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Design of Super Resolution and Fuzzy Deep 

Learning Architecture for the Classification of Land 

Cover and Landsliding using Aerial Remote Sensing 

Data 
Junaid Ali Khan, Muhammad Attique Khan (Member, IEEE), Mohammed Al-Khalidi (Senior Member, IEEE), 

Dina Abdulaziz AlHammadi, Areej Alasiry, Mehrez Marzougui, Yudong Zhang,
 
(Senior Member, IEEE), Faheem 

Khan

Abstract— The diversity, noise, inter-image interference, 

image distortion and increase in the number of classes in 

aerial remotely sensed dataset cause exertion in the 

classification. The efficacy and stability of convolutional 

neural networks increase in image classification with the 

specified use of feature selection algorithm that causes 

remarkably improved decision making. To address the 

associated difficulties, a fuzzy deep learning architecture 

has been designed with a super resolution technique that 

consisting of 40 convolutional, four polling, four inverted 

bottleneck blocks, and one fully connected layer. The fuzzy 

optimistic formula is implemented in 4 blocks as an 

activation function where information is fused from the 

previous layers and present block while the rest are using 

the ReLU transfer function to handle the issue of noise and 

inter-image interference. Feature selection is performed 
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based on the physics of chaotic particle swarm 

optimization hybrid with the active set algorithm. The 

accuracy of the proposed architecture is examined on 

three diverse datasets: Bijie Earth Landslide/Non-

Landslide, EuroSAT and NWPU-RESISC45, comprised of 

varying classes.  The results are compared with state-of-

the-art models like the hybrid version of VGGNet-16, 

Yolov4, ResNet-50, DenseNet-121 and other reported 

techniques. Moreover, the stability and computational 

complexity of the presented architecture are computed on 

50 independent runs. It has been observed that the 

proposed architecture is stable, accurate, and viable and 

exploits a smaller number of learnable parameters than 

the models considered in comparison.  

 

Index Terms— Aerial Remote Sensing, Chaotic Particle 

Swarm Optimization, Fuzzy-CNN Deep Learning, Monte 

Carlo Simulations, Statistical Analysis and Model 

Stability. 

I. INTRODUCTION 

erial remote sensing (RS) plays a vital role in earth 

observation,  getting images with high spatial 

resolution, monitoring geomorphological dynamics, 

disaster predictions and asset  management [1]. The modern 

RS technologies involving multispectral imaging, light 

detection and ranging (LiDAR), aerial imagery, satellite 

imagery and unmanned aerial vehicles (UAV) etc [2] that’s 

has applications in diverse fields like agriculture [3], 

biocybernetics [4] & biomedical engineering [5], climate 

monitoring [6], land use mapping and monitoring [7] but not 

limited. The quantitative facts and historical data leads 

towards the improved decision making at a reduced cost & 

error in prediction and analysis of earth observations and 

geographical worth [8]. In the early era of industry, the agents 

were manually inspected by an expert that have the chance of 

human error and it was unreal in terms of time, size of the 

problem, varieties of aerial views and number of classes in 

various datasets that gives birth to industrial revolution, 

utilization of computer vision approaches and intelligent 

decision support systems [9]. However, with the advent of   

A 
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computer vision frameworks industry 5.0 took birth and 

addresses the problem solving associated with various domain 

of engineering, science and technology like medical 

imagining, agriculture, gait analysis, image compression, 

segmentation, scene detection and many more [10].  

The land use detection and classification have its own 

complexities and bottlenecks due to the complex background 

scene and interdependency of various scenes like farm & 

forest and river & sea side as shown in Figure 1. 

 

 
Figure 1: Samples high resolutions of the selected datasets 

Moreover, the difficulties arise due to regions irregularity, 

high number of extracted features and multiple scene detection 

and classification [11]. The correctness of detected scene 

through a computer-based method involves, efficacy in 

preprocessing, outlying boundaries, effective feature 

extraction, dimensionality reduction and classification 

technique [12]. The applicability, effectiveness and stability of 

the machine learning (ML) technique depends upon the nature 

of dataset, problem complexity and distortion of the RS 

information [13].   In this regard, supervised learning is used 

for regression and classification problems that have labeled 

dataset while unsupervised learning is suitable for dimension 

reduction and clustering where the images have correlated 

attributes while reinforcement learning best suits the problems 

of control and classification [14]. Moreover, the development 

of sophisticated derivative free algorithm [15] addresses 

various non-linear, complex and tedious problems of 

agriculture, health care services, disaster management, 

industrial application and space technology. Deep learning is a 

subtype of machine learning and is introduced to handle high-

dimensional problems such as imaging, videos, etc. Specially, 

convolutional neural networks (CNNs), have altered remote 

sensing by enabling automatic feature extraction from massive 

amounts of data, significantly improving tasks like land cover 

classification and object detection. While pre-trained models 

like VGG, ResNet, and EfficientNet have shown promise, they 

frequently fail in remote sensing applications because they are 

designed for general image datasets like ImageNet and do not 

account for remote sensing's unique challenges, such as scale 

variation and spectral diversity. To tackle these challenges, we 

proposed a customized CNN based on four bottleneck and 

four inverted bottleneck blocks to reduce the computational 

complexity and preserve the critical information. The 

bottleneck block refines the feature and enhances the model's 

ability to process the complex remote sensing data. Keeping in 

view various difficulties associated with the data of earth 

observation and aerial scene classification, three datasets have 

been studied Bijie earth landslide / non-landslide [16], 

NWPU-RESISC45 [10] and Eurostat [17], respectively. The 

main attributes including spatial resolution, number of images 

in each class, number of classes, and associated complications 

in these datasets are presented in Table 1 along with some of 

the sample images of each dataset. 

The contributions of the presented work are as follows: 

 A fuzzy optimistic formula base deep learning 

architecture is proposed that is consisting of 40 

convolutional, 4 pooling, 4 inverted bottle neck 

blocks, 4 bottle neck blocks and one fully connected 

layer for land cover and land usage classification of 

RS data that ensures over fitting, provides reduced 

learnable parameters, lesser computational cost with 

higher level of accuracy.   

 To address the complex and continuous nature of RS 

data, a fuzzy layer is included in the hidden layer of 

CNN for local and missing information extraction, 

curse of dimensionality and reduction of FNR. 

Moreover, the chaotic PSO is developed for 

optimized feature selection by introducing the chaos 

parameter   in the velocity and position updating 

equations of the standard PSO algorithm.  

 The results of the proposed architecture are compared 

with state of art models reported in the latest research 

provided in Table 2 by using various methods of ML 

and DL for different scene classification benchmark 

datasets on the performance indicator like accuracy, 

mean error, trainable parameters and computational 

complexity in term of time.  

 The Monte Carlo simulations are performed based on 

sufficiently large number of independent runs to 

guarantee the applicability of the proposed scheme, 

reliability, convergence and computational 

complexity in term of time.  

The rest of the article is outlined in such a way that detail of 

the dataset & its attributes, fuzzy based CNN framework, 

details of the performance indicator and chaotic PSO 

formulated for feature vector selection are presented in section 

III. The result and discussion along with the comparison with 

the state of art existed models are presented in section IV 

along with the parameter values and setting used in the 

simulations. In the last section the conclusions are drawn 

along with the directions of the future work. 
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Table1: Characteristics of various datasets and their samples  

 

Disease Class Characteristics  Few Samples  

Bijie Earth 

Landslide/Non-

Landslide [16]  

The dataset is annotated with white for landslide and black for non-landslide 

with a resolution of 0.8m/pixel, it can be caused due to rock fall, debris flow 

and geologic material from a slopy surface. The initial sign of landslides 

involves ruptures of roads, heavy rainfall and displacement of trees that can be 

determined keeping in view the factors like elevation, curvature and sediment 

transport index [18].      

  

  
NWPU-

RESISC45 [10] 

It is scene classes dataset with reasonably large number of images having 

spatial resolution ranging from 20cm to more than 30m/pixel. The images have 

the difficulty of occlusion, illumination and class similarity [19]. The main 

classes are airfield, flyover, forest, river, farm, dense residential and some 

others that have inter scene interference and causes a difficulty for 

identification model to extract the features of the image to predict its class label.      

  

  
EuroSAT [17] A benchmark dataset based on Sentinel-2 satellite images used to investigate 

the real strength of the deep learning architectures. The one of the difficulties is 

encapsulated in its 13 spectral bands having 27000 labeled and geo-referenced 

samples [20]. Keeping in view the high dimensionality of labeled classes, it is 

significant to use it after model training and then perform feature selection. The 

classes like annual crops, herbaceous vegetation and permanent crops causes 

interference and consequently difficulty in feature optimization.   

  

  
  

II. RELATED WORK AND STATE OF ART  

Before the development of deep learning (DL), the ML 

techniques like support vector machine (SVM), AdaBoost, k-

nearest neighbor (kNN), random forest and probabilistic 

neural networks (PNN) has gained much attention in the 

community of RS for the image classification, change 

detection and land cover estimation on a limited training 

samples with a compromised accuracy [21]. Some of the 

research employed machine learning, like Aziz et al. [22] 

suggested a machine framework for the classification of forest 

covering. The authors employed random forest, tempotal 

stacked ANN layer using the Sentinel-2 dataset and they 

achieved 92.90% accuracy using random forest classifier 

and97.75% accuracy using ANN algorithm. The limitation of 

this work was the high computation time for the training of the 

ANN algorithm using different configurations.  However, with 

the advent of deep neural network (NN) architectures and DL 

the same problems have been addressed relatively with a 

greater level of accuracy, stability and lesser computational 

budget as it has larger potential of feature extraction and 

recognition by passing input data through several non-linearity 

functions in comparison with traditional shallow methods 

[23]. The deep feature extraction capability in the deep hidden 

layers of NN, compatibility of sophisticated optimization 

algorithms for feature optimization, pattern recovery and 

processing of unpredictable dataset make DL a powerful tool 

for RS data processing and useful decision making. The 

scientists have implied convolutional neural network (CNN) 

and its different versions like recursive CNN (R-CNN), faster 

R-CNN, mask R-CNN assisted with an efficient global and or 

local optimizer as per problem nature to address RS image 

classification, land observation and land cover. Although lots 

of work has been exploited using DL, however, few of the 

related literature survey is presented to perform the gap 

analysis and establish the need for design of fuzzy based deep 

CNN Architecture hybrid with chaotic particle swarm 

optimization (C-PSO).     

A constraint deep U-Net method [24] is presented by 

introducing auxiliary features of normalized difference 

vegetation index for mountain landslides dataset with varying 

window size and a precision of 88.87% has been obtained with 

a window size of 128×128. However, the precision is observed 

to be decreases with the decrease in size, eventually it is found 

to 71.94% for a window size of 64×64. In [25], COCO dataset 

of landslide / non-landslide has been taken with 160 images 

for training of both classes and 121 images for testing, 

moreover, the model is implemented by exploiting R-CNN 

capabilities incorporated with ResNet-50 and 101 as backbone 

models with 20 epochs and unitary batch size to get a recall of 

0.93. The volume of dataset is observed to be small and some 

of the tarnished attributes like image background and 

distortion is not considered.  A modified version of CNN 

called faster R-CNN [26] that uses skip connections to 

overcome the problem of gradient disappearance caused by 

excessive deep network has been implemented and compared 

with VGG16 and ResNet50 to get a precision of 69.59% that 

is better than that of VGG16 and ResNet50 on 120 epochs.      

RS multiple scene classification is a still challenging task due 

to complex composition of its images like palace and church 
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that have similar global structure and special layout, in this 

regard various CNN models like VGGNet-16, DenseNet-161 

and LDA based method has been exploited with batch size of 

50, 15 and 15, respectively with varying weight density on 

NWPU-RESISC45 dataset [27]. Boreal landscape using 

Sentinel-2 dataset [28] has been exploited to classify the land 

cover and land use using various machine learning algorithms. 

Using the training testing ratio of 70:30 the results obtained by 

SVM, extreme gradient boosting, random forest and deep 

learning are (0.758 ± 0.017), (0.751 ± 0.017), (0.739 ± 0.018) 

and (0.733 ± 0.0023), respectively. Shulong Jiang et. al [29] 

implied CNN as a feature extractor and XGBoost as classifier 

to get an accuracy of 95.5% and 83.35% for UC-Merced and 

NWPU-RESISC45 datasets, respectively. However, the results 

are obtained in a narrow domain by not considering the data 

from multi-sources and computational budget has not been 

presented. Similarly, the EuroSat data with 27000 labeled and 

geo-referenced images with 13 spectral bands that is 

comprised of ten classes is taken as a benchmark for deep 

CNN method to produce an overall classification accuracy of 

98.57% [30], however the learnable parameters are quite high 

that leads towards the increased computational complexity. 

The wetland water areas classification is determined by 

Mehmet Akif Günen [17, 31] using ML based on SVM, linear 

discriminant analysis, K-nearest neighbor, AdaBoost and 

canonical correlation forests techniques while DL is based on 

1D CNN method while the results are compared with 

traditional performance measures. However, the performance 

of proposed CNN structure is not methodically considered. 

The state-of-the-art techniques presented by various 

researchers with which the results of the proposed architecture 

are compared are presented in Table 2 that describe the 

methodology used, level of accuracy achieved, dataset 

attributes and short coming or gap analysis.  In this article 

fuzzy optimistic formula based deep layer is exploited in deep 

learning architecture whose features are optimized using C-

PSO algorithm. The designed framework is applied on three 

different benchmark datasets having varying number of 

classes with multiple complex attributes. The results are 

compared on standard performance indicators with some of 

the existed pre-trained models as well as state of art 

techniques available in the literature in the latest half decade. 

The ablation study has been carried out keeping in view the 

variation in learning rate, mean square error study on various 

training to testing ratios, computational complexity in term of 

time and statistical evaluation based on 100 independent runs 

along with the comparison of the results with the pertained 

models as well as state of art techniques.              

 

Table2: State of art work for comparison with the proposed architecture  

 

Related work  Methodology  Accuracy (%) Dataset Used 

 

(Yang et al., 2024) [32]  Yolov4+SenseNet-121 93.46 Bijie Earth 

Landslide/Non-Landslide 

[16] 

(H Qin et al., 2024) [26] 

(H Qin et al., 2024) [26]  

Faster RCNN+ VGG-16 

Faster RCNN+ ResNet-50  

92.05 

93.80 

 

(Cheng et al., 2017) [33] 

(Cheng et al., 2017) [34] 

(Cheng et al., 2018) [35] 

VGGNet-16+ CNN Features  

BoCF 

D-CNN + VGGNet-16 

79.79±0.15% 

84.32±0.17% 

91.89±0.22% 

 

 

NWPU-RESISC45 [10] 

 

 

(X Yang et al., 2020) [27] VGGNet-16 + FPN 92.17±0.15% 

(Bhatt et al., 2024) [36] Gaussian Naïve Bayes  60.21%  

EuroSAT [17] 

 

(Yamashkin et al., 2020) [37] Geosystem Approach  91.52% 

(Eleni Kroupi et al., 2019) [38] Deep CNN 86.00% 

 

III. MATERIAL AND METHODS 

This section provides the details of the dataset used in the 

aerial scene study along with the proposed DL architecture 

that encapsulates the fuzzy based activation’s function. 

Moreover, the mechanism adopted for the feature selection is 

also provided in the form of logical steps along with the 

performance metrics. The graphical workflow of the proposed 

methodology is presented in Fig. 2 which defines the complete 

procedure, transition layers, their skip connections, depth 

connection, group convolution layer, additional layers, 

classification layer, fully connected layer, and the activation 

functions used at each level. The novel deep CNN is a 

network level fused model of customized CNN residual block 

architecture to explain the suggested framework for 

classification of Bijie Earth Landslide/Non-Landslide [16], 

NWPU-RESISC45 [10] and EuroSAT [17] datasets as 

illustrated in Fig. 2.  
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Fig.2. Graphical workflow of proposed methodology  

 

A. Dataset Details    

Three datasets have been used in the study in which the 

dataset of Bijie earth landsliding / non-landsliding have two 

classes with 770 landsliding and 2000 non-landsliding 

images. However, the dataset of NWPU-RESISC45 

contains   12 classes and each class contains reasonable 

volume of the aerial images as provided in the Table 3. 

Moreover, the third dataset of EuroSAT have 10 classes of 

different land covers that contains the images as presented 

in Table 3. The nature of the dataset is complex and 

irregular that requires the applicability of deep learning, 

moreover keeping in view the noisy environment and 

background confusions fuzzy based activation has been 

exploited to overcome the drawbacks of the deep neural 

networks. Sufficient number of samples of each land use 

are taken so that the deep architecture model could learn 

and perform classification with a good prediction accuracy. 

The distribution of the inter image interference, damaged 

images, non-linear and outliers is uniform and well shuffled 

in the dataset.  The other important characteristics like size 

of the dataset images and bit depth is also provided in the 

Table 1.  

B. Proposed CNN Architecture  

The suggested model was trained on training dataset using 

network level fusion is to improved and enhanced bounded, 

randomized C-PSO optimization for the optimal feature 

selection. In the initial step image acquisition is performed 

on the selected datasets and then trained on the network 

level fusion of novel CNN based architectures of residual 

block. Furthermore, newly added depth-wise activation was 

used to retrieve the features from the trained model. To 

choose the optimal features, enhanced C-PSO optimization 

was also used. Neural network classifiers receive the 

refined features in order to perform the final classification. 

Statistical analysis and computational complexity are used 

in the last stage to assess how well the neural network 

classifier function, architecture, and chaotic PSO perform.  

The aim behind selecting the bottleneck is to encapsulate 

the complex information while preventing overfitting and 

excessive model size. The inverted bottleneck allows the 

network to scale in terms of depth and accommodate 

different resource constraints. The detailed aspects of the 

designed DL model are that it is a novel network level 

fusion of modified CNN residual blocks-based architecture 

in which nine blocks make up the architecture that has one 

parallel block and eight series blocks, as shown in Figure 3. 

The input size of the suggested CNN is 224 × 224 × 3. The 

first parallel block begins with the convolution layer and 

consists of three parallel convolution layers, batch 

normalization, and RELU activation, a Fuzzy layer with a 

kernel size of 3 × 3 and 8 depth sizes and 1 × 1 stride. 
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Table 1: Description of selected remote sensing datasets 

Dataset Classes 
Training Data 

(80%) 
Test Data (20%) Total Dataset Size Bit Depth 

Bijie Earth 

Landslide/Non-

Landslide 

Landslide 616 154 770 

256x256 4 

Non-Landslide 1600 400 2000 

NWPU-

RESISC45 

Airfield 1120 280 1400 

Anchorage 560 140 700 

Beach 560 140 700 

Dense Residential 560 140 700 

Farm 1120 280 1400 

Flyover 560 140 700 

Forest 560 140 700 

Game Space 1120 280 1400 

Parking Space 560 140 700 

River 560 140 700 

Sparse Residential 560 140 700 

Storage Cisterns 560 140 700 

EuroSAT 

Annual Crop 2400 600 3000 

Forest 2400 600 3000 
Herbaceous 
Vegetation 

2400 600 3000 

Highway 1600 400 2000 

Industrial 2000 500 2500 

Pasture 1600 400 2000 

Permanent Crop 2000 500 2500 

Residential 2400 600 3000 

River 2000 500 2500 

Sea Lake 2400 600 3000 

 

 

 Starting at max pool, the second series residual block is 

created. Convolution layers, RELU activation, and one batch 

normalization, Fuzzy layer with a depth size of 32 and a 

kernel size of 3 × 3 with a stride of 1 are connected to it. In the 

third inverted residual block which is start from max pool with 

two convolution layers,1 RELU activation and batch 

normalization, Fuzzy layer with a kernel size of 3 × 3, depth 

size of 32 and 1 × 1 stride. The convolution layer, which is 

connected with three convolution layers and one RELU 

activation with one batch normalization, Fuzzy layer stride of 

one by one, kernel size of one by one, and depth size of thirty-

six, sixty-four, ninety-six, is where the fourth series residual 

block begins. The fifth series inverted residual block starts 

from convolution layer which is further connected with two 

convolution layer and the remaining other layers of grouped 

convolution, RELU activation and batch normalization, Fuzzy 

layer with a stride of 1 × 1, kernel size 1 × 1 and depth size is 

32 and 96 respectively. The sixth series block starts with a 

convolution layer and is with further three convolution layers, 

1 RELU activations, and one batch normalization layer, Fuzzy 

layer. The layers are coupled using a 64 and 96-depth size and 

a 1 × 1 kernel size with a stride of 1 and identical padding.  

 

 

 

In the seventh inverted block comprises two convolution 

layers, one batch normalization layer, one RELU activation,1 

grouped convolution, Fuzzy layer and one convolution layer at 

the beginning. Using a 1 × 1 kernel size with a stride of 1 and 

the same padding, the layers are connected using 96 and 256-

depth sizes. Three convolution layers, one batch normalization 

layer, one RELU activation, one grouped convolution and one 

convolution layer at the beginning make up the 8th block. The 

layers are joined with 96,128 and 256-depth sizes using a 1 × 

1 kernel size, a stride of 1, and the same padding. 

Furthermore, this architecture's last and final series inverted 

block begins with convolution layer and consists of two 

convolution layers, RELU activation, and a batch 

normalization layer, Fuzzy layer with a kernel size of 3 × 3 

with a stride of 1 and minimum depth of 256. The two fusion-

based networks that the depth concatenation is additionally 

attached to are fully connected, soft-max, and classification 

layer, respectively. The loss function of this model is 

categorical cross-entropy. The mathematical formula of loss 

function as      
 

  
∑ ∑    

 
           

  
   . Where    is 

the number of samples,   is the number of classes,    is 

denoted the predicted probability for class  , and     denoted 

the actual labels such as 1 if true otherwise 0. 

The suggested architecture contains 779.6K parameters, while 

the total comprises 101 layers, including 31 convolutional 

layers. Deep features were extracted from the depth 
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concatenation layer after the proposed model had been trained 

on all three datasets. The proposed model's architecture layers 

are displayed in the Fig. 3 along with the layer structure and 

activation used.  

 

Fig.3. Layer structure and activations  

 

B. Proposed 5 Block High Resolution Network (5B-DSR) 

 VSDR employs approaches like DCNNs to learn the mapping 

from sparse observations to high-resolution images. These 

models can discern intricate patterns and textures vital for 

efficient reconstruction. In this work, we proposed 5 residual-

based CNNs to transform low-resolution images into high-

resolution images. The network's input starts with a dimension 

of           and has low resolution denoted with    . 

After that, an initial convolutional layer is applied with     

kernel size, 32 number of filters and     stride. After that, 

five residual blocks are attached. Every residual consist of two 

convolutional and two ReLU activations. After each residual 

block, one convolutional layer is employed. Inside the residual 

blocks, the configuration of each convolutional is same such 

as     kernel size,    stride except the number of filters. 

The number of filters in the first residual block is 64 and 32, in 

second block 96 and 64, in third block is 128, and 96, in fourth 

and fifth block is 256,128, and 256,512 respectively. After 

that, post residual blocks convolutional is attached with 

configuration of      kernel size,    stride, and 32 

number of filters. Furth more, the post residual convolutional 

is added with the initial convolutional layer to direct bypass 

the feature maps into the deep layer. In the last, another 

convolutional layer is added with     kernel size, 3 number 

of filters and     stride to refine the feature maps and output 

layer is regression layer with mean squared error loss function. 

The learnable parameters of the proposed 5C-DSR is 3.8 

million with a total of 40 layers. The architecture of proposed 

5C-DSR is presented in Figure 4.  

Fig.4. architecture of the proposed 5C-DSR high resolution 

reconstruction network  

 
 

Consider a training dataset {     }   
 , out aim to lean a 

     model that predicts the value of  ̂           where  ̂ 

the target value of    . Using the training set, the loss mean 

square error 
 

 
 | ̂          |    will be minimized. The 

resultant reconstructed high resolution samples are shown in 

Figure 5. 

 

 
Fig. 5. Few samples of reconstruction of high resolution images using 

proposed 5C-DSR network 

C. Proposed Fuzzy Deep Learning Architecture  

The fuzzy optimistic formula [39] is introduced as an 

activation function in each transition layer as shown in Fig.1 

to estimate the missing feature of the images accurately. The 

mathematical description along with optimistic formula is 

given below:   

 

    〈       〉  

(Eq.1) 
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〈                      〉           [   ]  

  〈           〉 {〈  
    

       
 〉|     }  

{〈    
      

            

 〉|      } {〈  
    

        
 〉} 

where  is the number of layers of DNN;    is the number of 

neurons in the i
th

 layer;             is the input of the 

neuron;   
    

       
 is the output of the neurons on the i

th
 

layer,     
      

            

 is the adaptive weigh coefficients 

mapping of j
th

 input to neurons in i
th

 layer;   
    

        
  is 

the bias coefficients handling the noise in the i
th

 layer and 

  
    

        
  is the fuzzy optimistic transfer function for 

the neurons in the i
th

 layer.  

D. Feature Vector Selection using Chaotic PSO    

The advantage of Chaotic PSO is that it introduces innovative, 

dynamic behavior in the search process. Incorporating chaotic 

sequences into PSO allows the algorithm to avoid being 

trapped in local optima, a common challenge in feature 

selection, especially within large and complex feature spaces. 

The optimal selection of the feature vector is performed by 

introducing the chaos parameter   and chaos perturbation in 

standard PSO [40-42] velocity and positions updating 

equations given in Eq. (2) and Eq. (3), respectively.  

                                 

                     

(Eq.2) 

Where   is the inertial factor and    &    are the balancing 

parameters for cognitive and social influences,         and 

        are coefficients generating the randomness in the 

search space.  

                    (Eq.3) 

 

While the chaos parameter corresponding to    is defined as:  

                          

where   is the controlling parameter that describe the chaotic 

dynamicity and trajectory of chaotic variable that is observed 

to be dense in the search space at     . This chaos 

perturbation will sufficiently traverse the search space to 

introduce scatteredness in the feature selection and produces 

the optimal opportunity to get refine vector. The proposed 

optimization modification is presented in the form of logical 

steps:  

Step 1: Initialization of the Particles 

Create a primary swarm as a set of arbitrarily dispersed 

particles using constrained real values. The length of each 

particle is equivalent to the size of the selection feature vector 

and is considered as a candidate solution. The total number of 

iterations are 200.  

Step 2: Formulation of Cost Function   

The cost function formulated based on the performance 

indicator given in Eq. 2 and Eq. 3 and standard function 

available in literature for accuracy, F1-score and FNR. The 

fitness value is calculated for each unknown while the velocity 

and position of the unknown is updated by using the modified 

standard equations of the PSO algorithm given in Eq. 2 and 

Eq. 3. The Fine-KNN is employed as a fitness function.   

Step 3: Exit criteria 

The execution of PSO has exit if any one of the following 

conditions fulfills  

• Fitness value ≤10
-10

 

• Pre-defined number of flights 

• If the value of the global best does not change 

for 10 iterations  

• Function tolerance = 10
-12

 

If termination criteria are met, then go to step 6 else continue. 

Step 4: Ranking 

Updated the global and local best particles of the swarm and 

ranked them according to the maximum fitness by performing 

the index sort.  

Step 5: Renewal of particle by updating the velocity and 

position   

Updated velocity and position of the particles by applying the 

chaos parameter   and chaos perturbation on Eq. (2) and Eq. 

(3), respectively and repeat steps 2 to 5 until defined number 

of flights achieved.   

Step 6: Data storage, analysis and Monte Carlo Simulations   

• Store the weights of best particle as optimized 

features in a specific independent run.  

• Store the best fitness values of the optimizer to see 

the effectiveness of chaotic PSO   

• Store the execution time of the optimizer  

For reliability, repeat steps 1 to 5 for a sufficiently large 

number of independent runs and perform the analysis.  

Step 7: Refinement   

The interior point algorithm is incorporated for speady 

optimization by taking the best feature of chaotic PSO as a 

start point to the local search method. MATLAB built in 

environment is used for IPA as following procedure Updated 

velocity and position of the particles by applying the chaos 

parameter 

E. Performance Indices of the Proposed Methodology  

The standard performance indicators of dep learning have 

been used like accuracy, error, sensitivity, specificity, False 

Positive Rate, F1 Score [33]. The results of the proposed 

architecture and other state of art techniques are also 

computed using the same performance measure using the 

standard mathematical formulas given in the literature [34].  

III. RESULTS AND DISCUSSION  

The results of the proposed architecture are compared with pre-

trained models as well as sate of art techniques available in the 

literature as listed in Table 2 for different datasets. In this regard, 

the pretrained techniques that are compared with proposed 

farmwork are Alexnet, VGG19, ResNet50, Inception V3 and 

NasNet-large. However, the state of art techniques exploited for 

Bijie Earth Landslide/Non-Landslide dataset are Yolov4 hybrid 
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with senseNet-121 [32], faster RCNN hybrid with VGG-16 & 

ResNet-50 [26], respectively. Moreover, the techniques like 

VGGNet-16 hybrid with CNN features [33], BoCF [34], D-CNN 

hybrid with VGGNet-16 [35] and VGGNet-16 hybrid with FPN 

[27] are compared with proposed scheme on NWPU-RESISC45 

dataset and Gaussian Naïve Bayes [36], Geosystem approach 

[37] and deep CNN techniques [38] are applied on EuroSAT 

dataset, respectively.    

The simulations are performed using MATLAB R2023b on the 

hardware with the specifications Intel (R) Core processor, 64 GB 

of RAM, 256 SSD with an integrated 1TB HDD, and an 8 GB 

NVIDIA RTX graphics card. The dataset is selected randomly 

80% for training and 20% for testing by fixing a mini batch size 

of 16. The model has been trained for 100 epochs with a drop 

factor of 0.65 and a drop period of 6 parameters. The value of the 

learning is not fixed it has been varied from 10
-04

 to 10
-02

 in order 

to have adaptability during the training, moreover the other 

hyperparameters are presented in Table 4.      

 

Table 4: Hyperparameter values and setting for simulations   

Parameters  Value / Settings 

Learning rate  [10
-4

 to 10
-2

] 

Optimizer  Chaotic PSO 

Ratio of dataset  80(training): 20 (testing) 

Drop period  6 

Minimum batch size  

Section depth  

Objective value  

L2 Regularization Factor 

64 

02 

0.156 

1.0×10
−10

 

No of Epochs 100 

Option  Default 

 

Moreover, the generic as well as specific parameter values and 

setting used for the optimization of feature selection is given in 

Table 5. In order to get a reasonable randomization and 

scatteredness in the search space a swarm of 200 particle is 

generated that has the length equal to the size of the feature vector 

od the images. The parameters of the local and global intelligence 

are defined as C1=2 and C2=4, respectively. The search space for 

the particle is bounded by taking the Vmax=0.4×Bound and 

controlling parameter for chaos as   
   .  
 

 Table 5: Parameter values and setting for Chaotic PSO   

Parameters  Value / Settings 

Swarm Size  200 

Particle length   As per size of the feature 

vector  

Number of Flights  1500 

C1 2 

C2  

Controlling Parameter 

Vmax 

L2 Regularization Factor 

4 

    
0.4×Bound 

1.0×10
−10

 

Options  Default 

 

The parameter values given in Table 4 and Table 5 are used in the 

entire simulations by considering all three datasets case wise.  

 

A. Case I: Bijie Earth Landslide/Non-Landslide dataset 

The deep features are extracted using the proposed architecture to 

perform an accurate classification for Bijie Earth Landslide/Non-

Landslide dataset along with the basic feature parameters 

variation.  The classification is performed using the different 

classifiers like N
3
, MN

2
, WN

2
, BN

2,
 and TN

2
 respectively and the 

results are tabulated in Table 6 in terms of accuracy, recall, 

precision, F1 score, FNR, and computational complexity in terms 

of time. From the table, it is quite evident that the results of MN
2
 

is relatively better than that of other classifiers. Although the 

computational complexity in terms of time is 19.963 seconds 

which is higher than the other methods, however, the factor can 

be overshead keeping in view the reliability, accuracy, precision, 

and Recall.    

 

Table 6: Classification results of proposed architecture on Bijie 

Earth Landslide/Non-Landslide dataset    

Classifier Accuracy  Recall Precision  F1Score Time 

(sec) 

N3 93.3 92 91.85 91.92 10.02 

MN2 93.5 91.8 92.5 92.14 19.96 

WN2 93.0 90.75 92.2 92.14 14.56 

BN2 92.9 90.9 91.75 91.32 10.05 

TN2 92.7 91.5 91.05 91.27 11.93 

The confusion matrix for MN
2
 classifier is given in the Fig. 6 

that provide an accuracy of 96.00% for non-landslide and 

87.6% for landslide images.  The issue of the geological 

materials and resolution of 0.8m/pixel is classified with a 

reasonable accuracy and distinguishes the effects like rock 

fall, debris flow and slopy surfaces, respectively. 

 

  
Fig. 6: Confusion matrix of MN

2
 dataset for Bijie earth 

landslide / non-landslide dataset  

 

B. Case II:  EuroSat dataset  

To see the reliability of the proposed architecture, the 

benchmark dataset of Sentinel-2 satellite images with fused 

spectral bands is trained using deep learning architecture. The 

classification results are presented in Table 7 using various 
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standard classifiers and the highest accuracy of 93.3% is 

obtained using WN
2
 technique. It is worth mentioning that the 

classes like annual crops, herbaceous vegetation, and 

permanent crops are distinctly separated and classified by the 

proposed scheme in 496.56 seconds which is significantly 

lesser than that of other classifiers reported in the table. 

Moreover, the lowest value of the accuracy is obtained using 

N
3
 & BN

2
 classifier which is still 89.6% which clearly 

explains the depth in the proposed fuzzy deep learning 

approach.    

 

Table 7: Classification results of proposed architecture on 

EuroSat Dataset   

Classifier Accuracy  Recall Precision  F1Score Time 

(sec) 

N3 
89.6 89.21 89.29 89.24 1565.1 

MN2 92.1 91.83 91.64 91.73 429.12 

WN2 93.3 93.06 93.07 93.06 496.56 

BN2 89.6 89.17 89.20 89.18 514.14 

TN2 89.7 88.93 88.86 88.89 694.61 

 

The confusion matrix of EuroSat dataset is determined and 

presented in Fig. 7 in the form of true and predicted classes 

with an overall accuracy of 93.30%. From the figure, it is 

worth mentioning that even interdependent classes are also 

predicted correctly. However, the true prediction with highest 

individual accuracy is observed for the sea lake class due to its 

unique characteristics.     

 
Fig 7: Confusion matrix of WN

2
 classifier for EuroSat Dataset  

 

C. Case III: NWPU-RESISC45 dataset 

As a third case NWPU-RESISC45 dataset is trained on the 

same parameter values given in Table 5 and an accuracy of 

90.5%, 92.8%,93.3%, 90.8%, and 90.0% is obtained using the 

classifiers N
3
, MN

2
, WN

2
, BN

2
 and TN

2
, respectively as 

tabulated in Table 8. The classification time of 100.22 seconds 

is observed for WN
2
 classifier with an average accuracy of 

93.40% which is quite comparable to that of the other 

presented techniques. A misclassification of 6.6% is obtained 

for WN
2
 technique with a precision of 93.4%.   

Table 8: Classification results of proposed architecture on 

NWPU-RESISC45 Dataset   

Classifier Accuracy  SEN Precision  F1Score Time 

(sec) 

N
3 

90.5 90.63 90.6 90.615 166.93 

MN
2
 92.8 92.89 92.98 92.935 70.904 

WN
2
 93.3 93.34 93.40 93.370 100.22 

BN
2
 90.8 90.82 90.95 90.887 324.91 

TN
2
 90.0 90.02 90.06 90.042 309.73 

 

The depth of the fuzzy layer is examined by the confusion 

matrix as given in Fig.8 using WN
2
 classifier for NWPU-

RESISC45 dataset. From the matrix it is observed that the true 

prediction of the class game space is misled towards the dense 

and sparse residential class.   Moreover, the true classes of the 

beach and anchorage is predicted correctly 692 and 696 

images, respectively while few of the mislead classification is 

observed in these mentioned classes. Consequently, the scene 

classification with the difficulty of occlusion, illumination and 

image similarity with a spatial resolution from 20cm to 

30m/pixel is performed with an accuracy of 90% to 93.3% that 

show supremacy of optimistic formula at the fuzzy layer to 

provide resistive effects against the noisy images.    

 

 
Fig 8: Confusion matrix of WN

2
 classifier for NWPU-

RESISC45 Dataset 

 

D. Disucssion 

Ablation Study-1: The tradeoff between growth in the size of 

the deep structures, level of the accuracy, rate of convergence 

and computational budget required for deep learning model is 

pretentious by the learning rate. The effect on the accuracy 

and FNR is analyzed by varying the values of the learning rate 

from [10
-04

 to 10
-02

] on all three datasets trained and optimized 

by the proposed architecture. The results are tabulated in 

Table 9 by considering the values of the learning rate as 

0.0013, 0.0135, 0.00013, and 0.00046, respectively.  It is clear 

from the table that as the learning rate is decreasing the level 

of accuracy is increasing for all three datasets and the best 

level of accuracy is achieved at 0.00013. It is worth 

mentioning that the computational budget will increase but 
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this effect can be mitigated while keeping in view the 

availability of sophisticated hardware. 

 

Table 9: Analysis of proposed architecture results based on 

the change in learning rate 

Learning 

Rate 

Datasets Performance 

Measure 

 Bijie 

Earth 

EuroSAT NWPU-

RESISC45  

Accuracy FNR 

0.00013     93.50 6.5 

    93.30 6.7 

    93.34 6.66 

0.0013     91.56 8.44 

    90.48 9.52 

    91.72 8.28 

0.00046     89.23 10.77 

    88.50 11.5 

    87.09 12.91 

0.0135     84.52 15.48 

    87.20 12.8 

    84.29 15.71 

 

Ablation Study-2: The reliability of feature optimization 

through C-PSO is analyzed based upon mean square error 

(MSE) of each independent run by considering different 

training to testing ratios for all three datasets. In this regard, 

sufficiently large number of independent runs are performed 

and the results are drawn in Fig. 9 on a semiology scale to see 

the effects of MSE in each run for all three datasets. 

Moreover, the results are also presented by taking training 

testing ratios of 80:20, 70:30, 60:40 and 50:50 as shown in 

Fig. 9 (a), Fig. 9 (b), Fig. 9 (c), and Fig. 9 (d), respectively. 

The stability in terms of MSE is observed once the vector 

selection is done by C-PSO hybrid with the proposed deep 

learning framework as presented in Fig. 6.  It is quite evident 

from the figure that MSE=10
-1

 to 10
-07

 is obtained for various 

training testing ratios of all three datasets, however the best 

value of the fitness is achieved in all four ratios for Beiji Earth 

dataset due to the nature and complexity in the images that 

that of NWPU-RESISC45 and EuroSAT datasets.  

  
Fig. 9(a): Training: Testing =80:20 Fig. 9(b): Training: Testing =70:30 

  
Fig. 9(c): Training: Testing =60:40 Fig. 9(d): Training: Testing =50:50 

Fig.9 Behavior of MSE for various training and testing ratio 

using C-PSO for feature selection 

 

Ablation Study-3: The overall precision, recall and F1-score 

is also calculated upto two decimal places for all three datasets 

and results are presented in Table. 10.  The performance of the 

proposed model in term of accuracy and FNR are found to be 

in the range 93.34.91 % to 93.50% and 6.50% to 6.70%, 

respectively that is reasonably good keeping in view a 

complex classification problem of deep learning. The slight 

variation in the accuracy is due to variation of the number of 

classes in the dataset and their complexity level.   

 

 Table 10: Overall performance of the proposed model for 

Test-1and Test-2 

 

Dataset 

Performance Measures  

Model  Overall  

Accuracy 

% 

FNR 

% 

Precision Recall F1-

Score 

Bijie Earth 93.50 6.50 0.963 0.959 0.937 

EuroSAT 

NWPU-

RESISC-45 

93.30 

 

93.34 

6.70 

 

6.66 

0.949 

 

0.942 

0.938 

 

0.921 

0.942 

 

0.939 

 

Ablation Study-4: The computational complexity in term of 

time is calculated for various pre-trained models like Alexnet, 

VGG-19, ResNet-50, Inception V3, NasNet-large and 

compared with the proposed model for 100 independent runs. 

The results are presented in Fig. 10(a) for Beijie Landslide / 

Non-Landslide dataset, Fig. 10(b) for EuroSAT, and Fig. 10(c) 

for the NPUW-RESISC45 dataset and compared with pre-

trained models. It is quite clear from the Fig. 10 that the 

computational budget in terms of time for the proposed 

scheme is quite comparable to that of the pre-trained reported 

models.   
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Fig.10 (a): Proposed model training time for Beijie 

Landslide / Non-Landslide dataset 

 
Fig.10 (b): Proposed model training time for EuroSAT 

dataset 

 
Fig.10 (c): Proposed model training time for NWPU-

RESISC45 dataset 

Fig.10 Comparison of computational complexity for proposed 

model and pre-trained models 

 

The basic statistical indicators like minimum (Min), maximum 

(Max), mean (Mean), standard deviation (STD) and kurtosis is 

used to investigate the global values of the computational time 

in order to have the clear supremacy of the proposed approach. 

The results of the proposed as well as pre-trained models are 

tabulated in Table 11 for all three datasets applied in the study.  

 

Table 11: Proposed architecture statistical analysis for three 

datasets for 100 independent runs   

 

 

Models 

Statistical Performance Measure for 100 

Independent Runs (seconds) 

Beijie Landslide / Non-Landslide Dataset 

Min Max Mean STD Kurtosis 

Proposed 30.00 40.00 35.22 3.31 1.74 

Alexnet 36.00 52.00 43.24 5.12 1.69 

VGG-19 45.00 60.00 51.37 4.29 1.75 

ResNet-50 55.00 100.0 78.08 12.76 1.84 

Inception V3 60.00 110.0 85.80 14.89 1.87 

NasNet-large 100.0 130.0 114.92 8.99 1.83 

 EuroSAT Dataset 

Proposed 530.0 540.0 534.91 3.03 1.91 

Alexnet 535.0 550.0 542.26 4.98 1.53 

VGG-19 545.0 560.0 552.48 4.37 1.81 

ResNet-50 555.0 600.0 578.43 14.23 1.64 

Inception V3 630.0 670.0 649.68 10.96 2.04 

NasNet-large 600.0 690.0 650.42 25.83 2.07 

 NWPU-RESISC45 Dataset 

Proposed 130.0 140.0 135.12 3.34 1.71 

Alexnet 135.0 150.0 141.80 4.72 1.78 

VGG-19 145.0 160.0 152.57 4.62 1.79 

ResNet-50 155.0 200.0 177.89 13.29 1.79 

Inception V3 130.0 169.0 150.12 11.53 1.86 

NasNet-large 100.0 189.0 145.29 25.36 1.83 

 

 

Ablation Study-5: Fig.11 depicts the percent increase in the 

performance with the use of C-PSO optimized for various pre-

trained models as well the proposed model for classification. 

One can observe that accuracy, precision, recall have 

increased and error has decreased. The negative sign (on right 

side of the graphs) in error values denotes that the error is 

reduced whereas, on left side positive values depict that 

accuracy, recall, specificity and precision have increased by 

using the C-PSO. The minimum increase in accuracy of 39% 

is exhibited by   

NesNet-large and maximum increase of 46.8.% is shown by 

proposed model.  

 

 
Fig.11 Illustration of percent increase and error decrease in 

classification by using C-PSO approach   

Ablation Study-6:  
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It is quite evident from Table 12 that the learnable parameters 

and size in megabytes for the proposed model are found to be 

reduced up to 6.3 million and 3.7 MB, respectively which is 

quite comparable to that of other models like VGG-19, 

ResNet-50, DarkNet-19, Inception-V3 as tabulated in the 

table.  

 

Table 12: Comparison of learnable parameters of the 

proposed scheme and pre-trained models   

Model Depth Size 

(MB) 

Learnable Parameters 

(Millions) 

Proposed  67 3.4 5.7 

VGG-19 19 535 144 

ResNet-50 50 96 25.6 

DarkNet-19 19 78 20.8 

Inception-V3 48 89 23.9 

 

Comparison with State of Art and other Pre-Trained 

Models:  

The performance measure in term of accuracy and FNR of the 

proposed architecture is compared with several pre-trained 

architectures & state of art reference techniques and the results 

are tabulated in Table 13. It is quite evident from the table that 

proposed architecture outperforms with an accuracy 

percentage of 93.5, 93.30, 93.34 and FNR percentage of 6.5, 

6.7 and 6.66 for Beijie, EuroSAT and NWPU-RESISC45 

datasets, respectively. The inclusion of fuzzy optimist formula 

offers subjective imaginations of the non-linear and missing 

detail of the images to get better decision accuracy and 

consequently the lesser FNR. Moreover, the accuracy and 

FNR of other pre-trained models and state of art reference 

results are also tabulated to establish a fair comparison. In 

Figure 12, lime technique is employed for the interpretation of 

proposed network. 

 

Table 13: Comparison of the proposed architecture accuracy 

with several pre-trained and state of art models  

Model Datasets Performance 

Measure 

 

 

 

Proposed 

Model 

Bijie 

Eart

h 

EuroSA

T 

NWPU-

RESISC4

5  

Accurac

y 

FNR 

    93.50 6.5 

    93.30 6.7 

    93.34 6.66 

Alexnet     91.44 8.56 

    90.25 9.75 

    90.72 9.28 

VGG19     89.42 10.5

8 

    89.63 10.3

7 

    90.51 9.49 

ResNet50     88.53 11.4

7 

    89.11 10.8

9 

    89.04 10.9

6 

InceptionV

3 

    90.62 9.38 

    89.84 10.1

6 

    90.14 9.86 

NASNet-

Large 

    88.26 11.7

4 

    90.41 9.59 

    91.07 8.93 

Yang et al 

[32] 

    93.46 
6.54 

Bhatt et al 

[36] 

    60.21 39.7

9 

Cheng et al 

[33] 

    79.79 20.2

1 

H Qin et al 

[26] 

    92.05 
7.95 

Yamashkin 

et al [37] 

    91.52 
8.48 

Cheng et al 

[34] 

    84.32 15.6

8 

H Qin et al 

[26] 

    93.80 
6.2 

Eleni et al 

[38] 

    86.00 
14.0 

Cheng et al 

[35] 

    91.89 
8.11 

 

IV. CONCLUSION 

Based upon the comprehensive results supported with the 

graphs and tables followings conclusions are drawn:  

• The proposed model produces lesser number of 

learnable parameters that are 5.7 million with a size 

of 3.4 MB and a depth of 67 which is quite lesser 

than that of other pre-trained models like   VGG-19, 

ResNet-50, DarkNet-19 and Inception-V3 models.  

• The minimum increase in accuracy of 39% is 

exhibited by NesNet-large and maximum increase of 

46.8% is shown by proposed model when the feature 

vector is optimized with C-PSO algorithm. 

Moreover, it is worth mentioning that the accuracy, 

precision and recall have increased while the error 

has decreased by the inclusion of chaos parameter   

in standard PSO algorithm. 

• An accuracy of 93.5%, 93.30%, 93.34% and FNR of 

6.5%, 6.7% and 6.66% for Beijie, EuroSAT and 

NWPU-RESISC45 datasets, respectively are obtained 

from the proposed architecture which quite 

comparable with pre-trained models and state of art 

reported methods.   

• The results obtained in the figures and tables by 100 

independent runs deliver a guarantee about the 

applicability of the proposed model, reliability, 

convergence and computational complexity in term 

of time than that of sate of arts and pre-trained 

models, respectively.    

The proposed work's limitation is that the hyperparameters for 

training are manually selected. In the future, we will employ a 
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dynamical algorithm to select optimal hyperparameters and 

refine models that can reduce learnable parameters without 

compromising accuracy and computational budget. 

 

 
Fig.12 Performance of proposed network evaluating by 

employing Lime  
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