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Abstract 

Background: Cadmium (Cd) is a heavy metal environmental pollutant that can cause serious 

health problems. Cd can cause structural changes in the testes and exposure to this heavy metal is 

associated with the loss of sperms and male infertility. The role of oxidative stress and 

inflammation in Cd toxicity has been acknowledged. Diallyl disulfide (DADS), an organo-sulfur 

compound found in garlic, possesses antioxidant, anti-inflammatory, and cytoprotective effects. 

This study evaluated the protective effect of DADS against Cd reproductive toxicity in male rats, 

emphasizing the involvement of redox imbalance, TLR-4/NF-κB and JAK1/STAT3 signaling, and 

SIRT1. Methods: DADS (10 mg/kg body weight) was administered orally to rats for 14 days and 

a single dose of Cd (1.2 mg/kg) was injected intraperitoneally on day 7. Blood and samples from 

the testes were collected for analysis. Results: Cd caused testicular injury manifested by multiple 

histopathological changes and loss of sperms from seminiferous tubules. Circulating levels of 

gonadotropins and testosterone were decreased in Cd-administered rats. DADS prevented Cd-

induced testicular injury and ameliorated serum levels of gonadotropins and testosterone. Cd 

increased testicular reactive oxygen species (ROS) and malondialdehyde (MDA) and upregulated 

TLR-4, NF-κB, pro-inflammatory cytokines, JAK1 and STAT3 phosphorylation, Bax and 

caspase-3, while decreased antioxidants and Bcl-2. DADS effectively decreased ROS and MDA, 

downregulated TLR-4, NF-κB, JAK1, STAT3, pro-inflammatory cytokines and pro-apoptosis 

markers in Cd-administered rats. In addition, DADS enhanced antioxidants, Bcl-2, SIRT1 and 

cytoglobin in the testis of Cd-administered rats. Conclusion: DADS prevents Cd-induced 

testicular injury by attenuating oxidative stress, apoptosis, and TLR-4/NF-κB and JAK1/STAT3 

signaling, and upregulating SIRT1 and antioxidants. 

Keywords: Heavy metals; Garlic; Reproductive toxicity; Inflammation; Oxidative stress. 
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1. Introduction 

Cadmium (Cd) is a heavy metal (HM) known for its toxic effect on the liver, kidney and 

reproductive organs [1-3]. Due to its long biological half-life, Cd accumulates in different tissues 

following occupational exposure and consumption of contaminated food and water [4-6]. 

According to several studies, the rapid cell division and metabolism of mammalian testes make 

them vulnerable to Cd toxicity [2]. Exposure to Cd can disrupt the blood-testis barrier, resulting 

in deleterious consequences on the testicles, sperm characteristics, and fertility [7, 8]. The toxic 

effects of Cd on the reproductive system and other organs are associated with oxidative stress (OS) 

provoked by excessive production of reactive oxygen species (ROS) [9-11]. Cd provokes ROS 

generation indirectly via Fenton reaction and other reactions provoked via free iron, and 

mitochondrial dysfunction [12, 13]. The generated superoxide (•O2) and hydroxyl (•OH) radicals, 

and hydrogen peroxide (H2O2) attack cellular macromolecules resulting in protein malfunction, 

lipid peroxidation (LPO), DNA damage, and cell death [14]. OS is associated with inflammation 

due to the role of excess ROS in activating inflammatory pathways, such as toll-like receptor-4 

(TLR-4)/nuclear factor-κB (NF-κB) signaling [15, 16]. Activation of TLR-4 and its downstream 

redox-sensitive transcription factor NF-κB promotes the release of pro-inflammatory cytokines 

which together with ROS alter mitochondrial function and elicit apoptotic cell death. These effects 

could have detrimental effects on fertility. In this context, testicular cell damage and declined 

testosterone synthesis and sexual behavior have been associated with Cd-induced activation of 

TLR-4/NF-κB signaling in piglets [17]. In addition, the Janus kinase (JAK)/signal transduction 

and transcriptional activator (STAT) signaling pathway regulates cellular responses to 

inflammation and increases organ damage [18]. Cytokines and other ligands can activate the 

JAK/STAT signaling which promotes cytokine-mediated cell activation. Upon binding to their 
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receptors, cytokines activate JAKs resulting in their phosphorylation and dimerization. Activated 

JAKs promote the phosphorylation of STATs followed by their dimerization and translocation into 

the nucleus to bind to DNA and inhibit or activate target genes [18, 19]. Despite the roles that 

JAK/STAT signaling plays in different biological processes, including cell differentiation, tissue 

repair and immune response, persistent activation of this signaling pathway can provoke 

inflammatory disorders. Previous findings demonstrated the role of ROS in activating JAK/STAT 

signaling and the association of its activation with OS and inflammatory responses [20, 21]. 

Accordingly, inhibitors of JAK have shown promising therapeutic effects in many clinical settings 

[22]. Therefore, mitigation of OS and suppression of TLR-4/NF-κB and JAK/STAT signaling 

pathways could be effective in protecting the testis against Cd toxicity. 

Activation of the silent information regulator 2 homolog 1 (SIRT1) is associated with attenuation 

of OS, inflammation, and cell death [23, 24]. SIRT1 is a NAD+-dependent histone deacetylase 

deeply involved in several cellular processes, including energy metabolism, genome stability, cell 

differentiation, and redox signaling [25, 26]. SIRT1 specifically protects against ROS and 

inflammation by regulating transcription factors such as nuclear factor erythroid 2-related factor 2 

(Nrf2), resulting in enhanced antioxidants and inhibition of NF-κB activation [25, 26]. Nrf2 

controls the transcription of antioxidant and anti-inflammatory genes [27]. Given its key role in 

mitigating OS and inflammation, SIRT1 dysregulation is associated with several disorders [25, 

26]. In this context, SIRT1-targeted anti-inflammatory therapies have shown promising clinical 

applications in treating inflammatory diseases [28]. Additionally, Nrf2 activation attenuated 

inflammation and oxidative damage induced by different agents such as HMs, hyperglycemia, 

pesticides, and chemotherapy [23, 29-31]. 
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Plants represent an excellent source of several substances with beneficial pharmacological 

characteristics. One functional food that can help avoid many illnesses and toxicities is garlic [32]. 

The biological and health-promoting properties of garlic are thought to be mediated via its content 

of organic sulfur compounds, including diallyl disulfide (DADS) [33, 34]. DADS is made up of 

two allyl groups joined by two sulfur atoms, and showed anti-inflammatory, anti-cancer, and 

cytoprotective properties [33, 34]. In addition, DADS has demonstrated hepato-protective [35] and 

neuroprotective [36] effects, and protected the lung and the pancreas against inflammation and 

injury induced by cerulein [37]. The anti-inflammatory effects of DADS have been further 

demonstrated in microglia [38] and macrophages [39] challenged with lipopolysaccharide (LPS). 

However, nothing has yet been reported on the efficacy of DADS against Cd-induced testicular 

injury. This study investigated the protective potential of DADS against Cd-induced OS, 

inflammation and testicular injury, emphasizing the involvement of SIRT1 and TLR-4/NF-κB and 

JAK1/STAT3 signaling. 

2. Materials and methods 

2.1. Animals and treatments 

Twenty-four male Wistar rats weighing 180–210 g were included in this investigation. The rats 

were housed under standard temperature (22 ± 1°C) and humidity (50-60%) on a 12 h dark-light 

cycle and given water and food ad libitum. The animal study protocol was approved by the ethics 

committee of Al-Azhar University (Assiut, Egypt) (AZ-AS\PH-REC\44\24). After a week of 

acclimatization, the animals were randomly allocated into four groups (n = 6) as follows:  

Group I (Control): received 0.5% carboxymethyl cellulose (CMC) orally for 14 days.  

Group II (DADS): received DADS (10 mg/kg) (Sigma, USA) in 0.5% CMC [40] orally for 14 

days.  
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Group III (Cd): received 0.5% CMC orally for 14 days and 1.2 mg/kg CdCl2 (Sigma, USA) 

dissolved in 0.9% saline [41] via intraperitoneal (i.p.) injection on day 7. 

Group IV (DADS + Cd): received 10 mg/kg DADS orally for 14 days and a single i.p. injection 

of CdCl2 (1.2 mg/kg) on days 7. 

Groups I and II received a single i.p. injection of 0.9% saline on day 7. Twenty-four h after the 

last treatment, blood was collected via cardiac puncture under ketamine/xylazine anesthesia, and 

the animals were then sacrificed. The blood was centrifuged to separate serum and the animals 

were immediately dissected to remove the testes. Samples from the testes were fixed in 10% 

neutral buffered formalin (NBF), others were homogenized in cold Tris-HCl buffer (10 mM, pH 

= 7.4), centrifuged and the clear supernatant was collected and stored at -80°C. Other tissue 

samples were kept at -80°C. 

2.2. Biochemical assays 

Follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone were assayed in 

the serum of rats using kits supplied by Elabscience (China). ROS was detected in the testicular 

tissue supernatant using 2′,7′-dichlorodihydrofluorescein diacetate as previously described [42]. 

Malondialdehyde (MDA) and reduced glutathione (GSH) levels, and superoxide dismutase (SOD) 

activity were determined in the testicular tissue supernatant using BioDiagnostics (Egypt) kits. 

Levels of testicular NF-κB p65, and the cytokines interleukin-1β (IL-1β) and tumor necrosis factor 

(TNF)-α were measured using (Cusabio, China) and Elabscience (China) ELISA kits, respectively. 

All assays were carried out following the manufacturers’ instructions. 

2.3. Histopathology and immunohistochemistry (IHC) 

The tissue samples were fixed in 10% NBF for 24 h, dehydrated using an ascending series of 

ethanol, cleared in xylene, and embedded in paraffin. Four-µm sections were cut and stained with 
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hematoxylin and eosin (H&E) and Sirius red. Other sections were processed via IHC staining to 

determine changes in TLR-4, Bax, Bcl2, cleaved caspase-3, and cytoglobin. Briefly, the tissue 

sections were dewaxed, rehydrated in a descending series of ethanol, and then treated with 0.05 M 

citrate buffer (pH 6.8) and 0.3% H2O2. Following blocking, the sections were incubated overnight 

at 4°C with the primary antibodies (Biospes, China). After washing, the sections were incubated 

with secondary antibodies (Biospes, China). DAB in H2O2 was employed for color development 

and counterstaining was carried out using hematoxylin. ImageJ (NIH, USA) was used to measure 

the intensity of the developed color (6/rat). 

2.4. Western blotting 

To determine changes in JAK1 and STAT3 phosphorylation and SIRT1, frozen tissue samples 

were homogenized in RIPA buffer supplemented with proteinase/phosphatase inhibitors. The 

homogenate was centrifuged, the clear supernatant was collected, and protein content in the 

supernatant was measured using Bradford reagent. Forty µg protein was subjected to SDS-PAGE 

and the separated protein bands were transferred onto PVDF membranes. The membranes were 

blocked in 5% bovine serum albumin (BSA) and then probed with p-JAK1, JAK1, p-STAT3, 

STAT3, SIRT1, and β-actin primary antibodies (Santa Cruz Biotechnology, USA) overnight at 

4°C. After washing, secondary antibodies were added for 1 h at room temperature and the 

membranes were washed. The protein bands were developed with the BCIP/NBT detection reagent 

and band intensity was measured using Image J (NIH, USA).  

2.5. Statistical analysis 

The findings are displayed as mean ± standard deviation (SD). Group comparisons were 

determined using one-way ANOVA followed by Tukey’s test on GraphPad Prism 8. A P value 

<0.5 was considered significant. 
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3. Results 

3.1. DADS prevents testicular injury and ameliorates pituitary-gonadal axis hormones in Cd-

administered rats 

H&E staining revealed normal seminiferous tubules and interstitial tissue with Leydig cells in 

control and DADS-treated rats (Fig. 1). In both groups, Sirius red staining showed the normal 

amount of collagen (Fig. 1). Cd administration resulted in decreased number of spermatogenic 

cells and spermatozoa, apoptotic changes, hemorrhage, edema, congested blood vessels, interstitial 

fibrosis, and aggregated inflammatory cells (Fig. 1). Treatment with DADS prevented Cd-induced 

tissue damage, interstitial fibrosis, and inflammatory cells infilteration, and increased the number 

of spermatogenic cells and spermatozoa (Fig. 1). 

 Data represented in Figure 2A-C revealed a significant decrease in circulating FSH (Fig. 2A), LH 

(Fig. 2B), and testosterone (Fig. 2C) in Cd-administered rats as compared to the control group 

(P<0.001). DADS increased serum levels of these hormones significantly in Cd-administered rats 

(P<0.001). 

3.2. DADS attenuates testicular OS in Cd-administered rats  

Cd administration increased ROS (Fig. 3A) and MDA levels (Fig. 3B) and decreased GSH content 

(Fig. 3C) and SOD activity (Fig. 3D) in rat testis (P<0.001). DADS significantly decreased 

testicular ROS and MDA and increased GSH and SOD in Cd-administered rats (P<0.001).  

3.3. DADS suppresses TLR-4/NF-κB signaling in Cd-administered rats  

IHC staining of TLR-4 revealed its significant upregulation in the testis of Cd-administered rats 

(Fig. 4A-B) as compared to the control rats (P<0.001). NF-κB p65 (Fig. 4C), TNF-α (Fig. 4D), 

and IL-1β (Fig. 4E) levels were significantly elevated in the testis of Cd-administered rats 
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(P<0.001). DADS downregulated testicular TLR-4, NF-κB p65, TNF-α, and IL-1β in Cd-

administered rats (P<0.001). 

3.4. DADS mitigates Cd-induced apoptosis in rat testis  

The effects of Cd and/or DADS on Bax, caspase-3, and Bcl-2 expression are represented in Figure 

5A-B. Cd administration upregulated testicular Bax and caspase-3 whereas decreased Bcl-2 

expression significantly as compared to the control group (P<0.001). DADS downregulated Bax 

and caspase-3 and upregulated Bcl-2 in the testis of Cd-administered rats (P<0.001). 

3.5. DADS downregulates JAK1/STAT3 signaling and upregulates SIRT1 and cytoglobin in Cd-

treated rats 

Cd increased JAK1 and STAT3 phosphorylation in the testis of rats (Fig. 6A-C) as compared to 

the control group (P<0.001). In contrast, SIRT1 was significantly decreased in the testis of Cd-

administered rats (P<0.001; Fig. 6A,D). Similar to SIRT1, Cd downregulated cytoglobin in the 

testis of rats (P<0.001; Fig. 7). DADS markedly suppressed JAK1 and STAT3 phosphorylation 

and upregulated SIRT1 and cytoglobin in the testis of Cd-administered rats. 

4. Discussion 

Exposure to HMs, including Cd, is associated with male infertility as demonstrated in rodents and 

human epidemiological research [43]. Cd can cause severe injury to different structures of the 

testes, mainly seminiferous tubules, Sertoli cells (SCs), and blood-testis barrier. This damage leads 

to the loss of sperms and infertility [43]. OS and inflammation are key processes in the toxic 

mechanism of Cd [9-11], and a positive correlation between OS markers and urinary Cd levels in 

human has been reported [44]. This study showed the protective effect of DADS, an organosulfur 

compound with antioxidant and anti-inflammatory activities, against Cd-induced reproductive 
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toxicity in rats. Attenuation of OS, inflammation and apoptosis, and modulation of SIRT1 and 

TLR-4/NF-κB and JAK1/STAT3 signaling are involved in the protective mechanism of DADS. 

Cd administration resulted in low serum levels of gonadotropins and testosterone associated with 

severe degenerative changes in rat testis. A decrease in the number of spermatogenic cells and 

spermatozoa, apoptotic changes, edema, interstitial fibrosis, congested blood vessels, hemorrhage, 

and aggregated inflammatory cells are histopathological changes observed in the testis of Cd-

administered rats. These findings demonstrated significant reproductive toxicity in rats exposed to 

Cd. The declined levels of gonadotropins pinpointed the deleterious effect of Cd on the pituitary-

gonadal axis, an effect that resulted in decreased testosterone secretion. In addition, the decline in 

testosterone is directly linked to apoptosis of Leydig cells. Studies have demonstrated the serious 

effect of Cd on seminiferous tubules, blood-testis barrier, and Leydig cells [43]. In the 

seminiferous tubules, SCs are essential for spermatogenesis through their role in the differentiation 

of spermatogonia and providing a link between seminiferous tubules and the interstitium [45]. 

Exposure of rodents to Cd provoked severe ultrastructure changes in SCs, including cytoplasmic 

vacuolation, mitochondrial damage, and altered cytoskeleton [46-48]. Defragmentation of actin 

filaments of SCs is another effect of Cd on the testis, ultimately resulting in disruption of the blood-

testis barriers [48]. In accordance with our data, rats exposed to Cd exhibited disorganization of 

the seminiferous epithelium, decreased number of spermatogonia, and declined sperm motility, 

number, and viability [49-51]. DADS effectively protected the testis against the structural and 

functional alterations induced by Cd. These findings added support to studies demonstrated that 

DADS protected against testicular injury induced by cyclophosphamide [52] and irradiation [53]. 

Given the role of OS and inflammation in mediating Cd toxicity [12, 13, 49-51], the protective 

effect of DADS could be directly explained by its antioxidant and anti-inflammatory properties 
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[33, 34]. In this study, Cd administration provoked OS marled by elevated ROS and MDA and 

declined antioxidants. Additionally, Cd promoted an inflammatory response marked by 

upregulated TLR-4/NF-κB and pro-inflammatory cytokines. In this context, several studies have 

reported the role of OS in reproductive toxicity induced by Cd in both animal models [49-51] and 

human subjects [44]. In vivo studies using rodents revealed elevated LPO levels, DNA oxidative 

damage, and decreased antioxidant defenses [49-51]. Screening of OS markers and Cd levels in 

1020 men revealed a positive correlation between urinary Cd and OS markers and a negative 

association with semen quality [44]. Cd can indirectly increase the production of ROS through 

Fenton reaction and mitochondrial dysfunction [12, 13]. Excess ROS provoke LPO and cause 

oxidative damage to proteins and DNA [14]. Elevated ROS and its consequent OS induced by Cd 

have been demonstrated not only in the testis but also in other organs such as liver, kidney and 

pancreas [54-57]. Cd causes a decline in antioxidants through binding to the sulfhydryl groups on 

GSH [58], and interacting with and disrupting the catalytic function of SOD and CAT [59, 60]. 

Besides OS, excess ROS promote an inflammatory response via activation of several signaling 

molecules, including TLR-4 and its downstream redox-sensitive NF-κB [15, 16]. Activation of 

TLR-4/NF-κB signaling leads to the release of pro-inflammatory cytokines, including TNF-α, IL-

6, and IL-1β. These cytokines work in concert with ROS to provoke cell death via mitochondrial 

damage and apoptosis [61]. Disruption of the mitochondrial membrane potential and subsequent 

release of cytochrome c activate caspase-3 which initiates the apoptotic cascade [62]. Accordingly, 

Cd induced apoptosis in the testis of rats as shown by the microscopic investigation and the 

upregulated Bax and caspase-3 along with downregulated Bcl-2. Moreover, Cd administration was 

associated with upregulated JAK1/STAT3 signaling evidenced by increased phosphorylation of 

JAK1 and STAT3 in rat testis. These data added additional support to the implication of OS and 
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inflammation in the mechanism underlying Cd reproductive toxicity. Excess ROS has been 

reported to be involved in JAK/STAT signaling activation [20, 21], a finding supported by the 

study of Khashab et al [63] who reported the involvement of JAK/STAT signaling in ROS-induced 

oxidative DNA damage in germ cells. 

DADS effectively mitigated Cd-induced testicular OS, inflammation, and apoptosis, effects that 

were mediated, at least in part, via its antioxidant efficacy and suppression of TLR-4/NF-κB and 

JAK1/STAT3 signaling pathways. DADS decreased MDA, downregulated TLR-4, NF-κB, JAK1 

and STAT3 phosphorylation, and pro-inflammatory cytokines, and enhanced antioxidants. 

Suppression of inflammation and OS was associated with significant protection against apoptosis 

as shown by Bax and caspase-3 suppression and Bcl-2 upregulation. These data demonstrated the 

the antioxidant and anti-inflammatory efficacies of DADS which have been reported in many in 

vitro and in vivo studies [64]. DADS enhanced antioxidant enzymes and prevented ROS generation 

in ethanol-challenged hepatocytes [65], LPS-treated macrophages [66], and  H2O2-treated 

epithelial cells [67]. In mice challenged with carbon ion irradiation, DADS prevented 

mitochondrial dysfunction and apoptosis in the testis [53]. In a rat model of lead-induced 

reproductive toxicity, DADS suppressed LPO, downregulated caspase-3 and enhanced GSH and 

SOD in the testis [68]. In cyclophosphamide-administered rats, treatment with DADS decreased 

testicular MDA, prevented apoptosis and histopathological alterations, and improved the number 

of spermatogonia [69]. Other studies demonstrated the suppression of OS and inflammation as 

mechanisms of DADS protection against several disorders, including hepatotoxicity [70]. In 

murine colitis, DADS suppressed inflammation and submucosal edema [71]. It mitigated OS and 

acute inflammation in a murine paw edema model [72], and the transcriptional activity of NF-κB 

in pancreatitis [73]. In vitro studies revealed the ability of DADS to suppress NF-κB and prevent 
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inflammation in LPS-induced microglia [38] and macrophages [39]. Along with inflammation, 

DADS attenuated ROS production in deoxycholic acid-treated epithelial cells [74] and IL-1β-

treated mesenchymal stem cells [75]. The current study introduced new information that DADS 

suppression of TLR-4/NF-κB signaling is involved in the protective effect of DADS against Cd 

reproductive toxicity. Furthermore, this study pinpointed the suppressive effect of DADS on 

JAK1/STAT3 signaling in the testis of Cd-administered rats, adding more support to its anti-

inflammatory efficacy. Activation of JAK/STAT signaling following Cd administration is directly 

linked to OS and the increase in pro-inflammatory cytokine. DADS effectively downregulated 

JAK1 and STAT3 phosphorylation, an effect that is attributed to attenuation of OS and 

inflammation. 

To further explore the mechanism(s) underlying the protective effect of DADS on inflammation 

and OS provoked by Cd in rat testis, we demonstrated changes in SIRT1. This histone deacetylase 

plays a key role in redox signaling and inflammation [23, 24]. SIRT1 regulates different proteins 

involved in vital cellular processes such as Nrf2 and controls many antioxidant and anti-

inflammatory genes [25-27]. The role of SIRT1 in spermatogenesis is mediated via its ability to 

influence the functions of SCs, Leydig cells, and spermatogonia [76]. The decline in SIRT1 

provoked mitochondrial dysfunction, ROS generation, LPO, and oxidative DNA damage in 

sperms, resulting in infertility [77]. A strong negative correlation between seminal SIRT1 

expression and the number, motility, and viability of sperms has been reported [78]. Given its role 

in mitigating OS and inflammation, upregulation of SIRT1 can protect the male reproductive 

system against Cd toxicity and disorders associated with oxidative damage. Interestingly, DADS 

upregulated testicular SIRT1 in Cd-administered rats, an effect that aligned with the suppressed 

OS, inflammation, and apoptosis. SIRT1 prevented H2O2-induced apoptosis in endothelial 
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progenitor cells via FOXO3a ubiquitination and degradation [79], and abolished caspase-mediated 

apoptosis in LPS-challenged PC12 cells [80]. The preventive effect of DADS on Cd-induced 

oxidative and inflammatory damage was further supported by cytoglobin upregulation. Cytoglobin 

possesses  ROS-scavenging ability [81], and its suppression results in oxidative DNA damage and 

cell death [81]. Accordingly, cells and organs lacking cytoglobin are more vulnerable to radiation-

induced fibrogenesis and inflammation [81]. In contrast, studies have demonstrated suppression 

of ROS generation and cell death via cytoglobin upregulation [82], as well as its suppressive effect 

on superoxide and peroxynitrite generation [83]. 

5. Conclusion 

These findings introduce new information on the protective efficacy of DADS against Cd male 

reproductive toxicity. The protective mechanism of DADS included amelioration of the pituitary-

gonadal axis hormones, and attenuation of histopathological alterations, OS, inflammation, and 

apoptosis. DADS suppressed LPO, TLR-4/NF-κB and JAK1/STAT3 signaling, and inflammatory 

mediators, and upregulated SIRT1 and antioxidants in the testis of Cd-administered rats. 

Therefore, DADS could be a valuable protective agent against Cd reproductive toxicity in 

individuals at risk. However, the lack of data showing the effect of DADS on sperm parameters 

could be considered a limitation of this study. Further studies to explore other mechanism(s) and 

clinical trials are recommended to determine the efficacy of DADS.  
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Figures: 

 
Figure 1. DADS prevented Cd-induced testicular injury. Photomicrographs of H&E-stained 
tsections in the testis of control and DADS-treated rats showing  normal seminiferous tubules 
(arrow) with numerous sperms (arrowhead), interstitial tissue (rectangle), and Leydig cells (wave 
arrow); Cd-administered rats showing apoptotic changes in most of spermatogenic cells (arrow), 
edema (arrow with tail), tubular lumen appeared empty from spermatozoa (arrowhead), 
congested blood vessels (curved arrow), vacuolation (wave arrow), hemorrhage, deep basophilic 
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apoptotic Leydig cells (rectangle), and interstitial fibrosis along with aggregated inflammatory 
cells (star); and Cd-administered rats treated with DADS showing increase in spermatogenic cells 
(arrow with tail) except few tubules emerged with apoptotic spermatogenic cells (arrow), sperms 
(arrowhead), few tubules presented empty from any sperms (triangle), interstitial tissue 
(rectangle) presented with standard assembly of Leydig cells (wave arrow), and interstitial 
fibrosis as well as aggregated inflammatory cells (star) were still identified. Sirius red-stained 
sections in the testis of control and DADS-treated rats showing a regular amount of collagen 
(arrows); Cd-administered group showing increased collagen deposition and interstitial fibrosis 
(arrows); and Cd-administered rats treated with DADS showing decreased collagen deposition 
(arrow). (x200, Scale bar= 100 µm). 

 
Figure 2. DADS increased serum FSH (A), LH (B), and testosterone (C) in Cd-administered rats. 
Data are mean ± SD, (n = 6). *P<0.05, **P<0.01, and ***P<0.001 versus Control. ###P<0.001 
versus Cd. 
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Figure 3. DADS decreased testicular ROS (A) and MDA (B), and increase GSH (C) and SOD 
(D) in Cd-administered rats. Data are mean ± SD, (n = 6). **P<0.01, and ***P<0.001 versus 
Control. ###P<0.001 versus Cd. 
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Figure 4. DADS downregulated TLR-4 (A,B), NF-κB p65 (C), TNF-α (D) and IL-1β (E) in the 
testis of Cd-administered rats. Data are mean ± SD, (n = 6). **P<0.01 and ***P<0.001 versus 
Control. ###P<0.001 versus Cd. 
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Figure 5. DADS attenuated apoptosis by downregulating Bax (A,B) and cleaved caspase-3 (A,C), 
and increasing Bcl-2 (A,D) in Cd-administered rats. Data are mean ± SD, (n = 6). **P<0.01 and 
***P<0.001 versus Control. ###P<0.001 versus Cd. 
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Figure 6. DADS suppressed JAK1/STAT3 signaling and upregulated SIRT1 in Cd-administered 
rats. DADS downregulated testicular JAK1 and STAT3 phosphorylation (A-C) and increased 
SIRT1 (A,D) in Cd-administered rats. Data are mean ± SD, (n = 6). **P<0.01 and ***P<0.001 
versus Control. ###P<0.001 versus Cd. 
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Figure 7. DADS increased cytoglobin in the testis of Cd-administered rats. Data are mean ± SD, 
(n = 6). ***P<0.001 versus Control. ###P<0.001 versus Cd. 


