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Abstract

Multi-group activity recognition aims to recognize sub-group activities in multi-person scenes. Existing

works explore group-level features by simply using graph neural networks for reasoning about the individual

interactions and directly aggregating individual features, which cannot fully mine the interactions between

people and between sub-groups, resulting in the loss of useful information for group activity recognition.

To address this problem, this paper proposes a Spatio-Temporal Interactive Reasoning Model (STIRM)

to better exploit potential spatio-temporal interactions for multi-group activity recognition. In particular,

we present an interactive feature extraction strategy to explore correlation features between individuals by

analyzing the features of their nearest neighbor. We design a new clustering module that combines the action

similarity feature and spatio-temporal trajectory feature to divide people into small groups. In addition, to

obtain rich and accurate group-level features, a group interaction reasoning module is constructed to explore

the interactions between different small groups and among people in the same group and exclude people who

have less impact on group activities according to their importance. Extensive experiments on the Social-

CAD, PLPS and JRDB-PAR datasets indicate the superiority of the proposed method over state-of-the-art

methods.

Keywords: Action Recognition, Multi-Group Activity Recognition, Group Clustering, Interaction
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Figure 1: Examples of different types of human activity recognition.

1. Introduction

Human activity understanding based on video is the core research field of computer vision, which has

various practical applications in the real world, such as surveillance systems and social scene understanding.

Research on human activity understanding has focused mainly on recognizing a single person’s action (Fig.

1(a)) and on the identification of interactions between individuals (Fig. 1(b)) in a simple scenario with

single background and explicit action [1].

Recently, the task of understanding human activity has been expanded to more demanding and real

scenes. Most existing works regard all individuals as one group and recognize the activity of a single group

(Fig. 1(c)). However, in real scenes, people are likely to form different social groups according to the social

interactions between them (Fig. 1(d)). Therefore, studies on multi-group activity recognition (MGAR) are

more meaningful and essentially aim to understand “Who is with whom and what they are doing together”.

Typically, MGAR includes three subtasks: individual action recognition for each person from social groups

or skeletons, group clustering, and group activity recognition for each social group and singleton. Among

these, individual action recognition aims to identify the action of each individual, group clustering aims

to divide individuals into small groups based on their social interactions (“who is with whom”), and group

activity recognition of each group aims to recognize the activity of each small group based on group clustering

results (“what they are doing together”).

Studies of MGAR have recently been extended from static views [2, 3] to panoramic and dynamic views

[4]. In such studies, mining and inferring potential interactions between individuals or sub-groups to form

comprehensive group-level features is crucial. Graph neural networks (GNNs) are now widely used to infer
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the potential relationships between nodes. Therefore, individual features are often regarded as nodes, and

the edges are the relationships between nodes. Once nodes and edges are initialized, GNN can automatically

explore the correlation between persons to build rich group-level features for further reasoning. For static

view, Ehsanpour et al. [2] utilized graph attention networks (GATs) [5] to exploit the potential interactions

among people to divide them into small groups and recognize multi-group activities. Qing et al. [3] designed

individual and group graph reasoning modules to infer the relationships between them, respectively. From

a panoramic and dynamic view, Han et al. [4] developed a hierarchical graph neural network to gradually

represent and model multi-granular human activities and mutual social relationships among populations.

Cao et al. [6] proposed a multi-granularity unified perception framework to mine the intra-relevant and

cross-relevant semantics. Gan et al. [7] considered both the unique characteristics of each task and the

synergies between different tasks simultaneously. However, most existing MGAR approaches extract and

reason for only individual features, adopt graph spectral clustering technique or use the appearance similarity

of behaviors to cluster people, and then aggregate individual features in sub-groups directly without further

exploiting deep spatio-temporal interactions between persons, which fails to obtain a rich representation of

individual/group-level features.

To better exploit potential spatio-temporal cues and form a rich representation of final features, we pro-

pose a new Spatio-Temporal Interactive Reasoning Model (STIRM) for MGAR that focuses on exploiting

spatio-temporal interaction between people and sub-groups. Specifically, we design a group interaction rea-

soning module to explore interactions between people in the same group and between different sub-groups

from global and local perspectives. Moreover, people who have less impact on group activity recogni-

tion results are ignored in this module. In addition, we obtain spatial interactive features between people

through reasoning about their nearest neighbor to enhance the original individual’s features. We combine

this approach and spatio-temporal trajectory features [8] to divide individuals into small parts. Our key

contributions are summarized as follows:

1. A nearest neighbor interaction extraction module is designed to explore spatial interactive features

between individuals. This module not only reasons about the interactive appearance features of people
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but also exploits spatial group topology and the relative positions between them.

2. A spatio-temporal clustering module is constructed to better understand the relationships between

people by incorporating action similarity features and spatio-temporal trajectory features. This module

divides people into multiple clusters for better learning activity-aware semantic representations.

3. A group interaction reasoning module is built to infer representative group-level features, which con-

tains two sub-modules: Inter-Trajectory Relation Graph Reasoning Module and Graph Aggregation

and Pooling Module. This module can effectively explore spatio-temporal interactions between differ-

ent sub-groups and between people and ignore unimportant people according to their impact on group

activity recognition.

4. Extensive experiments were conducted on three challenging benchmarks to illustrate the effectiveness

of our approach. The experiments demonstrate that the Spatio-Temporal Interactive Reasoning Model

(STIRM) can effectively explore the spatio-temporal interaction between people and between different

sub-groups. The results demonstrate the excellent performance of our method.

The rest of the paper is organized as follows. Section 2 present related work on action recognition, group

clustering methods, and group activity recognition methods. Section 3 describes the proposed approach in

detail. The experimental results and discussion are analyzed in Section 4. Finally, Section 5 presents the

conclusions of this paper.

2. Related Work

MGAR aims to identify sub-group activities in multi-person scenes; this involves simultaneously perform-

ing the individual action recognition, group clustering, and group activity recognition tasks. Therefore, the

related works on action recognition, group clustering and group activity recognition are briefly introduced

in this section.

2.1. Action Recognition

Action recognition is a fundamental task in computer vision that takes a video as input and outputs

an action category [1, 9]. The existing action recognition approaches can be divided into two categories:
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appearance-based methods and the skeleton-based methods. For appearance-based methods, Ma and Wang

[10] utilized Transformers to encode the spatial and temporal dynamics of visual features for action recogni-

tion. Wang et al. [11] leveraged the rich semantic priors in CLIP to obtain reliable prototypes and achieve

accurate few-shot classification. For skeleton-based approaches, Qin and Hou [12] designed different atten-

tion mechanisms to focus on joint-level and part-level information and help distinguish similar actions. Wu

et al. [13] divided human joints into the trunk, hands and legs and built spatial-temporal hypergraphs to

extract their high-order features for multi-view data lightweight action recognition. Temporal dependency

is also vital to action recognition via videos. Therefore, CNNs with 3D kernels have been proposed to bet-

ter exploit spatial and temporal cues [14, 15]. Note that the video data commonly employed for this task

are typically gathered from laboratory settings or sourced from movies/website videos. The videos usually

contain only one or very few humans with people occupying the central focus of each frame. However, mul-

tiple small people are captured in the real world, making it difficult to extract and analyze the appearance

features and skeletons of people, which poses a significant challenge in this task.

2.2. Group Clustering

Group clustering endeavors to divide individuals into small segments for subsequent applications. Accu-

rate clustering methods can more correctly divide closely related individuals into the same group, thereby

promoting the inference of multi-group activity. The existing works for group clustering can be categorized

into two groups: the first approach clusters people on the basis of diverse motion patterns exhibited by

crowds [16] and is effective in medium- or high-density crowd scenarios such as crowd flow monitoring. The

methods in the second category focus on clustering people to form small or social groups by observing social

interactions among individuals and is primarily applied in low or medium density scenes. This category

serves as the foundation for studying group-based activity understanding, and we mainly focus on this field

in the following paragraphs. In these studies, various measures have been employed to assess inter-group

proximity for group detection, including pairwise proximity [17], velocity information [17], trajectory data

[18, 19] and interaction characteristics [18, 19]. For deep learning-based approaches, researchers have pro-

posed GAN-based methods [20], DNN-based methods [21], GCN-based methods [22] and graph attention
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network (GAT)-based methods [2] to process extracted features. Specifically, Akbari et al. [21] utilized

deep neural networks (DNNs) to integrate the Euclidean distance, proximity distance, motion causality

and trajectory shape between pairs of pedestrians for social group detection. Sun et al. [22] introduced a

group-based social interaction model to explore the connections among individuals by constructing a Re-

cursive Social Behavior Graph (RSBG). Ehsanpour et al. [2] applied graph attention networks (GATs) to

capture potential interaction relationships among individuals, enabling the clustering of social groups and

recognition of multi-group activities.

In the MGAR task, accurate clustering results benefit group activity reasoning. However, most existing

approaches consider only the Euclidean distance in a static view or use only shallow features. Therefore, in

our spatio-temporal clustering module, we employ both spatio-temporal trajectory cues and the similarity

of individual activities to reflect their social connections further.

2.3. Group Activity Recognition

Group activity recognition (GAR) is another task in the realm of understanding human activity. Its

objective is to identify the activity being performed by a group of individuals. Recently, many existing

works have considered all people as a single group, which is called (single) group activity recognition. In such

studies, it is highly important to obtain better representations of group-level features. Some studies max-pool

individual features directly to form group-level features [3], but this leads to a loss of useful information for

activity recognition. Therefore, attention mechanisms have been widely used. Some researchers have adopted

attention mechanisms to find key actors that have the greatest influence on group activity [23] or produce

coefficients to aggregate actor-level features to group-level features [24]. In addition, exploring interactions

between people can benefit group activity recognition results and mainstream methods often utilize Graph

Neural Networks (GNNs) [25, 26], Transformers [27, 28], and Recurrent Neural Networks (RNNs) [29,

30] to reason about the relationships between humans. To obtain more accurate individual features for

group reasoning, some works have focused on reasoning the latent spatio-temporal dependencies among

body regions [31]. In addition, some studies have either used self-supervised inference of spatio-temporal

correlations to identify group activity [32, 33] or cluster people into small parts, where the correlation is
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tight in the same cluster but distant in different clusters [34]. The aforementioned work takes videos as

input, which requires a significant amount of computational resources. To address this issue, Wang et al.

[35] and Perez et al. [36] explored skeleton-based group activity recognition.

However, it is not reasonable to regard all people as one group because not all people have social

connections. Therefore, multi-group activity recognition (MGAR) scheme have been proposed to determine

group activities in every small group. Ehsanpour et al. [2] employed graph attention networks (GATs) [5]

to capture interactions among people to divide social groups and recognize multi-group activities. Qing

et al. [3] developed individual and group graph reasoning modules to infer their relationships. Han et al.

[4] presented a hierarchical graph neural network to progressively model multi-granular human activities

and social relations for crowds. Cao et al. [6] proposed a multi-granularity unified perception to mine

intra-granularity and inter-granularity semantics. Gan et al. [7] designed a mix-parameters Transformer to

consider the complementary effect between tasks of different granularities.

Most existing MGAR approaches extract and reason about individual features and aggregate them

directly without further exploiting spatio-temporal interactions, leading to poor effectiveness for better

representing group-level features. In this work, we focus on exploring spatio-temporal interactive cues

between people and between sub-groups via the interaction graph reasoning module and build rich group-

level features after key actors are automatically selected.

3. Method

3.1. Overview

We proposed a new Spatio-Temporal Interactive Reasoning Model (STIRM) for MGAR, which focuses

on exploiting spatio-temporal interaction between people and sub-groups and forming representative group-

level features. As illustrated in Fig. 2, this framework includes five parts: Individual Feature Extraction

Module, Inter-Actor Relation Graph Reasoning Module, Nearest Neighbor Interaction Extraction Module,

Spatio-Temporal Clustering Module and Group Interaction Reasoning Module. Firstly, we employ the

backbone of 3D-ResNet50-NonLocal [37], attention mechanism of Squeeze-and-excitation Networks (SENet)
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[38] and RoI-Align to extract the actor features fact, which are regarded as nodes and then fed into the

Graph Attention Network (GAT) [5] and Dynamic Inference Network (DIN) [26] to reason about pair-wise

interactions and achieve spatio-temporal person-specific inferences. The two features are added as factor

and sent into individual action classification.

Then, according to the individuals’ positions and their pair-wise distances, we explore the features of

the individuals’ nearest neighbors fai as individual interactive features to capture relative context features

and location features fp are cascaded to individual features, which are considered effective supplements for

determining group topology. Next, we combine the output of the nearest neighbor interaction extraction

module fap and the preprocessed spatio-temporal trajectory feature fST to group people. To better reason

about the interactions between people and groups, first, we utilize fap as nodes and the similarity of the

global pair-wise trajectory as edges and feed them into the GCN. Then, incorporating fact, fapt and fap as

fg, graph aggregation and the self-attention graph pooling method are introduced to explore relations within

and between groups and discard unimportant people according to the importance of individuals. Finally,

the multi-group activity recognition results are obtained according to the group clustering result and group

final feature fgroup. We describe the method in details in the following sections.

3.2. Individual Feature Extraction

We first design an individual feature extraction module to extract spatial and temporal information

about individuals. In particular, we adopt 3D-ResNet50-NonLocal [37] pre-trained on ImageNet [39] as the

backbone to extract the global features from RGB images of dimension H×W ×3, where we take 32 frames

as input to capture temporal dynamic information. In the last layer of the backbone, we insert SENet [38]

to better obtain the correlation of different channels and restrain the less impactful channels. Then, the

global features are fed into RoI-Align, whose crop size is 5× 5, to extract individual features. After that, a

fully connected layer is applied to the aligned features to obtain a d dimensional appearance feature fact for

each actor. The total number of bounding boxes in all input frames is denoted as N ; thus a N × d matrix

fact is utilized to represent the appearance features of the actors.
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Figure 2: Overview framework of the proposed method. We first extract individual features and explore their relationships

via the graph reasoning module. Then, we explore features of the individual’s nearest neighbor and combine them with

position features to gain rich interactive representations. Next, we incorporate the above appearance-position interactive

features and preprocessed spatio-temporal features to cluster people. Then, we perform reasoning on people according to the

similarity of their global trajectories. Finally, the graph aggregation and pooling module is introduced to exploit relations

within and between groups, ignore unimportant people, and obtain group-level features.
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3.3. Inter-Actor Relation Graph Reasoning

Individual action is unique and easily affected by others in a multi-person scenario. Therefore, this task

can be modeled by a graph, where the nodes represent the individuals’ features and the edges denote the

interactions among people. We apply GAT [5] and DIN [26] to learn the underlying interactions between

individuals and achieve person-specific inference simultaneously. The whole process is shown in Fig. 3.

First, on the basis of the individual appearance features fact, we regard them as nodes and connect

all pairs in the GAT. The GAT enables the flexible learning of attention weights between nodes through

parameterized operations, utilizing a self-attention strategy, which is a good choice for uncovering subtle

interactions among individuals.

Moreover, individual appearance features fact are fed into the DIN to form a person-specific graph.

In particular, DIN contains two main modules: DR and DW [26]. DR predicts the relation matrix for a

given person, whereas DW predicts the dynamic walk offsets to introduce a global interaction field to the

interaction graph.

Then, the output features from GAT and DIN are fused through element-wise addition, expressed as

follows:

fGAT + fDIN = fr−actor. (1)

Then, we add fact and fr−actor create the final output of individual features factor, and individual action

results are obtained.

3.4. Nearest Neighbor Interaction Extraction

Individuals close in space may have social relationships and may also engage in the same activities

and interact. Therefore, we propose the nearest neighbor interaction extraction module for mining spatial

interactive information.
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Figure 3: Example diagram of inter-actor relation graph reasoning.

3.4.1. Reconstruction of the joint region boundary box

Reconstruction of the joint region boundary box of the nearest neighbor relationship is the basis of

this section. Suppose that there are N people in the scene, the original rectangular box of individual i

is boxi = (lxi, lyi, rxi, ryi), and the center position coordinates of the i-th and j-th target individuals are

calculated as Pi = (xi, yi) and Pj = (xj , yj), respectively according to Eq. 2 as follows:

(xi, yi) =

(
lxi + rxi

2
,
lyi + ryi

2

)
. (2)

The Euclidean distance between two people is then calculated as follows,

Disij =

√
(xi − xj)

2
+ (yi − yj)

2
, (3)

and the element of the distance matrix Dm is the Euclidean distance for N people in pairs, represented as

follows,

11



Figure 4: Example diagram of nearest neighbor interaction. Take A and B for example, we find their nearest neighbor C

according to their distances among individuals. Then, we crop individuals and their nearest neighbors based on the threshold

µ. Finally, we extract features of the Rebox regions as every individual’s feature.

Dm =



Dis11 · · · Dis1i Dis1N

· · · · · · · · · · · ·

Disi1 · · · Disii · · ·

DisN1 · · · · · · DisNN


, (4)

where the diagonal distance value is 0 because Disii represents the distance between an individual and

themselves.

According to the pair-wise distance Disij , we can find the nearest neighbor individual by sorting the

distance vector corresponding to the individual i. The indices of nearest neighbor and distance between

them are denoted by newIdi and newDisi, respectively and are given by:

newIdi, newDisi = Rank ({Sort (Disij) , j ̸= i} , 1) . (5)

If the nearest distance is lower than the threshold µ, which means that they are closely related to each

other, the bounding box of the i person is reconstructed as the minimum circumscribed rectangle of the

individual bounding box with indices i and newIdi, expressed as follows:
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
newIdi = newIdi, newDisi ≤ µ,

newIdi = i, newDisi > µ.

(6)

If the coordinate vector of the original rectangular box of individual i is boxi = (lxi, lyi, rxi, ryi), then

the reconstructed boundary box Reboxi is obtained as follows:

Reboxi = {min (lxi, lxnewIdi
) ,min (lyi, lynewIdi

) ,

max (rxi, rxnewIdi) ,max (ryi, rynewIdi)} . (7)

According to the reconstructed boundary box Rebox, we can crop the persons and their interactive

neighbors, as shown in Fig. 4.

3.4.2. Appearance and position interactive feature extraction

To some extent, human position and activity may be highly correlated. For example, in team activities,

each member’s position and action depend on the behaviors of other members, particularly the nearest

member. Additionally, individuals close to each other in the scene have a similar spatial locations and

relative distance distributions, their corresponding individual behaviors are strongly correlated, and they

tend to have specific social relationships. Therefore, we add the appearance interactive feature of the nearest

neighbor as a whole and explore the position feature to supplement the appearance feature to exploit the

interactions between them. The whole process is shown in Fig. 5.

According to the Rebox from Section 3.4.1, nearest neighbor areas are fed into RoI-Align to extract

appearance interactive features fai. Then, we concatenate the coordinate of each individual and the distance

between every two individuals and send them to fully connected layer to obtain the position interactive

feature fp. Finally, appearance interactive features fai and position interactive feature fp are fused as

refined interactive features fap, which are applied in clustering and sub-group activity recognition.
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Figure 5: The detailed process of appearance and position interactive feature extraction.

3.5. Spatio-Temporal Clustering

Group clustering aims to partition individuals into distinct sub-groups. In MGAR research, a group is

considered a collection of individuals who exhibit common consistent behavior and are relatively close in

distance. Therefore, we consider action similarity characteristics and distance information between pair-wise

trajectories in this clustering module.

The entire process is illustrated in Fig. 6, and includes action similarity measurements and spatio-

temporal trajectory distance measurements. Based on these measurements, we can obtain the action sim-

ilarity result matrix Map and spatio-temporal distance(ST-distance) result matrix MST . The final group

clustering result matrix M is subsequently calculated via AND operations on Map and MST , where 0 rep-

resents a social interaction between a person pair, whereas 1 means that the two people are in the same

group. We describe this procedure in detail below.

3.5.1. Action similarity measurement

To measure action similarity, we utilize the refined interactive feature fap described in Section 3.4.2 as

one of the inputs of this module. Then, we calculate the similarity between two persons using the cosine

similarity measure as follows:
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Figure 6: Example diagram of spatio-temporal clustering.
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where f i
ap ∈ Rd and f j

ap ∈ Rd represents the features of the i-th and j-th person, respectively. θ
(
f i
ap

)
=

Wθf
i
ap + bθ and ϕ

(
f j
ap

)
= Wφf

j
ap + bφ are learnable linear transformations. Wθ ∈ Rdk×d and Wφ ∈ Rdk×d

are weight matrices, and bθ ∈ Rdk and bφ ∈ Rdk are weight vectors.

Setting a threshold µ, we compare every similarity value with the threshold individually. If the similarity

value between i and j is larger than the threshold, the element value of the result matrix M ij
ap is 1, suggesting

that person i and person j are in the same group; otherwise, the value is 0, which means that they do not

belong to the same group.

3.5.2. Spatio-temporal trajectory distance measurement

For the distance information between pair-wise trajectories, we adopt spatio-temporal interpersonal

distance measurement [8] as another piece of information for determing whether individuals belong to the

same group. Unlike traditional distance measurements, which consider only static distances, we utilize

spatio-temporal distances instead.

In particular, the two trajectory curves P and Q are discretely represented by a set of sampling points

(p and q), also written as P = (p1, · · · , pp) and Q = (q1, · · · , qq), respectively. The discrete Fréchet distance

is calculated by taking the maximum value among the distances between corresponding sampling points,

represented by:
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Figure 7: Fréchet distance diagram (the dotted line represents the distance between P and Q at the same time, and the

longest dotted line is the Fréchet distance).

δdF (P,Q) = max
i=1,...,m

d (pai
, qci) , (9)

where a1 = 1 and c1 = 1, am = p and cm = q, and we utilize the Euclidean distance as the distance

metric function d(·). As shown in Fig. 7, the Fréchet distance provides a more accurate measurement of the

spatio-temporal distance between pedestrians, making it a reliable indicator of trajectory similarity. This

similarity plays a crucial role in determining the presence of social interactions between individuals.

According to the spatio-temporal interpersonal distance measurement method mentioned above, we can

determine the existence of a social interaction relationship between pairs, which includes two judgment

conditions [8].

The outputs of two judgments are written as b1 and b2, and the final judgment condition for recognizing

the presence of a social interaction between individuals can be determined via a logical expression as follows:

b3 = b1 ⊗ b2, (10)

where ⊗ represents a logical OR. If the binary variable b3 is 1, the outcomes of the social interaction

recognition for the individual pairs are positive. Notably, the element of the adjacent matrix MST is the

value of b3, indicating whether the individuals are in the same group.

Through the action similarity cues Map and distance cues MST , we can obtain group clustering results

via the AND operation, expressed as follows:
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(a) Trajectory of walking (b) Trajectory of waiting

Figure 8: Examples of different group activities.

M = Map ⊙MST , (11)

where ⊙ denotes the AND operation and M denotes the final result of group clustering, which consists of

0 and 1. 0 indicates that there is a social interaction between a person pair, whereas 1 means that the two

people are in the same group.

3.6. Group Interaction Reasoning

Group activity is related not only to individual actions but also to interactions between people. For

example, when several people are queueing, if we only see one of them and ignore the influence of others,

we may regard the activity as standing (as shown in Fig. 8(a)). If we notice the interactions of the people

surrounding him, we can easily identify the queueing activity. In addition, the key person in a group also

determines the group activity. As shown in Fig. 8(b), we can observe that the key person in the talking

activity is the person who is speaking while others are listening. The activity can be identify more accurately

if we can identify the key person.

Therefore, to explore interactions within and across the sub-groups, we propose Group Interaction Rea-

soning Module, which contains two main parts: the inter-trajectory relation graph reasoning module and

the graph aggregation and pooling module (as shown in Fig. 9). We describe these modules in detail below.

3.6.1. Inter-trajectory relation graph reasoning

Individuals with very similar trajectories in structure and shape tend to act similarly. Therefore, we

design an inter-trajectory relation graph reasoning module to measure pair-wise interactions.
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Figure 9: Example diagram of group interaction reasoning.

In this module, we take the refined interactive features fap mentioned in Section 3.4.2 as nodes and the

global trajectory similarity between individuals as edges and input them into the GCN to reason about

their interactions. The edge weights increase for greater similarity between the trajectories and for more

closely connected individuals. In the following paragraphs, we introduce how the method for computing the

trajectory similarity.

The trajectory is composed of the vectors of adjacent sampling points. As shown in Fig. 10, the trajectory

P is represented by a local vector {pi}ni=1 and a global vector pglobal, whereas the trajectory Q is represented

by a local vector {qi}ni=1 and a global vector qglobal, where pi and qi represent the i-th trajectory vectors of

the corresponding trajectory. Since the angle and length information of the trajectory provide an important

information about the trajectory shape and structure, the cosine similarity distance and trajectory length

similarity distance at the local and global scales are selected to calculate the similarity distance between

the trajectory P and the trajectory Q. Here, a smaller the distance corresponds to higher similarity. The

distance is calculated according to Eq. 12-14:

Dis(P,Q) = θglobal lglobal ·
n∑

i=1

θili, (12)

θi (pi, qi) = arccos

(
pi · qi

∥pi∥2 ∥qi∥2

)
, θi (pi, qi) ∈ (0, π), (13)

li (pi, qi) =
max (∥pi∥2 , ∥qi∥2)
min (∥pi∥2 , ∥qi∥2)

, (14)

18



(a) Original trajectory (b) Local trajectory vector (c) Global trajectory vector

(a) Original trajectory (b) Local trajectory vector (c) Global trajectory vector

globalq

globalpp

q

1p 2p

np

1q 2q
nq

Figure 10: Vector graph representation on the basis of trajectory structure similarity.

where θi represents the similarity distance between trajectory vectors pi and qi and li denotes the corre-

sponding length similarity distance. θglobal and lglobal represent the angle similarity distance and length

similarity distance of the global trajectory vectors pglobal and qglobal, respectively.

According to the similarity distance between any two trajectories, we can obtain a similarity coefficient

between them that is defined as follows:

Sim(P,Q) = Softmax(− lnDis(P,Q)). (15)

Then, we feed refined interactive features fap as nodes and similar coefficients as edges into the GCN

to explore the interaction between individuals, where the output feature can be written as fapt. After that,

fact, fapt and fap are concatenated as fg.

3.6.2. Graph aggregation and pooling

The graph aggregation and self-attention graph pooling methods are introduced to explore relationships

within and between groups, and unimportant people are discarded according to their importance.

As shown in Fig. 9, all individuals in the same group have strong social interaction, so that full connec-

tions unite all nodes in the same group, and a relationship path is established between groups to explore

the influence of different groups. To learn the overall representation within a group, Master2Token (M2T)

[40] is used to capture the correlation of interactive fusion features between individuals and adjacent nodes.

This method considers the self-attention of total aggregation within a group and local aggregation between

groups.

We take fg = {vi | i = 0, . . . , N} and the group clustering results mentioned in Section 3.5 as the inputs
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of M2T. After that, we add fg and the output of M2T fagg as fres. Next, fres are input into the self-

attention graph pooling (SAGPool) module [41] to focus on key actors to generate group-level features. In

the SAGPool module, self-attention scores S are computed to select important actors. Finally, group-level

features fgroup ∈ Rd are obtained via the max-pooling operation, which are fed into the group activity

classifier to recognize the multi-group activity. The whole process is shown in Eq. 16:

R = fg-classifier (fgroup) = fg-classifier (m (fres ◦ S) +m (fres)) , (16)

where m(·) is the max-pooling operation and where ◦ denotes the dot product.

3.7. Training Loss

The whole model is trained with gradient descent via back propagation. By incorporating the standard

cross-entropy loss, we establish the final loss function via Eq. 17:

L = λ1

∑
s

Lsgp

(
OSG

s , ˆOSG
s

)
+ λ2

∑
n

Lind

(
OI

n, Ô
I
n

)
+ λ3Lc

(
Oα, Ôα

)
, (17)

where Lc is the binary cross-entropy loss used to reduce the discrepancy between the relationship matrix

Ôα constructed in Section 3.5 and the ground-truth social group labels Oα. Lsgp and Lind denote cross-

entropy loss for the group activity of each small group and individual action classification in the Social-CAD

and PLPS experiments, respectively, and represent binary cross-entropy with logits in the JRDB-PAR

experiment because this dataset is annotated by multile labels. OI
n and OSG

s represent the ground-truth

individual action and sub-group activity labels, respectively, and ÔI
n and ˆOSG

s denote the corresponding

predicted labels. λ1, λ2, λ3 represents the coefficient used to balance the loss function.

4. Experiments

In this section, we first introduced three dataset and the evaluation metrics that we use in this work.

Then, we present the implementation details. After that, we compared our method with state-of-the-art

methods on the three datasets. Finally, ablation experiment results are presented to illustrate each module’s

effectiveness.

20



(a) Social-CAD dataset (b) PLPS dataset

(c) JRDB-PAR dataset

Figure 11: Examples of three datasets.

4.1. Datasets and Metrics

We conducted experiments on three publicly available multi-group activity recognition datasets, namely,

the Social Collective Activity Dataset (Social-CAD) [2], the Public Life in Public Space (PLPS) Dataset [3]

and the JRDB-Panoramic Human Activity Recognition (JRDB-PAR) Dataset [4]. Sample illustrations of

the three datasets are presented in Fig. 11. We also note that Tamura et al. [42] extended the original single-

group volleyball dataset to a multi-group setting with group annotations. In contrast to Social-CAD, PLPS,

and JRBD-PAR, their work focuses on game activities rather than social contexts, resulting in a different

group partitioning rule. Additionally, Tamura et al. did not release their data annotations. Our work, on

the other hand, emphasizes interactions in social contexts, and the trajectories can reflect social interactions

in social contexts rather than games. Therefore, we conducted experiments for three sub-tasks on the first

three datasets: 1) group clustering, 2) group activity recognition for each group and 3) individuals’ action

recognition. We introduce these datasets and evaluation metrics below.

4.1.1. Collective Activity Dataset (Social-CAD)

Social-CAD is an extension of the Collective Activity Dataset (CAD), originally used for Single-Group

Activity Recognition. As the first dataset for MGAR, it serves as a foundation for this research area. It

includes 44 short video sequences from 6 group activities and 6 individual actions (NA, Crossing, Waiting,
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Queueing, Walking and Talking). In addition, it divides different sub-groups according to their social

interactions and assigns group activity labels to all sub-groups. We followed the same evaluation scheme as

[2] and allocated 1/3 of the video sequences for testing and used the remaining portion for training [2].

For the Social-CAD experiments, we adopted the same evaluation metric as [2]. For (1), we calculate

the membership accuracy by measuring the accuracy of predicting the assignment of each individual to a

specific social group, formulated as follows:

GC −Acc = max
m

∑N
i=1 1 [li = m (ci)]

N
, (18)

where N is the total number of persons, li and ci denote the ground truth and prediction results, respectively,

andm(·) represents all possible assignments. For (2), we evaluated whether a person’s membership and social

activity label were jointly right. If so, we regarded this instance as a true positive; otherwise, it was false.

Therefore, the social accuracy was written as the ratio between the number of true positives and the number

of predictions. For (3), a correctly predicted individual’s action was regarded as a true positive, expressed

as:

Accaction =

∑s
i=1 TPi∑s

i=1 (TPi + FNi)
, (19)

where s is the number of action categories TPi, and FNi denote the number of correct and wrong predictions

for the i-th type of action.

4.1.2. Public Life in Public Space Dataset (PLPS)

PLPS dataset focuses on more complex scenes in urban public spaces, offering a diverse range of scenarios

for MGAR. It includes 71 clips from public spaces, with eleven individual action labels, group activity labels

(NA, Queuing, Waiting, Crossing, Talking, Dancing, Doing Sport, Sitting, Jogging, Playing, Riding), and

group clustering labels. We follow the same evaluation scheme as [3] and the train-test split in [3].

For the PLPS experiments, we utilized the same evaluation metric as [4]. For (1), assuming that N

persons are present, we use an N × N matrix M to show individual relations, where M(i, j) = 1 denotes
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that the i-th and j-th individuals are in the same group and M(i, j) = 0 by default. Accordingly, Mg and

Mp represent the ground truth and prediction, respectively, and the accuracy of group clustering can be

calculated using Eq. 20-21:

Acccluster =

∑N
i=1

∑N
j=1 δ {Mg(i, j) = Mp(i, j)}

N ·N
, (20)

δ (x, y) =


1, if x = y

0, otherwise

. (21)

For (2), since every individual was tagged with an activity label, its calculation was the same as that

of individual action recognition. For (3), the calculation was the same as that for the individuals’ action

recognition in the Social-CAD experiments.

4.1.3. JRDB-Panoramic Human Activity Recognition (JRDB-PAR)

JRDB-PAR was collected by a social robot, simulating a human’s point of view, providing a unique

perspective for activity recognition. It contains 27 videos, which are split into 20 for training and 7 for

testing, following the training/validation splitting in the JRDB dataset [4]. It includes 27 categories of

individual actions, e.g., walking, and talking, which is the same as JRDB-Act [43], 11 categories of social

group activities, 7 categories of global activities, and group clustering labels. Note that individual action

and activity annotations are multi-class labels; i.e., each individual/group is assigned one or more labels.

In the JRDB-PAR experiments, we utilized the same evaluation metric as [4]. For (1), we used the

classical Half metric used in the group detection task, which was denoted as IOU@0.5. Then, we calculated

the AUC (Area Under the Curve) score as the metric, namely, the IOU@AUC. In addition, we computed

the matrix IOU score as Mat.IOU as Eq. 22:

Mat.IOU =

∑
AND(R, R̃)∑
OR(R, R̃)

, (22)

where R and R̃ are the ground truth and the predicted binary human group relation matrix, respectively,
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with 1 denoting two subjects in the same group. AND and OR represent the functions of element-wise

logical and/or operations.

For (2), we regarded the group member IoU > 0.5 in the predicted group and the ground-truth group

as the true detected group. It is important to note that we only accounted for groups that included more

than one individual. The true detected groups, where the activity category prediction was correct, were

considered as accurate predictions for social group activities. Then, we calculate the precision, recall and

F1 score as the social activity recognition metrics. For (3), we adopted the same metrics as those used for

task (2), namely, precision, recall and the F1 score as evaluation metrics.

4.2. Implementation Details

We run our proposed framework using Pytorch on Ubuntu 20.04 with a single NVIDIA GeForce RTX

3090. We keep the original frame size in the Social-CAD dataset, and resize each frame to 240 × 1880 for

the JRDB-PAR dataset and 540 × 660 for the PLPS dataset. The channels of the feature map output by

the backbone corresponded to 1024 dimensions. In addition, we extracted 256-dimensional position features

as a supplement to the original features.

We trained the network in two stages. First, we trained the network without reasoning modules, which

meant that we only extracted the original features as individual features and max-pooled the features in

each sub-group as small-group activity features. Specifically, we used ground-truth group detection results

in this stage. We then fine-tuned the whole network in the second stage. Adam was adopted to learn the

parameters. The learning rate for all the datasets was 0.0005, and the training batch size was 8 with 200

epochs. For Social-CAD, we set λ1 = 1.0, λ2 = 8.0, λ3 = 2.0. For the PLPS dataset, we set λ1 = 1.0,

λ2 = 5.0, λ3 = 1.0. For the JRDB-PAR dataset, we set λ1 = 1.0, λ2 = 2.0, λ3 = 1.0.

4.3. Comparisons with State-of-the-Art Methods

To verify the effectiveness of our proposed method, we compared our experimental results with the results

obtained by other reported mainstream methods on three widely used datasets.
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Table 1: Experimental results on Social-CAD.

Methods Group Clustering Accuracy(%) Group Activity Accuracy(%) Individual Action Accuracy(%)

JLSG [2] 83.0 69.0 83.3

Ours 83.8 69.6 83.1

4.3.1. Performance on the Social-CAD Dataset

The performance of the proposed method on Social-CAD is described in Table 1. Since only JLSG [2] has

conducted experiments on multi-group activity recognition on Social-CAD, we only compared our results

with those obtained by JLSG in Table 1. The proposed method performed better for the group clustering

task and the subgroup activity recognition task (83.8% and 69.6%, respectively). JLSG only employs GAT

to capture the interactions among individuals to obtain individual action and group activity recognition

results and uses the GAT coefficient for spectral clustering to obtain group detection results. However,

we utilized graph structure to reason about the inter-group and intra relations and introduced local-global

information (i.e., neighbors’ information and spatio-temporal trajectory) to obtain better results. However,

the individual action recognition result was 0.2% lower than that of JLSG. This is because our method may

provide more global information and ignore the analysis of refined individual features. Fig. 12 shows the

confusion matrix of our method. We can see that “Walking” and “Crossing” are easily confused, as both

activities involve walking and are divided into two activities only because of the different scenes. Besides,

“NA” is confused with other activities because of the small number of samples used for this activity. However,

overall, our method achieves better results.

Fig. 12 illustrates the results of our method. The people in the same group are placed in purple boxes,

with sub-group activity results at the top.

4.3.2. Performance on the PLPS Dataset

The performance of the proposed method on the PLPS dataset is described in Table 2. Since only PLPS

[3] has conducted experiments on multi-group activity recognition on the PLPS dataset, we only compared

results with PLPS in Table 2. The group clustering accuracy, Group Activity Accuracy and Individual
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Figure 12: Confusion matrix (left) and predict results (right) on the Social-CAD datasets.

Table 2: Experimental results on the PLPS dataset.

Methods Group Clustering Accuracy(%) Group Activity Accuracy(%) Individual Action Accuracy(%)

PLPS [3] 64.17 55.04 51.07

Ours 77.72 76.70 73.00

Action Accuracy of the proposed method were 77.72%, 76.70% and 73.00%, respectively, which were better

than those of compared methods. PLPS uses 2D-CNN to extract features and focuses on inferring the

relationships between actors; thus it ignores temporal information and cannot deeply mine the relationships

between individuals and groups. In our method, we employed 3D-CNN to better capture temporal features

and designed reasoning modules to explore interactions between individuals and groups to infer group-level

features. In the group clustering module, PLPS uses only action similarity between actors for group detection

without considering global information, whereas we use both types of information in our method. Fig. 13

presents the confusion matrix and the predict results of our method. We can observe that two riding persons

belong to the same group with the activity of “riding” and that the person who is isolated from others is

crossing.

4.3.3. Performance on the JRDB-PAR dataset

The performance of the proposed method on the JRDB-PAR dataset is described in Table 3. Our results

outperform those of the SOTA methods on the JRDB-PAR dataset. As mentioned in the introduction
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Figure 13: Confusion matrix (left) and predict results (right) on the PLPS datasets.
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Walking Walking 
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Unrecognized
Walking 

Figure 14: Experimental results for the JRDB-PAR datasets: predicted results (bottom) and ground truths (top).

of this dataset, JRDB-PAR is a panoramic video dataset with multiple labels for individual actions and

group activities. Our method not only fits standard video datasets but also performs well on panoramic

datasets. The visualization of the experimental results is shown in Fig. 14. The challenges of this dataset

are the movement of the camera, multiple labels, and the small number of people in panoramic views.

Camera movement and the small size of people hinder feature extraction, and multiple labels with actions

and activities result in the subtle reasoning and exploration between people and groups. However, our

proposed method focuses on the static view of individual action and group activity recognition with single

labels. Although our method outperforms other models because of its effective spatio-temporal interactive

reasoning, visualization shows that some additional effort is needed to refine our approach and solve the

challenges mentioned above.
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Table 3: Experimental results on JRDB-PAR dataset.

Methods
Group Clustering Accuracy(%) Group Activity Accuracy(%) Individual Action Accuracy(%)

IOU@0.5 IOU@AUC Mat.IOU P R F P R F

ARG [25] 35.2 21.6 19.3 8.7 8.0 8.2 39.9 30.7 33.2

JLSG [2] 29.1 20.4 16.6 8.8 8.9 8.8 44.8 40.4 40.3

JRDB-Base[43] 38.4 26.3 20.6 14.3 12.2 12.8 19.1 34.4 23.6

JRDB-PAR [4] 53.9 38.1 30.6 24.7 26.0 24.8 51.0 40.5 43.4

MUP [6] - - - 25.4 26.6 25.1 55.4 44.8 47.7

MPT [7] - - - 25.5 27.3 25.4 59.2 58.6 56.0

Ours 65.1 39.6 51.8 29.0 28.6 28.7 55.1 43.1 46.5

Notably, our method outperforms both MUP [6] and MPT [7] in terms of group activity accuracy, but

falls short in individual action accuracy. The slight decrease in accuracy relative to MUP is attributed

to our smaller input frames (240 × 1880) compared to the original size (480 × 3760), which is due to

computational resource constraints. The superior performance of MPT in individual action recognition is

due primarily to its design, which focuses on modeling the temporal dynamics of each individual using a

temporal encoder. By contrast, our method prioritizes capturing the spatio-temporal interactions among

individuals and social groups, particularly with the augmentation of trajectory data. Consequently, our

method achieves a significant improvement in group activity recognition and group clustering, which is the

primary focus of the multi-group activity recognition task.

4.4. Ablation Study

We also designed the following ablation experiments to illustrate each module’s effectiveness.

B1 Baseline: This baseline employes 3D-ResNet50-NonLocal [37] for feature extraction without any

further reasoning modules. In the individual action recognition part, we add only the SENet [38] attention

mechanism to suppress the less influential channels and then send the features to the classifier. In the

clustering module, we utilized only the similarity of appearance features between individuals. For the multi-

group activity recognition module, we used the max-pooling strategy on individual features and obtained
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the final results while considering the group detection results.

B2 Baseline+IGR:Inter-Actor Relation Graph Reasoning Module is added to the baseline to explore

individual interactions further.

B3 Baseline+IGR+STC: This baseline adds the Spatio-Temporal Clustering Module, which intro-

duces the similarity of action features between individuals and spatio-temporal interpersonal distances to

hunt for deep cues for group detection.

B4 Baseline+IGR+STC+NNIE: This baseline adds Nearest Neighbor Interaction Extraction Mod-

ule to reason about individual interactive appearance, location and distance features.

B5 Baseline+IGR+STC+NNIE+GTGR: This baseline introduces Inter-Trajectory Relation Graph

Reasoning Module to obtain global information for group interaction reasoning.

Ours Baseline+IGR+STC+NNIE+GTGR+GAPM: Our full model is equipped with Graph Ag-

gregation and Pooling Module to exploit relationships within and between groups and focus on key actors

in the same group to generate group-level features.

As shown in Table 4 and Table 6, we take the Social-CAD dataset as an example for analysis. B1 in-

tegrated only individual appearance features as multi-group activity features. It only uses the similarity of

appearance for the clustering process, thus only reaching 70.2%, 57.9% and 81.4% for group clustering accu-

racy (GCA), group activity accuracy (GAA) and individual action accuracy (IAA), respectively. Compared

with B1, B2 adds the Individual Graph Reasoning Module to explore their relationships, increasing IAA by

1.3%. B3 added spatio-temporal trajectory features for clustering, leading to a large improvement in GCA

from 70.5% to 83.5%. Because a person’s activity is closely related to his/her neighbors, B4 is equipped with

Nearest Neighbor Interaction Extraction Module to reason about individual interactive appearance, location

and distance features, increasing GAA by 1.5%. B5 adds the global trajectory information to exploit the

relationships among individuals, increasing GAA from 68.8% to 68.9%. Finally, the whole model introduces

the Graph Aggregation and Pooling Module based on B5, which not only reasons relationships within and

between groups but also focuses on key actors in the same group to infer group-level features. The final

results of GCA, GAA and IAA reached 83.8%, 69.6% and 83.1%, respectively, validating our method’s
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Table 4: Results of ablation experiments on the Social-CAD (column 2-4) and the PLPS datasets (column 5-7).

Methods GCA(%) GAA(%) IAA(%) GCA(%) GAA(%) IAA(%)

B1: Baseline 70.2 57.9 81.4 68.00 67.23 70.56

B2: Baseline+IGR 70.5 58.1 82.7 68.32 68.74 71.53

B3: Baseline+IGR+STC 83.5 67.3 82.7 77.65 68.52 71.18

B4: Baseline+IGR+STC+NNIE 83.5 68.8 82.3 77.60 71.97 72.19

B5: Baseline+IGR+STC+NNIE+GTGR 83.5 68.9 82.1 77.72 73.69 72.97

Ours: Baseline+IGR+STC+NNIE+GTGR+GAPM 83.8 69.6 83.1 77.72 76.70 73.00

Table 5: Results of abaltion experiments on the JRDB-PAR dataset.

Methods
GCA(%) GAA(%) IAA(%)

IOU@0.5 IOU@AUC Mat.IOU P R F P R F

B1: Baseline 23.2 5.0 23.8 4.0 3.8 3.8 24.4 17.9 19.8

B2: Baseline+IGR 23.8 5.4 24.3 7.1 7.0 7.0 26.7 19.5 21.6

B3: Baseline+IGR+STC 64.7 37.3 51.5 16.5 18.1 16.8 31.1 23.7 25.9

B4: Baseline+IGR+STC+NNIE 64.9 39.5 51.7 24.3 24.0 24.1 37.1 27.7 30.4

B5: Baseline+IGR+STC+NNIE+GTGR 64.9 39.2 51.7 27.2 26.9 27.0 47.5 36.1 39.4

Ours: Baseline+IGR+STC+NNIE+GTGR+GAPM 65.1 39.6 51.8 29.0 28.6 28.7 55.1 43.1 46.5

effectiveness.

Additionally, it is observed that for the PLPS dataset GAA decreases after the addition of the STC

module. This decrease is attributed to the imbalanced data of the PLPS dataset, i.e., the long-tail distri-

bution. Notably, the addition of the STC module (B3) yields a significant improvement of 9.33% in GCA,

demonstrating its effectiveness. While most groups are correctly clustered with this module, the classifier

still struggles to recognize group activities because of the limitations imposed by data imbalance. However,

when the subsequent group activity reasoning modules (NNIE, GTGR, and GAPM) are incorporated, this

issue is alleviated, and GAA is increased by 8.18%.

To analyze the differences of group activity recognition between social contexts and games, we conducted

the ablation experiments on the Volleyball dataset under the single-group setting. As shown in Table 6, the

IGR and NNIE modules significantly improve group activity recognition accuracy by enhancing interaction

reasoning among individuals. However, the addition of ITRGR results in a decrease in group activity
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Table 6: Ablation experiments on the Volleyball dataset under the single-group setting.

Method Group Activity Accuracy (%)

Baseline 90.052

Baseline+IGR 90.127

Baseline+IGR+NNIE 90.651

Baseline+IGR+NNIE+ITRGR 90.277

accuracy, demonstrating that interactions among individual trajectories differ from those in social contexts

and are not effective in games. Intuitively, individuals’ trajectories within a social group are similar but it

is not the case in games. Moreover, our designed STC Module and GAPM for multi-group interactions are

not suitable for single-group activity recognition in games.

5. Conclusion

This paper proposes a new Spatio-Temporal Interactive Reasoning Model (STIRM) for Multi-Group

Activity Recognition, which focuses on exploiting spatio-temporal interaction within the same group and

across sub-groups and forming rich group-level features. In particular, interactive feature extraction aims

to explore spatial interactions between nearest neighbors and individuals themselves. To better exploit

spatio-temporal relations between individuals, we combine the interactive action feature and spatio-temporal

trajectory feature to divide them into small groups. In addition, a group interaction reasoning module is

constructed to exploit rich and accurate group-level representations by reasoning correlations within and

between groups and discarding people who have less impact on group activity. Extensive experiments on

three datasets demonstrated that our method shows outstanding performance in exploring spatio-temporal

interactions and improving accuracy compared with state-of-the-art methods.

In summary, the two primary strengths of this method lie in its ability to reason about interactions

among different social groups and its augmentation of visual features with non-vision trajectory data. In

the context of human activity understanding, particularly in multi-person scenarios, various interactions
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Table 7: Results of comparative experiments on different backbones.

Baseline
Social-CAD PLPS JRDB-PAR

GCA GAA IAA GCA GAA IAA GCA GAA IAA

ResNet18 69.7 51.1 69.5 58.2 18.7 35.5 24.0 3.0 3.6

InceptionV3 69.8 53.9 74.5 59.4 27.9 45.7 23.7 3.7 6.6

Ours: 3D-ResNet50-NonLocal 70.2 58.0 81.4 68.0 67.2 70.6 23.8 3.8 19.8

(e.g., individual and spatio-temporal interactions) are crucial aspects of research. However, previous studies

have overlooked the connections between different social groups, which is essential for more accurate activity

understanding. By incorporating trajectory data, our work effectively enhances the interactions among social

groups, thereby addressing this limitation.

Despite these strengths, our work is not without its weaknesses. A notable limitation is the neglect

of background interactions. Individuals interact not only with others but also with objects in their sur-

roundings, such as chairs, tables, and smartphones. These interactions can significantly enhance individual

representations and further enrich the interactions among individuals and social groups. As shown in Ta-

ble 7, although our baseline shows superior performance compared to the others, it exhibits weaknesses

in individual action feature extraction, especially when applied to the JRDB-PAR dataset. Consequently,

incorporating background information is essential to ameliorate this deficiency.

In our future work, we plan to design a scene-aware multi-level interaction reasoning model for MGAR

that is based on complex scene understanding. Additionally, we will consider the correlations between

multiple tasks (i.e., individual action recognition, group clustering, and group activity recognition) and the

inter-activity dependencies, given the characteristics of multiple activity labels.
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