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ABSTRACT 
Agriculture is one of the most important economic sectors on which societies have 
relied since ancient times. With the recent development of technology, agriculture 
has also been incorporating modern techniques such as the Internet of Things and 
Artificial Intelligence to improve productivity and monitor the farming process. One 
of agriculture’s most prominent issues is the spread of plant diseases and the lack 
of real-time monitoring. Various systems and operations have recently been 
developed to predict and diagnose plant diseases. However, current operations 
have been selective, focusing on a specific aspect without addressing other 
important aspects, resulting in either partial or compound application of results, 
rendering the desired outcomes ineffective. To deal with such challenges, we 
propose an intelligent framework for real-time agriculture monitoring and disease 
detection, namely a system for monitoring plant diseases using YOLOv7. In the 
proposed framework, a rule-based policy has been designed for detecting plant 
diseases using online plant leaf monitoring, sensors, and surveillance cameras. 
Images of plant leaves captured by different cameras are sent in real-time to 
central cloud servers for disease detection. The improved YOLOv7 technology is 
utilized for plant disease detection, and the proposed system has been evaluated 
using a dataset of diseased tomato leaves, comparing it with different models 
based on various performance metrics to demonstrate its effectiveness, achieving 
an accuracy of 96%. 
 
Keywords: Agriculture. Intelligent Agriculture. Monitoring Framework. YOLOv7. 
Leaf Disease Detection. Tomato Plant Disease Detection. 
 
RESUMO 
A agricultura é um dos setores econômicos mais importantes dos quais as 
sociedades dependem desde os tempos antigos. Com o recente desenvolvimento 
da tecnologia, a agricultura também vem incorporando técnicas modernas, como 
a Internet das Coisas e a Inteligência Artificial, para melhorar a produtividade e 
monitorar o processo agrícola. Um dos problemas mais proeminentes da 
agricultura é a disseminação de doenças nas plantas e a falta de monitoramento 
em tempo real. Recentemente, vários sistemas e operações foram desenvolvidos 
para prever e diagnosticar doenças de plantas. Entretanto, as operações atuais 
têm sido seletivas, concentrando-se em um aspecto específico sem abordar 
outros aspectos importantes, o que resulta na aplicação parcial ou composta dos 
resultados, tornando ineficazes os resultados desejados. Para lidar com esses 
desafios, propomos uma estrutura inteligente para o monitoramento agrícola em 
tempo real e a detecção de doenças, ou seja, um sistema para monitorar doenças 
de plantas usando o YOLOv7. Na estrutura proposta, uma política baseada em 
regras foi projetada para detectar doenças de plantas usando monitoramento on-
line de folhas de plantas, sensores e câmeras de vigilância. As imagens das folhas 
das plantas capturadas por diferentes câmeras são enviadas em tempo real para 
servidores centrais em nuvem para detecção de doenças. A tecnologia YOLOv7 
aprimorada é utilizada para a detecção de doenças em plantas, e o sistema 
proposto foi avaliado usando um conjunto de dados de folhas de tomate doentes, 
comparando-o com diferentes modelos com base em várias métricas de 
desempenho para demonstrar sua eficácia, alcançando uma precisão de 96%. 
 
Palavras-chave: Agricultura. Agricultura Inteligente. Estrutura de Monitoramento. 
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YOLOv7. Detecção de Doenças nas Folhas. Detecção de Doenças em Plantas de 
Tomate. 
 
RESUMEN 
La agricultura es uno de los sectores económicos más importantes en los que se 
han basado las sociedades desde la antigüedad. Con el reciente desarrollo de la 
tecnología, la agricultura también ha ido incorporando técnicas modernas como el 
Internet de las Cosas y la Inteligencia Artificial para mejorar la productividad y 
monitorizar el proceso de cultivo. Uno de los problemas más destacados de la 
agricultura es la propagación de enfermedades de las plantas y la falta de 
supervisión en tiempo real. Recientemente se han desarrollado diversos sistemas 
y operaciones para predecir y diagnosticar las enfermedades de las plantas. Sin 
embargo, las operaciones actuales han sido selectivas, centrándose en un 
aspecto específico sin abordar otros aspectos importantes, lo que ha dado lugar 
a una aplicación parcial o compuesta de los resultados, haciendo que los 
resultados deseados sean ineficaces. Para hacer frente a estos retos, 
proponemos un marco inteligente para la monitorización de la agricultura en 
tiempo real y la detección de enfermedades, a saber, un sistema para la 
monitorización de enfermedades de las plantas utilizando YOLOv7. En el marco 
propuesto, se ha diseñado una política basada en reglas para la detección de 
enfermedades de las plantas utilizando la monitorización en línea de las hojas de 
las plantas, sensores y cámaras de vigilancia. Las imágenes de las hojas de las 
plantas captadas por diferentes cámaras se envían en tiempo real a servidores 
centrales en la nube para la detección de enfermedades. La tecnología mejorada 
YOLOv7 se utiliza para la detección de enfermedades de las plantas, y el sistema 
propuesto se ha evaluado utilizando un conjunto de datos de hojas de tomate 
enfermas, comparándolo con diferentes modelos basados en diversas métricas 
de rendimiento para demostrar su eficacia, alcanzando una precisión del 96%. 
 
Palabras clave: Agricultura. Agricultura Inteligente. Marco de Monitorización. 
YOLOv7. Detección de Enfermedades de la Hoja. Detección de Enfermedades del 
Tomate. 
 

 

1 INTRODUCTION 

 

As the backbone of human civilization, agriculture holds immense 

importance for society, economies, and the environment. It is the primary source 

of food production, providing the essential sustenance required for the growing 

global population. It plays a crucial role in ensuring food security by producing 

diverse crops, fruits, vegetables, and livestock products [8]. Due to the importance 

of agriculture, it is essential to foster sustainable practices that address the 

challenges of a growing global population, changing climates, and evolving 

economic landscapes [14]. Therefore, continued development and innovation in 
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agriculture are vital for ensuring a resilient, productive, and environmentally 

conscious food system for the future [20]. Digital farming, or precision agriculture, 

uses advanced technology and digital tools to optimize various aspects of 

agricultural practices. The goal is to enhance efficiency, productivity, and 

sustainability in farming operations, increasing crop yields, resource efficiency, 

cost savings, and reducing environmental impact [31]. By leveraging technology 

and data-driven insights, farmers can make more informed decisions, adapt to 

changing conditions, and contribute to sustainable and resilient agriculture 

practices [28]. As part of this, Artificial Intelligence (AI) has played a crucial role in 

advancing digital farming by providing sophisticated tools and capabilities to 

analyze data, make predictions, and optimize various aspects of agricultural 

operations. AI algorithms analyze data from various sources to monitor crop 

health, identify diseases, and assess overall plant conditions [30, 22]. AI-powered 

systems can identify and differentiate between crops, weeds, and pests. This 

information helps in the targeted application of pesticides and herbicides, detecting 

signs of pests or diseases early, allowing for timely intervention, and subsequently 

minimizing environmental impact [10,7]. One of the most important concerns in 

agriculture is the detection of plant diseases. Early detection of diseases helps 

prevent their spread among other plants, thus preventing significant economic 

losses. The consequences of plant diseases can vary depending on the type of 

pathogen, the affected crop, and the stage at which the disease is identified and 

managed. Diseases can affect the quality and quantity of harvested crops and the 

impact can range from mild manifestations to the destruction of entire plantations 

that severely affect the agricultural economy [1]. Tomatoes are known as one of 

the most widely consumed fruits globally [18]. They are one of the major crops in 

agriculture, the second largest crop globally, and a significant source of income for 

farmers and horticulturists [33, 35]. Tomatoes can grow in various dry soil types 

[21, 6]. Farmers and horticulturists cultivate tomatoes for cooking or commercial 

purposes. However, at times, they struggle to achieve suitable progress in plant 

growth, and tomatoes may not appear at the right harvest time or fully develop on 

the plant. In some cases, tomato plants are susceptible to various diseases, such 

as blight, rot, or other fungal and bacterial infections, which can cause black spots 

or a change in the fruit’s color [21]. One proposed solution to this problem is the 
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implementation of an agriculture monitoring and plant disease detection system, 

which uses tomatoes as a model to evaluate the efficiency of the proposed system 

in detecting plant diseases. Deep learning techniques are considered the latest 

methods for computer vision tasks [2]. These techniques have been applied in 

various fields, including agriculture. Applying machine learning techniques in 

agriculture has significantly increased agricultural productivity, especially with 

recent advancements in deep learning [05, 25]. Among these advancements is the 

use of Convolutional Neural Networks (CNNs) to diagnose and detect plant 

diseases [27]. It involves training artificial neural networks to learn and recognize 

patterns within large datasets, enabling accurate identification of diseases based 

on visual symptoms [17, 16, 15]. CNNs are trained on extensive datasets 

containing images of healthy and diseased plants. The models learn to 

automatically extract relevant features from these images, allowing them to 

differentiate between healthy and infected plants based on visual cues [12, 11]. In 

this paper, we primarily focus on using the optimized YOLOv7 algorithm [09] in our 

proposed system for real-time disease detection in tomato plants based on the 

approach of deep learning before the spread of the disease in the plant and 

reducing the risk of plant damage. This paper has two main contributions: 

1. We propose a system that detects and monitors plant diseases in realtime 

in agriculture using deep learning techniques. 

2. The second contribution is improving the accuracy of the yolov7 methodfor 

detecting plants, where these improvements are an addition to the 

agricultural field in the process of improving the performance of detecting 

plant diseases, reducing their spread, and improving production yields for 

farmers. 

The rest of the paper is structured as follows. Section 2 presents works 

similar to this project. Section 3 shows a comparative analysis of the selected 

Study. Section 4 explains how it works and handles training and test data. Section 

5 presents the results obtained. Section 6 concludes the paper. 
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2 RELATED WORK 

 

Nowadays, one of the crucial tasks in modern agriculture is to monitor and 

track plant growth in real time to minimize plant damage and improve productivity. 

Several works and different applications have been developed lately for monitoring 

and detecting plant diseases. Many research projects have contributed to the 

development of smart agriculture. Still, these projects focus on partial aspects 

without addressing other aspects, so the results of these projects become either 

partial applications or a synthesis of different works and methods that may be 

inconsistent, which makes the desired results ineffective. Therefore, we proposed 

in previous work [32] a comprehensive reference approach for an advanced 

agricultural information system that accommodates the agricultural sector within 

its interconnected levels, public and private, and its various aspects (Monitor, 

Prediction, Optimization, Control) within a modern information technology vision 

based on the Internet of Things (IoT), artificial intelligence and optimization 

technologies [24]. In this section, we shed some light on the most relevant previous 

work regarding the application of monitoring and disease detection that affect 

various types of plants. The results achieved by these applications are as follows: 

In 2018, researchers proposed developing convolutional neural network models 

for plant disease detection and diagnosis using simple leaf images of healthy and 

diseased plants through deep learning methodologies. Konstantinos P. Ferentinos 

et al performed model training using an open database of 87,848 images 

containing 25 different plants in a set of 58 distinct classes of ’plant, disease’ 

groups, including healthy plants. They trained model architectures, and the results 

yielded a 99.53% success rate in identifying a mixture of plant and disease or a 

healthy plant [19]. In 2021, Amreen Abbaset al proposed a deep learning-based 

method for detecting tomato diseases. The approach used a Conditional 

Generative Adversarial Network (C-GAN) to generate structural images of tomato 

leaves, followed by training a DenseNet121 model on artificial and real images 

using transfer learning to classify tomato leaf images into ten different disease 

classes. The model was extensively trained and tested on the publicly available 

PlantVillage dataset. The proposed method achieved impressive accuracy rates of 

99.51%, 98.65%, and 97.11% for classifying tomato leaf images into 5 classes, 7 
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classes, and 10 classes, respectively [9]. In 2020, Anjanadevi B et al. developed 

an optimized and customized Deep Convolutional Neural Network (DCNN) model 

for plant disease classification. The model was trained using the PlantVillage 

dataset, primarily using images of tomato, maize, and potato plants for training and 

testing. The dataset included both healthy and diseased tomato leaves. The 

experimental results of the proposed model were compared with other 

architectures, such as MobileNet and DarkNet-19 ResNet-101. The proposed 

network was also trained on an object classification task for monitoring the working 

conditions of pin insulators. The overall accuracy achieved in the experiments was 

85.3% [04]. In 2021, Abhishek Mohandas et al. proposed a system to detect and 

identify plant leaf diseases using object detection techniques in image processing. 

They used the YOLOv4 framework, based on convolutional neural networks, for 

real-time object detection. Their work focused on different leaf diseases of 

vegetables and fruits such as tomato, mango, strawberry, bean, and potato, 

focusing on real-time detection of leaf diseases [03]. In 2021, Midhun P. Mathew 

et al. utilized the YOLOv5 algorithm to detect bacterial spots in sweet pepper plants 

using a deep-learning approach. Their proposed method involved collecting a 

dataset from Kaggle and tagging it using the LabelImg tool. Using this data, they 

then trained a custom YOLOv5 model and tested it, achieving faster and more 

accurate results than previous versions of the same algorithm. In 2021, Mahnoor 

Khalid et al. proposed a method for detecting healthy and unhealthy money plant 

leaves using deep learning. The method involved creating a dataset of thousands 

of images of money plant leaves, categorized as healthy or unhealthy. These 

images were collected in a controlled environment, and a public dataset with 

accurate dimensions was used. A deep learning model was trained to identify 

healthy and unhealthy leaves. Subsequently, a YOLOv5 model was trained to 

detect the smallest disease spot on the exclusive and general datasets. The search 

conducted using YOLOv5 was able to accurately and quickly identify diseased 

spots with an accuracy of up to 93% in the test set [29]. 
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3 COMPARATIVE ANALYSIS OF SELECTED STUDY 

 

In this study, we aim to compare and analyze the performance of some 

existing projects related to detecting and monitoring plant diseases using deep 

learning. Our analysis will include studies that use Convolutional Neural Networks 

(CNN), transfer learning, and other deep learning methods. By identifying the 

strengths and weaknesses of these projects, we hope to provide insights for 

developing more effective and efficient solutions for detecting and monitoring plant 

diseases. Table 1 represents a comparative analysis of selected studies. 

 

Table 1: A comparative analysis of selected studies. 

Reference Year Author Methodology Project Accuracy 

[19] 2018 Konstantinos 
P. Ferentinos 

CNN, deep 
learning 

Plant disease 
detection 

99.53% 

[01] 2021 Amreen Abbas, 
Sweta Jain, 
Mahesh Gour, 
Swetha 
Vankudothu 

C-GAN, 
DenseNet121, 
transfer learning 

Tomato 
disease detection 

99.51%, 
98.65%, 
97.11% 

[04] 2020 Anjanadevi 

B, Charmila I, Akhil 
NS, 
Anusha R 

DCNN, 
MobileNet, 
DarkNet-19, 
ResNet-101 

Plant disease 
classification 

85.3% 

[29] 2016 Sharada P. 
Mohanty, David P. 
Hughes and 
Marcel Salathe 

CNN, deep 
learning, GoogLeNet 

Image- 
Based 
Plant, 
Disease 
Detection 

99.35% 

Source: Authors. 

 

4 METHODOLOGY 

 

As illustrated in Figure 1, the plant monitoring and growth tracking system 

is a three-stage system consisting of pre-, growth, planting, and postplanting 

stages. In the pre-planting stage, information is gathered about the plant and soil, 

and predictions are made about the plant product based on data collected from 

previous crops. The growth and planting stage involves monitoring the growth and 

health of plants using sensors and cameras to collect data on factors such as 

temperature, humidity, wind speed, lighting conditions, and plant leaves. This data 

is sent to a cloud-based system, which analyzes it using deep learning techniques 

to provide information about the plant growth status and any diseases present. In 
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the post-planting stage, the system monitors the harvesting process. The second 

stage of the plant growth monitoring system focuses on monitoring plant growth 

and health using advanced techniques. This is achieved through the use of a 

network of sensors and devices that collect data on different parameters, including 

temperature, humidity, wind speed and direction, and lighting conditions. 

Additionally, plant leaf images are captured using cameras and processed using 

deep learning algorithms to detect any signs of disease or abnormalities in the 

plants. 

 

Figure 1: System overview: Sequence of work, Connections, Devices, and activities. 

 
Source:Authors. 

 

4.1 SYSTEM OVERVIEW 

 

The proposed system uses an improved version of the YOLO (You Only 

Look Once) object detection model, known as YOLOv7. This model has been 

specifically trained to detect plant diseases by analyzing a large dataset of images 

of diseased plant leaves. A convolutional neural network (CNN) is used to extract 

meaningful features from the images and classify them into different disease 

categories. The image processing pipeline starts by capturing images of plant 

leaves using cameras placed in strategic locations within the farm. These images 

are then transferred to the cloud-based monitoring 

system, which processes and analyzes the images using the YOLOv7 

improved model to detect any signs of disease or abnormalities in the plants. The 

methodology is presented, and the proposed solution is discussed, including data 

collection, preprocessing, model selection, training, and evaluation. The proposed 
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work relied on the YOLO (You Only Look Once) model, known as YOLOv7 [09], 

for object detection, which is based on deep learning approaches and is discussed 

in detail. In the preprocessing section, new improvements were added to achieve 

better results. The proposed model was evaluated by applying techniques and 

comparing results. Figure 2 shows a progressive procedure that was used in the 

process of detecting and classifying plant diseases. After collecting the data, they 

were divided into two sections, 80/20 for training and testing, respectively. Then, 

the optimized YOLOv7 model was trained, and its training plots were obtained to 

evaluate its suitability. 

 

Figure 2: The model training and testing process. 

 
Source:Authors. 

 

4.2 DATASET PREPARATION AND PREPROCESSING 

 

This research used a public dataset from Kaggle that focused on tomato 

leaf papers [26]. The images were downloaded from datasets of plant disease 

detection. The datasets categorized diseased tomato leaves into 2 varieties of 

plant diseases. Each category contained 1000 images of diseased tomato leaves 

for training (Table 2). Figure 3 represents images of different types of tomato plant 

diseases in the datasets. 

 

Table 2: The classification of diseases in the utilized datasets. 

class total 

Bacterial-spot 1000 

Septoria leaf spot 1000 

Source: Authors. 
  

Start 

Initialization of parameters 

Input a picture of the test model 

Pre-processing (annotating dataset) 

Training using Yolov7 

Testing model 

Results 

Image tomato dataset 
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Figure 3: Pictures of different types of tomato plant diseases in the datasets. 

 
(a) Bacterial Spot 1 

 
(b) Bacterial Spot 2 

 
(c) Septoria Leaf Spot 1 

 
(d) Septoria Leaf Spot 2 

Source:Authors. 

 

Image annotation is a critical step in accurately identifying leaf diseases. 

The process involves adding annotations to the images before they are used for 

training a machine-learning model. The labeling tool was used in this research for 

image annotation. To begin with, the labeling tool was installed using the pip3 

command in Python. Once installed, the tool provided a user-friendly graphical 

interface to browse the images folder. Then, the annotation method was selected, 

and YOLO was chosen as the annotation method for this research. Next, the 

images were loaded into the tool individually, and a bounding box was accurately 

placed around the plant disease in each image, as shown in (Figure 4). The 

bounding box helped the machine-learning model identify the disease’s exact 

location on the leaf. After placing the bounding box, a text comment was entered 

to describe the specific plant disease within the selected box. This annotation 

process was repeated for all images in the dataset. Upon completion of the 

annotation process, a text file was created for each image. The text file contained 

explanatory data such as the bounding box’s location and size, the plant disease 

type, and any other relevant information. These annotations were used to train the 

machine learning model to identify and classify different types of tomato plant 

diseases accurately. 

 

Figure 4: The annotation process of tomato leaf disease with the labImg tool. 

 
Source:Authors. 
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4.3 DATA AUGMENTATION FOR ENHANCING DATASET 

 

To achieve better results and improve the training process, data 

augmentation techniques were employed to generate images of diseased tomato 

plant leaves based on images of healthy tomato leaves. This increased the number 

of images in the dataset, thus enhancing the training process. Using image 

processing operations, a method was proposed to generate images of diseased 

tomato leaves (Figure 5). The diseased spots were extracted from images of 

healthy tomato leaves using image processing techniques. Subsequently, an 

algorithm was developed to blend these disease spots into healthy tomato leaves 

and create YOLO annotation files to improve image descriptions’ accuracy. This 

means connecting the disease spots with healthy tomato leaves, resulting in 

promising outcomes in enhancing the training process and increasing accuracy. 

 

Figure 5: Data Augmentation for Tomato Disease Detection: An Overview and Step-byStep 
Approach. 

 
Source:Authors. 

 

4.3.1 Extracting disease spots from tomato leaf images 

 

At the outset of this procedure, a collection of images portraying tomato 

leaves afflicted by diseases was curated. These images were sourced from a 

publicly available dataset on Kaggle. They were meticulously selected and 

categorized based on the clarity of the diseased regions, thereby enhancing the 

machine learning model’s ability to discern leaf diseases accurately. Subsequently, 

a series of processing operations were applied to these images to enhance their 

quality and prepare them for model training. The process of extracting disease 

spots unfolds in three primary stages (Algorithm 1). 
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Algorithm 1 - Extracting Disease Spots from Tomato Leaf Images 

 
Source:Authors. 

 

• Pre-processing Infected Leaf Images: In this initial stage, images of 

diseased tomato leaves are uploaded, and various processing operations 

are executed. These operations encompass resizing the images to a 

standardized 640×640-pixel dimension, followed by noise reduction to 

enhance image clarity and color correction to ensure color uniformity while 

eliminating distortions (Figure 6). 

 

Figure 6: Picture of diseased tomato leaves after pre-processing. 

 
Source:Authors. 

 

• Image Segmentation Using Thresholding: During this stage, grayscale 

conversion of the images facilitates a clearer differentiation between 

diseased spots and the background. The images are subsequently 

partitioned into distinct regions utilizing thresholding techniques, yielding 
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binary images represented in black and white to isolate the diseased spots 

effectively (Figure 7). 

• Noise Reduction and Image Enhancement: Any remaining noise is 

eliminated at this juncture, and image quality is further improved using 

morphological ellipses. Individual disease spot regions are then extracted 

from segmented images by applying contour detection. Nonspot areas are 

meticulously filtered out from the spot area to finely tune and sharpen the 

boundaries of the disease spots, ensuring precise representation. As a 

result, a set of images is acquired that faithfully portrays the disease spots 

(Figure 8). 

 

Figure 7: Binary image of diseased tomato leaves after segmentation. 

 
Source:Authors. 

 

Figure 8: A sample extracted from a tomato leaf showing a diseased spot. 

 
Source:Authors. 

 

4.3.2 Applying disease spots to healthy tomato leaf images 

 

After the extraction of diseased spots from tomato leaves in the first stage, 

these spots are utilized in the second stage, which involves generating images of 

healthy tomato leaves based on the images of the diseased spots (Algorithm 2). 

This process includes creating diseased images by conducting a series of 

sequential operations in three steps. In the first step, images of healthy tomato 

leaves and diseased spots are uploaded. The intact images are then resized to 

dimensions of 640×640 pixels. Next, a set of enhancement parameters will be used 

in the diseased image generation process. These parameters include positioning, 

measurements, and rotation. 

In the second step, these enhancement parameters are applied to each 
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diseased spot with each healthy image. The enhancement parameters are 

changed randomly with each image. This means that each diseased spot’s 

location, size, and angle are mapped based on these parameters. The modified 

spots are then combined with the intact images. In the third step, the coordinates 

of the diseased spots are taken from the image and added to a text file associated 

with each image. This file contains the coordinates of the diseased spots in the 

image “YOLO annotation file.” Step two and three are repeated for all healthy 

images, creating a set of diseased images containing the altered spots with YOLO 

annotation files (.txt). This approach ensures that the coordinates of the diseased 

spots are aligned with the healthy images, thereby enhancing the accuracy of the 

training process and the model’s capability to effectively identify diseases in tomato 

leaves. 

 

Algorithm 2 - Generating Images of Healthy Tomato Leaves 

 
Source:Authors. 

 

4.4 YOLOV7 MODEL OPTIMIZATION 

 

YOLOv7 is the latest addition to the YOLO (You Only Look Once) family of 

object detection models. As a single-stage object detector, YOLOv7 processes 

entire image frames in a single forward pass, making it computationally efficient 

and reducing the need for multiple running operations [30]. 

The YOLOv7 model uses a backbone network to extract features from input 

image frames. These features are then combined and mixed in the network neck 

before being passed along to the head, where YOLOv7 predicts the locations and 

classes of objects in the image frames. Specifically, YOLOv7 predicts the bounding 

boxes for each object, along with the confidence score indicating the probability of 



 
 
 
 

16 Studies in Engineering and Exact Sciences, Curitiba, v.5, n.2, p.01-28, 2024 

the object being present in the predicted bounding box [13]. 

Thanks to its advanced performance in terms of speed and accuracy, 

YOLOv7 has become a popular choice in many real-world applications for object 

detection. By leveraging the efficient single-stage structure, YOLOv7 provides a 

powerful and scalable solution for real-time object detection tasks. 

The YOLOv7 model, the newest addition to the YOLO series, boasts 

unparalleled speed and accuracy in object detection, ranging from 5 fps to 160 fps, 

with a remarkable accuracy of 56.8% AP, surpassing all other realtime object 

detectors at 30 fps or higher on the GPU [09]. During the training phase, the 

YOLOv7 algorithm was chosen for its exceptional accuracy and rapid object 

detection capabilities. In this paper, experiments are conducted to propose a 

method for improving the detection efficiency of the YOLOv7 model. The YOLOv7 

architecture is shown in Figure 9, and to maintain the integrity of the model’s 

backbone, experiments are carried out on the head and backbone adjustments, 

taking into account the experimental results and comparisons to obtain the best 

results. 

 

Figure 9: The structure of YOLOv7 

 
Source : Y. Mu, T.-S. Chen, S. Ninomiya, W. Guo.2020  [35]. 

 

The modifications are divided into two steps: part one modifies the 

convolutional layers, and part two experiments with pooling layers. Firstly, a series 

of convolutional layers are added to the model’s structure. The convolutional layers 

are used to extract features from the input images and identify objects in the 

images, which can be expressed as shown in equation 1. 

 



 
 
 
 

17 Studies in Engineering and Exact Sciences, Curitiba, v.5, n.2, p.01-28, 2024 

fconu = Conu(f(i,j,height))(i,j,height ∈ N) (1) 

 

The pooling layers are adjusted after the convolutional layers. The pooling 

layers are used to reduce the spatial size of the feature maps and make the model 

more computationally efficient, which can be expressed as shown in equation 2. 

 

fconu = Conu(fconcat) (2) 

 

5 EXPERIMENTS AND RESULTS 

 

5.1 PREPARING PROJECT FOR TRAINING 

 

In this study, a custom YOLOv7 model was trained with modifications to its 

architecture, which consists of two main components: the spine and the head. The 

backbone, which is a Convolutional Neural Network (CNN) consisting of 38 layers. 

It consists of a series of convolutional and pooling layers, gradually increasing the 

depth and width of the layers to allow the network to distinguish increasingly 

complex features within the input images. Backbone plays a pivotal role in 

extracting features from input data, which is an essential step in object detection. 

The main component, which follows the backbone, consists of a SPPCSPC 

layer, a series of additional convolutional layers, and a final detection layer. The 

SPPCSPC layer is a spatial hierarchical pooling layer and a spatial concatenation 

layer that enables the network to learn features at multiple levels, which is a critical 

aspect for object detection, as objects of different sizes may appear within the 

same image. Subsequent convolutional layers improve the features learned by the 

SPPCSPC layer. The final detection layer is responsible for predicting bounding 

boxes and object classes within the image, which is a fundamental aspect of object 

detection. The disclosure process in the YOLOv7 model is an important stage. It 

includes the final detection layer, which is responsible for predicting bounding 

boxes and object classes within the input image. This layer uses information 

learned over the network, including hierarchical spatial features acquired by the 

SPPCSPC layer and enhanced features from additional convolutional layers. The 

role of the final detection layer is to precisely locate objects of interest by defining 
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their bounding boxes and assigning corresponding class labels. This step allows 

the YOLOv7 model to not only detect objects within images but also classify them, 

making it a powerful and versatile tool for various object recognition and 

localization tasks 

 

5.2 CUSTOM MODEL TRAINING 

 

In this step, the training process is executed through the command ”python 

train.py”. The parameter for customizing the training is the device, which is a GPU 

device used for training, and the ”data/custom.yaml” parameter, which contains 

the descriptive data for the annotations with the modified enhancements. Then, 

the custom model parameter is passed inside ”cfg/training/yolov7x-custom.yaml”. 

Afterward, the yolo7x training file parameter is passed, and the training process 

begins. After the training is completed, several files are produced containing the 

results of image testing, graphical representations, and weights/best.pt file inside 

the ”train/run” folder as shown in Figure 10 

 

Figure 10: Detection process for tomato plant diseases. 

 
Source:Authors. 

 

5.3 RESULTS 

 

In this section, we delve into a detailed analysis of the obtained results and 

present the observations derived from the previous section of the research. We 

discuss the training methodology employed for the YOLOv7 object detection model 

and present the results of the performance analysis. YOLOv7 is a state-of-the-art 
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model known for its speed and accuracy in real-time object detection. The model 

was trained using a specific dataset, and evaluation metrics were used to assess 

its performance. We present the findings in Table 3, including accuracy and mean 

average precision (mAP), which comprehensively evaluate the model’s 

effectiveness. 

 

Table 3: Performance Metrics for YOLOv7 Object Detection Model. 

Metric Accuracy mAP 

Result 96% 99% 

Source:Authors. 

 

Table 3 summarizes the performance metrics obtained while evaluating the 

YOLOv7 model. The mean average precision (mAP) assesses the model’s 

performance across different object classes. These metrics collectively 

demonstrate the effectiveness of the YOLOv7 model in accurately detecting and 

classifying objects in real-time scenarios. 

In the subsequent sections, we will further analyze the results and discuss 

their implications in the context of object detection tasks. Additionally, we will 

explore potential areas for improvement and suggest future research directions to 

enhance the performance of YOLOv7 in object detection applications. Our analysis 

comprehensively examined various performance metrics, including mean average 

precision (mAP), precision, and recall. Figure 11 presents graphs illustrating the 

F1-confidence graph, displaying the F1 score of the YOLOv7 object detection 

model at varying confidence thresholds. This metric, adept at striking a balance 

between precision and recall, proves indispensable in evaluating the overall model 

performance. We observed a consistent increase in the F1 score of the YOLOv7 

model with an elevation in the confidence threshold. This noteworthy trend aligns 

with expectations, given that a higher confidence threshold indicates that the 

model’s predictions occur only when highly certain. 
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Figure 11: Graphs presentation with illustrating the F1-confidence graph. 

 
Source:Authors. 

 

Determining the optimal confidence threshold is pivotal and depends on the 

specific requirements of the application in question. In the provided image, the F1 

score for the YOLOv7 model attains a remarkable 0.99 at a confidence threshold 

of 0.579. This signifies the model’s proficiency in correctly identifying 99% of the 

objects in the dataset with a confidence level of at least 57.9%. In summary, the 

F1-confidence graph emerges as an invaluable tool for comprehensively 

evaluating object detection models. Its effectiveness lies in vividly illustrating how 

the F1 score of a model evolves at different confidence thresholds, thereby 

facilitating the informed selection of the optimal threshold tailored to a specific 

application. 

 

Precision(P) = TP/(TP + FP) (3) 

  

Recall(R) = TP/(TP + FN) (4) 

 

In the context of object detection evaluation, several key terms are used to 

assess the model’s performance. These include True Positive (TP), which 

represents the number of instances accurately detected by the model. False 

Positive (FP) refers to the cases where the model incorrectly identifies instances, 

distinguishing between healthy and unhealthy leaves. On the other hand, False 

Negative (FN) indicates the number of cases the model did not detect. To evaluate 

the overlapping accuracy between predicted and ground truth bounding boxes, 

Intersection over Union (IoU) is calculated. Additionally, a threshold value denoted 

by ’K’ determines the IoU threshold for classifying detections as true positives or 
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false positives. 

In Figure 12, we present Confidence according to the R graph, which 

compares and recalls growth across different experiments based on employed 

training techniques. This graph serves as an alternative representation of the 

precision-recall curve, providing insightful observations regarding the model’s 

recall performance. 

The Confidence according to the R graph illustrates how the confidence of 

the custom YOLOv7 model changes with increasing recall. Recall represents the 

percentage of true positives correctly identified by the model. The graph 

demonstrates that the confidence of the custom YOLOv7 model increases 

proportionally with recall growth. This indicates that the model becomes more 

confident in its predictions as it successfully identifies an increasing number of true 

positives. Specific results observed for the custom YOLOv7 model in the graph 

include: At a recall of 0.5, the custom model achieves a confidence of 0.95, 

signifying 95% confidence in its predictions when detecting 50% of true positives. 

At a recall of 0.75, the custom model reaches a confidence of 0.98, indicating 98% 

confidence when identifying 75% of true positives. At a recall of 0.9, the custom 

model attains a confidence of 0.99, reflecting 99% confidence when detecting 90% 

of true positives. These specific results in the graph also highlight the reliability of 

the custom model, achieving confidence levels of 0.95, 0.98, and 0.99 at recall 

levels of 0.5, 0.75, and 0.9, respectively. These findings indicate that the custom 

model excels in accurately identifying objects with a high level of confidence. In 

Figure 13, Confidence according to the P-curve graph is displayed, illustrating the 

evolution of precision across various experiments grouped based on the utilized 

training mechanisms. This graph enables us to analyze and understand how 

different training techniques impact the precision of the custom YOLOv7 model. 

Precision, in the context of the P-curve, signifies the percentage of expected 

positives that are true positives. 

The specific results observed for the custom YOLOv7 model in the graph 

are as follows: At a precision of 0.5, the confidence of the custom model is 0.95. 
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Figure 12: Confidence according to R Graph. 

 
Source:Authors. 

 

This indicates that the model is 95% confident in its predictions when 

capable of filtering out 50% of false positive results. At a precision of 0.75, the 

confidence of the custom model is 0.98. This suggests that the model is 98% 

confident in its predictions when able to filter out 75% of false positive results. At a 

precision of 0.9, the confidence of the custom model is 0.99. This means that the 

model is 99% confident in its predictions when able to filter out 90% of false positive 

results. The specific results in the graph demonstrate that the custom model can 

achieve confidence levels of 0.95, 0.98, and 0.99 at precision levels of 0.5, 0.75, 

and 0.9, respectively. This underscores the high reliability of the custom model in 

accurately detecting objects. Figure 14 presents the confusion matrix, illustrating 

disparities between actual and predicted values, with a specific focus on tomato 

bacterial spot and tomato septoria leaf spot. This matrix provides valuable insights 

into the model’s accuracy in classifying these specific categories, highlighting 

instances of correct predictions (true positives) and misclassifications (False 

Positives and False Negatives). Tailored for tomato bacterial spot, tomato septoria 

leaf spot, False Positives (FP), and False Negatives (FN), the matrix’s diagonal 

values indicate the accuracy for each class: tomato bacterial spot (0.78), tomato 

septoria leaf spot (1.00), and FN background (0.31). While the model excels in 

accurately classifying tomato septoria leaf spot. 
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Figure 13: Confidence according to R Graph. 

 
Source:Authors. 

 

With 1.00 accuracy, it faces challenges in tomato bacterial spot (0.78) and 

FN backgrounds (0.31). Potential contributing factors include the quality and 

diversity of training data, model complexity, and other considerations. These 

findings highlight the model’s strength in identifying tomato septoria leaf spot and 

suggest opportunities for improvement in accurately classifying tomato bacterial 

spot and FN background. Further exploration and potential adjustments to training 

data and model complexity could enhance its performance in these specific 

categories. 

 

6 CONCLUSION 

 

Nowadays, agriculture is considered one of the most important economic 

sectors that societies have relied on since ancient times. With recent technological 

developments, agriculture has witnessed the integration of modern technologies, 

such as the Internet of Things and Artificial Intelligence, to improve productivity 

and monitor agricultural operations. 

In this context, the Smart Farm System was proposed, which provides a 

comprehensive solution to help farmers and agricultural sector supervisors monitor 

and improve agricultural activities and farm development. The system relies on 

Internet of Things technology, sensors, and web technologies. 
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Figure 14: Confusion matrix displaying the variations between the actual and predicted value. 

 
Source:Authors. 

 

To develop a responsive application compatible with all devices. This 

application allows farmers to control and monitor remotely, making it easier for 

them to monitor the farm and production efficiently. 

The main contribution of this research includes the design and development 

of a comprehensive agricultural information system in the proposed framework. A 

rule-based policy is designed for real-time detection of plant diseases using real-

time plant leaf monitoring via local edge devices. Images of plant leaves are sent 

to central cloud servers in real-time for disease detection using enhanced YOLOv7 

technology. The proposed system was evaluated using a dataset of infected 

tomato leaves, where the accuracy reached 96%. The algorithm performs well, 

encouraging deeper exploration and development in applying real-time detection 

and monitoring using YOLOv7 during the cultivation phase. Expanding the model 

to include other types of plant diseases in future research and expanding the scope 

of applications using blockchain technologies for health purposes [8], this system 

is an important step towards improving the agriculture sector using modern 

technology. It can contribute to improving the agricultural economy in the future. 
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