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Abstract
Melanoma is a lethal skin cancer that is increasingly threatening
the public health system due to increased incidence rates and mor-
tality rates. Early detection of the disease is vital for improved
outcomes and the reduction of mortality rates.Skin cancer classifi-
cation remains a challenging task in the field of dermatology.While
self-attention mechanisms and large language models have gained
traction in skin cancer detection research, there is still insufficient
evidence demonstrating their superior performance compared to
CNNs. Thus, further exploration of this area is warranted.Where
the quest for the optimal CNN pretrained model persists. In this
study, we address this gap by assessing various pretrained models
to determine the most effective one for skin cancer classification.
Additionally, we introduce a novel approach that leverages trans-
fer learning to develop a multi-task model capable of providing
more comprehensive prediction information from dermatological
images. Unlike conventional single output classification tasks that
rely solely on label prediction, our proposed model utilizes transfer
learning techniques to extract valuable features from pretrained
models, enhancing its ability to predict multiple tasks simultane-
ously. This novel approach not only advances the field of dermatol-
ogy by improving classification accuracy but alsomeets the growing
demand for more informative predictions in clinical settings.
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1 INTRODUCTION
Melanoma stands out as one of the most prevalent and deadliest
forms of skin cancer, contributing significantly to skin cancer re-
lated fatalities worldwide. Its incidence is attributed to a myriad of
factors including genetic predisposition, environmental exposures,
and lifestyle choices. Notably, ultraviolet (UV) radiation remains
a primary culprit, implicated in the majority of melanoma and
non-melanoma skin cancer cases. Early detection of skin cancer
is paramount for effective treatment, particularly before it pro-
gresses to advanced stages infiltrating deeper layers of the skin [1].
However, the task of detection is compounded by the diverse spec-
trum of melanoma variants, encompassing basal cell carcinoma,
keratosis-like lesions, Bowen’s disease, melanocytic nevi, and vas-
cular lesions [2]. Moreover, the subtle manifestations of skin cancer
in its nascent phases further exacerbate diagnostic challenges. In
clinical practice, dermoscopy serves as a crucial tool for the early
diagnosis of skin cancer. This non-invasive technique enables the
evaluation of skin lesions that may elude detection by the unaided
eye.

Nevertheless, the accuracy of skin cancer diagnosis may be com-
promised by the varying expertise levels among dermatologists,
underscoring the imperative for precise and dependable diagnostic
systems [3]. The complexity of skin cancer classification further
compounds the diagnostic dilemma, necessitating sophisticated
image analysis techniques capable of discerning salient features
from lesion images. Extracting pertinent features such as shape,
color, and texture from these images poses a formidable challenge,
propelling researchers towards the development of advanced fea-
ture extraction systems [4]. In recent years, significant strides have
been made in leveraging transfer learning methodologies and pre-
trained models for melanoma classification. Deep convolutional
neural networks (CNNs) have emerged as powerful tools for image
processing, offering unparalleled efficacy in the detection and clas-
sification of skin cancer [5]. These deep CNN architectures exhibit
remarkable adaptability to the intricate and variable nature of fine
grained images characteristic of skin cancer lesions [6]. Leveraging
their capabilities, CNNs excel in extracting relevant features from
skin lesion images, facilitating accurate classification [7]. Further-
more, transfer learning has garnered substantial attention, enabling
the utilization of pretrained models trained on diverse datasets.
By harnessing the initialized weights from pretrained networks,
researchers can fine-tune models to suit the requirements of spe-
cific classification tasks, thus streamlining the development process
[8–12]. This amalgamation of transfer learning and deep learning
frameworks holds immense promise in advancing the field of skin
cancer classification, offering a pathway towards more robust and
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accurate diagnostic solutions. In pursuit of a more comprehen-
sive and interpretable approach to skin cancer classification, our
aim is to harness the synergistic potential of transfer learning and
multitask learning, thereby advancing the state-of-the-art in der-
matological diagnosis and paving the way for more accurate and
clinically relevant predictive models.

2 RELATEDWORK
In addressing the challenges of skin cancer classification, re-
searchers have predominantly relied on convolutional neural net-
works (CNNs) to extract salient features from dermatological im-
ages. Various methodologies rooted in machine learning, deep
learning, and image processing have been proposed for segmenting,
detecting, and classifying skin cancer lesions. Notable approaches
include CNN-based methods such as those presented by Esteva
et al. [13] and Dorj et al. [14], as well as techniques leveraging
k-means clustering [15], multi-tract CNN architectures [16], and
support vector machines [17]. While CNN-based methods have
demonstrated high applicability in skin cancer classification, their
effectiveness often hinges on the availability of extensive training
data. However, the scarcity of high-quality datasets, exacerbated by
a dearth of labeled images for abnormal cases, presents a significant
challenge [18]. To mitigate this issue, transfer learning emerges
as a promising solution, allowing the utilization of pretrained net-
works trained on diverse datasets. In recent years, there has been
a growing interest in multitask classification approaches for skin
cancer diagnosis. While existing research has primarily focused
on single task classification, multi-task learning holds potential
in simultaneously predicting multiple diagnostic outcomes from
dermatological images. However, to date, there remains a gap in the
literature regarding the application of multi-task learning specifi-
cally in the context of skin cancer classification. Thus, our research
aims to address this gap by exploring the efficacy of transfer learn-
ing combined with multitask learning for enhancing the accuracy
and interpretability of skin cancer diagnosis models. Through this
endeavor, we seek to advance the state-of-the-art in dermatological
diagnosis and contribute to the development of more robust and
clinically relevant predictive models.

3 METHODOLOGY
In the domain of dermatological diagnosis, deep learning architec-
tures, particularly CNNs, play a pivotal role in the detection and
classification of skin cancers through automatic pattern recognition
[19]. CNNs leverage artificial neural networks to analyze visual
data, employing techniques such as backpropagation and feedfor-
ward propagation to learn features from training data and distin-
guish between different classes in test data [20][21] [22]. While
CNN techniques offer superior performance compared to tradi-
tional machine learning methods, they often require substantial
computational resources [23][24]. The computational demands of
CNNs are contingent upon the architecture’s complexity, including
the number of layers utilized, such as convolutional, pooling, and
fully connected layers [6].

To address the challenges in skin cancer classification, partic-
ularly the need for more comprehensive diag-nostic models, our
methodology prioritizes the development of a multi-task learning

framework. This framework aims to simultaneously tackle multiple
tasks relevant to skin lesion analysis, thereby enhancing the overall
diagnostic capability. Specifically, our approach extends beyond
traditional class label prediction and includes the prediction of ad-
ditional attributes such as age, gender, lesion location, and other
clinically relevant information. By incorporating these multi-task
predictions, our model provides a more holistic understanding of
the dermato-logical condition, enabling clinicians to make more
informed diagnostic and treatment decisions.

In addition to predicting skin cancer subtypes, our multi-task
framework leverages advanced machine learning techniques to in-
fer supplementary information from dermatological images. These
predictions encompass a wide range of demographic and clinical
characteristics, including patient age, gender, lesion location on
the body, and potentially other pertinent factors such as lesion size
and texture. By integrating these multi-task predictions into the
diagnostic process, our framework empowers healthcare providers
with a comprehensive view of the patient’s condition, facilitating
personalized treatment plans and improving overall patient care.

Furthermore, by jointly optimizing multiple tasks within a uni-
fied framework, our approach capitalizes on the synergies between
different prediction tasks, enhancing the model’s overall perfor-
mance and interpretability. Through extensive experimentation
and validation on diverse datasets, including standardized test sets
annotated according to contemporary standards, we aim to demon-
strate the efficacy and generalizability of our multi-task learning
framework in real-world clinical settings. Ultimately, our methodol-
ogy seeks to address the evolving needs of dermatological diagnosis
by providing clinicians with a robust and versatile tool for skin
cancer classifi-cation and comprehensive lesion analysis.

We propose a comprehensive methodology consisting of three
main steps:

3.1 Benchmarking Pretrained CNN Models
We begin by benchmarking pretrained CNN models using zero
training on the Bill’s [25] balanced test set to evaluate their per-
formance. Specifically, we utilize pretrained Torch version models
to classify melanoma and non-melanoma lesions. The models are
evaluated based on their accuracy in classifying melanoma lesions
against other types of lesions. This process allows us to rank the
pretrained models according to their classification accuracy.

3.2 Development of a Multi-Task Novel Model
Building upon the highest performing pretrained model identified
in the benchmarking stage, we create a novel multi-task learning
model: called M-MTL, architecture show 1. This model is designed
to simultaneously perform multiple tasks relevant to skin lesion
analysis, leveraging transfer learning techniques to fine-tune the
pretrained model on our specific dataset. By incorporating transfer
learning, we aim to capitalize on the knowledge learned from the
pretrained model while adapting it to our target tasks.

3.3 Evaluation on Annotated Test Set
We further validate our multi-task model by reannotating the Bill’s
test set with metadata from the ISIS 2020 dataset, aligning it with
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Figure 1: M-MTL Model

Table 1: Pretrained Family Models

Model Name Citation

AlexNet
ConvNet
DenseNet
DeiT
EfficientNet
GoogleNet
Inception
MnasNet
MobileNet
RegNet
ResNet
ShuffleNet
SqueezeNet
Swin Transformer
VGG
Vision Transformer (ViT)
Xception

[21]
[8]
[16]
[36]
[35]
[33]
[33]
[34]
[15]
[27]
[13]
[38]
[17]
[24]
[31]
[11]
[7]

current standards. Subsequently, we test our model on this anno-
tated test set to assess its performance in real-world scenarios. By
using a standardized test set with updated metadata, we ensure the
robustness and applicability of our model across different datasets
and settings. This methodology enables us to systematically eval-
uate pretrained CNN models, develop a novel multi-task learning
framework, and validate its performance using standardized test
datasets. Through these steps, we aim to advance the state-of-the-
art in skin cancer diagnosis and contribute to the development of
more accurate and interpretable diagnostic models.

Table 2: Bill’s Balanced dataset details

Dataset benign malignant Total

Train 3924 3924 7848
Test 981 981 1962

4 EXPERIMENT AND RESULTS
4.1 The experiment setup
The hardware environment: CPU: Intel Core i7-6700K
CPU@4.00GHz x 32, GPU: NVIDIA TITAN X (Pascal)PCIe /
SSE2, HD: 2TB, Memory: 32GB. The software packages are: Python,
PyTorch-gpu, batch size 32, early stop setup, schedule_lr.

4.2 Dataset
The International Skin Imaging Collaboration (ISIC) dataset is a
leading repository for researchers in machine learning for medi-
cal image analysis, especially in the field of skin cancer detection
and malignancy assessment. They contain tens of thousands of
dermoscopic photographs together with gold-standard lesion diag-
nosis metadata. The associated yearly challenges have resulted in
major contributions to the field.Bill’s balanced dataset is balanced
dataset.[25]. details table 2. For this study, First We choices Bill’s
balanced dataset for the initial evaluation the models, Then we used
a publicly available ISIC2020 dataset [38],which typically refers to
the International Skin Imaging Collaboration (ISIC) data set for
2020.

The ISIC datasets are widely used in the field of dermatology and
computer vision for the development and evaluation of algorithms
related to skin lesion analysis, including tasks like melanoma de-
tection. The ISIC 2020 dataset includes a collection of skin images
with associated metadata, including clinical information and lesion
annotations. ISIC2020 dataset which contains 33,126 dermoscopic
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Table 3: ISIC2020 dataset details

Diagnosis type Total data

unknown 27124
nevus 5193
melanoma 584
seborrheic keratosis 135
lentigo NOS 44
lichenoid keratosis 37
solar lentigo 7
cafe-au-lait macule 1
atypical melanocytic proliferation 1

images from 2056 patients. The dataset is highly imbalanced with
less than 2% malignant cases. As shown the dataset details table3.

4.2.1 Data Sample. In this sample Fig 2, we provide details about
a single data sample, including an image of the skin lesion, the age
of the patient,diagnosis. This information helps provide context for
the dataset and demonstrates how different attributes are associated
with each data sample.

4.3 Results of evaluation of Pretrained Models
on Bill’s Test Dataset

We evaluated a total of 86 pretrained models from the Torch li-
brary using the Bill’s test dataset. The evaluation was conducted
using the zero-train method, where the pretrained models were

directly applied to the test dataset without further training. High-
est Accuracy Model: RegNetX_16GF The RegNetX_16GF model
achieved the highest accuracy among the evaluated models, with
an accuracy of 59.84% on the Bill’s test dataset. This indicates that
the RegNetX_16GF model demonstrated superior performance in
classifying skin lesions compared to other pretrained models. Low-
est Accuracy Model: MnasNet0_75 Conversely, the MnasNet0_75
model exhibited the lowest accuracy among the evaluated models,
achieving an accuracy of 35.58% on the test dataset. Despite its
lower performance, this model provides valuable insights into the
effectiveness of different pretrained models for skin lesion classifi-
cation. Performance Comparison. The following figure 3 illustrates
the accuracy achieved by each pretrained model on the Bill’s test
dataset: As depicted in the figure, there is considerable variation in
the performance of pretrained models, with some models outper-
forming others significantly. This underscores the importance of
selecting an appropriate pretrained model for skin lesion classifica-
tion tasks.

4.4 Train loss figure
A consistent decrease in the training loss reflects the model’s stable
to learn and improve its predictive capabilities, which is a positive
indication of successful training.

4.5 Test Results
The classification task achieved an accuracy of 86.25% and an F1
score of 0.6249. This indicates that the model performed well in cor-
rectly classifying skin lesions into their respective categories. For

Figure 2: Sample Image
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Figure 3: Test Results table of 86 model

Figure 4: Train loss figure
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Table 4: Test Results details

Model: Class Acc Class F1 Age Acc Age F1

M-MTL 0.8625 0.6249 0.8253 0.6078

the age prediction task, the model achieved an accuracy of 82.53%
and an F1 score of 0.6078. This suggests that the model’s predictions
for age were also reasonably accurate, considering the inherent
challenges in predicting age from skin lesion images. Overall, the
model demonstrated strong performance in both classification and
age prediction tasks, with high accuracy scores indicating its effec-
tiveness in analyzing skin lesion images for diagnostic purposes.
However, further analysis and evaluation may be necessary to as-
sess the model’s generalization to unseen data and its robustness
in real world scenarios.

5 CONCLUSION
This study represents an initial exploration into the realm of multi-
task learning in the field of skin cancer diagnosis. The primary
experiments conducted here have shown promising results, with
our AI model successfully predicting both skin lesion classifica-
tions and patient age from images with commendable accuracy.
However, this work is just the beginning of a broader research
journey. There is a pressing need for further investigation and
exploration into multi-task learning approaches within the domain
of skin cancer analysis. By delving deeper into this area, we aim to
develop more sophisticated AI models capable of providing com-
prehensive diagnostic information that aligns with the needs of
dermatologists and clinical practitioners. Future research endeav-
ors should focus on refining and enhancing multi-task learning
frameworks tailored specifically to the intricacies of skin cancer
diagnosis. This includes optimizing model architectures, exploring
novel techniques for feature extraction, more out come task and
representation, and leveraging larger and more diverse datasets
to improve model generalization and robustness. Ultimately, the
overarching goal of our research is to empower AI models to pre-
dict a broader range of clinically relevant information from skin
lesion images, thereby facilitating more informed decision-making
in dermatological practice. By continuing to push the boundaries
of multi-task learning in this domain, we aspire to make significant
strides towards improving patient care and outcomes in the field of
skin cancer diagnosis and treatment.
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