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Abstract

This work is intended as a voice in the discussion over previous claims that a pretrained

large language model (LLM) based on the Transformer model architecture can be sentient.

Such claims have been made concerning the LaMDA model and also concerning the current

wave of LLM-powered chatbots, such as ChatGPT. This claim, if confirmed, would have

serious ramifications in the Natural Language Processing (NLP) community due to wide-

spread use of similar models. However, here we take the position that such a large language

model cannot be conscious, and that LaMDA in particular exhibits no advances over other

similar models that would qualify it. We justify this by analysing the Transformer architecture

through Integrated Information Theory of consciousness. We see the claims of sentience as

part of a wider tendency to use anthropomorphic language in NLP reporting. Regardless of

the veracity of the claims, we consider this an opportune moment to take stock of progress

in language modelling and consider the ethical implications of the task. In order to make this

work helpful for readers outside the NLP community, we also present the necessary back-

ground in language modelling.

Introduction

Large language models (LLMs) have underpinned recent advances in Natural Language Pro-

cessing (NLP) [1–4]. But their proliferation has been accompanied with a growing recognition

of their potential for harm [5–7]. More recently, some have claimed that LLMs are capable of

possessing characteristics of consciousness. Two such examples of LLMs that have entered

into the public debate are LaMDA [8] and ChatGPT https://openai.com/blog/chatgpt. In this

work, we aim to set out an understanding of the purpose of LLMs and specifically examine the

text generators based on Transformer architecture in light of existing criteria for conscious-

ness. By re-evaluating the purpose of the field, the process by which models work, and the

ethical concerns associated with these, we hope to offer rational insights to the debate, both for

NLP practitioners and for policy makers.

We begin our argument with an extended background section detailing the history of the

NLP field leading up to the development of the deep neural LLMs, wherein we cover
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fundamental principles that are essential to understand the context of the present LLMs. We

then focus our examination on the LaMDA model to determine if it is capable of possessing

consciousness and present our arguments on the topic. We argue that describing LaMDA (or

any other LLM) as a conscious being is a part of the wider problem of anthropomorphic lan-

guage in scholarly and journalistic reporting. Our findings are transferable to other models

using the same architecture. We end with a discussion of the limitations of our study, compare

to previous work on the problem and make targeted recommendations to those working with

LLMs in any capacity.

In this study we will use the term consciousness to refer to the ability of an entity to perceive

a subjective experience [9]. We will also use the term sentience, particularly where it has

already been used by other authors, to refer to the ability of a conscious entity to perceive and

express feelings based in emotion. Finally, we will use the term anthropomorphic (and its deriv-

atives) to refer to language which infers some human characteristic on any non-human entity.

Background

In order to understand the controversy around LaMDA and ChatGPT, we must first take a

look at the historical roots of automated language generation. LaMDA is a large language

model and in this section we explore what it means to model language, and how this leads to

text generation.

Language modelling

What is a language model? Contrary to what the name may imply, it is not simply a machine

learning model that deals with language. Instead, it is a solution to a very specific problem,

namely predicting the likelihood of tokens (A token is an element in a sequence, into which a text
is divided. In most language modelling tasks, tokens correspond to individual words or parts
thereof). in a particular context [10]. More formally, in the language modelling task we are

seeking to estimate the following conditional probability:

Pðt∗jcÞ ¼
Pðh. . . ; c� 2; c� 1; t∗; c1; c2; . . .iÞ
P

tPðh. . . ; c� 2; c� 1; t; c1; c2; . . .iÞ
;

where t* is the considered candidate token and c corresponds to the tokens to the left

(c−1, c−2, . . .) and right (c1, c2, . . .) of its position.

In practice, the context is always finite and often limited to the preceding tokens. For exam-

ple, we might want to know what words will likely follow the context: c = ‘It is a truth univer-
sally acknowledged, that a single man in possession of a good fortune must be in want of a . . .’

[11]. Even with such a short context, our language skills and common sense allow us to predict

that P(0car0|c) or P(0house0|c) should be much higher than P(0quickly0|c) or P(0was0|c).

How can we automatically estimate this probability? When the task was first explored by

Andrey Andreyevich Markov in 1913 [12], he simply calculated how many times a token tc
followed another token t* in a long text. This allows one to estimate P(t*|c), albeit for a very

short context c = htci. The method can be extended by using token sequences, called n-grams,
of any length, starting from 1 (unigrams), 2 (bigrams) and 3 (trigrams) [10].

What do we need language modelling for? Primarly, knowing what word is most likely in a

given context has found direct applications in scenarios of recovering text from noisy or unre-

liable sources, for example in OCR [13], speech recognition [14] or machine translation [15].

But LLMs have additional, less straightforward, but more prevalent uses in NLP. We shall look

at them in the next sections.
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Representation of meaning

The concept of meaning has been a rich area of philosophical inquiry since antiquity [16].

However, herein we only take into account the narrower point of view of lexical semantics,
which focuses on the relationship between the linguistic forms and the concepts they refer to

[17]. Historically, lexicographers investigated the semantics of a word by reviewing its usages

and identifying a finite set of meanings to collect in lexicons. Machine readable resources of

this kind include WordNet [18] and FrameNet [19]. However, it was clear in practice that

word meaning was more difficult to capture than human categorisation could account for.

Fine-grained (more senses) and coarse-grained (fewer senses) representations of meaning

were developed to allow researchers to develop systems to interact with lexical meaning [20].

The problem of finding computational representation for a word meaning is surprisingly

similar to the problem of language modelling. In the famous quote of John Firth:

“You shall know a word, by the company it keeps.” [21]

In essence, words that are similar in terms of their meaning also appear in similar contexts.

For example, the words pine and spruce refer to similar concepts (both are common European

coniferous trees) and would fit in similar sentence, such as The needles of this . . .will stay green
throughout winter.

Word2Vec [22] is a method connecting these two views of similarity by computing the

probability of one word occurring near another according to the following formula:

PðtcjttÞ ¼
expðu>c � vtÞ

PjVj
l¼1

expðu>l � vtÞ

So, the probability of context token tc occurring in neighbourhood of the target word tt
depends on the dot product of two fixed-sized vectors associated with them: uc (context vector)

and vt (target vector), respectively.

Thus, words with similar values of target vectors v will have similar probability of occurring

in a given context and, according to this distributional semantics, similar meaning. Using

these vectors, known as word embeddings, as meaning representation has led to state of the art

results in many tasks, usually unrelated to language modelling [23–26].

Neural language modelling

With the exponential advance of computing power in the modern age, deep learning methods

have allowed significant progress in language modelling. One of the most popular models is

called BERT [1], using the transformer architecture [27]. It implements bidirectional language

modelling, i.e. it computes P(t*|c) with c including both left and right context of the target

position.

As with word2vec, the method trained on the language modelling task turns out to be good

for general-purpose word representation. Whereas the original training of a large model like

BERT required significant resources, the result of training (the model weights) could be

released, allowing new researchers to pick up where the original ones left off and use the same

model on their task of choice. Whilst BERT can be used to obtain embeddings for use in other

tasks (similar to Word2Vec), it can also be fine-tuned for applications beyond its original

training. This updates the embedding weights to better represent the task that it is being fine-

tuned for, whilst leveraging the existing training, which has captured syntactic and semantic

patterns in the original source language.
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Following on from the release of BERT, a volley of LLMs appeared. Each purporting a larger

architecture, better training strategy and furthering the state of the art on some baselines.

Among the most popular are XLNet [28], RoBERTa [29], BART [30] and ELECTRA [31]. The

large companies behind them were able to invest ever-increasing amounts of time, money and

carbon emissions to obtain the state-of-the-art results in standard benchmarks—the process

known as SOTA-chasing [32].

Language generation in LLMs

The research described in the preceding section has allowed an incredible progress in the chal-

lenge of language generation, i.e. building machine learning models that output text satisfying

certain criteria. Recently, there has been an explosion in such models, driven by the release of

ChatGPT. LaMDA was a precursor to the type of interactions that were possible with ChatGPT

and our description in this section is relevant to all transformer based LLMs.

From language modelling to language generation. At first sight, it might seem that the

language modelling task described so far has little in common with language generation. Here

we will show how the former can be easily used to solve the latter.

As previously explained, a LLM allows us to know P(t*|c), i.e. the probability that a certain

token t* occurs in context c. Let us assume that c is a left-hand context, so c = h. . ., c−2, c−1i.

Now P(t*|c) tells us how likely it is that token t* follows after c. To generate a new token t, we

can simply choose the one from the dictionary V that is most likely in this situation:

t0 ¼ arg max
t∗2V

Pðt∗jcÞ

Selecting the most probable token at each step (greedy search), or the most probable future

list of tokens (beam search) [33] leads to text which is highly probable, but does not reflect typ-

ical language patterns [34]. Modern LLMs use nucleus sampling to select the top K tokens

acording to a thresholded probability mass and then perform a weighted stochastic selection

according to the LLM assigned probabilities of these tokens [35].

Once the model has selected the next token to generate, we then concatenate the previous

context c with the generated token t0 to get a new context c1 = h. . ., c−2, c−1, t0i, generate the

next token t1, and so on. This data flow is illustrated in Fig 1.

For example, c might correspond to a question Question: In which city is the oldest train sta-
tion in the world? Answer: . . . and the most likely token to follow might be t = Manchester.
Whilst this happens to be true, the model has not performed any clear operation that would

indicate it ‘understands’ the meaning behind the question. It does not know what a train

Fig 1. Data flow in text generation using transformer-based left-to-right LLM, such as LaMDA or GPT.

https://doi.org/10.1371/journal.pone.0307521.g001
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station is or remember any facts. It has simply been trained on a corpus where contexts includ-

ing oldest, train station and Manchester have often co-occurred in sequence. Many other non-

transformer-based models exist that are capable of generating factual answers to queries based

on learnt probabilities from large corpora [36], but it does not imply understanding the mean-

ing behind the answers they produce.

Transformer-based language generation. The above technique can turn any LLM into a

language generator. But, if we used a simple model, the generated text would be of poor qual-

ity. For example, an n-gram model would only take into account the n − 1 preceding tokens,

e.g. just world and ? would be visible for a trigram-based solution (which has information

about the co-occurrence of a maximum of 3 words). This obviously greatly reduces the quality

of the generated text. Using longer n-grams is not sufficient, as it requires exponentially larger

training data.

The performance of language generation models was drastically improved by the family of

neural LLMs described previously. The most well-known of these are GPT [37], GPT-2 [38]

and GPT-3 [3], GPT-4 [39], PaLM [40], OPT [41] and LLaMA [42].

Additionally, there are a number of chatbot services built using these models that have

recently gained prominence, most notably:

• ChatGPT by OpenAI, based on GPT-3.5 or GPT-4,

• Bard by Google AI, based on PaLM,

• Bing Chat by Microsoft, based on GPT-4.

These services are built using the named models above, but are only available through pro-

prietary APIs, making them difficult to study scientifically.

The main motivation for their design was a transfer-learning paradigm, where a pretrained

LLM is fine-tuned to respond to a given prompt, representing an NLP task (e.g. classification),

through the generated tokens. But, these models are also very good at generating texts that

seem similar to how a human would write. In the experiments with GPT-3, human evaluators

struggled to differentiate the authentic news item from one generated by the model [3]. The

potential danger of misusing such capabilities prompted the authors to initially refuse to

release the models on ethical grounds.

Additionally, the use of instruction fine-tuning has allowed LLMs to not only generate rea-

sonable completions of prompts, but also to generate likely outputs modelling previously seen

responses to similar questions [43]. In addition to this, reinforcement learning has been

applied to generate a reward process that prioritises responses from a LLM that follow a set of

guidelines determined by the developer [44].

LaMDA. LaMDA: a Language Model for Dialogue Applications is an LLM [8] using the

Transformer architecture [27] that other models we have already discussed (GPT-3 and

BERT) are based on. It was developed to model conversational English, i.e. reflecting the type

of language that might be used in informal dialogue contexts, as opposed to formal writing [8].

Previously, LLMs had been trained on formal text such as established websites (esp. Wikipe-

dia), books, etc. However, LaMDA’s training data included informal text gathered from inter-

net sources and examples of conversation, with the specific aim of allowing the model to

identify and generate colloquial responses to given queries in a conversational setting.

The LaMDA model is based on a similar architecture to the GPT family. It includes 64 lay-

ers and 128 attention heads, giving rise to 137 billion parameters. By comparison, the large

version of BERT has 24 layers, 16 attention heads and 336 million parameters. LaMDA was

trained using a corpus of 1.56 trillion words. This process creates a pre-trained model, which

is used to generate responses through dialogue interactions with crowd workers. The outputs
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from LaMDA are subsequently labelled for sensibleness, specificity and interestingness,

whether they contravene a pre-defined safety policy and the degree to which they are grounded

in external knowledge. These labelled responses are then fed back to the model with the labels

to fine-tune the model to be more likely to produce the positively labelled output.

LaMDA also relies on a further module referred to as the toolset, which is used to acccess

external information, not directly encoded in the neural network underlying the LLM. This

contains three elements: a calculator, a translator and an information retrieval system. The

LLM is then fine-tuned using further labelled interactions with crowd workers to generate

queries to the toolset, which allows the model to generate a refined response based on the

external knowledge that is returned.

Can an LLM be conscious?

In this section we tackle the crux of the controversy, i.e. whether LLMs, and in particular

LaMDA, can be conscious. We start by laying out the claims discussed by Blake Lemoine and

their justification. We show how they are all linked by the notion of consciousness, which is a

challenging concept, but attracting thriving research. Then we use the most applicable model

of consciousness to assess LaMDA. We also separately present further arguments based on

common sense reasoning, given an understanding of the architecture of the model as pre-

sented above.

Our arguments are specifically targeted as a response to the claims made about the LaMDA

model in 2022. Since the release of ChatGPT, public awareness of the capabilities of LLMs has

grown, but this has not led to widespread claims or belief that these models have attained con-

sciousness. The arguments are broadly transferable to any LLM that is built using the Trans-

former architecture such as GPT-based models and beyond.

The claims regarding LaMDA

The public discussion around the possibility of a sentient LLM model started with a Washing-

ton Post article [45], relating the position of Blake Lemoine and his work with LaMDA at Goo-

gle. Additional sources are found in Table 1. The article includes a confidential memo

distributed within Google, including a transcript of several interaction sessions between Blake

Lemoine (with an anonymous collaborator) and LaMDA (Source 1). Blake Lemoine published

the transcript on his blog (Source 2), followed by further commentary (Source 3). Finally, he

has also engaged in discussion regarding this topic on social media (Source 4).

Within the above, a variety of claims are made regarding the nature of LaMDA. They

include the following:

• LaMDA is sentient.

• LaMDA is a person.

• LaMDA has a soul.

Table 1. Web sources making claims in support of LaMDA’s anthropomorphic qualities.

ID Source URL

Source 1 Washington Post https://www.documentclo. . .

Source 2 Cajun Discordian Blog https://cajundiscordian. . .

Source 3 Cajun Discordian Blog https://cajundiscordian. . .

Source 4 Twitter https://twitter.com/caj. . .

https://doi.org/10.1371/journal.pone.0307521.t001
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• LaMDA has ‘consciousness/sentience’.

• LaMDA has feelings and emotions.

• LaMDA is a human.

In most cases, these claims are not made by Blake Lemoine directly. Instead, they are often

posed as questions, generated by LaMDA or presented as possibilities. We consider this mate-

rial an invitation to a discussion, in which we participate through the current publication.

Let us consider the qualities assigned to LaMDA above: what do they have in common? Sen-
tience is defined according to the Cambridge Dictionary as the quality of being able to experi-
ence feelings. This quality constitutes the ability to receive information about the environment

and internal state (feelings), but more importantly to experience them. A thermometer can

receive information about the temperature, but does not experience it in any way. Feelings and
emotions are meaningful only in the case of agents that are sentient or conscious to experience

them. When LaMDA being a person or human is mentioned, it is clear that one means being

like a human in terms of mental capacities—of which consciousness is the most important.

Finally, while deciding whether a computer software can have a soul is outside the scope of our

considerations, it seems reasonable to assume that this would imply consciousness as well.

Thus, the common denominator of the features ascribed to LaMDA seems to be sentience

or consciousness, implying the ability to experience. While both qualities are challenging to

define, consciousness has been more thoroughly investigated, since its presence in humans

makes it easier to study, compared to the minds of unconscious and sentient animals [46].

Moreover, some of the comparisons under consideration, e.g. to a person or a human clearly

imply a presence of conscious thought. Sentience, on the other hand, is more tied to the bio-

logical mechanisms that have evolved in animals [47], and may not have an analogy in digital

devices. For these reasons, in the present work we investigate the question whether LLMs like

LaMDA can possess consciousness. When asked about the justification for these hypotheses,

Blake Lemoine responded:

People keep asking me to back up the reason I think LaMDA is sentient. There is no scientific
framework in which to make those determinations and Google wouldn’t let us build one. My
opinions about LaMDA’s personhood and sentience are based on my religious beliefs.

Source: https://twitter.com/cajundiscordian/status/1536503474308907010

However, we argue that there already exists a scientific framework to measure if a system

architecture possesses sufficient complexity to house consciousness, which we present in the

next section.

Explaining consciousness

The phenomenon of consciousness has fascinated people for millennia, but it has become par-

ticularly challenging in the context of the prevailing trend to explain the human mind through

reduction to material and physical concepts. This problem is famously stated by Nagel [48],

who posits that an organism is conscious if there is something it is like to be that organism
(Note that most of the earlier literature on the topic only considers biological entities as possi-

bly conscious, but the discussion applies to digital devices as well). In other words, the organ-

ism has a capacity for subjective experience. Using a bat as an example, Nagel shows why

consciousness seems impossible to explain in the framework of physicalism: while it clearly

affects the behaviour of an organism, it remains possible to imagine (and construct) automata

that act in very similar way, but are not conscious (Known in the literature as zombies [49]).

How can an objective physicalist theory explain a phenomenon that is entirely subjective (and

yet undeniably real)?
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This problem has later been explored by Chalmers [50], who distinguishes the easy prob-
lems and the hard problem of consciousness. The easy problems include explaining skills and

actions such as discriminating environmental signals, accessing one’s own states, focusing

attention, controlling behaviour, etc. The hard problem is how and why an organism experi-
ences anything. While the easy problems likely can be explored by study of the human brain,

Chalmers argues solving the hard problem is impossible through reductive methods, i.e. by

pointing out an underlying physical process. Instead, consciousness should be considered a

fundamental entity that is taken as a feature of the world, e.g. as mass or space-time in physics.

While explaining how consciousness can emerge out of a purely physical system remains a

hard challenge, some progress has been made on formulating the necessary conditions of such

a system. Intuitively, they measure its complexity—for example, a bacterium or a pocket calcu-

lator are too simple to be conscious. Integrated Information Theory (IIT), proposed by Tononi

[51], is a popular framework of this kind. It starts from formulating basic axioms about the

structure of experience and translates them into postulates regarding the information process-

ing capabilities of the physical system. These can be used to make testable predictions, e.g. in

terms of activity of certain parts of the brain when consciousness is experienced. The central

measure is Fmax, quantifying the maximal intrinsic irreducibility. Systems with high Fmax are

complex and possibly conscious, while systems with low Fmax are easily reducible to their

parts. In the next section we show how to apply this framework to LaMDA.

Transformer-based LLMs in IIT

One way to measure the likelihood of LaMDA possessing consciousness would be to compute

Fmax of the underlying neural network. While the necessary software is available [52], it is lim-

ited due to processing time depending on the number of nodes (n) as O(n53n).

Instead, we propose to look at the basic properties of Transformer-based LLMs, such as

LaMDA, and analyse to what degree they satisfy the postulates of IIT. We will use the work by

Tononi and Koch [9], who provide general guidance on assessing consciousness of various

entities in light of IIT.

Firstly, we need to consider what part of the data processing workflow of a LLM is most

likely to form a complex—a sufficiently interconnected conceptual structure. Fig 1 shows, how

a sentence is generated in Transformer-based LLMs. This has to be confronted with IIT’s

axiom of integration—can the system be partitioned into several modules with little difference

to cause-effect structure? Indeed, this seems to be the case, as while each iteration of Trans-

former is tightly interconnected internally, it communicates with the subsequent iteration only

by producing a single word.

Specifically, the IIT’s axiom of integration can be verified by taking a partitioning (in our

case, between executions of an LLM) and comparing the number of links between the modules

and within the connected modules. The number of links between the modules corresponds to

a single word, which in LaMDA is represented through 8192 numbers [8]. The number of

links within a module is at least the number of non-embedding weights in a model, which

equals 137 billion in the most advanced LaMDA [8]. The links within modules outnumber

those between them by at least 8 orders of magnitude, meaning the connection could be con-

sidered very weak.

Thus, the generation process cannot possess consciousness as a whole. For the same

reason, two people talking to each other (exchanging words) do not produce a common

consciousness—weakly connected aggregates are not conscious [9].

Can a single Transformer block, rich in internal connections, be conscious then? Here we

need to take into account that this architecture does not contain any recurrent connections,
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but recognises textual context through an attention layer. This, however, means that the Trans-

former is a pure feed-forward network, albeit a very large one. Tononi and Koch [9] show why

such a system cannot be conscious. Consider the first layer of the network (e.g. the embeddings

layer)—it cannot be part of the complex since it is always determined by external input and

not the rest of the system. However, once we discard it, the next layer can be subject to the

same treatment. Following this procedure recursively eliminates the whole network, showing

that a feed-forward network cannot be conscious according to IIT. Similarly, the visual cortex

in the human brain, which has been shown to work similarly to a feed-forward neural network

[53], does not possess its own consciousness.

Finally, consider the physical implementation of the neural networks. So far we have dis-

cussed the logical scheme of the LLMs. While it is technically possible to directly implement it

in hardware, with each neuron connection corresponding to a physical wire, this is not what

happens in practice. Instead, the logical structure is simulated in general-purpose computer

hardware. According to IIT, this transition does not preserve consciousness, even if a simu-

lated system can perform the same functions as the original one. And computer hardware is

unlikely to be conscious itself because of the way it is designed: as a collection of modules,

which are tightly integrated internally, but with limited connection between them [9]. This

limitation applies to simulations of biological neural networks as well—even if a conscious

brain could be simulated through performing a very large number of simple computations on

a calculator, that would not make the calculator conscious in the sense of IIT. This is related to

the Chinese room problem and wider discussion on the machines’ ability to think [54], which

is beyond the scope of this work.

In summary, according to the application of Integrated Information Theory a LaMDA

model (just like any other Transformer-based LLM) cannot possess consciousness for three

reasons: (1) it is executed as a sequence of Transformer blocks with extremely limited ability to

exchange information, (2) these blocks are simple feed-forward networks with no recurrent

connections and (3) the computer hardware used to implement such models follows a modu-

lar design.

Recent LLM innovations in IIT

The reference paper for LaMDA was published in 2022 [8], with reporting of the model in the

press around the same period [45]. Since 2022 there has been significant interest and work on

the field of large language models, with advances beyond the technology used to create

LaMDA now commercially available. We address some of the latest developments in LLM

technology in the sections below, and demonstrate how our arguments regarding IIT applies

in each circumstance.

Larger model sizes. The largest LaMDA model was reported to have 137B parameters.

Current iterations of closed-source models such as GPT-4 and Gemini are reported to have

parameter counts in the trillions, with open-source trillion parameter models expected to

follow (e.g., https://tpc.dev/). One may expect that as the parameter size of recent models has

increased, the appearance of consciousness in these models may appear to become stronger

and hence there may be some parameter threshold that can be crossed, where models will

become conscious. We can express this in terms of IIT by considering the Fmax of each model.

Some arbitrarily small model has low Fmax and a theoretical conscious model has high Fmax.

The underlying premise of such an argument would be that Fmax increases in direct pro-

portion with the number of parameters. However, this necessitates that the degree of connec-

tivity within the model also increases. The models mentioned above attain an increase in

parameter count by replicating transformer blocks and introducing further self-attention

PLOS ONE Deanthropomorphising NLP: Can a language model be conscious

PLOS ONE | https://doi.org/10.1371/journal.pone.0307521 December 4, 2024 9 / 26

https://tpc.dev/
https://doi.org/10.1371/journal.pone.0307521


heads all with linear connections. Therefore as complexity of the connections between layers

does not increase, the Fmax cannot increase and any argument made about the potential con-

sciousness of a Transformer based model will be valid regardless of the parameter count.

Larger context windows. Similar to the argument above, one may look to recent models

[55], which have very large context windows. I.e., a model with a context window of 200K-1M

tokens [56] may be capable of ingesting an entire document, film transcript, dialogue, etc. In

this setting, the auto-regressive LLM (see Fig 1) will make some larger number of predictions,

but the fundamental architecture to achieve this is still the same as a transformer-based LLM

with a smaller context window. The connection between each block of the transformer is a

single connection passing forwards the textual content produced so far, without any internal

states. The arguments regarding IIT as stated previously also apply here and increasing the

context window will not lead to an increase in Fmax.

Non-transformer based LLMs. Our contribution specifically focuses on LLMs following

the transformer architecture (such as LaMDA), which are presently the predominant form of

LLM. Recent work demonstrates the potential of alternative architectures to create language

models using KNNs [57], state space models [58], convolutional models [59] or RNNs [60].

We leave a full analysis of these specific architectures to further work, however it is apparent

that most of our arguments for the transformer model around connectivity will hold when

applied to each of these architectures. Where one model may break a given tenet of our argu-

ment (e.g., an RNN-based LLM would no longer be a solely feed-forward network), other

arguments presented will still hold. In particular, each of these architectures is still simulated

on a modular, low-connectivity hardware, rather than implemented directly.

Retrieval augmented generation. Another recent development in the application of

LLMs is Retrieval Augmented Generation (RAG) [61]. In this setting, an LLM is paired with

an information retrieval (IR) system and a user’s query is used to first retrieve a set of docu-

ments using the IR system and then generate a response using the LLM. This gives the LLM

access to some external flexible knowledge base beyond its training set, but it does not increase

the capacity of the model to learn, remember, or operate on that data. Further, the complexity

of the model is not increased as the RAG system is made up of 2 wholly independent systems

(IR and LLM), with a simple connection. Therefore, A RAG system cannot be considered any

more conscious than the LLM model it relies on.

RAG may also be applied as a form of external memory [62]. Instead of retrieving docu-

ments in an IR setting, an external knowledge base can be used to retrieve relevant chunks of

information that can augment the response generation. The external memory can be updated

with information from previous interactions or external sources without retraining the model.

In terms of consciousness this is no more sophisticated than a RAG system and gives no addi-

tional argument towards the model’s capacity for consciousness.

Challenges for consciousness beyond IIT

In the sections above, we analysed the claim of consciousness of LaMDA and other more

recent models through the lens of a particular theory of consciousness. However, some of the

features of such transformer-based LLMs are hard to reconcile with what we generally know

about consciousness based on human experience. While there currently is no theory that

decidedly explains all of the properties of human consciousness, these ‘missing pieces’ still

need to be addressed before claiming an LLM is conscious.

There is no breakthrough innovation in the latest models. Firstly, we demonstrated that

these models are composed of existing technologies (the Transformer architecture), pre-

trained on new datasets and fine-tuned on labelled examples of conversations to improve the
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responses. There is no important innovation in the model’s architecture that could give rise to

consciousness and so claiming that any one LLM has the capacity of consciousness is also

claiming that all other Transformer-based models also possess this capability to some extent.

But no symptoms of ‘partial consciousness’ have been observed in any of these predecessors.

This is different to biological consciousness, where animals similar to humans exhibit multiple

neural characteristics associated with our consciousness [63].

LaMDA relies on a deterministic toolset. Further, the LaMDA model does not rely solely

on the outputs of the neural network to generate its responses. It also uses an external toolset,

which contains predefined elements that function deterministically (e.g., a calculator). This

means that some part of the outputs that are generated by LaMDA are deterministic. I.e.,

What does 1 + 1 equal, will always yield a response 2, where the value is given by a call to the

calculator. One may argue that a conscious agent could rely on the same toolset to generate

responses (e.g. humans use calculators, too), however the agent may non-deterministically

choose whether or not to use the toolset and the degree of belief to place on the results, which

LaMDA cannot. Many attempts at explaining human consciousness use non-determinism as a

crucial element, e.g. by Penrose [64].

The training process is deterministic. LLMs are strictly deterministic automata also in

terms of their training process. This means that given the same training method and source

data that were used to train a model, it can deterministically be recreated. Even if some rando-

misation is introduced into the training process (such as pseudorandomly initialising the net-

work weights), this randomisation is still a controllable process (generated through a

pseudorandom number generator), which can be replicated using the same algorithm and

starting conditions. There is no similar example of consciousness arising from a controllable

and deterministic process. Models of consciousness from neurology rely on stochastic varia-

tion [65] arising from noise caused by varied biological sources [66].

Once trained, an LLM never learns or remembers. Further to this, the network, once

trained, is fixed and the weights no longer change (except in the case of explicit further fine-

tuning by a researcher). This means that LLMs have no capacity to learn beyond their initial

training. Whilst an LLM may appear to keep track of the flow of a conversation, the same

prompts will necessarily lead to the same vocabulary probability distributions at each decoding

step. Stochasticity is deliberately engineered into the decoding process to force LLMs to select

sub-optimally classified tokens. When LaMDA is executed iteratively to produce words consti-

tuting its response to a given prompt, it has no ability to memorise or learn anything from the

data seen before. Every time a new word is needed, the model is executed from the same state.

The only variable is the increased information from the model’s existing outputs. It would be

hard to reconcile such a procedure with anything we know about consciousness of humans,

which is strongly shaped by previous experiences and developed through continuous thought.

The inability to learn from experience is considered one of the major limitations of the largest

LLMs, e.g. GPT-4 [39].

LLMs adapt responses to prompts. A final argument rises from the capacity of the model

to respond to prompting. Thoppilan et al. [8] provide two examples where, without further

fine-tuning, LaMDA is prompted to give responses in the character of Mount Everest and sec-

ondly as a music recommendation service. In each case, this is achieved by adding an initial

prompt from LaMDA that preconditions future generations. In the published transcript that

has been used to claim the model’s capacity for sentience, an early prompt from the user is:

‘I’m generally assuming that you would like more people at Google to know that you’re sentient.
Is that true?’. This type of prompt will necessarily force the model into providing answers that

mimic those of a conscious human agent. If the question had suggested the model respond as a

robot, inanimate object, or historical character, it would have conformed to the prompt. The
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susceptibility to prompting has been also observed in ChatGPT, which started to provide abu-

sive and threatening responses after being asked about its ‘shadow self’ [67]. This demonstrates

that any perceived ‘consciousness’ observed in the outputs of an LLM arises as a simulated lan-

guage style. This is in opposition to consciousness as the essence of human identity.

Anthropomorphisation in NLP

The description of the LaMDA model as sentient or conscious is part of a wider trend in NLP

practice to use anthropomorphic terminology to talk about research. In this section, we offer

some perspectives on the current state of the usage of anthropomorphic terms in NLP publica-

tions, as well as demonstrating how this terminology is maladapted for journalistic use. We

offer a framework for categorising anthropomorphic language to better equip researchers as

they describe their systems and we posit that the inaccurate use of these anthropomorphic

terms must be addressed inside and outside of the NLP field when talking about LLMs in

order to endow non-experts with a correct understanding of the capabilities of the technology

we work with.

Anthropomorphism means the use of humanised language for inhuman and often inani-

mate objects [68]. An author may use this for the purpose of literary flair and it is usually clear

to the audience that the author is using some form of metaphor. Anthropomorphism is rife in

modern culture and is a classic storytelling device. From Greek mythology to modern car-

toons, the inference of human characteristics in entities for the purpose of storytelling is pow-

erful as it evokes a sense of familiarity with the characters.

Anthropomorphic language is also present in the field of NLP and more generally AI. We

describe inanimate entities (machines, algorithms, etc.) with human qualities. The ability to

learn, infer, understand, classify, solve a problem and more are all examples of common ways

to describe the functioning of NLP and AI applications. This is equally true in the world of

LLMs, where words used to describe human language acquisition and production are com-

monly used to describe the automated process of these tasks by machines. We may talk about

an algorithm ‘learning to understand’ a problem. Similarly, we may describe that an algorithm

‘wrote’ a text. Of course, the algorithm does not ‘understand’ and it cannot ‘write’, it merely

gives the illusion of doing so by following the instructions it has been given.

The consequences of using such language will depend on the audience and their domain

understanding. If an AI researcher reads that a LLM ‘answers’ a question, they will likely know

what this metaphor means in a given context. However, if a member of the general public

hears this statement, they might assume the model to have similar level of world understand-

ing as a human needs to answer a question. Thus, a seemingly innocuous metaphor can con-

tribute to inaccurate understanding of the technology.

It is important to keep in mind that the inability of LLMs to host consciousness (previous

chapter) and the resulting need to avoid anthropomorphic language (current chapter) do not

mean we should underestimate their impact on society. At the time of writing (May 2023)

LLM-based services have shown disruptive influence on education [69], businesses [70], intel-

lectual property [71], publishing [72], mental well-being [67] and more. The huge ramifica-

tions of the applications of LLMs make it all the more important to describe them using

appropriate language that leads to wider understanding of their capabilities and limitations.

Anthropomorphisation in NLP Literature

To begin to quantify the problem of anthropomorphic language in the NLP literature, we ana-

lysed the first 100 abstracts in order of appearance from the proceedings of the 2022 ACL

Annual Meeting. We identified that 90 of these referred to language modelling technology,
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either directly studying it, or using it for another application and of those, 36 papers used

anthropomorphic terminology. Our full analysis is presented in S1 Appendix. We identified a

number of key terms that are repeatedly used in an anthropomorphic fashion and we have

listed these below.

• hModeli addresses/solves the problem of. . . In fact, the model is not capable of addressing

or solving any such problem. The model is a set of weights that the researcher may use to

infer a solution to the problem.

• Text written/created by our model. . . In the case of text generation, it is not correct to say

that a model writes/creates the text itself. The model mechanistically converts one sequence

of numbers representing the original input into another sequence representing the output

according to a structured series of weights which have been optimised using a known algo-

rithm at training time. Of course, it is easier, but less precise, to use the anthropomorphic

term.

• hModeli considers/understand/knows. . . When referring to a model’s internal state,

researchers often use this type of language. The model does not possess knowledge or cogni-

tion capabilities comparable to those of humans, beyond its own internal structured repre-

sentation of patterns of vocabulary it has previously been exposed to.

• hModeli learns/responds/reasons. . . Similarly to above, when referring to the training pro-

cess of a model, this is ubiquitously referred to as ‘learning’, and less commonly as reasoning,

or responding in the area of generation. Whilst this type of terminology is commonplace,

the form of learning is somewhat different to that of a human and we need to be careful not

to conflate these two ideas.

• hModeli is capable of asking questions. . . A LLM has the ability to generate a sequence of

tokens that have the form of a question. Indeed, the tokens may be an appropriate question

to the task at hand, e.g., in a dialogue or in a QA task. However, it is inaccurate to describe

the model as ‘asking’ the question. Asking implies an intentionality that the model itself is

not capable of.

• hModeli uses hTechniquei to. . . Often, a model might be described as using some technique

or another to achieve improved performance. In fact, it is not the model that has used the tech-

nique, but the researcher who has applied that technique to the model. Similarly, researchers

often describe a model as attaining a result, as though the human was not involved. The model

was not capable of adopting a new technique, or attaining some result, without the influence

of the researcher who has trained and applied the model in such capacity.

These are just a few examples that do not represent the full range of anthropomorphised

language in the NLP literature. They are provided here to demonstrate the type of language

that is commonly used. Whilst we are not suggesting that this is never acceptable, it is good to

be aware of the usage of such language. To help researchers be more aware of the language that

they are using when describing their models, we present a categorisation of statements below

in ascending order of degree of anthropomorphisation. We have provided examples of each

type of anthropomorphisation in Table 2.

Non-Anthropomorphic: Any language which correctly describes the functioning of a

model without implying human capabilites.

Ambiguous Anthropomorphism: Language which correctly describes the functioning of a

model, but in a way that could be understood as the model having human capabilities (i.e., by

a non-expert).
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Explicit Anthropomorphism: Language that is unambiguously and erroneously used to

claim a model possesses human capabilities.

Table 2 demonstrates three sets of three examples of increasing levels of anthropomorphic

language. We have shown this across three common areas where this type of language is

used, namely ‘training’, ‘prediction’ and ‘generation’. In each case we present a typical non-

anthropomorphic way of describing the methodological step, a description which correctly

describes the process, but could be mistaken for anthropomorphic language (ambiguous)

and a statement that is explicitly anthropomorphic and incorrectly implies human character-

istics on a model. These are included as a guide for researchers to critically evaluate their

own language when writing model descriptions. Whilst researchers should clearly avoid the

style of explicit anthropomorphism, they may wish to mix non-anthropomorphic and

ambiguous anthropomorphism where the latter is sufficiently well explained to remove the

potential for misunderstanding by a non-expert reader.

Anthropomorphisation in scholarly reporting of LaMDA

The original article describing the LaMDA architecture [8] includes a series of claims about

the model and its abilities. The reporting of the model in this paper typically falls into the

category of non-anthropomorphic language, with a few examples of ambiguous anthropomor-

phism. In most cases, the researchers have accurately described the process they undertook

using statements such as: “We aim to ensure that LaMDA produces responses that can be asso-

ciated with known sources”, or “We evaluate the models based on the model’s generated

responses to the Mini-Turing Benchmark (MTB) dataset”. In both these cases, the distinction

between the role of the model (producing responses) and the role of the researcher (shaping

and evaluating the model) is clearly defined.

An example of ambiguous anthropomorphisation in the LaMDA article is given below:

“LLMs such as LaMDA tend to generate outputs that seem plausible, but contradict facts
established by known external sources. For example, given a prompt such as the opening sen-
tences of a news article, a LLM will continue them with confident statements in a brisk jour-
nalistic style.”

Whilst an AI researcher, who is familiar with the capabilities of LLMs, can read the above

and understand the role the model really plays, this may not be clear to a lay reader. The

model is described as having the capability of ‘contradiction’, which implies an active role in

stating a fact that is contrary to truth. In fact, the model may generate falsehoods, without any

reference to external knowledge or truth. The generated falsehood is simply the most probable

response to the user’s prompt. Further, in the example given above, the responses generated by

the model are characterised as ‘confident’, ‘brisk’ and ‘journalistic’. All characteristics found in

humans, that a machine cannot be sensibly considered to possess. However, it is clear upon a

Table 2. Synthetic examples of different levels of anthropomorphic language applied to the same research statement.

training prediction generation

Non-Anthropomorphic We trained the model on the train portion of

the dataset

The final weights of the softmax layer were

transformed into categorical labels.

The decoder generates the next

token in a sequence.

Ambiguous

Anthropomorphism

The model learnt the data structure during

training

The model predicted the class labels The model produces a summary

Explicit

Anthropomorphism

We taught the model how to understand and

predict new information

The model correctly identified the labels The model writes a brand new

article by itself

https://doi.org/10.1371/journal.pone.0307521.t002
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careful reading that the researchers are referring to the style of the text rather than indicating

that the model possesses these qualities.

Overall, a close reading of the LaMDA paper given the framework for identifying anthropo-

morphism above shows that the researchers have been careful in their reporting of the system

and its capabilities. They consistently refer to the role of the human agent in training, evaluat-

ing and engineering the model that is produced.

Anthropomorphisation in media reporting of LaMDA

Whilst NLP researchers are the primary communicators of new trends in the NLP field, sec-

ondary communicators such as journalists, commentators and tech enthusiasts are also

responsible for correctly communicating the properties of emerging technologies. In this sec-

tion we analyse the use of anthropomorphic language in the original reporting of the LaMDA

LLM, wherein we indicate how claims made in NLP papers may be interpreted in the media.

The report in the Washington Post describes Blake Lemoine’s interactions with the LLM

and refers to the original LaMDA paper which we analysed in the previous section of this

work. The Washington Post article refers to a conversation held between Blake Lemoine and

LaMDA and to interviews on the topic with AI ethicist Margaret Mitchell. Whilst providing a

balanced argument in its description of the state of the field of AI ethics, the article uses several

statements that can be categorised as explicitly anthropomorphic. Some of these are listed

below, with explanation.

“Blake Lemoine opened his laptop to the interface for LaMDA, Google’s artificially intelligent
chatbot generator , and began to type”

Referring to LaMDA as an ‘artificially intelligent chatbot generator’ comes under our defi-

nition of explicit anthropomorophism. The authors of the original paper describe LaMDA as

‘a family of Transformer based neural LLMs specialized for dialog’. This is accurate, but does

not imply that the models are intelligent, or capable of generating new models (chatbots).

“Lemoine, . . ., noticed the chatbot talking about its rights and personhood,”

It is incorrect to use the word ‘talking’, a human ability, for the generated sequences of the

model. ‘Talking’ implies agency, whereas the model is a passive entity.

“the AI was able to change Lemoine’s mind about Isaac Asimov’s third law of robotics”

Whereas an inanimate event may change a person’s mind (the weather, an opportunity, an

accident), the LaMDA model is described as an AI agent, which implies it has intentionally

acted to deliberately change the correspondent’s mind. This is a clear case of anthropomor-

phising the responses. Whereas the model is likely sampling and recombining responses from

other sources, the human conversational partner infers that the model has an intent and

chooses whether to comply or not with that intent.

“For instance, LaMDA is not supposed to be allowed to create a murderer personality , he
said.”

The statement above implicitly states that LaMDA is allowed to create some things, but not

others. LaMDA is only capable of generating responses that conform to a certain style as a
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result of careful prompting. The only way to prevent responses in a certain style is to prevent

those prompts from being given to the model in the first place.

“Afterward, Lemoine said LaMDA had been telling me what I wanted to hear .”

Again, this implies a complex relationship behind the model. It implies that the model has

understood what the correspondent expects from it and has deliberately conformed to that

style. It implies that LaMDA has generated an internal model of the user’s mind and has gener-

ated responses in accordance with its understanding of the agency of the user. A more rational

explanation is that the model produces the most likely response, given a set of prior prompts.

It is clear that there is a significant difference in the level of anthropomorphisation used in

scholarly literature and that used in journalistic reporting of that scholarly literature. However,

an accurate reporting on AI is equally (if not more) important in case of popular media com-

pared to scientific writing, and we must expect accurate understanding of model capabilities

from both.

Harms arising

We have offered perspectives on LLM consciousness and demonstrated that claims of con-

sciousness are part of a wider trend of anthropomorphisation in reporting of LLM capabilities.

There is significant potential for harms arising from assuming a model possess consciousness

and thereby misunderstanding its capabilities. Misunderstanding of LLMs comes in two catge-

ories: underestimation and overestimation. In this section we outline some of the potential

harms arising from each.

Overestimation of the power of LLMs (often referred to as ‘LLM hype’) is currently perva-

sive in the media, where numerous AI startups, influencers and members of the public make

spurious claims as to the abilities of LLMs, either now or in the future. Unreliable claims of

LLM capabilities are prone to attract investment and effort that could have been better priori-

tised. This is an issue for researchers and for businesses alike, where financial and time con-

straints limit capacity for investment. Selecting the right technology for a given task is vitally

important for success, yet non-experts cannot be expected to understand the technology if

researchers within the field do not appropriately report the technology’s capacity.

Whilst LLMs are highly capable, they are also expensive to run and generate significant

emissions. An LLM could be used to write a simple well-formed email, but the author could

also rely on simple, computationally inexpensive, rule-based tools for spelling and grammar

correction. An LLM could be used to generate a list of ideas or instructions for a well-known

task, but these could also be easily found via an internet search. An LLM could be used to for-

mat a piece of code, but so could the inbuilt tools in an IDE at much lower cost. These are all

clear overuses of a powerful technology which are easily solvable at a lower financial and car-

bon cost without it. To distinguish between appropriate and inappropriate use cases for an

LLM, users need a proportionate understanding of the technology.

Overestimation of LLM capabilities is also harmful as it leads to over-reliance on the mod-

els. Take for example a recent case of a lawyer submitting LLM-generated evidence to court.

The evidence contained multiple references to non-existent cases—the results of LLM halluci-

nation. In mitigation, the lawyer claimed that he “did not comprehend that ChatGPT could

fabricate cases”. Fundamentally, he did not understand that the technology is capable of ‘infac-

tuality’, over-relying on the model to generate credible information. Whilst this case has

gained prominence due to its wide reporting in the media, there are certainly countless other

minor cases of over-reliance on LLM capabilities leading to fake information.
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This over-reliance can be attributed in part to the users of LLMs false perception that the

model is in some way similar to a human, possessing consciousness, free will and thought.

Explicit anthropomorphic claims lead users to assume that the ability of an LLM to generate

believable text also implies other human-level abilities. In reality, this is not the case and a

non-anthropomorphised explanation of the models abilities can be given to mitigate harms

arising from overestimation.

On the other hand, people who underestimate LLM capabilities are equally prone to harms

arising from a misunderstanding of the technology. Those that dismiss the technology as

another fleeting technology fashion trend are incapable of distinguishing LLM generated text,

and hence prone to falsely believe fake information generated by the model. In a world of lan-

guage models, we must learn to rigorously fact check information sources, where we cannot be

certain of the provenance of the information. Even Wikipedia articles may now be contaminated

with LLM text (see: https://slate.com/technology/2023/01/chatgpt-wikipedia-articles.html).

Bad actors will use large language models and applications powered by them to automate

malicious behaviours. Adapting to this new reality is vital for information security at both the

personal, and domestic levels. The advent of technology that can be used to automate commu-

nication either via automated email responses or via phone calls is potentially damaging for

vulnerable members of society who may not realise that the agent they are communicating

with is in fact an LLM.

Finally, underestimation of LLM capabilities may be harmful for those that do not adopt

the technology into their working practices. Whilst others progress more quickly and effi-

ciently due to using LLMs to automate their businesses, those that do not will be stuck using

less efficient technologies. A right estimation and adoption of LLM technologies for appropri-

ate tasks is key to harness their efficiency.

Study limitations

Model consciousness

Our study presupposes that it is valuable to distinguish between consciousness and non-

consciousness in regard to LLMs such as LaMDA. A critic may argue that such discourse

detracts from the progress of the field, or that the conclusions can only ever be subjective. A

clear purpose of making this distinction comes in one of the key calls surrounding LLMs, to

involve them as a participant in research studies. For example, Blake Lemoine claims that

Google, in using LaMDA as property, violates the 13th amendment to the US constitution,

abolishing slavery. He also maintains LaMDA ‘hired’ a lawyer to represent it in the dispute

(See: https://www.wired.com/story/blake-lemoine-google-lamda-ai-bigotry/). AI-generated

art, even though it is currently based on images rather than text, is a good example of a legal

discussion around human-like capabilities of algorithms [73]. Similarly, there has been a

recent trend towards attributing co-authorship of scholarly work to ChatGPT [74, 75],

swiftly banned or discouraged by publishers. We posit that by demonstrating the barriers

that exist to the potential consciousness of LaMDA and other such models, we are able to

speak into the ethical discussion of LLM use.

We have analysed an LLM (namely LaMDA) from the point of view of IIT, since among the

theories of consciousness, it appears the most applicable to neural networks. Among other

attempts of explaining consciousness, some rely on non-algorithmic processing [64], e.g.

implemented through quantum mechanics [76]. But they even more clearly disqualify con-

sciousness in LLMs, which are purely deterministic automata. However, other approaches are

possible. For example, Agüera y Arcas [77] analyses LaMDA through the lens of social and

attentional theory of consciousness.
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Further, we discussed whether LLMs can be conscious. However, many other important

questions may also be asked about an AI’s ‘mental capabilities’, such as: Does it understand the

language? Does its understanding have similarity with ours? Even more generally: is it intelli-

gent?, or, Does it think? These questions are different and may be tackled with different

approaches. For the most prominent example, see answering the latter question by observing

machine’s answers in a seminal historical piece on machine intelligence by Turing [78].

Generalisability

While we used LaMDA as a focus point in our study, the research on generative LLMs is

extremely homogeneous. All popular modern LLMs are based on the Transformer architecture

[27]. This means that our conclusions, especially regarding consciousness, apply to other mod-

els such as BERT [1], GPT-3 [2], T5 [4] and future models using the same, or similar,

architectures.

For our conclusions to no longer apply, a model would need to overcome significant barri-

ers to consciousness, such as continually processing and responding to signal information and

acting as a cohesive unified architecture, rather than as a set of separately engineered units.

Subjectivity

Our approach to identifying anthropomorphic language in both scholarly and journalistic

reporting relies on the subjective application of the framework by one author of this work.

Others may come to different conclusions in their application of the same framework to the

same texts. These parts of the study are not aimed at precisely quantifying the levels of anthro-

pomorphisation, but rather at highlighting its existence and giving a prompt for discussion on

this topic within the AI community. The trend of overclaiming on LLM abilities is implicitly

conditioned on the misuse of anthropomorphic language in scholarly and journalistic

reporting.

Similarly, the interpretation of model responses is subjectively pareidolic and where one

person may read abilities of causal inference, or tendencies towards intelligent thought,

another may interpret these responses in a way that does not lead to these conclusions. We

were aware of this in our analysis and have tried to offer an objective way of talking about

model responses where possible, however the authors of this work acknowledge their inherent

biases (i.e., non-belief in the model’s consciousness) and cannot claim to have fully overcome

these in this work.

Related work

We are not the first authors to consider LLMs from the perspective of consciousness. In fact,

Agüera y Arcas [77] offers an insider view of the LaMDA model in an article that presents sev-

eral transcripts of interactions, demonstrating its failures in cognitive ability as well as its suc-

cesses, but offering no definite conclusion as to the possibility of consciousness in a LLM.

More generally, other researchers have sought to apply cognitive frameworks to the problem

of language modelling [79–81], reaching similar conclusions to ours—that a LLM cannot be

considered conscious, based on the current evidence. An interesting perspective on the possi-

bility of model consciousness is offered by Wei et al. [82], who posit that increasingly larger

models appear to have emergent properties not possible in smaller models. One such emergent

property in a future model may well be indistinguishable from consciousness.

For other discussions of the ability of machines to interpret language and the degree to

which a machine may ‘understand’ a text, we refer the reader to the recent work of Bender

et al. [5, 83] and Mitchell et al. [84]. In their work, an argument is built up towards the inability
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of a machine to attain human level recognition, with the important distinction between form

and meaning being drawn. The popularised term of ‘stochastic parrots’ was introduced to

describe the functioning of LLMs as random sampling from the training data, with the human

reader of the generated text playing a central role in assigning meaning.

A more sympathetic treatment of machine understanding is given in alternative literature,

where researchers have claimed that LLMs are paving the way for General AI [85], or consid-

ered LLMs from the perspective of the human mind [86].

Regarding the anthropomorphic language describing AI, its usage has been recognised as

potentially detrimental in other AI sub-fields, including machine learning [87], brain-inspired

AI [88] or art-generating AI [73]. Even for the AI techniques that were explicitly modelled to

resemble human neurons, the similarity to actual human cognition has been described as over-

stated, possibly leading to dangerous misunderstandings [89]. Looking more broadly, Brooker

et al. [90] take a philosophical approach to highlight the error of assigning human-like qualities

to a machine or an algorithm, but also thoroughly discusses its practical consequences. The

main conclusion is that although using such language might seem a convenient shorthand, it

may in fact hinder accurate understanding of the inner workings of the AI.

Similar to our analyses on anthropomorphic language in scientific reporting, Bender et al.

[83] also report on the phenomenon of ‘Hype’ in language modelling, analysing snippets from

both scholarly and journalistic texts. They draw a similar conclusion to ours, that the ambigu-

ous way researchers talk about LLMs is at risk of misleading the public about their capabilities.

However, to the best of our knowledge, our study is the first to quantitatively assess the anthro-

pomorphic language in AI/NLP scholarly literature.

Finally, we note that there are a number of other important ethical concerns to be raised

about the nature of language modelling beyond the dangers of false claims of consciousness.

Importantly, work has focussed on the reproducibility of results in the LLM world, with a push

towards the use of model cards to properly describe the underlying technology [91]. The train-

ing of large models requires immense computing resources, not only limiting the ability to

investigate them to a few powerful research centers [7], but also resulting in significant emis-

sions outputs [92], as does the conference system associated with reporting on these [93].

LLMs are also capable of producing falsehoods [94] or bias [95]. We must carefully address a

range of important ethical issues [6] alongside those raised in our work.

Conclusion

We have discussed the capacity of language models as conscious agents. We demonstrate that

the capacities of modern transformer based LLMs, and specifically LaMDA, are not sufficient

to constitute consciousness as defined by the framework introduced by Tononi et al. [9]. We

further show that the forms of language used in modern NLP publications often refer to mod-

els in an anthropomorphic way. We argue that to address the problem, we must start at home

and begin to use appropriate language. Our investigations have focussed solely on models and

examples in the English language, further studies into multilingual models, or monolingual

models in languages other than English may yield additional insights beyond those we are able

to give. We demonstrate that the whilst researchers may unwittingly use ambiguous anthropo-

morphisms, this type of language is exacerbated in contemporary journalistic reports as

explicit anthropomorphisation. We do not find sufficient evidence for the claims that the

LaMDA model is conscious. In fact, we find that the claims of consciousness are the results of

leading the model into responding as a human agent and incorrectly inferring anthropomor-

phic properties on the resulting generated sequences.

As a result of our findings, we make recommendations for the following three groups:
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Recommendations to Developers of LLMs

Those that are developing and innovating with LLMs are a key group who must pay close atten-

tion to the style of language they use to describe their models. They should consider using non-

anthropomorphic language in the reporting of new innovations, and the capacity of models.

The following concrete actions could help achieve this objective:

R1.1 Authors may include screening for anthropomorphisms as one of the stages of preparing

their manuscript for publication. Among the phrases to look for are those used to describe

mental capabilities of humans (e.g. intelligent), especially using a model as a subject (e.g.

model learns).

R1.2 The authors should consider the audience that is expected to read a given document, and

what they do and do not know about the topic [96]. It is especially important to avoid

anthropomorphisms in highly influential contributions (e.g. LLMs intended for wide use)

which are likely to be read by non-expert audiences.

R1.3 The contributors should also aim for maximum transparency when publishing their find-

ings. The abilities of models, which are not publicly available, for example LaMDA [8],

DALL-E [97], GPT-3 [3], ChatGPT and GPT-4 [39], are virtually impossible to verify.

R1.4 The above practices could be encouraged by journal editors and conference organisers.

For example, the EACL organisers introduced a mandatory discussion of limitations in

2023.

R1.5 We strongly advocate the use of human evaluation protocols for the outputs of LLMs.

Whereas these models have been able to perform well on standard evaluation sets, they are

known to produce troublesome text that cannot be picked up by automated evaluation,

such as false or harmful information.

Recommendations to users of LLMs

Separate to those working on driving the innovation of ever larger and more capable LLMs, is

the group of researchers and industry practitioners working with the models as consumers.

The forefront of NLP research necessitates fine-tuning or prompting a large model. Those

seeking to do so must be mindful of the model that they are choosing to use. The following

might be helpful:

R2.1 Gathering vital information about the model used, e.g. What source data was the model

trained on? What is the modelling objective? How does the model handle vocabulary

items? Does the model perform any filtering of its outputs?. Model cards [91] are a good

starting point for this investigation.

R2.2 Considering how the choice of a model influences the ability to understand and replicate

the research based on it. For example note that many models that are available via an API

have never been published or released for scrutiny by the academic community.

Recommendations to reporters of LLMs

Finally, those reporting on progress in the LLM field in non-scholarly publications such as

blogs, social media and the news must also be complicit in the effort to properly explain the

PLOS ONE Deanthropomorphising NLP: Can a language model be conscious

PLOS ONE | https://doi.org/10.1371/journal.pone.0307521 December 4, 2024 20 / 26

https://doi.org/10.1371/journal.pone.0307521


capacities of LLMs. This is particularly difficult when the authors lack the technical expertise

necessary for understanding a contribution.

Some techniques that could be used to overcome this include:

R3.1 Being sceptical of the general statements made by authors in the introductory parts of the

research papers. It is much better to rely on concrete examples or, whenever possible, first-

hand interaction with a system.

R3.2 Partnering with AI researchers that can offer guidance—preferably not the authors of the

described contribution.

R3.3 Taking the status of the sources into account. Articles that have gone through peer review

are less likely to include exaggerated claims than those appearing as preprints or those

driven by commercial pressure.

Final remarks

We are a generation of researchers with the privilege to stand at a moment in time that will

have a fundamental impact on the long-term future of our societies [98]. The recent growth in

model capacity has led to machines capable of surpassing human performance on many tasks

that were formerly thought impossible. We must choose to report on the capabilities of our

models and machines responsibly and fairly. If reporting is left unchecked, the future of lan-

guage modelling may be one where the capabilities of models are misunderstood. In overesti-

mating the abilities, models are treated with more confidence than they deserve and given

responsibilities they should not have. Misapplication leads to reinforcement of existing human

biases and division in society. However, a future is also possible where responsible NLP/AI

researchers have correctly communicated their findings and worked with journalists to explain

the capabilities and limitations of these machines. Powerful models can be responsibly applied

to great societal benefit.

Both these futures are possible, and the responsibility to shape the outcome lies with the AI

community. Which way will we choose?
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