also used 3D models to generate training data. Based on a dataset of 85
simulation results generated by a 3D two-phase continuum model, Vaz
et al. [33] compared a NN surrogate model with the response surface
approximation (RSA) method. The root mean square error (RMSE) of the
NN was found to be 50% smaller than that of the RSA. However, in a
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similar comparison conducted by Wang et al. [34], the RSA was found to
have higher accuracy with smaller datasets (46 points), but the advan-
tage diminishes with increased dataset size (up to 114 sample points). In
addition to the prediction of polarization curves, Wang et al. [35]
developed a data-driven surrogate approach, which was used to capture
the fuel cell performance as well as the contours of the physics fields
predicted by a 3D physics-based model. However, challenges persist as
the 3D models in these studies may require over 10 h to generate a single
data point. Consequently, surrogate models are usually restricted to
small cells, and can deviate from physics-based models by as much as
24% due to the scarcity of training data [35], indicating that a fast yet
accurate 3D model is still required before the widespread adoption of
these surrogate approaches.

To effectively capture the heterogeneity within the membrane elec-
trode assembly (MEA) without increasing the computational costs, a
machine learning driven 3D+1D hierarchical model for PEMFCs is
presented in this study. The model combines a 3D model covering the
GDLs and the gas channels with a NN surrogate sub-model. The NN is
trained using a large synthetic dataset generated from a full 1D elec-
trochemical sub-model of the MPLs/CLs/membrane to capture its input-
output behavior, with an RMSE of less than 0.2%. The proposed model
can predict fuel cell performance with a computational cost similar to
that of conventional linearized 3D+0D hierarchical models, while
resolving the heterogeneity in the membrane and CLs. The model is
validated using experimental data under different operating conditions
and is then used for analyzing the effects of different operating condi-
tions and flow field designs.

2. Model development

2.1. Model overview

Fig. 1 shows an overview of the machine learning accelerated
3D+1D model. As shown in the figure, the 3D sub-model, which includes
the mass, heat, and electron transport in the GDLs and gas channels, is
coupled with a full 1D description of the MPLs, CLs, membrane, and CL
agglomerates by exchanging the boundary fluxes and boundary values
at the MPL/GDL interface. To reduce the computational cost, a NN is
developed to replace the dense-mesh, multi-physics 1D sub-model for
coupling with the 3D domain. Large synthetic datasets are generated
using the 1D model for training the NNs, ensuring an accurate descrip-
tion of the fuel cell’s internal states. The 3D sub-model provides the
values of the dependent variables at the cathode/anode GDL/MPL in-
terfaces as Dirichlet boundary conditions for the 1D domain, which act
as the input of the NN. As the NN replicates the input-output relationship
of the 1D electrochemical model, these inputs enable the NN to compute
the corresponding fluxes, which are then fed back into the 3D model as

boundary conditions at the GDL/MPL interface during each iteration
step.

The model is solved in COMSOL Multiphysics 5.3, and the NNs are
imported into COMSOL with a custom MATLAB code.

2.2. 3D channel/GDL sub-model

In the 3D sub-model, it is assumed that the cell operates at steady
state, all gas flow is laminar, the GDLs are homogeneous and continuum
porous media, and that there is uniform temperature and voltage in the
bipolar plates (BPs). In addition, it is also assumed that the liquid water
saturation in the gas channel is small and therefore can be ignored.
While some studies suggested liquid water accumulated in the channels
could play an important role [36,37], the validity of this assumption is
confirmed by a mist-flow model from the literature [19,37], and the
result is shown in Figure S1 in the N

N materials. The extremely low liquid water saturation in the gas
channels in the simulated case could be attributed to the small cell area
and a high gas flow rate.

The 3D sub-model solves the mass, heat, species, and electron
transport in the GDLs and gas channels, which incorporates six PDEs as
follows:

Electron conservation:

− ∇⋅(σe− ∇ϕe− ) = 0 (1)

Energy conservation:

∇⋅
(
εp(1 − s)ρgCp,gugT

)
− ∇⋅(k∇T) = ST (2)

Mass conservation:

∇⋅
(
ρgug

)
= Sm (3)

Momentum conservation:

ρg∇
(
ugug

)

ε2
p(1 − s)2 = ∇

⎡

⎣ − Pg +
μg

(
∇ug +∇uT

g

)

εp(1 − s)
−

2μg∇ug

3εp(1 − s)

⎤

⎦

−

(
μg

Keff
+

Sm

ε2
p(1 − s)2

)

ug

(4)

Gaseous species conservation (i for H2O, O2, N2, and H2):

∇
(
ρgugYi

)
− ∇

(
ρgDeff

i ∇Yi

)
= SiMi (5)

Liquid water conservation:

− ∇⋅
(

κ
μwVw

∇Pl

)

= Sec (6)

Fig. 1. Schematic illustration of the NN driven 3D+1D model, with the NN serving as a surrogate for the 1D sub-domain.
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where σe-, k, ρg, εp, s, μg, Keff, Di
eff, Mi, κ, μw, and Vw are the electric

conductivity, the thermal conductivity, the gas density, the porosity, the
liquid water saturation, the gas viscosity, the effective gas permeability,
the effective gas diffusion coefficient, the molar mass of species i, the
liquid water viscosity, and the liquid water molar volume, respectively.
The source terms and the boundary conditions of these PDEs are shown
in Table 1 and Table 2, respectively. While the electron and liquid water
conservation equations are only solved for the GDLs, other equations are
solved for both GDLs and gas channels. For all porous layers, the
effective transport properties are used, which can be found in Table S1 in
the supplementary materials. The geometric properties of the 3D sub-
model are the same as the experiment and are listed in Table 3. The
default segregated solver and relative tolerance from COMSOL Multi-
physics were used for the 3D model, with some of the segregated steps
modified to have a smaller initial damping factor and more iterations.

2.3. 1D membrane electrode assembly (MEA) sub-model

The physics-based 1D electrochemical model
The mass transport, heat transfer, and electrochemical reactions in

the CLs and MPLs are first described by a 1D sub-model. This sub-model
is based on the study of Vetter and Schumacher [12] and is similar to the
1D model used in our previous work [4]. The governing PDEs can be
written as:

Electron conservation:

− ∇⋅(σe− ∇ϕe− ) = Se− (7)

Proton conservation:

− ∇⋅(σP∇ϕP) = SP (8)

Energy conservation:

− ∇⋅(k∇T) = ST (9)

Gaseous species conservation (i = H2, O2 and H2O(g)):

− ∇⋅
(

Deff
i

P
RT

∇Xi

)

= Si (10)

Liquid water conservation:

− ∇⋅
(

κ
μwVw

∇Pl

)

= Ss (11)

Water conservation in the ionomer phase:

− ∇⋅
(

Dλ

Vm
∇λ −

ξ
F
jP
)

= Sλ (12)

where σP, Dλ, ξ, jP, and Vm are the proton conductivity, the water
diffusion coefficient in ionomer phase, the electro-osmotic drag coeffi-
cient, the proton flux, and the molar volume of ionomer, respectively.
The source terms and boundary conditions of these PDEs are summa-
rized in Tables 4 and 5, respectively.

The hydrogen oxidation reaction (HOR) is described by the Butler-
Volmer equation:

Table 1
Source terms of the 3D sub-model.

Source terms Values

Heat ST = {
HecSecChannels

HecSec + σe− ‖ ∇ϕe− ‖
2GDLs

Mass Sm = − SecMH2O

H2 0
H2O SH2O = − Sec

O2 0
Condensation/Evaporation Sec = {

γecε(1 − s)(cH2O − csat)cH2O > csat
γecεs(cH2O − csat)cH2O < csat

Table 2
Boundary conditions of the 3D sub-model.

Scalars Boundary conditions Boundary regions

ϕe- ϕe− = 0 Anode GDL/BP interface
ϕe− = Ucell Cathode GDL/BP interface

− σe−
∂ϕe−

∂z
= je− ,NN

GDL/MPL interfaces

T T = Tcc All outer surfaces

− k
∂T
∂z

= jT,NN
GDL/MPL interfaces

Pg Pg = Po Anode/cathode outlets
ug ug =

va

HCHWCH

Anode inlet

ug =
vc

HCHWCH

Cathode inlet

YO2 YO2 =
0.21(1 − RHXsat)MO2

Mg

Cathode inlet

YO2 = 0 Anode inlet

− DO2

∂cO2

∂z
= jO2 ,NN

GDL/MPL interfaces

YH2O YH2O =
RHaXsatMH2O

Mg

Anode inlet

YH2O =
RHcXsatMH2O

Mg

Cathode inlet

− DH2O
∂cH2O

∂z
= jH2O,NN

GDL/MPL interfaces

YH2
− DH2

∂cH2

∂z
= jH2 ,NN

GDL/MPL interfaces

Pl Pl = Pg GDL/channel interfaces

−
κ

μwVw

∂Pl

∂z
= jl,NN

GDL/MPL interfaces

Table 3
Geometric properties of the 3D sub-model and design parameters for the 1D sub-
model.

Property Values

Channel width 0.80 mm
Channel height 1 mm
Channel length 22.36 mm
Land width 0.86 mm
Cell width 22.36 mm
Cell length 22.36 mm
GDL thickness (including

MPL)
342 μm [38] (Value for W1S1010 GDL)

MPL thickness 45 [38] (Value for W1S1010 GDL)
Pt loading 0.5 mg cm-2

Catalyst type 60 wt% Pt on Vulcan carbon
Ionomer/Carbon ratio 0.6
Electro chemical surface

area (ECSA)
12.3 m2 cm-3 (calculated with cyclic voltammetry data,
equivalent to 24.6 m2 g-1)

Table 4
Source terms of the 1D electrochemical model.

Source terms Values

Electrons Se− = − iCLs
Protons SP = iCLs
Heat ST =

{

σe− (∇ϕe− )
2
+ HecSadMPLs

σe− (∇ϕe− )
2
+ σP(∇ϕP)

2
+

(

iη −
iTΔS
2F

)

+ HadSad + HecSadCLs

σP(∇ϕP)
2Membrane

H2 SH2 = −
i

2F
anodeCL

H2O SH2O = − Sec

O2 SO2 =
i

4F
cathodeCL

Dissolved water
Sλ = {

Sad −
i

2F
cathodeCL

SadanodeCL
Condensation/

Evaporation
Sec = {

γecε(1 − s)(cH2O − csat)cH2O > csat
γecεs(cH2O − csat)cH2O < csat
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i = ai0,HOR

[

exp
(

F
RT

ηHOR

)

− exp
(

−
F

RT
ηHOR

)]

(13)

where a is the electrochemical surface area, i0,HOR is the HOR exchange
current density and η is the electrochemical overpotential, which can be
calculated as:

η = ϕe− − ϕP − U0 (14)

where U0 is the reversible potential.
The oxygen reduction reaction (ORR) in the cathode CL is strongly

dependent on the oxygen transport in the CL ionomer and is described
by a Pt/C/ionomer agglomerate sub-model, and the model equations are
listed in Table 6.

Cell design parameters like Pt loading are specified in Section 3. All
other physicochemical properties and empirical equations are listed in
Table S1 in the supplementary materials. The default solver and relative
tolerance from COMSOL were used for the 1D model and data genera-
tion. This solver, however, encountered convergence issues under
certain operating conditions, particularly when liquid water began to
emerge. As an alternative, another segregated solver was also applied to
these conditions, which partially resolved the numerical problem but
still failed at a few data points.

NN surrogate model
The NN, delineating the mapping relationship between the input

vector and output vector, comprises of an input layer, three hidden
layers with 20 neurons per layer, and an output layer. The hidden layers
perform a nonlinear transformation for feature extraction, while the
output layer gives a linear combination of output weights. The size of the
NN is determined by balancing computational efficiency and accuracy.
The initial configuration involved a single hidden layer, and the number
of hidden layers was progressively increased until an acceptable level of

error was achieved on the test data. Increasing the number of hidden
layers from one to three resulted in a reduction of the RMSE and max
error of current prediction from 1.6% and 24% to 0.17% and 2.45%,
respectively. Additional hidden layers led to only minor improvements
while significantly increasing the training time. As outlined in Table 5,
the 1D domain employs values such as temperature, relative humidity
(RH), and O2 molar fraction as the boundary conditions. These boundary
conditions also serve as the input parameters of the NNs, which are
detailed in Table 7 along with their corresponding maximum/minimum
values. Note that while some of the inputs are restricted to relatively
narrow ranges close to the experiments to enhance accuracy, these
ranges can be easily extended to a wider spectrum of operating condi-
tions. The NNs provide the boundary fluxes on the MPL/GDL interfaces
for the 3D domain, which include the local current output, anode/
cathode water fluxes in liquid/vapor forms, and anode/cathode heat
fluxes. The H2 and O2 fluxes at the interface can then be calculated based
on the current densities:
⎧
⎪⎪⎨

⎪⎪⎩

jH2 =
je−
2F

jO2 = −
je−
4F

(15)

For simplicity, each NN only generates one output, and a total of
seven NNs are used as the surrogate sub-model. Additional NNs are also
used to extract the internal properties from the 1D domain, but these
NNs do not influence the result of the 3D model.

A large synthetic dataset generated by the 1D electrochemical model
is used to train the NNs. As artificial NNs are optimal for interpolation
instead of extrapolation, the ranges of the input variable are intention-
ally broader than the typical conditions given by the 3D domain. The
dataset is initiated with the generation of data using the electrochemical
model with the boundary values (maximum/minimum values), resulting
in 10,240 data points, but the solver consistently encounters conver-
gence issues at some data points where liquid water begins to emerge.
Subsequently, additional data points are generated randomly following
the uniform distribution within the boundary values defined in Table 7,
with 74,200 data points synthesized from 1D electrochemical model.
The GDLs were removed from the 1D model when generating the data as
they are considered in the 3D domain.

To enhance network convergence performance, a normalization of
the input/output data with different magnitudes is essential, which in
this work is achieved using the max-min method. Mean squared errors
(MSE) between the prediction and fluxes generated by the 1D electro-
chemical model are used as the cost evaluation function. The synthetic
data points are randomly divided into a training set and a testing set at
an 8:2 ratio. The Bayesian regularization back-propagation method is
employed to train the NNs until reaching 1000 epochs or achieving an
MSE less than 10–6.

3. Experimental

The 5-layer fuel cell MEAs bought from FuelCellStore were used as

Table 5
Boundary conditions of the 1D electrochemical model.

Scalars Boundary conditions Position

ϕe- Dirichlet boundary conditions from the 3D
model

GDL/MPL interfaces

Zero flux CL/Membrane interfaces
ϕP Zero flux MPL/CL interfaces
λ Zero flux MPL/CL interfaces
T Dirichlet boundary conditions from the 3D

model
GDL/MPL interfaces

XO2 Dirichlet boundary conditions from the 3D
model

Cathode GDL/MPL
interface

XH2O Dirichlet boundary conditions from the 3D
model

GDL/MPL interfaces

Pl Dirichlet boundary conditions from the 3D
model

GDL/MPL interfaces

Table 6
Equations of the agglomerate sub-model [4,39].

Expressions

Thiele modulus
β =

dagg

6

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
qC

Deff
O2 ,agg

√

Agglomerate effective
factor Er =

1
β

(
1

tanh(3β)
−

1
3β

)

Cathode half-cell
reaction coefficient qC =

ai0,c(1 − θPtO)

4F
(
1 − εp

)
cref

O2

[

exp
(

F
RT

η
)

− exp
(

−
F

RT
η
)]

Cathode catalyst layer
current density i = 4F

PO2

hO2

[
1

qCEr
(
1 − εp

)+

(
dagg + 2δagg

)
δagg

(1 − s)aaggdaggDO2 ,flim

]− 1

Platinum oxide
formation (1 − θPtO)exp

(
F

2RT
ηPtO −

10kJ/mol
RT

θPtO

)

− θPtOexp
(

−

F
2RT

ηPtO

)

= 0

Overpotential of PtO
formation, ηPtO (V)

ηPtO = ϕe− − ϕP − 0.81V

Table 7
Ranges of the input parameters for the NNs.

Input boundary values Minimum value Maximum value

Anode temperature ( ◦C) 70 90
Cathode temperature ( ◦C) 70 90
Anode pressure (bar) 2.4 3
Cathode pressure (bar) 2.4 3
Anode capillary pressure (Pa) 0 1500
Cathode capillary pressure (Pa) 0 2000
Anode humidity 0.3 1.5
Cathode humidity 0.3 1.5
O2 molar fraction in dry air 0.01 0.21
Voltage (V) 0 0.9
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obtained. The MEAs comprised of N212 membranes, and the 5 cm2

active area cathode and anode comprised of W1S1010 GDLs with
embedded MPLs and 0.5 mg cm-2 60 wt% Pt on Vulcan carbon, with an
I/C ratio of 0.6. The single cell fuel cell was assembled using Scribner
hardware comprising of graphite serpentine channel flow fields on both
cathode and anode. The MEA was also gasketed with PTFE sheets on
both sides to achieve 20% compression of GDLs. The cell was assembled
at 552 kPa final pressure in a star pattern at 138, 276, 414 and 552 kPa
steps, and then connected to a Scribner Fuel Cell Test Station (850e)
equipped with impedance analyzer (885-HS), heated cuffs and back-
pressure unit. The stoichiometry for the cathode and anode was 2.50 and
1.25, respectively, with a minimum cathode/anode flow rate of 0.5 L
min-1 air and 0.25 L min-1 H2. The fuel cell was allowed to equilibrate at
70 ◦C for an hour and was then connected to the potentiostat. To
generate fuel cell polarization curves, the cell was held at each potential
from open circuit to 0.05 V at 50 mV intervals for at least 3 mins. At
higher current densities, the hold was extended such that stable current
was generated for at least 3 min, and the average current density for the
last 30 s at each potential was recorded.

As summarized in Table 8, the outlet pressure and cell temperature
were kept at 250 kPa and 80 ◦C, respectively, and the RH varied from
40% to 100%, highlighted in bold. After each RH change, the cell was
equilibrated for 1 h prior to measurement. The high frequency resistance
(HFR) at each voltage and RH was recorded and the electrochemical
surface area (ECSA) of the catalyst layers was calculated with cyclic
voltammetry. Impedance measurements were also recorded between
200 kHz and 100 mHz while the fuel cell was operating under the
selected conditions at 0.9 V using an external Biologic Potentiostat (VSP-
3e) equipped with a 20A/20 V booster (VMP3B-20).

4. Results and discussion

4.1. Validation of the NN surrogate sub-model

The accuracy of the trained NNs is evaluated with the test data, with
the normalized error of the fluxes displayed in Fig. 2a-g. The normalized
RMSE and maximum errors are also listed in Table 9, with RMSE and
max error less than 0.17% and 3%, respectively. For clarity, a compar-
ison of the predicted polarization curves of the 1D electrochemical
model and the NN surrogate model under four operating conditions
extracted from the 3D sub-model under 40% to 100% RH is illustrated in
Fig. 2h, which also shows an excellent agreement. Details of these four
operating conditions can be found in Table S2 in the supplementary
materials.

4.2. Validation of the NN driven 3D+1D model

The proposed model is validated to the experimental data conducted
under four different RH conditions, with detailed information available
in Table 7. Both the polarization curves and the HFR are subjected to
verification. As depicted in Fig. 3a, the simulation closely aligns with the
experimental polarization curves. The model captures both the signifi-
cant performance variations at the low current density region and the

transition into mass transport limitation at higher current densities. The
performance of the fuel cell exhibits improvement with increasing RH,
but RH levels above 80% lead to reduced limiting current density due to
the lowered air fraction and hindered oxygen transport caused by liquid
water. At 40% RH, minor overestimations of limiting current and
voltage loss at moderate current densities can be observed, which could
be explained by the predicted HFR. Further elaboration on this will be
provided in subsequent paragraphs.

A steady-state model is used in this study as the NN surrogate model
lacks the time-dependent properties of the full-1D model, thus it is not
feasible for the model to directly perform frequency and impedance
analysis. Utilizing the transmission line expression of a fuel cell with
negligible electric resistance in the catalyst layer [40], both the
charge-transfer resistance and the proton resistance in the ionomer are
effectively short-circuited by the double-layer capacitance at high fre-
quency. As a result, the HFR from the model can be calculated by
summing the average membrane resistance and the electrical resistance
of the MPLs and GDLs.

A comparison between the model and the experimental data is shown
in Fig. 3b, revealing good agreement between the simulated HFR and
HFR values from the experiments, especially for higher RHs. Under low
RH, the HFR is overestimated at moderate current densities, resulting in
a lower cell potential as depicted in Fig. 3a. The discrepancy may sug-
gest either an underestimated membrane water diffusion coefficient, an
overestimated water vapor transport, or an overestimated membrane
water desorption. In addition, the trend of increasing HFR at 40% RH at
voltage values below 0.2 V is not captured by the model, which might be
due to the uncertainty in membrane properties like the electro-osmotic
drag coefficient and/or water diffusion coefficient in the ionomer, and
this continuous decrease of HFR in the simulation resulted in a higher
limiting current density comparing to experimental observations. It
should be noted that the simplifications inherent in the 1D electro-
chemical model could also contribute to such discrepancies. As the
proposed NN acceleration approach is a generalized method for all hi-
erarchical models, these assumptions can be potentially replaced with
more detailed mechanisms such as chemical potential-based membrane
transport model or incorporating multi-step oxygen reduction reactions
to enhance accuracy. These enhancements are outside the current scope
of our work and remain avenues for future research.

To assess the computational efficiency of the proposed modeling
framework, the computing time of the NN driven 3D+1D model is
compared with a 3D+0D model where the MPLs, CLs, and membrane are
described with a lumped empirical equation, which is detailed in the
supplementary materials. The results in Table 10 show that the 3D+0D
model has similar computational time compared to the proposed NN
driven 3D+1D model under 100% RH. However, the 3D+0D model
suffers from convergence issues when a liquid water boundary exists due
to the undersaturated gas near the inlet, which leads to the significantly
longer computational time at 80% RH, a trend that is also observed in
the 1D electrochemical model. At 40% RH, the difference becomes much
smaller, as liquid water only begins to form when approaching limiting
currents. Thus, it can be inferred that while retaining the nonlinearity of
the 1D domain, the computing time of the NN driven 3D+1D model
remains comparable to a hierarchical model with lumped electro-
chemical sub-model.

Table 10 also reveals that the NN surrogate model exhibits negligible
computational time compared to the 1D electrochemical model, which
suggests that the NN driven 3D+1D model can be significantly faster
comparing to a full 3D model. However, it should be noted that this
advantage may diminish when only a single simulation is conducted, as
the data generation and training of the NN also require time. Similar to
the 3D+0D model, the 1D electrochemical model exhibits much longer
computing time at 80% RH, indicating potential convergence issues
when liquid water starts to be present in the cathode CL, which is also
avoided by the NN surrogate model.

Table 8
Operating conditions of the experiments, with the difference in RH highlighted
in bold.

Conditions Temperature Inlet RH Outlet Pressure Inlet flow rate

1 353 K 100% 250 kPa 0.5 L min-1 (cathode)
0.25 L min-1 (anode)

2 353 K 80% 250 kPa 0.5 L min-1 (cathode)
0.25 L min-1 (anode)

3 353 K 60% 250 kPa 0.5 L min-1 (cathode)
0.25 L min-1 (anode)

4 353 K 40% 250 kPa 0.5 L min-1 (cathode)
0.25 L min-1 (anode)
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4.3. Effect of operating conditions and flow field designs

The above results have demonstrated that the operating conditions,
such as RH, can have significant impact on the performance of PEMFCs.
The proposed machine learning accelerated 3D + 1D model enables us
to comprehensively investigate the influence of both operating condi-
tions and flow field designs. In this section, the experimental operating
conditions under 60% RH are used as the baseline condition, and further
simulations are conducted for different stoichiometries and channel/
land ratios. Detailed information of the four conditions to be analyzed
can be found in Table 11, and the differences are highlighted in bold.

The simulated polarization curves, power densities, and HFR under
these conditions are presented in Fig. 4. As depicted in Fig. 4a, the fuel
cell achieves the highest efficiency and maximum power density under
the fully humidified condition. The relatively small limiting current
observed under such condition is attributed to the lower inlet oxygen
concentration and increased oxygen transport resistance due to accu-
mulated liquid water, indicating that the performance enhancement is
primarily due to improved hydration of the membrane, which is

Fig. 2. Normalized errors of the NN surrogate sub-model and a comparison between the simulated polarization curves of the NN and the 1D electrochemical model.
(a) Current density; (b) anode water vapor flux; (c) cathode water vapor flux; (d) anode liquid water flux; (e) cathode liquid water flux; (f) anode heat flux; (g)
cathode heat flux; (h) polarization curves of the NN and the 1D electrochemical model under different operating conditions which are detailed in Table S2.

Table 9
Testing errors of the trained NNs.

Output boundary fluxes RMSE (%) Max error (%)

Current 0.17 2.45
Anode water vapor flux 0.07 1.14
Cathode water vapor flux 0.11 1.41
Anode liquid water flux 0.04 1.31
Cathode liquid water flux 0.11 2.58
Anode heat flux 0.05 0.85
Cathode heat flux 0.06 1.59

Fig. 3. Comparison between the experimental data and the simulation results of the NN driven 3D+1D model under four different inlet relative humidities. (a)
Polarization curves; (b) HFR.

Table 10
Computing time of the NN driven 3D+1D model, 3D model without NNs, 1D
electrochemical model, and NN surrogate model.

Operating
conditions

Computing time per voltage point (s)

NN driven
3D+1D model

3D+0D
model

1D electrochemical
model

NNs

40% RH 363 356 0.8 0.0041
60% RH 372 470 0.7 0.0038
80% RH 343 498 1.2 0.0042
100% RH 335 333 0.7 0.0040
Hardware Intel(R) Xeon(R) Silver 4110

Table 11
Operating conditions and flow field designs for the simulation, with difference
highlighted in bold.

Conditions Baseline
condition

Fully
humidified

Moderate gas
flow rate

High
channel to
land ratio

Temperature 353 K 353 K 353 K 353 K
RH 60% 100% 60% 60%
Outlet

pressure
250 kPa 250 kPa 250 kPa 250 kPa

Anode flow
rate

0.25 L min-

1
0.25 L min-1 1.25

stoichiometry
0.25 L min-1

Cathode flow
rate

0.5 L min-1 0.5 L min-1 2.5
stoichiometry

0.5 L min-1

Channel to
land ratio

0.94 0.94 0.94 2
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associated with significantly lower resistance, as displayed in Fig. 4b.
Under moderate stoichiometry, the reduction in oxygen supply re-

sults in the lowest limiting current. However, the decreased gas flow rate
also promotes self-humidification due to the water generated by the
electrochemical reaction, leading to a lower HFR and improved overall
performance. The conflict between oxygen supply and self-
humidification suggests that an optimal gas flow rate might exist
when the fuel cell is not fully humidified. Conversely, a higher channel
to land ratio enhances the oxygen transport but also facilitates the
removal of the generated water. Despite having the highest limiting
current under this case, this configuration exhibits slightly lower effi-
ciency and power due to a higher HFR, as illustrated in Fig. 4b. None-
theless, the impact of channel design on performance is relatively minor
due to the high gas flow rate.

The significant influence of stoichiometry indicates the crucial role
that the local distribution of oxygen, water, and current density can play
in fuel cell performance. Fig. 5 illustrates the cathode local current
density and the oxygen distribution at the GDL/MPL interface at 0.6 V.
Despite the high gas flow rate, Fig. 5a reveals a substantial gradient in
local current density within the cathode CL, with the outlet exhibiting
nearly 50% higher current density than the inlet. From Fig. 5b and
Fig. 5d, it can be observed that under the fully humidified condition, the
oxygen concentration near the outlet is approximately 30% lower than
in the baseline condition, resulting in significantly higher current den-
sity near the inlet, which is presented in Fig. 5c.

At lower gas flow rates, performance is constrained by both hu-
midification and oxygen concentration. As depicted in Fig. 5f, the oxy-
gen concentration near the outlet is over 50% lower than in Fig. 5b,
resulting in a highest local current density in the middle of the cell, and a
noticeable channel and land difference can be observed, as shown in
Fig. 5e. Comparing Fig. 5h to Fig. 5b, it is evident that the high channel/
land ratio reduces differences of the oxygen concentration between
channels and lands. However, as oxygen is not the limiting factor at 0.6
V due to the high gas flow rate, the local current density profile in Fig. 5g
remains very similar to the baseline condition.

The interplay between membrane resistance and oxygen oxidation
reaction is further elucidated in Fig. 6, where voltage loss attributed to
cathode reaction and membrane resistance is delineated in Fig. 6(a, c, e,
g) and Fig. 6(b, d, f, h), respectively. As shown in Fig. 6a and Fig. 6b,
both electrochemical and membrane voltage loss exhibit a relatively
uniform distribution for the baseline condition, with a difference of
approximately 50 mV and 10 mV, respectively. However, noting that the
outlet has significantly higher current density, it can be inferred that the
outlet has much smaller membrane resistance. As sufficient oxygen is
supplied to the cathode CL, the exponential relationship between elec-
trochemical overpotential and reaction rate minimizes the impact of the
current density gradient on the reaction voltage loss. Under the fully

humidified condition, however, the membrane potential loss is consid-
erably smaller near the outlet due to the lower local current density.
Meanwhile, oxygen transport limitations result in a much larger elec-
trochemical overpotential near the outlet, as shown in Fig. 6d and
Fig. 6c. A similar trend is observed for the moderate stoichiometry
condition, but with a more pronounced difference due to a larger oxygen
concentration gradient and the decreasing membrane resistance from
inlet to outlet caused by self-humidification. Due to the high gas flow
rate, the high channel/land ratio condition shows no observable dif-
ference compared to the baseline condition. In Fig. 6, it is also noticeable
that the fuel cell displays a slightly higher membrane potential drop near
the edges, with a difference of around 5 to 10 mV. This observation
could be attributed to the connection between the current collector and
the edges of the GDLs, which results in a smaller potential drop due to
the electrical resistance in GDLs.

These distributions also undergo changes with varying loads on the
fuel cell. As illustrated in Fig. 7, the highest local current density grad-
ually transitions from outlet to inlet with increasing load under the 60%
RH condition. This shift is attributed to the oxygen transport becoming
the limiting factor with increasing gradient in oxygen concentration and
decreasing HFR. Moreover, the gradient of the local current density
intensifies with increased load, with the inlet exhibiting more than 2
times larger current output compared to the outlet at 0 V.

As the NN serves as a surrogate of a full 1D model, it can also
elucidate the distribution of internal states across the thickness of the
CLs and the membrane. Fig. 8a shows the distribution of hydrogen
oxidation reaction in the anode CL under the baseline condition. Due to
the rapid reaction kinetics, the reaction predominantly occurs near the
anode CL/membrane interface, with 20% of the anode CL generates
more than 99% of the current, especially near the inlet. Consequently,
the proton flux in the anode CL is nearly zero before approaching the
membrane, resulting in a minor electrolyte potential drop, as illustrated
in Fig. 8b. In addition, as the majority of the anode CL contributes
minimally to the overall current, it is reasonable to infer that reducing
the anode CL thickness could effectively lower the Pt loading without
compromising performance.

In contrast, the oxygen reduction reaction has sluggish kinetics,
leading to a more uniform distribution, as shown in Fig. 8c. This results
in a significantly larger potential drop in the cathode ionomer. Com-
bined with the membrane resistance, the inlet electrolyte potential drop
exceeds 0.7 V as the cell voltage approaches zero, which is the limiting
factor for the local current output. The large ionomer resistance in the
cathode CL agrees with the straight line observed in the mid to high
frequency region [40] of our EIS data shown Fig. S4 and is likely due to
the low I/C ratio. Conversely, the electrolyte potential drop is consid-
erably smaller near the outlet, suggesting that the lower reaction rate
near the outlet is likely due to the oxygen transport limitation. As a

Fig. 4. Comparison between the simulated polarization curves, power densities, and HFR under the four different cases. (a) polarization curves and power densities;
(b) HFR.
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result, while the inlet exhibits a much larger oxygen reduction reaction
rate on the membrane side due to the local electrochemical over-
potential, the outlet’s local oxygen concentration restricts the reaction
rate near the membrane when the cell voltage is below 0.3 V. Similar
trends can also be observed under the fully humidified condition, as
depicted in Fig. 8d. However, owing to a lower oxygen concentration
and a smaller effective diffusion coefficient caused by liquid water, ox-
ygen transport also becomes the limiting factor for the inlet, and the
outlet current density remains constant when reducing the cell voltage
from 0.3 V to 0 V indicating that oxygen is depleted at the catalyst
surface. The results shown in Fig 8 indicate that the strong nonlinear
distribution along the thickness direction should not be ignored when
using a hierarchical modeling approach.

As discussed previously, higher gas flow rate does not always
enhance fuel cell performance. Following the testing protocol designed

by the US department of energy [41] and the single cell test proposed by
the Joint Research centre of the European Commission [42], we select
the voltage at 0.8 A cm-2 as the performance index for optimization.

As shown in Fig. 9a, when the fuel cell is not fully humidified, the cell
voltage at 0.8 A cm-2 decreases gradually with increasing anode stoi-
chiometry. As hydrogen transport is not the limiting factor for fuel cell
performance, a lower anode gas flow rate allows for the accumulation of
water vapor, thereby leading to a better humidified membrane. At 100%
RH, however, membrane hydration is no longer a limiting factor, thus
variations in anode flow rate have minimal impact on fuel cell perfor-
mance. In addition, it is noteworthy that when the fuel stoichiometry
approaches 1, local hydrogen starvation can occur, which may result in
carbon corrosion and durability issues [43].

Conversely, at 40% and 60% RH, higher cathode stoichiometry
initially improves fuel cell performance, as shown in Fig. 9b. At 60% RH,

Fig. 5. Local distribution of current density in the cathode catalyst layer (a, c, e, g) and oxygen concentration at the cathode GDL/MPL interface (b, d, g, h). (a, b)
baseline condition; (c, d) fully humidified condition; (e, f) moderate stoichiometry condition; (g, h) high channel to land ratio condition. The shaded area represents
the regions beneath the land.
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the voltage at 0.8 A cm-2 rises swiftly from a cathode stoichiometry of
1.5 to 3, peaking at 4.1. Beyond this point, the effect of oxygen transport
limitation is countered by the hydration of the membrane. Further in-
creases in cathode flow rate hinder self-humidification, slightly dimin-
ishing fuel cell performance. Since cathode stoichiometry above 3 has
minimal impact on performance while increasing the energy consump-
tion of gas pumps, the optimal range at 60% RH is likely 2.5 to 3. At 40%
RH, performance peaks at a lower stoichiometry of 2.5 due to worse
membrane hydration. At 80% and 100% RH, oxygen transport becomes
the limiting factor rather than membrane resistance, thus increasing
cathode stoichiometry up to 6 is still beneficial for fuel cell performance.

5. Conclusions

In this study, we introduce an approach utilizing neural network

acceleration in a 3D+1D hierarchical model, which accounts for the
nonlinearity along the thickness direction in catalyst layers, membrane,
and microporous layers while maintaining a similar computing cost to
conventional hierarchical methods. To address the limitations of the
homogenized assumption in the 1D domain in conventional methods,
this study integrates a 3D flow field with a neural network which acts as
the surrogate for a full two-phase non-isothermal 1D electrochemical
sub-model. The neural network uses the boundary conditions as input
and is computed at every mesh grid at the gas diffusion layer/micro-
porous layer interface to provide boundary fluxes for the 3D domain.
Validations with experiment across a range of relative humidity values
demonstrate the model’s reasonable accuracy in predicting both polar-
ization curves and high frequency resistance. Given that the neural
network requires only 0.5% of the computing cost of a 1D electro-
chemical model, the proposed neural network driven 3D+1D model

Fig. 6. Local distribution of cathode electrochemical overpotential (a, c, e, g) and potential loss due to membrane resistance (b, d, g, h). (a, b) baseline condition; (c,
d) fully humidified condition; (e, f) moderate stoichiometry condition; (g, h) high channel to land ratio condition. The shaded area represents the regions beneath
the land.
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Fig. 7. Local current density at different voltages under the baseline condition. (a) 0.7 V; (b) 0.5 V; (c) 0.2 V; (d) 0 V. The shaded area represents the regions beneath
the land.

Fig. 8. Distributions of scalars in membrane and CLs along the thickness direction. (a) electrochemical current density of anode CL under the baseline condition; (b)
potential in electrolyte phase under the baseline condition; (c) electrochemical current density of cathode CL under the baseline condition; (d) electrochemical
current density of cathode CL under the fully humidified condition. Solid lines denote the inlet, while dashed lines represent the outlet.
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demonstrates computational speeds akin to those of a linearized 3D+0D
model, which integrates a lumped electrochemical sub-model, while
preserving the nonlinear distribution within the microporous layers,
catalyst layers, and membrane.

Subsequent simulations explore the effects of operating conditions
and gas channel designs. Results reveal that the performance of the fuel
cell is enhanced at higher level of relative humidity, accompanied by a
reduction in limiting current. Additionally, when the fuel cell is not fully
humidified, the gas flow rate needs to be optimized to balance the ox-
ygen transport and the hydration of the membrane. Detailed analysis of
the 2D internal states distribution at the microporous layer/catalyst
layer interface reveals that the observed performance variations are
governed by the interplay between the electrolyte resistance and the
oxygen reduction reaction, and the contribution of these factors evolves
with changes in operating conditions, flow field designs, and the loca-
tion within the fuel cell. More than 80% of the anode catalyst layer is
found to generate less than 1% of the current, especially near the inlet,
suggesting that the anode thickness can be reduced significantly to
diminish the platinum loading. The pronounced nonlinearity of the
current and potential distribution within the catalyst layers highlighted
by the neural network result also indicates the inadequacy of the ho-
mogenized assumption used in the 1D domain of conventional 3D+1D
models, which may compromise model accuracy.
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