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ABSTRACT Chronic lung infections are the primary cause of morbidity and early 
mortality in cystic fibrosis (CF) and, as such, have been the subject of a great deal 
of research. Subsequently, they have become one of the key paradigms for polymi­
crobial infections. The literature, however, has traditionally focused on the presence 
of pathogens in isolation or univariate measures like number of species to predict 
decline of lung function and ignores large swathes of data. Here, we suggest that 
looking at the interactions between species identified by 16S rRNA gene sequencing, 
rather than at species singularly, could elucidate hitherto unknown properties of these 
complicated infections. To confirm this, pooled samples from studies conducted by our 
laboratory, sequenced using the same pipeline, were used to assess microbiome-wide 
associations to lung function. We found pathogenic interactions between species were 
limited to the most abundant species, which were composed of canonical CF patho­
gens (including Pseudomonas, Staphylococcus, Stenotrophomonas, and Achromobacter) 
and commensals. This observation is crucial for better understanding of polymicrobial 
infections and treatment of these conditions while providing a simple framework for 
expanding this research into other disease states. The adoption of ecological principles 
into infection science can provide better understanding and options to those suffering 
from chronic conditions. The statistical ecology approach presented here enables clear 
hypotheses from observational data that can be ratified through subsequent manipula­
tive experimental studies. Moreover, it can also be used to support the design and 
construction of clinically relevant in vitro models of polymicrobial infections.

IMPORTANCE Research studies have repeatedly demonstrated that chronic lung 
infection in cystic fibrosis is polymicrobial and consequently does not adhere to the 
single microbe-based Koch’s postulates. Despite the plethora of evidence, the role of the 
constituent taxa present is largely unknown. Here we demonstrate how an ecological 
modeling perspective on lung infection microbiota can tease out potential interactions 
that alter progression of disease. Using techniques akin to genome-wide association 
studies, we show and validate 22 taxa, present in the chronic respiratory disease 
associated with cystic fibrosis, which have significant interactions that are negatively 
associated with patient lung function, the majority of which are “non-pathogenic” 
organisms. This work highlights the need to understand the interactive landscapes of 
the microbiomes to fully appreciate the complexity and treat chronic lung infections. 
Furthermore, this presents testable hypotheses for manipulative experiments in model 
systems to elucidate key mechanisms to driving disease progression.

KEYWORDS polymicrobial infection, cystic fibrosis, microbiome, pathogenic interac­
tions, respiratory infection

E mbedding ecology into the study of microbiomes is essential for understanding and 
predicting dynamics of the microbiota (1–3). This is highly pertinent in the case of 
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chronic polymicrobial infections, where interactions between bacterial species alter the 
progression of disease. Take the systemic, genetic disorder, cystic fibrosis (CF), where 
infections of the respiratory tract are the leading cause of morbidity and mortality (4). 
Decades of research have shown there are many causative microbial agents, where 
microbes work in consort to progress the disease (5–8) and infectious communities are 
the norm (8, 9).

Previous studies indicate that there is a significant, positive relationship between the 
number of bacterial species present and lung function (defined as percent forced expired 
volume in 1 second predicted [% FEV1]). As the communities become more complex, 
the better the outcome for the patient (5, 10). Despite this significance, the reported 
coefficients are often weak (R < 0.2) (5), suggesting that the unaccounted variation 
within the data is due to patient variability, the presence of keystone species, and/or 
interactions within the microbiome. This study focuses on the interactive landscape 
of CF-associated respiratory infections, elucidating how interactions play a key role in 
the progression of disease and highlighting specific interactions that lead to worsening 
clinical outcomes.

The analysis used 315 samples from 112 people with cystic fibrosis (pwCF), of which 
52 provided two or more samples (11, 12) (Table S1). These samples were divided into 
a “test” data set comprising initial samples (n = 112), and a “validation” data set, which 
contained all the remaining samples (n = 203). All samples were analyzed for 16S rRNA 
gene diversity using the same pipeline (1) and aligned to the lowest taxonomic level 
possible up to genus (>95% sequence similarity) level (Supplemental Methods).

From the 112 respiratory samples in the test data set, 259 distinct bacterial taxa 
with mean (±SD) of 25 (±9) taxa per pwCF were observed. The relationship between 
lung function (mean ± SD, 55.75% ± 22.75% FEV1) and microbial richness was assessed; 
however, no significance (F1,110 = 0.13, P = 0.724) was found. The data were subse­
quently interrogated to understand the role of individual microbial taxa on patient 
lung function. Here, we utilize previously championed microbiome-wide associations 
(MWAs) (13, 14) that have revealed previously unknown functional consortia that exist 
within environmental microbiomes (15). Observed associations between individual taxa 
abundance (sequence reads) and lung function indicated there was a broadly equal 
number (n = 136, 52.5%) of positive (i.e., the higher the number of reads associated 
with a taxon corresponds to a higher lung function) and negative (n = 123, 47.5%) 
associations; however, none were significant after multiple corrections were applied (Fig. 
1a). This was surprising as the canonical pathogens have been found as the dominant 
organism in lungs of patients with end-stage disease (16); therefore, their increased 
abundance should be associated with worsening lung function. Our data suggested 
that the abundance of the canonical pathogens had no significant association with 
differences in lung function: Pseudomonas (F1,110 = 0.22, P = 0.636), Burkholderia (F1,110 
= 0.17, P = 0.400), Staphylococcus (F1,110 = 0.71, P = 0.636), Achromobacter (F1,110 = 1.02, 
P = 0.314), Haemophilus (F1,110 = 0.53, P = 0.467), and Stenotrophomonas (F1,110=0.29, 
P = 0.590). This suggests that the abundance of a single taxon does not account for 
a significant amount of lung function variation in our data set. This is significant as it 
further questions the “one microbe, one disease” standpoint of infection pathogenesis 
and that the cause of lung function variation was down to other factors, for example, 
the mitigation of a single taxon’s presence by the plethora of co-existing taxa (15), not 
accounted for by the presence of these species alone.

The analysis next turned to an investigation of whether interactions between taxa 
impacted the lung function of pwCF. This analysis aimed to account for the presence of 
the rest of the community by creating statistical “pathogenic interactions.” These have 
been well documented between canonical pathogens in previous studies; however, 
these evidenced interactions are limited to low numbers of culturable taxa (17–22). While 
these are highly valuable and prized experiments, particularly by characterizing specific 
interactive mechanisms (17–22), without the inclusion of all members of the microbiota, 
they cannot account for missed interactions with unsuspected organisms (23). We 
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applied another MWA search to these data, this time accounting for the presence of the 
all identified taxa within the community and their combined association with lung 
function (15). Our analysis detected 45 (0.13%) significant pairwise interactions between 
members, all of which associated the presence of both taxa with a reduced patient lung 
function (Fig. 1b). Furthermore, these significant interactions were only identified 

FIG 1 Associations between bacterial taxa and lung function. The abundance of each bacterial taxa was 

associated with lung function (a), indicating a range of association coefficients, which were non-signifi-

cant (pink points) after Bonferroni correction. Interactions between all pairwise combinations of bacterial 

taxa (b) were shown to have negative associations (blue coloring) with lung function. Interactions that 

could not be estimated (for example, taxa did not co-occur) are the background (grey) color, with 

non-significant interactions also displayed (pink). Significant interactions, after Bonferroni correction, 

are shown by solid points with increasing size indicating greater significance and are exclusively found 

among taxa accounting for >0.1% of the total relative abundance (black bars, c). In total, 45 significant 

interactions were observed between 22 taxa. There were different numbers of associations for each 

taxon with differing impacts shown by increased line thickness for greater effects (d). Despite differences 

in magnitude, all effects were negative (blue) on lung function. The canonical pathogens are colored: 

Achromobacter (yellow), Burkholderia (green), Haemophilus (light blue), Staphylococcus (light green), 

Stenotrophomonas (orange), and Pseudomonas (purple), and taxa identified with pathogenic interactions 

are listed in Table S2. Given the length of the ribosomal sequences analyzed, taxonomic assignments 

should be considered putative.
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between the most abundant (≥0.1% relative abundance) taxa (Fig. 1c). To evaluate the 
taxa associated with these negative interactions, data were extracted for all significant 
interactions. These interactions were observed between 22 taxa (Fig. 1d), including 4 of 
the canonical pathogens: Pseudomonas, Staphylococcus, Achromobacter, and Stenotro­
phomonas. Experimental evidence supports our findings that combinations of patho­
genic and non-pathogenic bacteria can increase the morbidity of a host (19, 22). It is still, 
however, prevalent to find single species linked with the progression, or even onset, of 
disease which we do not find evidence of in this data set using MWA methodologies.

We investigated whether these interactions were due simply to co-occurrence events. 
However, the significant interactions were compared, and there were significantly (Χ2

25 
= 1394.7, P < 0.001) fewer pathogenic interactions (n = 45, 0.13%) than co-occurrence 
associations (n = 391, 1.18%). Unlike the pathogenic interactions, these were normally 
distributed (Shapiro-Wilks normality test; W = 0.93, P = 0.110) throughout the taxa (Fig. 
S1) and were all positive (i.e., a higher presence of one species is associated with a higher 
presence of another species), suggesting that changes in bacterial abundance do not 
directly impact lung function for the majority of taxa.

At this stage, these results are inferring biological relationships from statistical 
models; validation of these results, in the absence of experimental models, needs to 
be undertaken. As such, we used longitudinal samples (1, 12) and randomly selected a 
single sample from each patient (n = 52). This random sampling was repeated 100 times, 
and in each instant, lung function was associated with the number of interactive taxa 
present. In this analysis, presence was binary and assessed regardless of abundance. The 
results indicated that 79% of the associations were significant (overall mean [±1 SEM] P = 
0.035 ± 0.006) with a negative trend (mean [±1 SEM] coefficient = −3.05 ± 0.07% taxa−1) 
across the data, indicating that the more of these interactive species are present, the 
worse the prognosis (Fig. 2). This is an important finding as only four of these taxa are 

FIG 2 Validation of taxa with significant pathogenic associations. Random sampling (n = 100) of 

the longitudinal samples from 52 patients was undertaken, and the presence of the 22 species with 

pathogenic interactions was summed and plotted as the explanatory variable for lung function (FEV1% 

predicted). An increase in the number of interactive species within a sample is associated with lower 

lung function. Each point represents one patient sample with the corresponding lung function and the 

number of the interactive species present. Light blue lines represent each of the 100 associations, with 

the mean association displayed by the dark blue line.
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considered as canonical pathogens within CF. To further validate our results, randomly 
selected taxa (n = 22, resampled 100× without replacement) were ran through the same 
analysis. No significant (mean [±1 SEM] P = 0.279 ± 0.010) association between the 
number of randomly selected taxa and lung function was observed.

Previous studies have indicated that commensals, or organisms that are consid­
ered non-pathogenic and superfluous, can significantly impact organismal survival in 
experimental studies, but with a growing raft of microbiome data, using MWA studies, 
is vital for identifying potential interactions that significantly impact lung function and 
patient prognosis. We believe that using these data-rich microbiological surveys is key to 
identifying novel targets for therapeutics but first requires in vitro and in vivo experi­
mental studies to confirm these results (24). The statistical ecology method presented 
here gives a clear rationale and hypotheses for in vitro experimentation to include 
the diversity of the microbiome and to move away from single-microbe investigations. 
Furthermore, this approach could be useful in the design and construction of clinically 
relevant in vitro models of polymicrobial infections (25).
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