
Please cite the Published Version

de Souza Tadano, Yara , Potgieter-Vermaak, Sanja , Siqueira, Hugo Valadares, Hoelzemann,
Judith J, Duarte, Ediclê SF , Alves, Thiago Antonini , Valebona, Fabio, Lenzi, Iuri, Godoi,
Ana Flavia L, Barbosa, Cybelli , Ribeiro, Igor O, de Souza, Rodrigo AF , Yamamoto, Car-
los I , Santos, Erickson, Fernandesi, Karenn S , Machado, Cristine , Martin, Scot T and
Godoi, Ricardo HM (2024) Predicting health impacts of wildfire smoke in Amazonas basin, Brazil.
Chemosphere, 367. 143688 ISSN 0045-6535

DOI: https://doi.org/10.1016/j.chemosphere.2024.143688

Publisher: Elsevier BV

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/637049/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an author-produced version of the published paper. Uploaded in
accordance with the University’s Research Publications Policy.

Data Access Statement: Data will be made available on request.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0002-3975-3419
https://orcid.org/0000-0002-1994-7750
https://orcid.org/0000-0002-2785-6648
https://orcid.org/0000-0003-2950-7377
https://orcid.org/0000-0001-6156-8749
https://orcid.org/0000-0003-0838-3723
https://orcid.org/0000-0003-2782-7705
https://orcid.org/0000-0002-8753-8609
https://orcid.org/0000-0002-7031-6591
https://doi.org/10.1016/j.chemosphere.2024.143688
https://e-space.mmu.ac.uk/637049/
https://creativecommons.org/licenses/by/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


 

 

Predicting Health Impacts of Wildfire Smoke in Amazonas basin, Brazil 

 

Yara de Souza Tadano,a Sanja Potgieter-Vermaak,b,c Hugo Valadares Siqueira,a Judith J. 

Hoelzemann,d Ediclê S. F. Duarte,d,e Thiago Antonini Alves,a Fabio Valebona,f Iuri Lenzi,f Ana 

Flavia L. Godoi,f Cybelli Barbosa,f Igor O. Ribeiro,g Rodrigo A. F. de Souza,g Carlos I. 

Yamamoto,h Erickson Santos,i Karenn S. Fernandes,i Cristine Machado,i Scot T. Martin,j 

Ricardo H. M. Godoi (rhmgodoi@ufpr.br)f,* 

 

a Federal University of Technology - Paraná, Ponta Grossa, Paraná, Brazil 

b Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester, 

United Kingdom 

c Molecular Science Institute, University of the Witwatersrand, Johannesburg, South Africa 

d Department of Atmospheric and Climate Sciences (DCAC), Federal University of Rio Grande 

do Norte, Natal, Brazil 

e Institute of Earth Sciences, University of Évora, Portugal 

f Environmental Engineering Department, Federal University of Paraná, Curitiba, PR, Brazil 

g State University of Amazonas, Meteorology Department, Manaus, Brazil 

h Chemical Engineering Department, Federal University of Paraná, Curitiba, PR, Brazil 

i Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas, 

Manaus, Brazil 

j School of Engineering and Applied Sciences & Department of Earth and Planetary Sciences, 

Harvard University, Cambridge, Massachusetts, USA 

 



 

 

Conflict of Interest 

The authors declare they have no conflicts of interest related to this work to disclose.



 

1 
 

Abstract 1 

Worldwide, smoke from forest fires has deleterious health effects. Even so, because of the 2 

complexity of fire mechanics, public health authorities face challenges in forecasting and thus 3 

mitigating population exposure to smoke. The population in the Amazon basin regularly suffers 4 

from fire smoke tied to agriculture and land-use change. The people of Manaus, a city of two 5 

million in the center of the basin, suffer the consequences. The study herein evaluates the time 6 

lag between fire occurrence and hospital admission for cardiorespiratory illness. Understanding 7 

the time lag is key to forecasting and mitigating the public health effects. The study approach is 8 

sequential application of four increasingly complex methods of machine learning to examine the 9 

relationships among black carbon concentrations, fire count, meteorology, and hospital 10 

admissions. The mean absolute percentage error (MAPE) for predicting hospital admissions 11 

ranged from 27% to 38%. Furthermore, a one-day lag was observed between the detection of 12 

fires and the manifestations of respiratory health hazards. This finding suggests the potential for 13 

developing an early warning system, which could enable public health officials to issue 14 

advisories or implement preventive actions during the brief period before hospital admissions 15 

begin to rise. The findings have applicability not only to the population exposed to fires in the 16 

Amazon basin but also to populations where smoke is prevalent, notably increasingly in 17 

Australia, southern Europe, the western USA, southern Canada, and southeast Asia. 18 

Keywords: fire smoke, Amazon basin, cardiorespiratory illness, forecast and warning 19 

Synopsis: A forewarning artificial neural network is developed for exposure to wildfire smoke at 20 

the population level. Use of this approach can reduce respiratory and cardiovascular 21 

hospitalizations.  22 
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1. Introduction 23 

Forest fires are a global concern. Consequences include severe air pollution episodes, 24 

human mortality, environmental damage, and substantial economic loss1. Human activities and 25 

climate change have led to heightened intensity, frequency, and duration of fire seasons. 26 

Approximately 200,000 forest fires are reported annually.1 Notably, the summer of 2022 27 

witnessed record-breaking wildfire activity in the European Union and the United Kingdom, 28 

surpassing the previous 15-year record.2 Similarly, California experienced a record number of 29 

wildfires in 2020, more than double the previous record.3 The severity of the 2019/2020 fire 30 

season in Australia was unprecedented. Over 23% of the temperate forest in southeastern 31 

Australia was affected.4 32 

The Amazon forest also faced an alarming increase in deforestation fires in 2019. At that 33 

time, the Brazilian government reversed commitments to control deforestation.5 The state of 34 

Amazonas recording its highest fire count since 1998 in 2022.6 The impact on the Amazon 35 

ecosystem, known for its biodiversity and vast freshwater, is severe. However, studies on the 36 

effects of wildfire smoke in this region are limited due to the scarcity of air quality monitoring 37 

stations in the northern Amazon.7 Forest fires contribute significantly to black carbon (BC) 38 

emissions. Black carbon in turn is part of airborne particulate matter (PM2.5).8, 9 39 

Previous exposure assessment studies usually use PM concentration as a proxy for 40 

wildfire smoke.10 And, there were few epidemiological studies of fire health effects prior to the 41 

last decade because of fire occurrence far from populated areas where air pollution levels were 42 

seldomly monitored.11 More recently, Johnston et al.12 report that the overall premature mortality 43 

rate that can be attributed to wildfire smoke is 339,000 individuals globally each year. Nawaz 44 

and Henze13 found that Brazilian biomass burning emissions (mostly in Amazonia) accounted for 45 
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a 74% increase in premature deaths. Alves et al.14 further demonstrated that biomass burning in 46 

the Amazon region leads to DNA damage and cell death in human lung cells. Recently, Prist et 47 

al.15 estimated that 500 cardiorespiratory infections per 100,000 inhabitants were related to forest 48 

fires in the Amazon. Further studies in the Amazon region confirm a positive correlation 49 

between wildfire smoke and an increase in the incidence of morbidity and mortality among 50 

vulnerable populations, including children and the elderly7, 13-15. 51 

There are several methods widely used to assess exposure to wildfire smoke.16 The fires 52 

and non-fire days can be compared, the concentration of PM can be monitored or modeled, 53 

smoke indicators including counts and burned area from satellite observations can be used, and 54 

combination methods can integrate one or more of these approaches. However, forewarning 55 

predictions of health risks based on fire episodes are scarce. If such forewarning were possible, 56 

the public, especially vulnerable populations, could take action to avoid smoke exposure. 57 

Similarly, healthcare professionals, hospital systems, and health insurers could integrate potential 58 

health impacts into day-to-day actionable planning.11 59 

The present study, focusing on the impact of wildfire smoke on the health of the general 60 

population in the central Amazon, employs machine learning to examine relationships among 61 

black carbon concentrations, fire count, meteorology, and hospital admissions for 62 

cardiorespiratory illness. The use of artificial neural networks (ANNs) as machine-learning 63 

forecasting models could provide elegant and robust solutions for non-linear relationships among 64 

multiple variables and discontinuous datasets.17-22 The approach herein not only provides insights 65 

into the dynamics in the central Amazon but also contributes significantly to the global discourse 66 

on forest fires and their health implications. 67 

 68 
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 69 

2. Materials and Methods 70 

2.1 Sampling site  71 

Manaus is a metropolitan area located in the central Amazon with a population of 2.3 72 

million in 2021.23 In a subtropical monsoon climate, the average annual temperature is 27 °C, 73 

and the average relative humidity is 80%.24 The wet season lasts from November to May, and the 74 

dry season takes place from June to October. There is intermittent intrusion of regional and 75 

continental scale wildfire smoke, primarily during the dry season.25 The severe, episodic 76 

pollution strongly affects public health and hospital admissions. For this study, sampling 77 

campaigns took place from 2011-2013 (3° 5'43.94"S, 59°59'25.56"W) and 2015-2016 (3° 78 

6'12.5"S, 59°58'55.8"W) in a central area of Manaus (Figure 1). The obtained dataset of 79 

particulate matter (PM2.5) and black carbon (BC) had 785 samples collected over four years. 80 

Corresponding meteorological data were obtained from the Brazilian National Institute of 81 

Meteorology (INMET). 82 

2.2 PM2.5, BC, and fire counts.  83 

PM2.5 was collected (24-hour sampling) from Oct 2011 to July 2013 and from Aug 2015 84 

to Aug 2016 using a low-volume Harvard impactor and 37-mm polycarbonate filters. PM2.5 mass 85 

concentrations were determined gravimetrically following the same procedure by Polezer et al.17, 86 

positioning the impactor 2 m height and using blank filters to track and reduce errors due to filter 87 

handling and transport. The BC fraction of the sampled PM2.5 was determined through 88 

transmittance at an 880 nm wavelength (infrared) (Sootscan optical transmissometer, model OT 89 

21, Magee Scientific Company). The BC concentration and the daily fire count were used as 90 

proxy variables for wildfire smoke. 91 
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The variability of fire data around Manaus up to 500 kilometers is quite the same, as 92 

shown in Figure S1. In this sense, we chose to use the number of fires within 200 kilometers 93 

around Manaus, 10 times the city's average radium. The fire data was obtained from the National 94 

Institute for Space Research27. The data is from the reference satellite (AQUA, which uses a 95 

MODIS sensor)28. 96 

2.3 Hospital admissions  97 

The health impacts accompanying wildfire smoke were evaluated using the Manaus 98 

hospital admission count for cardiorespiratory illness. Cardiorespiratory illness is widespread 99 

following exposure to fire smoke.29 Hospital admission data across Oct 2011 to Aug 2016 were 100 

obtained from the Brazilian Unified Health System for respiratory diseases (RD) (International 101 

Classification of Diseases – ICD-10, codes J00 to J99) and cardiovascular diseases (CVD) (ICD-102 

10, codes I00 to I99).30 103 

2.4 Machine learning 104 

Machine learning was applied to examine the relationships among black carbon 105 

concentrations, fire count, meteorology, and hospital admissions. Explanatory variables (i.e., 106 

input variables) included daily BC concentration, mean temperature, mean relative humidity, 107 

precipitation, solar intensity, and the fire count. When dealing with air pollution epidemiological 108 

studies, it is common to observe a relation between air pollution concentration some days ahead 109 

of health outcomes, then it is crucial to consider a seven-day window when dealing with air 110 

pollution health impacts, as suggested by 17, 18, 31-33. Therefore, this study examined data from 111 

zero (lag 0) to seven-day lag (lag 7) after exposure to forest fires and BC concentrations. 112 

Machine learning by artificial neural networks (ANN) performed the analysis. ANNs are 113 

nonlinear methodologies used to solve problems such as nonlinear mapping, forecasting, 114 
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classification, and clustering, among others.34 The ANN neurons are organized into layers, 115 

commonly named input, hidden (intermediate), and output layers.35 Four artificial neural 116 

networks architectures were sequentially applied, including so-called extreme learning machine 117 

(ELM), echo state network (ESN), multilayer perceptron (MLP) with one and two hidden layers 118 

(MLP-1 and MLP-2, respectively), and radial basis function network (RBF). ESN is a recurrent 119 

neural network, and the others are feed-forward neural networks.34,36 MLP and RBF are fully 120 

trained methodologies because all weights are adjusted. Two unorganized machines (UM) were 121 

also considered (ELM and ESN). UM tunes only the output layer, which confers a simple 122 

implementation and low computational cost. 123 

The dry and wet season differed significantly from one another in terms of fire count, PM 124 

concentrations, and hospital admissions (Table 1). Therefore, the analyses were also conducted 125 

with and without a Z-score, which is a de-seasonalization technique. The goal was to evaluate if 126 

transformation into stationary dataset without seasonal components improves model 127 

performance. 35-37. The Z-score consists of subtracting the value of each sample from the mean 128 

and dividing the result by the standard deviation. 129 

Statistics of the dataset used in the ANN analysis are listed in Table 1. For machine 130 

learning, the dataset was divided into three parts, including a training dataset (used to adjust the 131 

free parameters of the neural models; 585 samples), a validation dataset (to avoid overtraining; 132 

100 samples), and a test dataset (used to evaluate the performance of the proposed models; 100 133 

samples). For each ANN, sixteen analyses (lag days × Z-score) were carried out including all 134 

inputs, excluding forest fire count, and excluding BC concentration for respiratory and 135 

cardiovascular diseases, totaling 96 analyses peer ANN. 136 
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The performance of each neural network was evaluated based on the root mean square 137 

error between predicted and observed admissions in the test dataset. The mean absolute 138 

percentage error (MAPE) was also calculated. The cost function the ANNs minimize is the 139 

RMSE and, in the case in which different error metrics indicate distinct models as the best, the 140 

one with the lowest RMSE should be assumed as the best one.18, 35, 38 MAPE indicates the 141 

absolute model performance relative to the observations of hospital admissions. It is important to 142 

highlight that error metrics from different datasets are not comparable. 143 

The Friedman test was applied to assess if the error values were statistically different 144 

from each other, meaning one ANN performed better than another. Details about the ANN 145 

designs and performances are in the Supplementary Material. 146 

 147 

3. Results and discussion 148 

Different approaches can be used to assess fire health risks: using monitored PM during 149 

fire events, PM data from chemical transport modeling, satellite smoke data (counts and/or 150 

burned area), comparison between smoky versus non-smoky days, self-questionnaire 151 

information, satellite data plus chemical transport modeling, and others.16, ,29, 39 152 

Urrutia-Pereira et al.7, in reviewing biomass burning and human health in the Amazon 153 

rain forest, point out that studies related the effects of forest fire smoke in this region are limited 154 

due to a lack of air quality measurements in the northern region of Brazil. This is in accordance 155 

with Bowman et al.5, who point out that historical records of fire activity, even for simple 156 

metrics like area burned, are limited. To that end, a decision was made that the best available 157 

proxy for the studied region to compare the impact of fires on health in the Brazilian Amazon 158 

Forest is active fire hotspots as it captures the dynamics of fires over time, a conclusion affirmed 159 
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by Sant’Anna and Rocha40. Then, the fire count within 200 km around Manaus during the study 160 

period was used.27 The dataset is plotted in Figure 2. The year 2014 is missing because no BC 161 

sampling campaigns were carried out during that year, which prevented its inclusion in the 162 

analysis. 163 

During the study period, the daily BC concentrations ranged from 0.06 to 5.56 μg m-3, 164 

with annual means varying from 1.29 to 2.28 μg m-3 (Table 1). On days of severe episodic 165 

smoke, the BC concentration reached levels up to 2-3 times higher than the average levels 166 

observed during periods of urban pollution, with a maximum recorded concentration of 5.6 μg 167 

m⁻³. 168 

Given the critical role of BC in our study, it is essential to acknowledge the complexities 169 

and challenges associated with its measurement. The mass absorption cross-section of BC, often 170 

employed to estimate BC mass from optical measurements, can vary significantly across 171 

different environments and conditions, leading to substantial uncertainty in quantification. This 172 

variability is further exacerbated by factors such as lensing effects and the mixing state of 173 

particles, particularly in scenarios involving biomass burning, as discussed in the works of White 174 

et al.41 (2016), Bond and Bergstrom42 (2006), and Zhang et al.43 (2023). Furthermore, changes 175 

in particle size and morphology post-sampling can influence light absorption measurements, 176 

thereby impacting the accuracy of BC mass estimates. These challenges underscore the 177 

importance of careful interpretation of BC data in epidemiological studies like ours, where 178 

accurate exposure assessment is crucial for understanding health impacts. 179 

The PM2.5 concentration ranged from 0.04 to 68.7 μg m-3, with a daily average of 9.2 μg 180 

m-3 and a standard deviation of 6.83 μg m-3. For comparison, Table 2 lists values for studies in 181 

the Amazon region from literature. For the 2000’s, the literature observations agree with those of 182 
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this study, considering the standard deviation. However, Artaxo et al.11 reported data for the 183 

1990’s, during which PM2.5 concentrations were 3 to 6 times higher. In Rondônia state, records 184 

of 50-90 μg m-3 were observed during the dry season from 2002 to 200944. During fire episodes 185 

from Aug to Sep 2020, average daily PM2.5 concentration were four to eleven times the National 186 

Ambient Air Quality Standards (NAAQS) in major cities in California (USA), Washington 187 

(USA), and Oregon (USA).47 Notably, fire smoke is a global issue, and our finding will have 188 

applicability not only to the population exposed to fires in Manaus, but also to populations where 189 

smoke is prevalent, such as USA, southern Europe and others. Ahangar et al.48 considered eight 190 

cities along the South Coast Air Basin (USA) and analyzed the wildfire contribution to PM2.5 and 191 

its carbon content for 2008 to 2016. The authors analyzed the reduction in PM2.5 and BC annual 192 

averages when excluding the fire days. In the urban areas, the most significant difference was 193 

7% for PM2.5 and BC in 2008. In remote regions, the differences were 4% for PM2.5 and 21% for 194 

BC in 2016. For the present study, much larger reductions of 17% and 11% for PM2.5 and BC 195 

were observed, respectively, in 2012. 196 

Figure S2 shows the boxplot of BC percent of the total PM2.5 mass. The values ranged 197 

from 0.8 to 95.4%, with an average value of 23.0% and a standard deviation of 12.4%. The BC 198 

percent is above typical values of biomass burning in the Amazon rainforest7. Typically, 10 to 199 

15% of PM2.5 composition from Amazonian wildfires is BC. The fire count on a single day 200 

ranged from 0 to 253 throughout the 200 km region surrounding Manaus (Figure 2). The fire 201 

count is at its highest during the dry season, with a record of 2,298 recorded in 2015.  202 

As listed in Table 1, the fire count and BC concentrations do not correlate with 203 

cardiorespiratory data. Figure S3 shows a dispersion diagram with Pearson correlation 204 

coefficients. The relation between BC, forest fire, and cardiorespiratory diseases is not linear, 205 
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with Pearson correlation coefficients from –0.16 (between respiratory hospitalizations and the 206 

fire count) to 0.12 (between cardiovascular hospitalizations and BC). For comparison, Andrade-207 

Filho et al.44 reported Pearson correlation coefficients of –0.079 between respiratory 208 

hospitalizations and fire count. The Spearman correlations are between -0.21 to 0.13 and Kendall 209 

correlations are between -0.16 to 0.09 (cf. Tables S1 and S2). The low Pearson, Kendall, and 210 

Spearman correlations indicate that any trends, if present, are a complex non-linear problem. For 211 

this task, ANNs are suitable. 212 

The main results of the ANN analyses are listed in Table 3. The complete set of results is 213 

listed in Tables S3 to S8. Machine learning by multilayer perceptron was the most successful in 214 

predicting hospitalization related to air pollution from forest fires. The MLP was also well 215 

constrained by the explanatory variables, as confirmed using the Friedman test. The p values 216 

were nearly zero, meaning a change in the model led to distinct results. The best performance by 217 

MLP corroborates recent research about air pollution and health impacts33,39 that MLP tends to 218 

outperform the “newer” ANN models such as RBF and the unorganized machines (ELM and 219 

ESN). The fully learned structure of MLP allows for advantageous approximation of the 220 

nonlinear mapping inputs. 221 

The causality of fire count and black carbon concentrations as explanatory variables of 222 

hospital admissions was evaluated by replicating the machine learning for three cases: (1) 223 

including all input variables (daily fire count, black carbon, mean temperature, relative humidity, 224 

precipitation, solar radiation, wind speed, and wind direction), (2) excluding the fire count, and 225 

(3) excluding black carbon. As expected, the best performance used all input variables (Table 3). 226 

For respiratory illness, there was a one-day lag between health effects and exposure. For 227 

cardiovascular illness, there was no lag. Results changed drastically when excluding fire count or 228 
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black carbon as explanatory variables. Lag increased from 1 day to 2-3 days for respiratory 229 

illness and from no lag to 6 days for cardiovascular illness. We may conclude that incorporating 230 

both fire count and black carbon (BC) concentration is crucial for accurately predicting hospital 231 

admissions because these variables capture distinct aspects of exposure to fire-related pollutants. 232 

While BC provides a direct measure of particulate matter generated by fires, which has 233 

immediate health impacts, the fire count reflects the broader scale and intensity of fire activity, 234 

including additional fire-generated pollutants and physical effects that may not be directly 235 

captured by BC measurements alone. The improved model performance when both variables are 236 

included suggests that non-fire sources of BC and other pollutants resulting from fire activity 237 

contribute significantly to health outcomes. These findings are consistent with literature49 238 

indicating that aging smoke, which contains various harmful compounds beyond BC, and 239 

interactions with urban pollutants, may exacerbate health impacts. 240 

Figure 3 plots the observed and predicted values of the test dataset using the best- 241 

performing model. The figure shows the model has difficulty in predicting higher and lower 242 

values, especially for discontinuous variables. The predictions for hospitalizations are related 243 

only to the considered inputs, mainly BC and fires. By comparison, the output of hospital 244 

admission depends on many other factors not included in the model, such as lifestyle, age, 245 

economic factors, and so on. In this sense, errors around 27% and 38% (Table 3) are acceptable 246 

and provide reasonable predictive power for discontinuous datasets. Some studies using ANN 247 

and considering the same outputs (cardiorespiratory diseases)17-19,21,38 presented results with 248 

errors of the same order of magnitude (ranging from 17 to 36%), which confirms that the ANNs 249 

showed a good performance to our database. 250 
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The emissions from the Amazon fires affect the short- and long-term health of the 25 251 

million people living throughout the Amazon biome, as reflected in increased hospital 252 

admissions for respiratory and cardiovascular diseases during the burning season. During 2021 253 

and 2022, a trend of worsening conditions in Amazonas state continued27, suggesting even more 254 

for the future. The development of effective early-warning mechanisms could prevent severe 255 

health impacts, but the precise mix of conditions to activate an alert has been uncertain in this 256 

data-poor region. In this context, the study herein used the best available health records in the 257 

central Amazon, corresponding to the several million people living in Manaus, and likewise the 258 

best-available datasets of air quality. Simple multilinear regressions failed to establish Pearson, 259 

Kendall, or Spearman coefficients above a noise threshold between environmental measurements 260 

and health effects. Analysis by artificial neural networks did establish relationships, however. 261 

Specifically, the ANNs successfully modeled the time lag between fire incidence and hospital 262 

admissions based on input factors of daily averages of black carbon concentrations, temperature, 263 

relative humidity, precipitation, solar radiation, and regional fire count. The prediction of the 264 

time lag between environmental observations and health effects can be used for health-oriented 265 

decision-making. Timely information can be provided in advance to the health care sector to 266 

properly allocate resources during periods when admissions are expected to increase. The ANN 267 

approach developed herein can be applied in diverse scenarios worldwide to forecast health 268 

hazards resulting from fires. In the long term, the study results highlight the need for effective 269 

measures to reduce fire occurrence and thereby mitigate the adverse impacts of regional air 270 

pollution on human health. 271 

The Amazon region has one of the highest deforestation rates worldwide50, related to 272 

socioeconomic factors, governance effectiveness, and climate change. The wildfire smoke 273 
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negatively impacts the human health of local communities, ecosystems, and climate change. For 274 

Manaus, Paralovo et al.51 report on the decline in air quality from forest wildfires and controlled 275 

burning after deforestation. Throughout the last few years, this issue is growing more severe. In 276 

Amazonia, deforestation, maintenance of cleared areas, and forest fires account for 8%, 39%, 277 

and 53% of fire outbreaks, respectively, with distinct social and environmental impacts.7 At 278 

times in the dry season, a smoke layer envelops the larger part of the entire Amazon basin and 279 

much of central South America. Marlier et al.52 highlighted that the duration of the dry season is 280 

lengthening, which may increase the incidence of fire in Amazonia. 281 

In the Amazon, wildfire smoke, often driven by deforestation and land-use changes, 282 

poses severe public health challenges, leading to increased hospital admissions for 283 

cardiorespiratory illnesses7. Similarly, California and Australia experience intense wildfires, 284 

exacerbated by climate change, resulting in episodes of air pollution and corresponding health 285 

impacts. However, while California and Australia have more developed monitoring and response 286 

measures, the Amazon struggles with a scarcity of air quality monitoring stations, limiting the 287 

ability to forecast and mitigate these impacts effectively. In Southeast Asia9, particularly during 288 

agricultural burning seasons, air pollution reaches critical levels, causing adverse health effects 289 

akin to those observed in the Amazon. This global analysis highlights the urgent need for early 290 

warning systems and targeted mitigation policies tailored to the unique socioeconomic and 291 

environmental contexts of each region, with the aim of protecting populations exposed to 292 

wildfire smoke. The results show the potential of ANN as a tool capable of predicting forest fire 293 

health risks, suggesting their potential to support the creation of an early warning system, 294 

although further research is needed to fully elucidate the underlying mechanisms and optimize 295 

the timing of interventions. Some limitations that need to be addressed in future research are the 296 
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use of different proxies for fires, more complete databases, emergency visits as output, and to 297 

include socioeconomic and other individual characteristics. 298 

Relating our findings to the United Nations' Sustainable Development Goals (SDGs), our 299 

study aligns significantly with SDG 3 (Good Health and Well-being), SDG 13 (Climate Action), 300 

and SDG 15 (Life on Land). SDG 3 aims to ensure healthy lives and promote well-being for all 301 

ages, and our research underscores the critical need for early warning systems to reduce the 302 

adverse health impacts of wildfire smoke, particularly in vulnerable populations. The observed 303 

increase in cardiorespiratory illnesses due to black carbon exposure from wildfires directly 304 

relates to this goal by highlighting the importance of mitigating environmental health risks. SDG 305 

13 focuses on combating climate change and its impacts, and our study provides evidence of the 306 

exacerbated wildfire activity driven by climate change, emphasizing the urgent need for climate 307 

action to reduce the frequency and intensity of these fires. Lastly, SDG 15 seeks to protect, 308 

restore, and promote sustainable use of terrestrial ecosystems. Our findings on the detrimental 309 

health effects of wildfires on Manaus’ population illustrate the critical need for sustainable land 310 

management practices. By addressing these SDGs, our research contributes to a broader 311 

understanding of the intersection between environmental degradation and public health, 312 

advocating for integrated policies that promote a healthier and more sustainable future. 313 
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Table 1. Statistics of observations. *Source: J00 - J99 from ICD-10. **Source: I00 to I99 from 

ICD-10. 

Variable Season Statistic 2011 2012 2013 2015 2016 

Number of days in analysis wet  45 115 114 34 135 

 dry  13 123 48 72 86 

PM2.5 (μg m-3) 
 

wet max 19.4 30.0 68.7 24.9 16.2 

min 4.3 1.7 0.8 4.8 1.9 

avg 9.7 8.9 9.5 10.5 5.6 

median 8.5 6.8 6.9 8.4 5.3 

dry max 16.3 58.0 31.9 29.6 22.1 

min 4.5 0.0 2.1 3.5 2.6 

avg 10.8 11.6 10.8 11.5 7.7 

median 8.9 10.0 9.0 8.5 7.0 

BC (μg m-3) wet max 4.7 5.6 4.7 3.4 3.7 

min 0.4 0.4 0.4 0.7 0.6 

avg 2.0 2.0 2.0 1.3 1.4 

median 1.9 1.7 1.9 0.9 1.3 

dry max 5.2 5.2 4.0 3.2 5.1 

min 0.1 0.2 0.2 0.3 0.6 

avg 2.2 2.3 1.8 1.3 2.0 

median 1.8 1.9 1.7 1.2 1.7 

Daily hospitalization count: respiratory 
disease * 

wet max 45 85 64 34 58 

min 7 12 15 9 10 

avg 26.36 31.67 34.51 22.18 27.78 

median 25 27 34 23 26 
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dry max 34 49 51 37 63 

min 19 14 18 8 9 

avg 27.54 29.24 34.15 20.92 29.28 

median 28 28 33 20 27 

Daily hospitalization count: 
cardiovascular disease ** 

wet max 37 40 37 30 32 

min 9 5 8 10 5 

avg 19.51 19.57 19.65 18.71 19.50 

median 19 19 19 18 19 

dry max 27 48 29 31 37 

min 9 4 4 10 8 

avg 18.08 20.58 17.52 18.65 19.15 

median 18 20 18 19 19 

Fire count wet  153 375 30 295 166 

dry  100 1089 167 2298 377 
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Table 2. Comparison between PM2.5 and BC concentrations of this study to those in literature. 

*Estimated based on satellite image. 

 

Reference Region Period PM2.5 conc 

(μg m-3) 

BC conc 

(μg m-3) 

this study Manaus 2011-2013, 2015-

2016 

9.20 ± 6.83 1.83 ± 0.99 

Andrade Filho et al.44 Manaus 2002-2009 15* - 

Fernandes et al.45 Manaus Aug to Sep 2017 14.7 3.0 

Jacobson et al.46 Mato Grosso, Brazil 2008 19.6 ± 11.9 1.00 ± 0.48 
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Table 3. Best-performing neural networks for predictions of hospital admissions. Results are 

listed for respiratory and cardiovascular diseases. Abbreviations include artificial 

neural network (ANN), neuron count (NC) of each hidden layer, standard score (Z), 

root mean square error (RMSE), mean absolute percent error (MAPE), and multilayer 

perceptron (MLP) with 1 or 2 hidden layers. 

 

Inputs ANN NC Z lag (day) RMSE MAPE (%) 

Respiratory disease 

All MLP-2 60 / 40 without 1 10.4 38 

Excluding forest fires MLP-2 40 / 50 with 3 11.8 36 

Excluding black carbon MLP-2 40 / 100 without 2 11.7 35 

Cardiovascular disease 

All MLP-2 40 / 80 without 0 4.9 27 

Excluding forest fires MLP-2 70 / 40 with 6 5.2 25 

Excluding black carbon MLP-1 80 without 6 5.2 24 
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Figure 1. Sampling locations for 2011-2013 (3°5'43.94"S, 59°59'25.56"W) and 2015-2016 

(3°6'12.5"S, 59°58'55.8"W). In counterclockwise direction, the four panels show 

progressively smaller scales from South America at the largest scale (top left), to 

Amazonas, to Manaus environs (corresponding to red box), to localized urban view of 

Manaus at the smallest scale (top right).26 
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A. B. 

 

Figure 2. Forest fire count in a 200-km radius around Manaus for the two BC campaign periods 

(a) 5 Oct 2011 to 26 Jul 2013 and (b) 15 Aug 2015 to 30 Aug 2016.44 
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A. 

 

B. 

 

Figure 3. Comparison between observed and predicted hospitalizations across test dataset for 

(A) respiratory disease using MLP-2 with a one-day lag and (B) cardiovascular disease 

using MLP-2 and no lag. 

 


