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Deep Federated Fractional Scattering Network for
Heterogeneous Edge Internet-of-Vehicle
Fingerprinting: Theory and Implementation

Tiantian Zhang, Graduate Student Member, IEEE, Dongyang Xu, Member, IEEE, Jing Ma, Student
Member, IEEE, Ali Kashif Bashir, Senior Member, IEEE, Maryam M. Al Dabel, Hailin Feng, Member, IEEE

Abstract—With the rapid development of distributed edge
intelligence (DEI) within Internet of vehicle (IoV) network, it is
required to support heterogeneous rapid, reliable and lightweight
authentication which prevents eavesdropping, tampering and
replay attacks. Radio Frequency Fingerprinting (RFF), which
leverages unique and tamper-proof hardware characteristics,
is an emerging deep learning based physical layer technology
poised to achieve excellent authentication within DEI enhanced
heterogeneous IoV. However, centralized collection of critical
datasets will bring severe privacy concerns as well as huge com-
munication overheads towards resources-constrained IoV nodes.
In this paper, we propose a deep federated fractional scattering
fingerprinting network (FFSFNet) which amalgamates fractional
wavelet scattering and federated learning to achieve excellent
identification. Particularly, we first exploit fractional wavelet
scattering to extract RFF characteristics from non-stationary
waveform, eliminate redundancies and enhance interpretabil-
ity. To improve the training efficiency and privacy protection
capability, we design a novel federated framework, which not
only completes distributed training, reduces overhead but also
protects privacy. Furthermore, we conducted a comprehensive
comparative analysis of different model quantization schemes
and validated the proposed scheme with field programmable gate
array (FPGA) accelerators. Experimental results demonstrate
that the proposed FFSFNet can maintain excellent identification
performance with only 5.08% of original samples. The model size
and inference latency can be effectively improved by quantization
with limited degradation. Moreover, the identification testing
accuracy of FFSFNet can eventually converge to 99.4% with
0.64ms inference latency per sample.

Index Terms—Distributed edge intelligence, radio frequency
fingerprinting, fractional wavelet, scattering network, heteroge-
neous federated learning.
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Fig. 1. The architecture of distributed edge intelligence empowered Internet-
of-Vehicles.

N recent years, the rapid advancement of the Internet

of Vehicles (IoV) has facilitated seamless connectivity
among smart vehicles, road infrastructure, network facilities
and users. This intelligent integration of IoV enables com-
prehensive environmental perception, enhances transportation
efficiency, and reduces road accidents, paving the way for
next generation of intelligent transportation systems [1]-[4].
The intelligent IoV network encompasses a vast array of
heterogeneous vehicles and roadside units (RSUs) nodes that
generate substantial volumes of critical information [5], [6].
Furthermore, the promising IoV architecture, based on cloud
and edge intelligence, enables distributed artificial intelligent
(AI) among smart vehicles and RSUs to process related data
and computations locally. Given the vast amount of raw data
generated within IoV networks, Al plays a crucial role in ap-
plications such as assisted driving, autonomous driving, intel-
ligent traffic management and vehicle-road collaboration [7].
Centralized data collection through wireless communications
is essential in IoV networks, while it raises significant privacy
concerns and imposes substantial transmission overheads.

To tackle with the issues above, the framework of dis-
tributed edge intelligence (DEI) is developed in which edge
servers cooperate with a number of edge clients to jointly
train effective Al models for various IoV applications while
preserving clients’ privacy [8]. To achieve this paradigm,
two big challenges are required to respectively deal with in
communications and learning domain. As shown in Fig. 1, in
communications domain, it is required to guarantee rapid and
reliable wireless access links during IoV communications be-
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of crucial informat% while also addressing concerns such
as data privacy, computing resource allocation and trans-
mission overhead [15]-[17]. Meanwhile, reliable, rapid, and
lightweight authentication services are essential for facilitating
the exchange of critical information across various scenarios
within IoV networks [18]-[20].

Radio frequency fingerprinting (RFF) which offers high
reliability and low latency identification through unique and
tamper-proof hardware features can be utilized to establish
the security link within IoV networks [21]-[25]. Although
RFF can provide secure and reliable authentication services
between heterogeneous nodes in IoV networks, traditional
RFF relies on centralized training, which requires massive
shared data and computing resources. Within learning do-
main, federated learning (FL) is proposed to guarantee the
data privacy and coordinate computing resources [26]-[29].
However, the data redundancy and Insufficient interpretability
greatly limits the widespread application of the DEI [30]. From
the perspective of DEI empowered IoV, distributed FL can
handle the privacy concerns, reduce the transmission overhead
and coordinate computing resources. Furthermore, RFF can
provide reliable and rapid authentication services to protect
the critical information from attacking. As illustrated in Fig. 2,
the architecture of deep federated fractional scattering network
is designed for the heterogeneous IoV fingerprinting. This
framework allows diverse local nodes which includes vehicles
nodes, RSUs, and user to utilize their extensive datasets
for local model training, thereby eliminating transmission
overhead between nodes. Moreover, traditional models are
typically deployed in 32-bit float-point format which always
requires huge memory and computing resources.

To address high memory usage and energy consumption in
the deployment of practical deep neural networks (DNNs), a
comprehensive survey of quantization concepts and methods
for DNNs is provided in [31]. A remarkable quantization
scheme can be applied to the recommendation models in pro-
duction environments based on low-precision hardware [32].
To mitigate the accuracy loss associated with quantization after
model training, a novel quantization scheme is designed to
solve high dynamic range, zero overflow, diverse normaliza-
tion, and limited model parameters [33]. Besides, the trade
off between delay and accuracy in model quantization still is
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Fig. 2. The architecture of deep federated fractional scattering network for
heterogeneous Internet-of-Vehicles fingerprinting.

a challenging problem. The computing accelerator based on
FPGA can utilize model prune, quantization and multi-core
parallel computing to achieve efficient model inference for
edge application [34]. Considering the energy consumption of
federated learning, the gradient sparsity, weight quantization
and pruning can be utilized to improve the efficiency of
federated models which are deployed on 5G terminals [35].
Without model quantization optimization, these models re-
main large, necessitating high memory and causing high
inference latency which complicates the model’s deployment
in resource-constrained IoV network, presenting significant
challenges. In summary, how to establish an excellent RFF
with distributed edge intelligence for providing rapid and
reliable authentication ability embracing the following three
challenging aspects:

1) Privacy and transmission overhead concerns: The con-
ventional centralized learning scheme imposes signifi-
cant demands on computing resources and raises sub-
stantial privacy concerns. Designing an effective training
framework to efficiently ensure privacy protection and
facilitate training on resource-limited nodes has emerged
as a challenging problem.

2) Data redundancy and insufficient interpretability: The
extensive raw datasets from various nodes contains
significant redundancy. Effectively extracting the RFF
characteristics embedded within non-stationary wave-
form poses substantial challenges. Moreover, traditional
model training suffers from its black box operational
mode constraining the practical deployment and appli-
cation.

3) Model practical deployment limitations: The optimiza-
tion and deployment of high-performance, cost-effective
models have become pressing concerns. Traditional
post-training model deployment encounters challenges
related to memory, performance, and latency, all of
which must be addressed within IoV networks.

A. Related Work

With the rapid evolution of intelligent IoV, the traditional
high-level encryption-based authentication schemes becoming
vulnerable to fake and deception attacks, making them in-
adequate for critical applications such as autonomous driv-
ing, vehicle-road collaboration, and human-machine interac-



tion. A novel physical layer authentication scheme which
leverages unique hardware features and facilitated by deep
learning can offer secure, reliable, and lightweight access
authentication services through DEI within IoV networks. DEI
enables distributed machine learning among smart vehicles
and roadside units (RSUs) at the IoV network edge, close
to the data sources. By deploying models on data-source
side, DEI significantly r educes d ata t ransmission overhead
and ensures timely feedback during data generation, thereby
enhancing the operational efficiency o f t he e ntire intelligent
IoV. However, each distributed model trains solely on local
data, lacking the ability to utilize global data. Moreover,
distributed RFF requires substantial datasets for model learn-
ing. Designing an efficient n etwork m odel i s ¢ rucial f or its
effective deployment. Since DEI is often deployed at the
edge, lightweight deployment and efficient i nference o f RFF
models are key constraints for its application. In summary,
efficiently d esigning a nd d eploying R FF m odels w ithin IoV
networks under a distributed architecture remains a significant
challenge. Furthermore, model quantization emerges as an
essential technology for efficient deployment, reducing model
size and inference latency with limited performance losses.

Despite the challenges discussed above are still exist, re-
searchers have made significant s trides i n a ddressing these
issues. To address the signal length diversity and robustness
of RFF, authors in [36] proposed a novel network capable
of handling variable-length signals, enabling efficient feature
extraction of diverse samples. Considering the non-stationary
RFF application, authors in [37] proposed a deep learning
based RFF scheme for massive LoRa nodes identification.
Authors in [38] proposed a deep learning-based RFF that
exploits physical-layer hardware impairments as unique fea-
tures for devices identification. To c ontend w ith mixed time-
varying distortion challenges, authors in [39] involved spectral
cyclic shift division to suppress interference. Considering the
inevitable presence of unmanned aerial vehicle (UAV), authors
in [40] extracted features from preamble signals and con-
structed a distributed model for UAV identification. To address
the data collection under various channel conditions, authors
in [41] proposed different data augmentations for transmitter
and receiver according to the availability of datasets. The
authors in [42] reviewed the distance-based classifier and au-
tomatic feature extractor. Then, combined with deep learning
to form hybrid RFF schemes. The authors in [43] provided the
tutorial of building closed-set and open-set RFF system, and
created the testbed to publicly provide the collected datasets
online.

Traditional RFF schemes demand extensive datasets, signif-
icant computational resources for training and interpretability.
Authors in [44] have developed translation-invariant operators,
and a scattering propagator was introduced to capture the non-
linear characteristics. Furthermore, considering the translation
invariance of wavelet scattering networks, the authors in [45]
confirmed their ability to preserve high-frequency characteris-
tics. Authors in [46] defined the temporal deformation and lo-
cal translation invariance which enhanced the representation of
Mel-scale frequency cepstral coefficients (MFCC) with multi-
order scattering coefficients. Considering the time shift invari-

ance of signals, authors in [47] introduced a time-frequency
scattering transformation to achieve multiscale energy decom-
position. Authors in [48] proposed fractional wavelet scattering
network that efficiently extracts non-stationary medical tex-
ture features. To improve the model’s interpretability, authors
in [49] proposed a scattering network based on fractional
wavelets, the energy conservation, deformation stability and
other properties have been proven. Authors in [50] involved
deep fractional scattering to extract RFF features of LoRa
preamble, demonstrating that it can efficiently handle RFF fea-
tures under non-stationary conditions. Furthermore, consider-
ing the reliance of distributed learning towards computational
resources, authors in [S1] proposed a hybrid architecture that
combines fractional scattering networks with FL to ensure
the privacy and efficiency. Therefore, efficient RFF features
extraction methods can achieve the removal of redundant and
improve the learning effectiveness of FL framework.

In typical IoV networks, heterogeneity is a defining charac-
teristic. FL can effectively harnesses distributed intelligence
nodes, encompassing computational resources and limited
storage capacity, as emphasized by [52], [53]. It is crucial for
client models to effectively update the server model to achieve
the desired performance and convergence, as discussed in [54].
To improve the learning efficiency, authors in [55] proposed
an adaptive gradient update strategy which achieves dynamic
optimization during the training. To realize optimal model,
authors in [56] employed dynamic updates weights to improve
the FL efficiency. Furthermore, authors in [57] advocated for
dynamic optimization through a strategic combination of local
iterations and global aggregation. In their study [58], authors
proposed a RFF scheme that leverages data augmentation to
discern large-scale nodes. Authors in [59] developed RFF
FL model to identify Wi-Fi samples. Results confirmed that
proposed scheme achieves competitive accuracy compared to
centralized training.

Currently, traditional RFF schemes cannot be directly ap-
plied to heterogeneous IoV network to provide rapid, reliable
and lightweight authentication services due to the limited
storage, computing resources and privacy. Model quantization
is a crucial technology for reducing computing and memory
requirements. Authors in [60] proposed a scheme that using
integer weights for model inference. Experimental results
indicated that proposed scheme successfully balances accuracy
and inference latency. Different models have its own specific
structural, authors in [61] proposed a customized quantization
strategy for different layers. Authors in [63] explored the
application of various quantization strategies in lightweight
distributed semantic communication. Experimental results re-
vealed that by pruning and quantizing, a compression rate
of nearly 40 times can be achieved almost without losing
performance. In summary, DEI and RFF can be utilized
to authenticate heterogeneous nodes within IoV networks.
However, existing traditional models lack interpretability and
require huge training samples. The presence of redundant
information significantly hampers the efficiency of learning.
Consequently, efficiently extracting RFF characteristics, en-
hancing interpretability and privacy protection have become
paramount issues within DEI framework. Furthermore, tradi-



tional model deployment imposes high demands on computing
resources and memory, leading to significant inefficiencies
and increased inference latency. Consequently, implementing
privacy-protected, explainable, and efficient d istributed RFF
within DEI-enabled intelligent IoV systems has become a
significant challenge.

B. Contribution

To address the aforementioned challenges, we proposed
FFSFNet which amalgamates fractional scattering and feder-
ated learning to achieve excellent identification performance
within IoV network. Moreover, FFSFNet can significantly
reduce redundancy and improve learning efficiency under the
DEI framework, while enhancing the interpretability, deploy-
ment feasibility and privacy. Besides, model quantization can
optimize the size while keeping performance loss within a
controllable range. Furthermore, reducing its dependence on
memory, inference latency, and greatly promotes its practical
deployment within IoV network. Specifically, the main contri-
butions of this paper are summarized as follows:

1) To mitigate data privacy concerns and reduce the sub-
stantial communication overhead associated with cen-
tralized data collection, storage, and sharing. Within DEI
framework, federated learning is introduced to jointly
train effective models for identification while preserving
privacy. To further enhance learning efficiency, a novel
residual network has been designed, capable of attaining
remarkable identification with only 0.579M parameters.

2) The redundant information presents a significant chal-
lenge to the DEI efficiency. We develop novel FFSFNet
to extract the multi-scale RFF characteristics embedded
in non-stationary waveform. This brings a substantial
redundantly reduction, thereby significantly improving
learning efficiency, diminishing reliance on computing
resources and enhancing model interpretability during
the training process.

3) Furthermore, to tackle memory and computing resource
constraints during practical deployment, we conducted a
comprehensive comparative analysis of various quantiza-
tion schemes and validated with FPGA accelerator. Ex-
perimental results demonstrate that FFSFNet can main-
tain up to 99.4% identification accuracy by only utilizing
about 5.08% of original samples among 35 different
nodes within heterogeneous IoV network. Model quan-
tization can effectively reduce model size and inference
latency with minimal performance degradation.

C. Organization

The remainder of our paper is organized as follows. In
Section II, the signal structure, preprocessing and basic prin-
ciples of wavelet scattering network are discussed. Then, the
architecture of proposed deep fractional wavelet scattering
network is discussed in Section III. Furthermore, the proposed
deep federated fingerprinting framework based on fractional
wavelet scattering network is presented in Section IV-A. In
Section V, we introduce the detailed experiment setup and
remarkable experimental results. Finally, the representative
conclusion is drawn in Section VI.

II. SYSTEM MODEL

A. Signal Structure and Preprocessing for Heterogeneous loV
Network

In this section, we explore the waveform characteristics
of two distinct signals that have been gathered: LoRa which
utilizes the chirp modulation and orthogonal frequency divi-
sion multiplexing (OFDM). Our emphasis will be specifically
directed towards an in-depth investigation of the mechanism
involved in RFF characteristics generation within these two
different waveform. Firstly, a complete LoRa signal consists
of three parts: preamble, delimiter and payload symbols which
are modulated by the linearly frequency. Then, the modu-
lated signal is processed by digital-to-analog converter and
a matched power amplifier. At time ¢ it can be represented as:

wp(t) = AT (emint 3T (g <y <) (1)

where A represents the amplitude, w,,;, is the minimum
operating frequency which equals to —% Additionally, B
represents the operating bandwidth and the working band
range can be denoted as [—Z, Z]. Besides, T' denotes the
symbol duration and 7 = % represents the frequency sweep
rate. Furthermore, Aw denotes the specific frequency offset.
For ease of representation, we discretize the original signal

and the received can be expressed as:
yr (n) = Hp * I, (zr(n)) + Ni, 2)

where Hj represents the channel, /7, denotes the hardware
impairments and Ny, represents the channel noise. OFDM em-
ploys multi-carrier modulation, allocating multiple orthogonal
sub-carriers in frequency domain to achieve high throughput
transmission. The k-th data symbol resulting from bit stream
modulation is denoted as F'(¢). Then, the inverse fast Fourier
transform (IFFT) of the frequency signal can be expressed as:

M-1
1 o
zo(n) = 5; > F@i)e?™ /M o<n<M—1, )
=0

where n denotes the discrete samples index. Furthermore,

frequency and phase mismatches between transmitter and
receiver lead to CFO and phase offset. The received signal
can be expressed as:

yo(n) = Ho * Do(zo (n)) + No, 4)

where Do denotes the non-linear RF characteristics, Hp
represents the wireless channel, No denotes the system noise
which also satisfies the Gaussian distribution. In summary,
despite significant variations in modulation and transmission
methods between LoRa and OFDM, they pass through the sim-
ilar RF modules and all the corresponding RFF impairments
characteristics have been embedded into the waveform.

B. The Basic Principles of Wavelet Scattering Network

In numerous situations, the characteristics of signal ex-
hibit significant variations across time and spatial dimensions.
These variations are often compounded by noise and de-
formation, which pose challenges to effective RFF features
extraction and identification. The wavelet transform can be



utilized to its variable scaling and multi-resolution analysis.
Specifically, f or i nput s ignal z (¢) that are c ontinuous o ver a
finite time interval, the wavelet transform can be defined as

Wla) = 2= [awr (e

where a and b serve to adjust the wavelet’s scale and its
temporal shift along the time axis ¢, respectively. The mother
wavelet 1 (t), upon undergoing transformations via a scaling
parameter j and a rotation parameter z, yields a collection of
wavelet sets characterized by varied scales and orientations as
follows

Ya(u) = 2%79(27 27 1), (6)

where A = 27z signifies the composite parameter in the
wavelet transform, encapsulating both scale and rotation de-
tails. Wavelet filter banks excel in dissecting and seizing both
information and energy across various scales and directions
from a given signal. The convolution between these filters and
2(t) fundamentally can be defined as a process of features
extraction.

R[Nz = |z(t) ], (7

where R'[\] denotes the modulus operator. Besides, * rep-
resents the convolution operation. Subsequently, through the
convolution of the wavelet modulus coefficients with the scale
function ¢(t), we are able to distill the low-frequency elements
of the signal. This process yields the translation-invariant
scattering wavelet coefficients.

O[N]z = |2(t) * x| * 6(1), (8)

where ¢(t) denotes the scale function and O'[A] denotes the
related calculation process. Considering that the low-frequency
part reflects the large-scale geometric characteristics of the
signal, it exhibits strong invariance to local changes such as
translation, rotation, and scaling. Therefore, we introduce a
low-pass filter ¢(t) to extract the low-frequency components
of the signal, ensuring translational invariance and deformation
stability of the features.

During the wavelet scattering transform, operations involv-
ing modulus tend to emphasize low-frequency characteris-
tics while inadvertently diminishing high-frequency details.
To mitigate the loss of high frequency characteristics, the
transform employs iterative steps at elevated levels, incorpo-
rating additional modulus operations and low-pass filtering.
Throughout these iterations, the signal undergoes dispersion
across various scales and orientations via distinct paths. Upon
reaching the k layer, this calculation process can be denoted
as follows

O k1w (uy A1y ey A1) = |||z x| x g ) Y, |
* ¢ (t)
=R p_12(uy A1, ooy A1) * G (1),
R x(uy A1y ooy k) = |||z % 0, | % 0y ] % 2, |
=R p_12(uy A1, ooy Ag—1) * U,
9

where R’j. denotes the high frequency coefficients calculation
path of £ layer. It can be found from (9) that the scattering

network establishes a unique form of hierarchical convolu-
tional network by sequentially employing complex wavelet
operators and modulus operations. This approach ensures
that the translation-invariant coefficients @’;, which can be
calculated layer by layer. Concurrently, the wavelet modulus
coefficients R'f, can be relayed to the subsequent layer of
the network for additional processing, thereby enhancing the
accurate and robustness of feature extraction.

III. THE ARCHITECTURE OF DEEP FRACTIONAL
SCATTERING NETWORK

A. The Basic Principles of Fractional Wavelet Transform

The fractional Fourier transform (FRFT) facilitates the
transformation of time series signals into the Fourier domain.
For a d-dimensional signal, the FRFT is mathematically de-
fined as follows:

Xa(r) = Fa}r) = [ 2©Qurtidt  (0)
Rd
where Q,(7,t) = Hle Q. (Tiyt;), and
2442 .
Paiej 7'2 L cot oy —JtiT; cscoz,;7 o 7& nT,
Qaz‘(Ti’ti) = 5(ti—Ti), a; = 2nm,
5(ti+7—i)7 ai=(2n—1)7r,
(11)
where o; denotes the fractional rotation angle. Besides, P, =
1_7;77?” represents the corresponding fractional sacle fac-

tors and n € Z. Specifically, when the fractional rotation angle
«a; = m/2, the FRFT simplifies into the classical Fourier
transform (FT). Therefore, FRFT can obtain the fractional
components of input signal, offering a flexibility surpassing
that of conventional FT. However, the FRFT obscures the
time-varying aspects of signals by integrating across the entire
time axis, thus failing to capture the spectrum information
within localized time windows. Fortunately, fractional wavelet
transform (FRWT) can maintain the local time-frequency
characteristics of signals. For any signal z(t) € R%, the d-
dimensional FRWT can be defined as

We (A1) = / 2(P)W o),

Rd

(12)

where the d-dimensional fractional wavelet kernel function is

detailed as
1 u—t  uQou—tQqt
(5o
Al A

wa)\,t(u) =
where A and ¢ denote the scale and time shift, respectively. The
FRWT across various scales equivalent to the application of
band-pass filters. Notably, when o = 7/2, the FRWT convert
into the traditional wavelet transform (WT). The rotation angle
« is a key parameter in the fractional wavelet characteristics.
An appropriate v can improve the distinguishability of RFF
scattering coefficients. During the experiment, this critical
hyperparameter o« = /4 was selected through multiple pa-
rameter evaluations to extract the scattering coefficients. This
parameter affects the characteristics of fractional wavelet basis
function and also impacts the scattering coefficients which

(13)
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Fig. 3. The architecture of fractional wavelet scattering network.

contain RFF features. Therefore, it is essential to perform
grid search or Bayesian parameters selection optimization in
practical applications. This ensures that the fractional wavelet
scattering network can effectively represent RFF features,
thereby improving the model’s performance.

B. The Architecture of Fractional Wavelet Scattering Network

In the analysis of the multidimensional z(t), we introduced
FRWT to capturing the non-stationary signal’s variation char-
acteristics across distinct orientations. This enhancement en-
tails two pivotal steps: firstly, the orientation of each individual
fractional wavelet v (¢) is modified using a rotation factor z,;
secondly, scale 29 is utilized to appropriately scale the rotated
wavelets. By integrating the dual principles of directionality
and scaling, the signal can be accurately analyzed in mul-
tiple directions with various scales. The discrete fractional
directional wavelets can be denoted as g, .¢(u), where
Ag,n = 2%z, represents the combination of rotation and scale
adjustment. Therefore, the calculation process of FRWT can
be equivalent to a special set of filters which can decompose
the signal into detailed and the general parts. More specifically,
the signal’s low-frequency components of z(¢) can be obtained
with 27 and the related calculation process can be denoted as

Qa,s(t) = x(t) *a P24 (1), (14)

where Q, jx(t) represents the basic general low-frequency
components. Besides, ¢, (t) denotes the fractional scale func-
tion endowed with low-pass attributes and can be defined by

or, () = Mm( ;J)

Furthermore, the signal’s high-frequency components which
obtained with scale 29 < 27 represents the detailed character-
istics and can be denoted as

Wa,m(Aq,nv t) = :Z:(t) *a 7/1Aq,n (t)v

where 1y, (1) = o P ( Ny encapsulates the
fractional wavelet’s extractlon capability for high-frequency
characteristics. Besides, Wy 5(Agn,t) represents the high-
frequency detailed characteristics. The potential minor transla-
tions within the signal complicates its practical application. To

15)

1<n<N, (16)

address the issue and maintain relative translational invariance,
the modulus operation is proposed and can be defined as

RNz(t) = Wae(Agn, )] = |2(E) 0 Px, . (8],

where R denotes the complete modulus operation. Further-
more, the nonlinear coefficients are subsequently filtered by
¢97(t) to harness non-zero translational invariance which can
be represented as

O[/\}.’L‘(t) = ‘Wa,w()‘q,nat” ko Qo7 (t>
= [2(t) *a ¥a,., ()] *a ¢20 (D),

where O denotes the calculation operator with multi-scale
filters. It can be found that the structure of fractional wavelet
scattering transform is extremely similar to deep convolutional
networks. By conceptualizing this structure as a fractional
wavelet scattering network, we can find that it not only inherits
the hallmark features of traditional scattering networks, such
as translational invariance and stability to deformations, but
also suitable for non-stationary signal analysis. As shown
in Fig. 3, the every path of FFSFNet can be denoted as
p*) = (p (k),pgk), ,p,(~C )) Where the k represents the cor-
responding maximum path length and the coefficients of kth
can be denoted as

R p®a(t) = R p;] - R[5 )R [ ) (1)
’ H *a P ()| *a RO (t)’ o ¥q 1/11,;_@(75) )

where pg ) = 2% z,(q; < J,1 < i < k) represents the scale
and rotation parameters of the fractional wavelets. Following
the R*[p™]xz(t), applying the low-pass filter ¢, (t) yields
the k th level output coefficients O[p(¥)]z(t) as

0 [pM]a(t) = R [p™]a(t) *a ¢os (1),

where k denotes the layer of fractional wavelet scattering
network and O%[0]x(t) = x(t) *q ¢ou (t) represents the low
frequency characteristic of input signal. Fig. 3 illustrates the
architecture of a fractional wavelet scattering network with
three different levels. Within this architecture, the original
input signal x(t) goes through a series of level-wise pro-
cessing, generating fractional order wavelet scattering coef-
ficients O%[p®))z(t) for different levels k& = 0,1,2 which

a7

(18)

(19)

(20)
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Fig. 4. The STFT and various fractional coefficients of different scattering
layers. (a) Typel-6 nodes: STFT, 1-th fractional wavelet coefficients, 2-th
fractional wavelet coefficients (left, middle, right); (b) Type7 nodes: STFT,
1-th fractional wavelet coefficients, 2-th fractional wavelet coefficients (left,
middle, right).

constitute the output of scattering network and form a sample.
Furthermore, the fractional wavelet transmission coefficients
R[p™)]x(t) from one layer serving as the input for subse-
quent layer. Specifically, the first layer outputs the fractional
scattering coefficients O%[P(?)]x(t) and the fractional wavelet
transmission coefficients R*[P(M]z(t) can be calculated by

O [POz(t) = RO[PO]x(t) 0 dor (t) = 2(t) %0 o (t)

R [P(l)]x(t) = {|z(t) *a 1/):051)(75) }pgneg,
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where Q = {\,, = 292,,|27 < 27,1 < n < N} encompasses
all feasible scale-orientation combinations of the fractional
wavelets. For k-th layer of network, both the fractional wavelet
transmission coefficients R*[P(*)]z(¢) and the scattering co-
efficients from the preceding layer O“[P*~D]z(t) to be
output are denoted as

RAPW]a(t) = R [pPIRAPED]z(t), vi®) € F
O [PFDNa(t) = RAPEVa(t) %0 b (1),

Through this approach, the network can process the signal
in a hierarchical manner, extracting the signal’s fractional
wavelet scattering coefficients which contains the related RFF
features layer by layer. According to the principle of energy
conservation, as the number of layers m in the fractional
wavelet scattering network increases, the energy of network
transmission signal will gradually decrease and eventually
approach zero [49]. Energy is retained in the scattering co-
efficient of the different layers’ output. It can be observed
from (22) that when the number of network layers n is
greater than or equal to m, the energy O%[P*~Dx(t) of
the fractional scattering network will also tend to zero. This
indicates that the depth of fractional scattering network can be
controlled within a certain range, and the signal’s energy and
information loss can be considered negligible.

(22)

As illustrated in Fig. 4, the short-time Fourier transform
(STFT) and the fractional wavelet scattering coefficients across
various layers are presented. Specifically, the STFT spectrum
for the first type of node is displayed on the left in Fig. 4(a),
highlighting the evolution of signal frequency over time. Here,
the intensity of the color signifies the energy magnitude.
The middle diagram of Fig. 4(a) showcases the distribution
of first-level scattering coefficients, represented as a circular
ring divided into different sectors which denotes a specific
frequency range. The right diagram presents the distribution
of the second layer scattering coefficients, offering a more
detailed frequency segmentation. Similarly, Fig. 4(b) presents
the STFT and scattering coefficients for another type nodes
in an analogous fashion. In the first layer of the scattering
network, frequencies organize into a circular structure at
a distinct scale 271, termed as binary ring. Where the j;
represents the scale factor in the fractional wavelet, which is
primarily responsible for scaling the fractional wavelet basis
function to varying degrees. This configuration is subdivided
into multiple sectors, each characterized by a unique rotational
angle z; which denotes the different rotation directions and
fractional wavelets 1)(u) can be rotated by different rotation
factors z;. Besides, 2 represents different quadrant regions,
indicating different frequency domain positions, and is related
to the scale factor 2/, as shown in Fig. 4 for different
dyadic annuli [2712;]. For exploring the second layer, it
not only referred to the scale and direction of the primary
level, but also further divided the fan shapes of the primary
level. Furthermore, these quadrants are divided into rotating
sectors according to the angle vector, forming a more refined
sector which can be denoted as 2[271 21,272 25]. In summary,
the scattering network can be utilized to refine frequency
partitioning from various levels, while capturing the multi-
scale nature of complex signals.

C. The Deformation Stability of Fractional Wavelet Scattering
Network

It should be emphasized that wireless signals are inevitably
affected by noise during transmission which may cause certain
deformations and impact the RFF characteristics extraction.
It is imperative for fractional wavelet scattering network
to accommodate these fractional deformation which can be
defined as

e(t)

Tew(t) = a(t — e(t))e ==

) cot o (23)
where 7 represents the corresponding operator and &(t)
denotes the fractional deformations. If o = /2, the defor-
mations will degenerate into traditional forms.

Toa(t) = a(t — £(1)), 24)

Furthermore, under the assumption of existing a constant £
and any signal x(t) € L?(R?) satisfying deformation gradient
|| V elloo < 1/(2d), the specific error caused by fractional
deformations can be limited within an acceptable range and
can be denoted as

|0%[P)Tx — O%[Plall, < LTa(e) [RO[Ple],.  @25)



where I',, (¢) quantifies the deformation constraint and defined
as following

To(e) 2277 |lelloo + (JIIVelloo + || Vel ) S0z
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+ (”V&Hoo + 2\/5 (1 — 5(1,%) s ( )

where 0,z denotes a adjustment factor which only contains
two different factors [0,1]. When the oo = 7/2, the 5,1,% =1
and all other cases are 0. Stability is crucial for fractional
wavelet scattering networks, especially when dealing with
deformed signals. By controlling negative effects within spec-
ified limits, fractional wavelet scattering network demonstrate
robustness against subtle deformation.

IV. THE PROPOSED EFFICIENT DEEP FEDERATED
FINGERPRINTING FRAMEWORK

A. The Architecture of Deep Federated Framework for Fin-
gerprinting

In the heterogeneous architecture of the oV, we categorize
a myriad of intelligent nodes into distinct groups, illustrated
in Fig. 2. Each group can be treat as an operational unit,
inherently unable to engage in centralized data collection and
model training. To address this, federated learning is involved
to achieve the distributed learning among the different nodes
and without aggregating the data to any central server. Within
this architectural paradigm, the federated averaging (FedAvg)
scheme serves as a core strategy and can be characterized as:

N
min_ f(w) = > piFi(w) = Ei[F(w)), @27
i=1

where p; represents the probability of client 7 being selected.
Besides, F;() is the local objective function defined on client
i and N is the number of clients. Furthermore, w is the global
model weight value, each client performs computing tasks
locally to optimize its local objective function F;(w), while
contributing to the global model.

However, the various groups of clients, as depicted in Fig. 2
face varying computational and resource constraints due to
hardware and network differences. The FedAvg algorithm,
requiring consistent local updates from all clients, overlooks
the limitations of less capable nodes. We address this by intro-
ducing the FedProx, which adds a proximal term §||w —w?||?,
penalizing deviations from the global model to ensure that
local updates remain closely aligned with the global.

PP, (28)

Hgnyz-(w; w') = Fy(w) + %Hw —w
where Z|lw —w'||? penalizes the discrepancy between client’s
model w and the global model w?. Besides, o is a non-negative
parameter adjusting the penalty level which can control the
distance between local and global model. In our practical
implementation, we set p = 0.5, determined through a grid
search method. The additional proximal term ||w — w'||? can
effectively limit the impact of deviated local updates, thereby
reducing fluctuations in global model performance. Although
this proximal term may lead to a temporary decrease in model
accuracy for some clients, as their updates are no longer solely
optimized based on their own data, it helps maintain the

stability and consistency of the global model from a global
perspective. More importantly, by suppressing inconsistent
local updates, the proximal term significantly improves the
learning efficiency of the system when handling distributed
heterogeneous data, thereby optimizing the overall perfor-
mance of the federated learning system. To address the local
optimization, we introduce the Gf—inexact solution, allowing
clients to aim for an approximate rather than an exact optimal
solution. Specifically, in tackling the local problem (28), it is
sufficient to find an Qf-inexact solution w, that it satisfies the
following criteria:

||Vy,-(u7; wt)|| <o HVyi(w; wt)

|, (29)

where 6! acts as a relaxation factor within the range [0, 1], set-
ting the tolerable limit for gradient inaccuracy. The proposed
FedProx schemes proceeds as follows: the server randomly
selects K clients from a total of IV and forms a subset €);.
The server then sends the current global weights w’ to these
selected clients. Each client ¢ employs stochastic gradient
descent (SGD) to update the model locally. Then, the updated
model weights can be denoted as

t+1
%

with = wl — A\ Vyi(w; w'), (30)

where Vy;(w; w') = VF;(w) + o(w — w') denotes the
gradients update, \; represents the client learning rate and
wﬁ“ is an @!-inexact solution that satisfies (29). Upon com-
pletion of the local updates, each client sends their updated
model gradient V! back to the server. Subsequently, the server
aggregates these gradients by calculating their average from all
clients. This aggregated gradient is then utilized to update the
global model’s gradient.

VtZ%Zvﬁa

1€

3D

where V; denotes the global updates. The server proceeds to
update the weights by employing the Adam optimization.

Ut

w = w' + Ay ,
2t + €

(32)

where Ay represents the global learning rate, and ¢ is a very
small fixed values to avoid division by zero. Momentum v*
and second moment z! can be expressed as:

vt =6t (1 - €)Y,
Zt = §22t_1 + (1 — fg)Vf,

where &; and & are the decay rates of the gradient and its
square respectively. Considering the practical performance, we
employed the recommended values & = 0.9 and &; = 0.999
during our experiment [62]. In this way, the proposed scheme
can coordinate model training on multiple devices and ulti-
mately summarize a globally optimized model efficiently.

(33)

B. The Architecture of Designed Models

As depicted in Fig. 5, we introduce ResNet-1d alongside
other benchmark models. In Fig. 5(a), the ResNet-1d archi-
tecture initiates by convolving the input with 64 linear filters
of size 7x1, aiming to capture feature information across
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Fig. 5. The architecture of proposed ResNet-1d and other benchmark models.

various temporal scales. Furthermore, increasing the filter size
(17 x 1 or 70 x 1) can cover a longer span, potentially
capturing features over a longer scale and better capturing
lower frequency information. However, this may overlook
some high-frequency details, causing the model to miss subtle
features. Additionally, larger filters require more computing re-
sources and significantly longer training times. Subsequently,
this architecture incorporates two distinct residual structures:
the ID Block and the Conv Block. The ID Block comprises
two convolutional layers of size 3x3 and an additional additive
unit that directly merges the input with the output. In contrast,
the Conv Block employs our additive module, which combines
the convolutional result of the input with output. Each Conv
Block is followed by a ReLU activation function to mitigate
common issues related to gradient vanishing. If Conv Blocks
and ID Blocks are not alternately cascaded, the model may
become deeper but harder to train, posing a risk of gradient
vanishing or exploding. Alternating ConvBlocks and IDBlocks
balances feature extraction and critical information transmis-
sion, improving training effectiveness and model performance.

As illustrated in Fig. 5(b), the VGG16-1d also embraces
one-dimensional data input and adeptly handles samples via 5
sets of convolution layers with varying depths. Commencing
from the input layer, the network initiates feature extraction
employing a sequence of convolutions with progressively in-
creasing kernel sizes. ReLU activation and batch normalization
layers are applied to augment the model’s non-linearity and
stability. Ultimately, the 35x1 fully connected and softmax
layer are utilized to output the final decision. As shown in
Fig. 5(c), the multilayer perceptron (MLP-1d) consists of
straightforward yet versatile fully connected neural network
model comprising 10 distinct Dense layers. The model initiates
from a higher dimension size, progressively diminishing to 35,
enabling it to acquire intricate RFF features from the input.
Furthermore, ReLU activation layer is applied to introduce
nonlinearity, while the Softmax layer is utilized to produce
the ultimate classification probabilities.

C. Network Model Quantification and Acceleration

With the advancement of Al and models deployment, DEI
has emerged as a critically important potential application
architecture. However, the deployment of models at the edge

Fig. 6. The architecture of typical data collection system which is utilized to
acquire the large-scale RF raw data.

is hindered by |constraints such as limited storage, memory,
power consumption and latency, as these models typically
demand substantial computing resources. Model quantization
represents a pivyotal technique in addressing these challenges.
It reduces the model size and power consumption while main-
taining performance by converting the model’s high-precision
floating-point weights into lower precision floating-point or
fixed-point. However, careful optimization is necessary during
the quantization process to minimize accuracy loss, which
adds complexity to the procedure. The activation function
enhances the model’s ability to capture nonlinear characteris-
tics, crucial for learning complex functions. Thus, accurately
quantizing the activation function is essential to preserve the
accuracy. Model quantization comprises two primary compo-
nents: weight and activation quantization. Given the distinct
architecture of distributed training, this study employs a post-
quantization training strategy. The global model’s weights w?
initially maintain 32-bit floating-point and will be converted
into an m-bit integer.

= R (Sum (W

,],m

~ t
Wign

— min (Wf>>> ,
where S, ;7 represents the corresponding scaling factor, which

determines the quantization of floating-point precision to the
corresponding m-bits integer and can be annotated as

2m —1

max (w?) — min (w?)’

(34)

Swm (35)

To optimize quantization accuracy of the activation function,
one could increase the bit width of the activation functions,
followed by re-quantizing these results to a predetermined
bit width. Moreover, the presence of outliers in the acti-
vation function’s output may expand the quantization range
excessively and degrade the quantization accuracy within the
effective range. To address this issue, using an empirical
moving average (EMA) can effectively manage these outliers,
ensuring more stable quantization outcomes [63]. In summary,
model quantization is designed to minimize model size, re-
duce memory requirements, and enhance inference efficiency.
However, it is important to note that these benefits may be
accompanied by potential reduction of the model accuracy,
impacting inference performance to some extent.

V. EXPERIMENT SETUP AND RESULTS ANALYSIS
A. Experiment Setup

In this paper, we have developed a data collection system
specifically engineered to capture large-scale RF raw samples.



TABLE I
LABELS OF IoV NODES.
Nodes - 'Label
Training Dataset
Typel Nodes 1,2,3,4,5
Type2 Nodes 6,7,8,9, 10

Type3 Nodes
Type4 Nodes
Type5 Nodes
Type6 Nodes
Type7 Nodes

11, 12, 13, 14, 15
16, 17, 18, 19, 20
21, 22, 23, 24, 25
26, 27, 28, 29, 30
31, 32, 33, 34, 35

This system collects various raw signal samples from 35
different nodes, as detailed in Table I. As depicted in Fig. 6,
the datasets includes two different classes of terminals. The
first class of terminals includes type 1-6, each with five
distinct nodes. As illustrated in Fig. 6, includes a series
of components integral to signal processing: 1Q modulator,
filter, digital-to-analog converter (DAC) and power amplifier
(PA). As the signal passes through these different modules,
RF impairments are involved to the original waveform. To
ensure thorough data collection, parameters are meticulously
configured prior to channel filter selection. Upon receipt of
a physical uplink shared channel signal from the terminal,
the receiver captures demodulation reference signal symbols.
The intermediate frequency of the collected signal is set at
140 MHz, with additional wireless subcarriers spaced around
this central frequency. Complete frequency information is
achieved with a sampling rate of 122.88 MHz, covering a
frequency range from 17.7575 to 19.3625 MHz, where each
subcarrier spans a bandwidth of 15 kHz. The second class
of terminals which includes type7 consisting of five distinct
LoRa nodes. The complete LoRa packet structure comprises
three main components: preamble, start frame delimiter (SFD)
and effective data. The preamble is crucial for synchronizing
and marking the start of frame, although it does not convey
any substantive information. Despite the expectation that LoRa
devices have identical preamble structures, minor hardware
variations can cause slight, often unintentional, errors in the
preambles of different nodes. At the receiver’s end, the GNU
Radio’s file sink module is utilized to extract these preambles
from the LoRa frames received by a USRP B210 .
Furthermore, the extensive raw samples gathered from the
35 different nodes of these two class is processed by a frac-
tional wavelet scattering network to create the RFF datasets for
subsequent analysis. Each node includes 5000 training samples
and 200 testing samples. During our experiment, we have
configured the scattering network parameters scale factors J,
rotation factors (), fractional factors a, b and corresponding
network layers k£ according to the performance evaluation.
Considering the practical deployment, the network layers is
set as kK = 2. As for the model parameters configuration,
the learning rate is set to 0.0001, the batch size is 150, and
the number of training epochs is 200 for centralized model
learning. Within the distributed federated learning framework,

Ihttps://github.com/tapparelj/gr-lora_sdr
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ResNet-1d j = 4,L = 8.

095

09

o
o
]

i
w
T

Testing Accuracy
o S
-~ L4]

0.65%

1000 3000 5000

06}
—®—a=0.3,b=1=3 L=6

0.55 —8—2a=0.5,b=1=3L=6
2=0.3,b=0.8,=3.L.=5
05 L 1 1 1 L 1 i J
10 50 100 30C 500 1000 3000 5000

Training Slicenum

Fig. 8. The accuracy performance of different training samples and a, b with
ResNet