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YOLOv8-RD: High-Robust Pine Wilt Disease
Detection Method Based on Residual Fuzzy YOLOv8

Junchao Yuan , Lina Wang , Tingting Wang , Member, IEEE, Ali Kashif Bashir , Senior Member, IEEE,
Maryam M. Al Dabel , Jiaxing Wang , Hailin Feng , Member, IEEE, Kai Fang , Member, IEEE,

and Wei Wang , Member, IEEE

Abstract—Pine wilt disease (PWD) poses a severe threat to the
health of pine trees and has resulted in substantial losses to global
pine forest resources. Due to the minute size of the pathogens
and the concealed symptoms of PWD, early detection through
remote sensing image technology is essential. However, in prac-
tical applications, remote sensing images are easily affected by
factors, such as cloud cover and changes in illumination, resulting
in significant noise and blurriness in the images. These interference
factors significantly reduce the accuracy of existing object detection
models. Therefore, this article presents a novel and highly robust
methodology for detecting PWD, termed YOLOv8-RD. We syn-
thesized the benefits of residual learning and fuzzy deep neural
networks to develop a residual fuzzy module (ResFuzzy), which
adeptly filters image noise and refines background features with en-
hanced smoothness. Simultaneously, we integrated a detail process-
ing module into the ResFuzzy module to enhance the low-frequency
detail features transmitted in residual learning. Furthermore, by
incorporating the dynamic upsampling operator, our model can
dynamically adjust the sampling step size based on the variations
in the input feature map during the upsampling process, thereby
effectively recovering detail from the feature map. Our model
exhibited exceptional robustness to severe noise. When evaluated
on a PWD dataset with 100% interference samples at an intensity
of 0.07, our model achieved an average precision improvement of
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4.9%, 6.3%, 7.3%, and 3.0% compared to four most representative
models, making it well suited for PWD detection in interfering
environments.

Index Terms—Fuzzy deep neural networks (FDNNs), inter-
ference environments, remote sensing, residual learning,
upsampling process.

I. INTRODUCTION

A S an important economic and ecological resource, pine
trees play a crucial role in maintaining the stability of

forest ecosystems, ensuring a steady supply of wood, seques-
tering carbon, and releasing oxygen [1]. However, pine wilt
disease (PWD) as one of the most destructive forestry diseases
worldwide, poses a serious threat to pine resources. Its rapid
spread and difficulty in early detection often lead to extensive
damage to pine forests, causing severe economic losses and
ecological consequences [2], [3]. Advancements in machine
vision technology have led to the increasingly mature application
of remote sensing image object detection in forestry monitoring
of pests and diseases, particularly in the early warning and
precise positioning of PWD [4].

The existing object detection models primarily focus on ad-
dressing issues, such as occlusion, low resolution, and complex
backgrounds [5]. Wang et al. [6] optimized the YOLOv8 model
to improve the detection ability of greenhouse vegetable pests
and diseases under occlusion conditions. They incorporated an
occlusion-aware attention module (OAM) to endow the model
with advanced capabilities for the precise detection of par-
tially obscured or occluded objects. In addition, a small object
detection layer and HIOU loss function were introduced to
improve the overall detection accuracy of vegetable diseases.
Tian et al. [7] proposed a multiscale dense detection method,
named MD-YOLO, for small lepidopteran pests on sticky traps.
This method utilizes an adaptive attention module to enhance the
model’s attention to image details. Moreover, the feature fusion
process was optimized through the integration of multiscale fea-
ture maps, thereby augmenting the model’s efficacy in detecting
objects across a range of scales.

However, during the process of remote sensing image ac-
quisition by autonomous aerial vehicle (AAV), atmospheric
scattering, cloud cover, and changes in illumination can intro-
duce noise into the image data [8]. This noise can manifest as
random pixel-level fluctuations or larger scale image blurriness
and distortion, all of which significantly degrade image quality.
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Existing object detection models often suffer from low accuracy,
false positives, and missed detection in noisy conditions. This
not only hinders forestry management personnel from taking
timely and effective control measures but also risks missing
the window of optimal prevention due to misjudgment, further
exacerbating the spread of PWD and causing severe damage to
the growth of pine trees.

Therefore, developing antiinterference detection algorithms
for detecting PWD in remote sensing images and improving the
accuracy of object detection models in interfered environments
is of profound significance for the sustainable development
of modern forestry. Such advancements not only ensure the
rational use and effective protection of forestry resources and
maintain biodiversity but also enhance the ability to predict pest
and disease outbreaks, reduce economic losses caused by these
issues, and ensure the stability and balance of ecosystems.

YOLO algorithms, renowned for their efficient detection
speed and powerful feature extraction capabilities, are com-
monly employed in forest pest monitoring tasks. In this study,
we would utilize the YOLOv8 algorithm for PWD detection in
AAV remote sensing images.

To enhance the model’s robustness to noise, this study inte-
grates fuzzy deep neural network (FDNN) into the YOLOv8
model. FDNN combines the learning capabilities of neural net-
works with the noise handling capabilities of fuzzy logic [9]. By
fuzzifying the input data, the impact of noise on the model’s
prediction results is reduced, thereby enhancing the model’s
robustness to noisy images [10]. Meanwhile, FDNN offer a
promising approach to plant disease and pest detection. In plant
disease and pest detection, the background features are often
complex, while disease features are relatively small. Therefore,
FDNN can be employed to blur the complex background features
and effectively enhance the disease features [11]. Moreover, the
symptoms of plant diseases and pests often vary depending
on the plant species and the stage of disease development.
FDNN can handle these fuzzy features, enabling them to make
effective judgments even when faced with different disease
symptoms [12]. To extract complex features of tomato diseases
and pests, Tian et al. [13] improved the fuzzy inference layer and
fuzzy pooling layer of FDNN, enhancing the model’s detection
accuracy. Koshariya et al. [14] analyzed the application of FDNN
in plant disease and pest detection and risk assessment. By opti-
mizing fuzzy rules and fuzzification processing, they improved
feature extraction in complex environments.

The YOLOv8n model was selected as the base network in
this study and has been modified to fulfill the requirements for
antiinterference detection in remote sensing images. The main
contributions of this article are as follows.

1) To tackle the challenges posed by cloud cover and illumi-
nation variability in PWD images, we propose an inno-
vative residual fuzzy (ResFuzzy) module that synergisti-
cally integrates the advantages of residual learning with
FDNNs. The module effectively filters image noise and
suppresses background features through multiple residual
blocks and fuzzy layers. Moreover, we integrate a detail
processing module (DPM) module within the ResFuzzy
framework to significantly bolster the model’s capacity for

detecting and discerning small objects in remote sensing
images.

2) We improved the upsampling process in YOLOv8n by
introducing the DySample module to mitigate detail loss
caused by noise. This module equips the model with
the capability to dynamically modulate the sampling step
size in response to variations in input features, thereby
refining the sensitivity and adaptability of the sampling
process to fluctuating input characteristics. Consequently,
the robustness of the object detection model under noisy
conditions is boosted.

3) Our proposed YOLOv8-RD model effectively addresses
the challenges of cloud occlusion and lighting varia-
tions in detecting PWD, thereby transcending the perfor-
mance constraints of conventional detection models. The
YOLOv8-RD model not only performs well on nonin-
terference datasets but also demonstrates high robustness
under various interference conditions. The employment
of this model facilitates precise detection of infected
PWD areas in remote sensing imagery, even under chal-
lenging conditions, thereby empowering forestry man-
agement personnel to execute timely interventions and
substantially mitigate economic losses attributable to the
disease.

II. RELATED WORK

A. Disease and Pest Detection

The existence of diseases and pests severely harms the plant
health. Liu et al. [15] proposed DAC-PPYOLOE to promote
the detection accuracy of apple pests in complex environments.
This model utilizes an adaptive feature fusion strategy with
residual connectivity and deep separable convolution to effec-
tively leverage deep and shallow feature maps for small object
detection. Qi et al. [16] introduced the improved SE-YOLOv5
network for tomato diseases and pest detection. The SE attention
mechanism enhances key feature extraction, overcoming the
limitations of existing methods in feature screening and model
generalization. Deng et al. [17] proposed a federated learning
(FL)-based faster R-CNN model to tackle issues concerning
data imbalance, diversity, and complex detection environments
in traditional plant disease and pest detection. This model utilizes
FL’s distributed computing to reduce data storage and commu-
nication costs. In addition, ResNet-101 replaces VGG-16 in the
convolutional layer, improving multiscale detection accuracy for
various diseases and pests. Irianto et al. [18] proposed a corn
leaf disease detection method based on fuzzy C-means (FCM)
and long short-term memory (LSTM) algorithms to improve
the detection accuracy of corn diseases. After extracting texture
features from disease images using the gray level cooccurrence
matrix, they were fed into the LSTM algorithm for classification
and achieved an accuracy of 80.24%. Chang et al. [19] addressed
the challenges of complex plant disease features and limited
datasets by proposing an edge feature guidance (EFG) module
to enhance the model’s ability to extract local edge features.
The EFG module can be integrated into vision transformers like
ViT and Swin, enabling the model to incorporate multiscale
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features and edge information, thereby improving its overall
performance.

B. Small Object Detection

Small objects in remote sensing imagery, owing to their con-
strained pixel coverage and attenuated feature intensity relative
to both the background and larger objects, are exceptionally vul-
nerable to being obscured by background noise. Hou et al. [20]
proposed RISTDnet, a deep learning-based network for infrared
small object detection. This network addresses low image con-
trast and low signal-to-noise ratios in complex backgrounds.
It combines manual feature methods with convolutional neural
networks for feature extraction and utilizes likelihood graph
thresholds for real object segmentation. Experiments demon-
strate the network’s ability to accurately detect small objects. Dai
et al. [21] proposed a network model for infrared small object
detection. The model leverages a deep, parameter-free, nonlinear
feature refinement layer specially designed to extract long-
range dependencies between features. In addition, it employs
bottom-up attention modulation to integrate low-level details
into higher level features, effectively preserving small object
information. Duan et al. [22] designed an adaptive mechanism
algorithm inspired by the physiological characteristics of eagle
vision. Based on the physiological structure of eagle vision, this
algorithm establishes a mathematical model capable of adapting
to various environmental interferences, thereby enhancing the
model’s ability to detect small objects in complex and variable
marine environments.

C. Interference Environment Detection

In various object detection tasks, image quality may suffer
due to inclement weather conditions, leading to reduced model
accuracy. This, in turn, can negatively impact production, safety,
and daily activities. To address the challenge of low detection
accuracy in low-quality images captured under severe weather
conditions, Liu et al. [23] proposed an adaptive object detec-
tion framework IA-YOLO. They introduced the DIP of the
adjustable image processing module in the small convolutional
neural network to enhance image quality and improve object
detection accuracy. To confront the dilemma of severe weather
detection, Qin et al. [24] proposed DEnet, a detection-driven
network comprised of three key modules. Splitting images into
low and high-frequency components using the Laplace pyra-
mid and forming global enhancement components with vari-
ous convolution kernels significantly boost detection accuracy.
Cui et al. [25] introduced the multitask automatic encoding
transformation model for nighttime object detection, effectively
enhancing detection accuracy in low-light conditions.

Existing object detection techniques have made notable
strides in plant disease detection, small object detection, and
interference environment detection. However, these methods
still face several limitations. Current disease and pest detec-
tion models often rely on adaptive feature fusion, attention
mechanisms, and feature guidance to improve performance.
Despite their benefits, adaptive feature fusion can introduce
biases in feature selection, leading to the omission of important

information. Meanwhile, attention mechanisms tend to require
substantial computational resources, which can adversely affect
real-time performance. Feature guidance methods are usually
tailored to specific features, and thus, lack the adaptability
needed for detecting various types of plant diseases. For small
object detection, techniques typically focus on enhancing image
contrast and combining low-level and high-level features to
boost accuracy. However, in complex backgrounds, excessive
contrast enhancement may cause confusion between the target
and the background. Moreover, the process of aggregating low-
level and high-level information is susceptible to interference
from the background, limiting the model’s ability to accurately
detect small objects. In addition, existing algorithms designed to
operate in adverse weather conditions generally suffer from low
detection accuracy, which restricts their practical application.
Therefore, there is an urgent need for a highly accurate and
robust object detection algorithm that can effectively reduce the
impact of complex interference in challenging environments.

III. DATASET ACQUISITION AND INTERFERENCE MECHANISM

INJECTION

A. Data Set Acquisition

The study area is situated in Longyou County, Quzhou City,
Zhejiang Province, China, with geographical coordinates of
119.17◦E and 29.02◦N. The study area comprises four towns in
Longyou County: Hengshan, Shifo, Zhaxi, and Xiaohanhai, cov-
ering a total area of approximately 8 square kilometers. The main
vegetation coverage types, according to China’s secondary forest
resource survey, are masson pine forests, broad-leaved evergreen
forests, and coniferous and broad-leaved mixed forests. Masson
pine forests account for a major proportion, ranging from 70% to
100% of the trees. The density of discolored pine trees is highest
in Zhaxi Town, as shown in Fig. 1, which displays the study
area and sampling plots. A total of seven plots were collected,
including Plot 1 and Plot 2 in Tianchi Village, Hengshan Town,
and Yanglong Reservoir, Plot 3 in Fengtang Village, Shifo Town,
and Plot 4 and Plot 5 in Xihai Village, Hengshan Town, and
Baiheqiao Village. Plot 6 is situated in Zhesi Village, Zhaxi
Town, and Plot 7 is situated in Guiguangyan Village, Xiaonanhai
Town.

During data collection, we meticulously schedule our activi-
ties to align with the optimal time window for monitoring pests
and diseases. Most pine trees infected with PWD exhibit typical
reddish brown symptoms [26]. In contrast, the broad-leaved
trees, which constitute a small proportion of the forest, have
not yet changed color. Therefore, they will not be mistaken for
the discolored pine trees. To ensure the accuracy of labeling and
the credibility of testing, we have invited on-site investigation
experts to provide us with guidance during the labeling process.
We labeled the pine line pests in the images for this dataset
using a labeling tool called LabelImg. First, we selected the
corresponding infected objects from the dataset images using
rectangular boxes. Then, we selected the pest marker category
from the box and saved the marked label as a txt format label file.
Finally, the labeled dataset was split into training, validation, and
test sets, as detailed in Table I.
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Fig. 1. Study area and sampling site.

TABLE I
DATASET SEGMENTATION

B. Interference With the Injection Mechanism

When remote sensing images are affected by atmospheric
scattering, cloud and fog occlusion, and changes in lighting
conditions, they can introduce random noise and result in image
blurring. We hypothesize that the size and density of fog droplets
follow a uniform distribution, allowing us to approximate the
noise produced by fog interference as Gaussian noise. Gaussian
noise, a well-known type of random noise with a normal distri-
bution [27], is prevalent in image processing applications. The
formula for generating Gaussian noise is as follows:

N
(
μ, σ2

)
= μ+ σ × Z (1)

where N(μ, σ2) represents a Gaussian. The symbols μ and σ2

represent the mean and variance of the Gaussian distribution,
respectively. Notably, the variance σ2, dictates the intensity of
the noise introduced, with larger values indicating stronger noise
corruption. Z is the random number following the standard
normal distribution. The interference sample can be obtained by
superposing the generated Gaussian noise into the original PWD
dataset sample. The interference sample generation process
under Gaussian noise interference is shown in Fig. 2.

We treat different degrees of fog interference as Gaus-
sian noise interference of different intensities. The variance
of the equivalent Gaussian noise increases as fog intensity
rises in the image. The intensity of Gaussian noise σ ∈

Fig. 2. Interference sample generation process.

{0.02, 0.03, 0.05, 0.07} corresponds to the interference of light
fog, medium fog, heavy fog, and dense fog on the remote sensing
images.

Poisson noise is caused by the randomness of photons during
the imaging process, and applying Poisson noise can reflect
the random distribution of light under different illumination
conditions. By adjusting the parameters of Poisson noise, it is
possible to simulate infected pine forests under various lighting
conditions. The formula for generating Poisson noise can be
expressed as follows:

P (k; λ) =
λke−λ

k!
(2)

where P (k; λ) represents the probability of an event occurring
k times. λ denotes the mean of the Poisson distribution, e−λ
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Fig. 3. Structure of YOLOv8-RD network.

represents the monotonically decreasing exponential function,
and k indicates the actual number of occurrences of the event.

After generating Poisson noise, it is then superimposed onto
the original PWD images to create a dataset with different
lighting conditions. We subsequently employed a sample dataset
of PWD with Gaussian noise of varying interference intensities
to train and test the antiinterference performance of the object
detector.

IV. YOLOV8-RD

In this study, we adopted the YOLOv8n version as the basis
of our detection model due to its well-balanced tradeoff be-
tween detection speed and accuracy. To achieve robust detection
of PWD in remote sensing images under various interference
conditions, this article proposes an improved YOLOv8n model,
named YOLOv8-RD, as shown in Fig. 3. We combine the ad-
vantages of residual learning with FDNN, designed a ResFuzzy
module to effectively learn image residuals and suppress noise
overexpression. Meanwhile, the ResFuzzy module integrates a
DPM feature enhancement module to strengthen global infor-
mation extraction, consequently improving the model’s ability
to detect small objects. In addition, the conventional nearest
neighbor interpolation is replaced with a DySample module
in this study. By dynamically adjusting the sampling points,
the DySample module enhances the sensitivity and adaptability
of the sampling process to input feature variations, thereby
improving the robustness of the object detection model under
noise.

A. Residual Fuzzy ResFuzzy

During remote sensing image capture, AAV can be influ-
enced by atmospheric scattering, cloud and fog occlusion, and

fluctuations in lighting conditions. These factors can lead to
image blurring and markedly impair the detection capability of
object detection models.

To raise the antiinterference ability of object detection models
in complex interference environments, this study proposes Res-
Fuzzy module, as shown in Fig. 4. This module can effectively
suppress the overexpression of noise and improve the robustness
of the object detection model.

The ResFuzzy module consists of two subresidual blocks, a
DPM module [28], and a fuzzy layer [29]. In Fig. 4, the input
features x are transmitted through the first subresidual block to
obtain residual feature values y1. Through the DPM module,
the low-frequency detail information transmitted in residual
learning is effectively enhanced, and high-frequency noise is
filtered out, resulting in the output y2. Next, the output y2 is
input into the second subresidual block to obtain the residual
feature value y3, which is then input into the fuzzy layer. By
smoothing the feature map values using the Gaussian function,
the blurred output y4 is obtained. Finally, the obtained fuzzy
output is input into the C3 module and fused with the input noisy
image through residual connection to obtain a high-resolution
image while filtering out image noise. We renamed the improved
C3 module CRF, as shown in Fig. 5.

During the convolution process, the noise will propagate
downwards with the convolution, resulting in a decreased image
resolution and an increased difficulty in detection [30]. There-
fore, this study introduces residual learning to directly transfer
shallow information to deep layers to filter out image noise [31],
[32]. The two residual blocks of the ResFuzzy module are
composed of a 1× 1 convolutional layer, a linear rectification
activation layer, and a 3× 3 convolutional layer. This design
helps extract image features through skip layer connections and
suppress overexpression of noise [33], [34]. The output of two
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Fig. 4. Structure of ResFuzzy module.

Fig. 5. Structure of CRF module.

subresidual blocks can be represented as

y1 = w1(x) + λx (3)

y3 = w2 (y2) + λy2 (4)

where w1(x) represents the residual mapping learned by the
first subresidual block, λ represents the degree of preservation
of the original input, andw2(y2) represents the residual mapping
learned by the second subresidual block.

The DPM module can capture long-range dependencies, ob-
tain contextual information, and enhance the low-frequency
detail information transmitted in residual learning [35], [36].
Its model is defined as

DPM(y1) = y1 + γ (F (ŷ1)) (5)

where y1 represents the input features. ŷ1 = σ(F (y1))× y1, F
is the convolutional layer with kernel 1× 1, γ is the LeakyReLU
activation function, and σ is the Softmax function.

After the input features y1 enter the DPM module, they go
through a 1× 1 convolutional layer and a Softmax activation
layer to obtain a normalized spatial attention mask. This mask is
then multiplied with the input features to obtain global context
information. The obtained global context information is then
input into a subnetwork consisting of a 1× 1 convolutional
layer and a ReLU activation function to obtain channel attention
features. The input features y1 are then added to the obtained
channel attention features via a residual connection to get the
enhanced detailed features.

FDNN can significantly suppress excessive noise expres-
sion through the processes of fuzzification and defuzzification,

thereby providing neural networks with stronger robustness and
generalization ability [37]. To further bolster the robustness
of object detection networks in complex interference environ-
ments, we incorporate a fuzzy layer in our improved residual
network.

In this study, we introduce trainable fuzziness parameters
d and standard deviation parameters σ into the fuzzy layer to
compute the difference between each channel and the fuzziness
parameter. The generated differences are then fuzzified using a
Gaussian function to smooth out noise in the input data, ensuring
that variations in input features within a certain range do not
significantly affect the output results [38]. The fuzzification
process is described as

fuzzy−out = exp

(
−

c∑
i=1

(yi − di)
2

σ2
i

)
(6)

where fuzzy−out represents the fuzzy output. exp represents
the exponential function. c denotes the number of channels.
yi is the output of the ith channel in the improved residual
block. di is the fuzziness parameter for the ith channel, and
σi is the standard deviation parameter for the ith channel. Upon
processing the feature map through the fuzzy layer, it is subjected
to elementwise multiplication with the output of the refined
residual block. This ensures that each channel undergoes noise
suppression and smoothing, thus enhancing the robustness of
the model against complex interference environments.

B. Dynamic Upsampling Operator DySample

Feature upsampling plays a crucial role in progressively
restoring feature resolution in dense prediction tasks [39]. Near-
est neighbor interpolation is often used for feature upsampling in
YOLOv8n. However, this upsampling method copies the values
of the nearest pixels to restore the feature resolution [40]. If
the image itself contains noise, the noise will be amplified after
upsampling. To more effectively restore image features under
noise interference, we replace the upsampling method of nearest
neighbor interpolation with the DySample module [41].

The DySample module is an upsampling method based on
point sampling, which differs from traditional fixed-rule and
kernel-based dynamic upsampling techniques. By learning the
offset of input feature points, the DySample module dynamically
determines the upsampling position, thereby realizing content-
aware upsampling behavior. The DySample module mitigates
noise amplification issues inherent in nearest neighbor interpo-
lation and effectively reduces the impact of image noise during
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Fig. 6. Structure of DySample module. (a) Sampling based dynamic upsam-
pling. (b) Sampling point generator.

the upsampling process, thereby enhancing the quality of the
upsampled feature map [42].

Fig. 6(a) shows the process of dynamic upsampling using
DySample. The feature map x with dimensions H ×W × C is
input into the DySample module. x is processed by the sampling
point generator to learn feature offsets. These offsets are then
used to create a sampling set with dimensions sH × sW × 2g.
The grid sampling function then resamples the input feature
x using these offsets, resulting in an upsampled feature map
x′ with dimensions sH × sW × C. To effectively learn the
offsets for different feature points, we designed two sampling
point generators, as shown in Fig. 6(b). Here, s represents the
scale factor for upsampling, g represents the number of groups,
respectively, and x represents the input feature. linear denotes
the linear layer, and σ denotes the sigmoid activation function.
O represents the generated offset, G represents the original
sampling grid, δ represents the generated sampling set, and
s2 represents the number of repetitions of the offset in each
dimension.

Fig. 6(b) illustrates two methods for generating sampling
points, static scaling factor, and dynamic scaling factor. The
static scaling factor uses a fixed factor of 0.25 to limit the range of
offsets, and combines a linear layer and pixel shuffle to generate
the offset O. The offset O is then added to the original sampling
grid G to obtain the sampling set δ. The static sampling point
generator can limit the local spatial range that each upsampled

TABLE II
TRAINING PARAMETERS

point can traverse, ensuring that the sampling positions do
not overlap excessively, avoiding blurred boundaries and error
propagation in the output feature map.

The dynamic scaling factor is generated dynamically based
on the input features, allowing it to offer varying offset ranges
for each sampling point [43]. The input feature map x enters
the dynamic sampling point generator and is processed through
two branches. The first branch is processed by a linear layer
linear1, which maps each channel of the feature map to a new
feature space, thereby converting each feature point into an
offset. Then, the Sigmoid function is used to map the offset
to the interval [0,1], and the obtained value is multiplied by 0.5
to derive a dynamic scaling factor centered at 0.25. The second
branch is processed by a linear layer linear2 to directly generate
the offset O. The generated dynamic scaling factor is used to
adjust the offset produced by linear2, thereby enabling dynamic
adjustment of the offset. The offset adjustment process can be
represented by

O = 0.5Sigmoid (linear1(x)) · linear2(x). (7)

The dynamic range factor allows for adaptive adjustment of
the step size in the sampling point movement based on content
variations of the input features. This enhances the sensitivity
and adaptability of the sampling process to changing features,
paving the way for a more robust object detection model against
noise.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

In the experiments, we initialized the parameters of the
YOLOv8n network before training on the PWD dataset. The
hyperparameters of the experimental model are detailed in
Table II. In addition, Table III outlines the software and hard-
ware configurations used throughout the experiments. Both the
original YOLOv8n and the YOLOv8-RD network models pro-
posed in this article were trained based on the pretrained model
(YOLOv8n.pt). During the training process, the convergence
point of each model was recorded at its peak performance, and
its efficacy was assessed using a dataset with varying levels of
interference strength and different interference ratios. In this
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TABLE III
EXPERIMENTAL ENVIRONMENT

study, precision (P), recall (R), and mean average precision
(mAP) are used as evaluation metrics for the model. Higher P
indicates a lower false positive rate, which reflects the model’s
ability to mistakenly detect background interference as diseased
objects. High R means the model can detect as many objects
as possible in a noisy environment. mAP provides a more com-
prehensive reflection of the robustness of the object detection
model in noisy environments. A higher mAP indicates a superior
antiinterference capability of the model. The P, R, and mAP
calculation formula is as follows:

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

AP =

∫ 1

0

PdR (10)

mAP =
1

n

n∑
i=0

APi (11)

where P represents the detection accuracy, which is the propor-
tion of correctly detected PWD relative to the total number of
objects the model detected as PWD. R represents the recall rate,
which is the proportion of correctly detected PWD compared
to the total number of PWD present in the dataset. TP denotes
the number of correctly detected PWD. FP denotes the number
of falsely detected PWD. FN denotes the number of falsely
detected non-PWD. AP denotes the average highest precision
for different object categories. mAP denotes the mAP across all
object categories. n denotes the number of detected objects, and
i denotes the object currently being detected.

B. Ablation Experiments

To assess the impact of the two additional modules in the
YOLOv8-RD model on the original YOLOv8n model, we con-
ducted four groups of ablation experiments. The following mod-
ifications are made on the basis of YOLOv8n. We integrated the
ResFuzzy module into the backbone network and implemented
the DySample module in the neck network. We used training
samples with a Gaussian noise intensity of 0.02 for adversarial
training and applied the resulting model weights in ablation
experiments. The ablation experiments were conducted using
a test set with 100% noisy samples, and the experimental results
are presented in Table IV. In addition, the changes in the model
parameters are shown in Table V, where Parameters refers to the
number of parameters in the model during training, measured in

TABLE IV
RESULT OF ABLATION EXPERIMENTS

TABLE V
MODEL PARAMETERS

Millions (M). Increment indicates the increase in the number of
parameters after adding different modules to the model.

As shown in Table IV, before adding the antiinterference
module, the average precision of the YOLOv8n model was
only 87.2%. With the introduction of the ResFuzzy module,
the accuracy, recall, and average precision of the model in-
creased by 2.4%, 4.5%, and 3.2%, respectively. This indicates
that the ResFuzzy module can effectively filter out noise in
images through multilevel residual blocks and fuzzy layers under
Gaussian noise interference, thereby improving the model’s de-
tection accuracy in noisy environments. In noisy environments,
recall may decrease as the model might overlook some objects
whose features are obscured by interference. Nonetheless, with
the incorporation of the DySample module, while accuracy
undergoes a minor decline, both recall and average precision
exhibit a subtle enhancement. This indicates that the DySample
module can adjust the sampling point step size according to
the changes in the input image noise, effectively restoring the
object features of the input feature map and improving the
quality of the upsampled feature map. With the addition of both
modules, the number of parameters of the model only increases
slightly, nevertheless, the accuracy, recall, and average precision
of the model are significantly improved. This fully demonstrates
that the two modules we added can effectively resist noise and
achieve high-precision detection in noisy environments.

C. Comparative Analysis of Different Interference Intensities

When a AAV captures images of a vast pine forest along a
designated path, noticeable cloud, and fog occlusion may occur
in certain regions, leading to the blurring of disease features in
some datasets. Therefore, we created test sets with interference
sample proportions of 10%, 30%, 50%, 80%, and 100% to
simulate the situation where different numbers of samples in the
dataset are affected by fog. At the same time, we used a Gaussian
noise intensity of σ ∈ {0.02, 0.03, 0.05, 0.07} to simulate the
interference of different fog intensities.

We conducted preliminary comparisons between our pro-
posed YOLOv8-RD model and traditional models, such as
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TABLE VI
INTERFERENCE INTENSITY σ = 0.02

TABLE VII
INTERFERENCE INTENSITY σ = 0.03

TABLE VIII
INTERFERENCE INTENSITY σ = 0.05

TABLE IX
INTERFERENCE INTENSITY σ = 0.07

YOLOv5s, YOLOv6, YOLOv7-tiny, and YOLOv8n. In addi-
tion, to investigate the superiority of our model, we further
compared YOLOv8-RD with four most representative mod-
els: 1) YOLOv9-t; 2) YOLOv10n; 3) RTDETR-r18; and SC-
RTDETR. Among them, the SC-RTDETR model is the latest
object detection model proposed by Feng et al. [44], which
features strong interference robustness. Tables VI– IX present
the mAP variations of different models on the training and test
sets under interference intensities of 0.02, 0.03, 0.05, and 0.07,
respectively, where Tr-Ac represents the accuracy of the training
set, and Te-Ac represents the accuracy of the interference-free

test set. The entire experiment adopts an adversarial training
method to train the weights of different models under different
interference intensities, and then uses the trained weights to test
the antiinterference ability of the test set without interference and
the test set with samples of different interference proportions.

Without interference, the average precision of the YOLOv8-
RD model on the test sets with various interference intensities
has consistently remained above 90%, with a maximum preci-
sion of 92.2%. This signifies that the YOLOv8-RD model not
only effectively detects object features amidst interference but
also maintains exceptional detection accuracy in unobstructed
environments, thereby providing a robust solution for the effi-
cient detection of PWD.

Under interference conditions, all models experienced vary-
ing degrees of accuracy decline, especially when the inter-
ference ratio in the test set reached 100% and the interfer-
ence intensity reached 0.07, where the accuracy of each model
dropped most considerably. The YOLOv6 model exhibited the
most pronounced average accuracy fluctuations, whereas the
YOLOv8n and YOLOv10n models demonstrated commendable
robustness under lower interference intensities. The YOLOv9-t
model exhibited high accuracy in both the training set and the
interference-free test set, but its detection accuracy dropped
rapidly when exposed to noise. Both the SC-RTDETR and
YOLOv8-RD models showed strong robustness under various
interference conditions. However, the YOLOv8-RD model per-
formed significantly better than the SC-RTDETR model under
various levels of interference, with a maximum accuracy im-
provement of 5.5%. These results indicate that the YOLOv8-RD
model exhibits greater robustness and higher detection preci-
sion in complex interference environments. Such phenomenon
occurs when Gaussian noise obscures the details and texture
information in images, leading to an increase in image blurri-
ness, which in turn makes it challenging to detect and extract
features from the image, thereby affecting detection accuracy.
In contrast, the proposed YOLOv8-RD model shows significant
advantages in this perspective. On the one hand, the ResFuzzy
module filters and smooths the image when encountering noisy
images, thereby mitigating the impact of noise on the model.
On the other hand, the DySample module adjusts the sampling
points in real time according to changes in input feature noise in-
tensity, enhancing the model’s robustness in complex interfering
environments.

D. Comparative Analysis of Different Interference Methods

When using AAV to monitor pine forests for pests and dis-
eases, two main environmental disturbances emerge: 1) cloud
cover; and 2) variations in lighting. Cloud cover can cause image
blurriness and reduced contrast, while changes in lighting can
lead to shadows and nonuniform brightness in images [45].
These disturbances significantly impact the feature extraction
process of object detection models, making it difficult for the
algorithm to accurately locate diseased areas, resulting in false
positives and false negatives. To address these issues, we employ
Gaussian noise to simulate cloud cover and Poisson noise to
simulate variations in lighting.
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Fig. 7. Comparative experiment of different interference methods. (a), (b), and (c) display the results of different models’ anti-interference tests on the test sets
with Gaussian noise interference proportions of 30%, 50%, and 100%, respectively. (d), (e), and (f) show the results of different models’ anti-interference tests on
the test sets with Poisson noise interference proportions of 30%, 50%, and 100%, respectively.

In the experiments, we selected a Gaussian noise intensity
of σ ∈ {0.02, 0.03, 0.05, 0.07} and a Poisson noise intensity
of λ ∈ {80, 100, 120, 140}. To verify the effectiveness of our
proposed YOLOv8-RD for both types of interference, we se-
lected three of the most representative models for comparison,
YOLOv8n, YOLOv9-t, and SC-RTDETR. At the same time,
the entire experiment adopts an adversarial training method,
with an adversarial sample ratio of 30% in the training set. We
use the trained model weights to test the antiinterference ability
of the test set with different interference proportions. The test
results are shown in Fig. 7. Specifically, Fig. 7(a)–(c) display the
results of different models’ antiinterference tests on the test sets
with Gaussian noise interference proportions of 30%, 50%, and
100%, respectively. Fig. 7(d)–(f) show the results of different
models’ antiinterference tests on the test sets with Poisson noise
interference proportions of 30%, 50%, and 100%, respectively.

By observing Fig. 7(a)–(c), it can be deduced that the proposed
YOLOv8-RD model has significantly higher mAP in detecting
objects under Gaussian noise interference compared to the other
three models. This indicates that YOLOv8-RD can effectively
filter out Gaussian noise and accurately detect diseased objects.
In contrast, the performance of the other three models decreases
significantly when subjected to Gaussian noise interference of
different intensities and proportions.

As shown in Fig. 7(d)–(f), when subjected to Poisson noise,
the proposed YOLOv8-RD model exhibits significantly better
antiinterference performance than the traditional YOLOv8n
model in tests with various interference ratios. Moreover, in most
cases, the YOLOv8-RD model outperforms the state-of-the-art
YOLOv9-t model in terms of antiinterference performance.
Finally, the YOLOv8-RD model is compared to the

SC-RTDETR model, which also has an antiinterference module.
The proposed YOLOv8-RD model has a slightly lower mAP
than the SC-RTDETR model in the test sets with interference
ratios of 30% and 50%. However, when the interference sample
ratio is 100%, the YOLOv8-RD model exhibits higher mAP
under different interference intensities. This indicates that the
proposed YOLOv8-RD model can effectively resist interference
caused by changes in lighting, reducing false positives and false
negatives caused by factors, such as exposure and reflection.

Two sets of comparative experiments both point out that the
proposed YOLOv8-RD model can maintain high detection accu-
racy and strong robustness in the case of cloud and fog occlusion
and changes in lighting. On the one hand, this is due to the fact
that the ResFuzzy module can use multilevel residual blocks to
filter image noise and combine a fuzzy layer to suppress exces-
sive noise expression. On the other hand, the DySample module
effectively improves the quality of the upsampled feature map
by dynamically adjusting the sampling points. The combination
of the two modules significantly improves the antiinterference
performance of the YOLOv8n model.

E. Analysis of Grad-CAM

To better demonstrate the advantages of the YOLOv8-RD
object detection model on the interfered dataset, the gradient-
weighted class activation mapping (Grad-CAM) technique is
used to visualize the regions of interest of the model in the image
and enhance the interpretability and reliability of the model [46].
Grad-CAM generates a coarse heat map by multiplying the
gradients of the output class with the outputs of a specific
convolutional layer and then averaging the results to show the



YUAN et al.: YOLOV8-RD: HIGH-ROBUST PINE WILT DISEASE DETECTION METHOD BASED ON RESIDUAL FUZZY YOLOV8 395

Fig. 8. Grad-CAM comparison.

areas of the image the model is focusing on [47]. By analyzing
the generated heat maps, we can detect potential shortcomings
where the model might focus on irrelevant image areas or miss
crucial features for accurate object detection. Its formula can be
simply expressed as

Lc
Grad-CAM = ReLU

⎛⎝∑
i

∑
j

∂Yc

∂Aij
Aij

⎞⎠ (12)

where Y c represents the output score of the model for a specific
class, ∂Yc

∂Aij
represents the gradient of that class score with respect

to the feature map A, andAij represents the element at the ith row
and jth column of feature map A. By summing up the weights
of each channel and applying the ReLU activation function, a
nonlinear mapping is obtained.

We selected the 15th layer of the model for backpropagation
and generated heat maps by applying Grad-CAM to two images
with Gaussian noise intensity of 0.02. The heat maps allow
us to observe the changes in the regions of interest of the
YOLOv8n and YOLOv8-RD models in noisy environments. The
comparison are shown in Fig. 8.

In the generated heat maps, deeper red shadows indicate re-
gions of high attention from the model. Yellow regions represent
diseased object areas with lower attention, and blue regions
indicate areas with redundant and interfering information. In the
heat map generated using the YOLOv8n model weights, there
are obvious blue interference regions, and the key red object
regions are fewer. This suggest that the traditional YOLOv8n
model have difficulty filtering out noise in noisy environments,
thereby impeding its ability to effectively differentiate between
object and background features. However, with the addition of

Fig. 9. Antiinterference test results.

the ResFuzzy module, the blue regions in the heat map are
significantly reduced, and the color of the key red object regions
is significantly deepened. This demonstrates that the ResFuzzy
module can markedly improve the resolution of object detail
features while effectively mitigating noise. After incorporating
the DySample module, the blue regions in the heat map are
further reduced, and the red and yellow regions are further
enhanced. This indicates that the DySample module has a certain
inhibitory effect on noisy environments, making the model more
sensitive to changes in noise in the feature map.

F. Anti Interference Test Results

To straightforwardly demonstrate the effectiveness and ad-
vantages of the YOLOv8-RD model in interfering environments,
we conducted four adversarial training experiments on datasets
with two different levels of Gaussian and Poisson noise. The
trained model weights were then used to evaluate the detection
performance of both YOLOv8n and YOLOv8-RD on single
images. In our experiments, we selected test samples with two
different noise levels from both Gaussian and Poisson noise
datasets to assess the models’ robustness to noise. The detection
results are shown in Fig. 9.

As shown in the figure above, under the interference
of Gaussian noise, the original YOLOv8n model encountered
issues with missed detection and false positives. In environments
with substantial noise, the features of small objects may become
obscured, thereby impeding the YOLOv8n model’s capacity to
discern these minute details with precision. In addition, similar
ground features were mistakenly detected as disease objects by
the YOLOv8n model. In contrast, the proposed YOLOv8-RD
model was able to accurately detect nearly all object features
under the simulated cloud and fog interference from Gaussian
noise.

When exposed to the interference of illumination changes
simulated by Poisson noise, the detailed features and edge con-
tours of the objects in the image became blurred. In such environ-
ments, the YOLOv8n model struggled to accurately detect dis-
ease features, often resulting in missed detection. However, our
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proposed YOLOv8-RD model effectively resisted the interfer-
ence from illumination changes and cloud cover. By leveraging
the ResFuzzy module, image noise induced by cloud cover was
effectively mitigated, while the DySample module facilitated
the restoration of disease features that were compromised due to
variations in illumination. The incorporation of these two antiin-
terference modules substantially bolstered the robustness of the
YOLOv8n model, markedly decreasing both missed detection
and false positive rates in challenging, noisy environments.

VI. CONCLUSION

This study simulates cloud occlusion and lighting variations
using Gaussian and Poisson noise. By designing the ResFuzzy
module to suppress the interference of image noise and back-
ground features, we significantly improved the model’s robust-
ness in various noisy environments. In addition, we integrated
the DySample module into the neck part, effectively enhancing
the adaptability of the upsampling process to changes in input
features, further strengthening the model’s resistance to inter-
ference.

Through extensive experiments, our proposed YOLOv8-RD
model achieves a maximum detection accuracy of 92.2% in
noise-free conditions. Under Gaussian and Poisson noise inter-
ference, the YOLOv8-RD model significantly outperforms four
state-of-the-art models. This illustrates that the YOLOv8-RD
model adeptly counters noise interference, facilitating precise
detection of PWD in intricate and obstructive environments
when deployed via AAV systems.
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