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A B S T R A C T

Model-based iterative learning control (ILC) algorithms achieve high accuracy but often exhibit poor robustness
to model uncertainty, causing divergence and long-term instability as the number of trials increases. To
address this, an estimation-based multiple-model switched ILC (EMMILC) approach is developed based on
novel theorem results which guarantee stability if the true plant lies within a uncertainty space defined by the
designer. Using gap metric analysis, EMMILC eliminates restrictive assumptions on the uncertainty structure
assumed in existing multiple-model ILC methods. Our design framework minimises computational load while
maximising tracking accuracy. Applied to a common rehabilitation scenario, EMMILC outperforms the standard
ILC approaches that have been previously employed in this setting. This is confirmed by experimental tests
with four participants where performance increased by 28%. EMMILC is the first model-based ILC framework
that can guarantee high performance while not requiring any model identification or tuning, and paves the
way for effective, home-based rehabilitation systems.

1. Introduction

Every year 12.2 million people suffer from their first stroke. Ap-
proximately 70% of survivors report impaired upper-limb function, and
40% are left with a permanent arm disability (Party, 2023). Fortu-
nately, this lost movement can be recovered by intensive practice of
functional tasks (Geller et al., 2023) which enables the brain to fuse
new connections in the motor cortex that replace those lost by stroke.
This ‘relearning’ is facilitated by haptic, proprioceptive and visual feed-
back during goal-orientated functional tasks. However, conventional
therapy only promotes limited recovery for less severe impairment
levels, and is increasingly unaffordable. There is therefore an urgent
need for low-cost technology to provide intensive, goal-oriented task
training (Ballester, Ward, Brander, et al., 2022).

Functional electrical stimulation (FES) comprises a sequence of
electrical pulses that are applied using electrodes to artificially activate
muscles. Recent UK National Clinical Guidelines for stroke (Party,
2023) strongly recommend using FES during daily practice of repeated
arm movements. However, they highlight that current FES devices used
in clinics and hospitals employ open-loop or triggered control (Kris-
tensen, Busk, & Wienecke, 2022; Popović, 2014; Schearer et al., 2012;
Wolf & Schearer, 2017). This is due to the need for simple, reliable and
fast set-up, however it has resulted in slow and inaccurate upper-limb
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movements which are not personalised to users and do not promote
recovery (Anderson, 2004).

Meta-analyses confirm that FES systems used in clinical upper-limb
studies are still overwhelmingly open-loop or triggered by electromyog-
raphy (Kristensen et al., 2022). A small number of clinical studies have
employed simple closed-loop feedback (leung Chan, yu Tong, & kwan
Chung, 2009; Hodkin et al., 2018; Pelton, van Vliet, & Hollands, 2012;
Resquín, Cuesta Gómez et al., 2016), however their tracking accuracy
is still relatively low, particularly due to the slow system response and
onset of muscle fatigue. Controllers often require extensive tuning for
each subject (Resquín, Gonzalez-Vargas et al., 2016; Wiarta, Arifin,
Baki, Arrofiqi, Fatoni, & Watanabe, 2020) which is impractical in
clinical practice due to time constraints and lack of expertise. Higher
accuracy tracking has been achieved using model-based FES upper-limb
control strategies, including model predictive (Westerveld, Schouten,
Veltink, & van der Kooij, 2014; Wolf & Schearer, 2022), optimal (Sa-
e, Freeman, & Yang, 2020), active disturbance rejection (Liu, Qin,
Huo, & Wu, 2020), and sliding mode (Oliveira, Costa, Catunda, et al.,
2017; Rouse, Parikh, Duenas, et al., 2016; Wu, Wang, Du, et al., 2017)
control. To avoid the need for time-consuming identification, Razavian,
Ghannadi, Mehrabi, et al. (2018), Tan, Shee, Kong, Guan, and Ang
(2011), Wolf and Schearer (2019) and Wolf and Schearer (2018) use
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only partial model information, however this degraded tracking accu-
racy. Like all the above methods, a further drawback was their inability
to adequately compensate for fatigue, spasticity and other physiological
effects.

Adaptive FES model-based controllers have attempted to improve
performance. A prominent example is multiple-model adaptive control
(MMAC) (Brend, Freeman, & French, 2015) which defines a set of ‘can-
didate’ plant models, and a corresponding set of optimal controllers. A
bank of Kalman filters are used to switch in the controller whose model
best fits the observed plant data. An experimental evaluation with five
subjects performing isometric elbow force tracking showed it improved
accuracy by 22% compared with standard optimal control. Together
with (Wolf, Hall, & Schearer, 2020), this is the only model-based upper-
limb controller tested in experiments with multiple subjects that induce
prolonged muscle fatigue. There have been other significant advance-
ments in robust upper-limb FES controllers, including switched designs
to address electromechanical delays (Allen, Cousin, Rouse & and Dixon,
2022; Sharma, Gregory, & Dixon, 2011), varying geometry of the
upper-limb muscles (Allen, Stubbs, & Dixon, 2022), or co-activation
of antagonistic muscles (Sun, Qiu, Iyer, Dicianno, & Sharma, 2023).
However, they cannot provide guaranteed high performance tracking
in the presence of arbitrarily large, unstructured model uncertainty.
These approaches have been tested with unimpaired subjects. With one
exception (Alibeji, Kirsch, Dicianno, & Sharma, 2017), they have not
progressed to tests with neurologically impaired participants.

Iterative learning control (ILC) is one of the few model-based control
schemes that have been applied to FES-based upper-limb control with
impaired patients. It has shown its success in five clinical trials (Free-
man, 2016) with more than 30 patients with stroke (Kutlu, Freeman,
Hallewell, et al., 2016) or multiple sclerosis (Sampson et al., 2016). ILC
is formulated for systems that repeat the same finite duration tracking
task, and aims to capture the idiom that ‘practice makes perfect’. It
updates the control input using information from previous attempts,
which exactly matches the rehabilitation scenario. Early ILC algorithms
did not use model information (Arimoto, Kawamura, & Miyazaki, 1984;
Freeman, Lewin, & Rogers, 2005; Nahrstaedt, Schauer, Shalaby, Hesse,
& Raisch, 2008), however the field rapidly expanded to leverage model-
based updates in order to provide greater accuracy and convergence
properties for wider system classes. Examples of the broad range of
model-based ILC approaches are contained in Bristow, Tharayil, and
Alleyne (2006), Owens (2016) and Rogers, Chu, Freeman, and Lewin
(2023) and the references therein. An essential aspect of ILC that
has been widely studied is long-term robust stability (Bradley, 2010;
Freeman et al., 2005; Meng & Moore, 2017), which refers to the
system’s ability to maintain stability after initial convergence, even in
the presence of modelling errors. For example, Ratcliffe et al. (2005)
showed that a common ILC update will diverge if a multiplicative
model uncertainty has a phase angle greater that 90◦ in magnitude.
Addressing long term stability is especially crucial in a rehabilitation
setting to ensure that the intensive FES training remains effective,
comfortable and safe over extended periods of use.

Several ILC schemes have been applied to FES based upper limb re-
habilitation, with standard model-based updates proving most accurate.
Tests with stroke participants showed they outperforming conventional
model-based strategies by an order of magnitude (Freeman, 2016).
Over the course of fifteen years, ILC has progressed from purely elbow
extension to full arm reaching tasks (Kutlu et al., 2016) including
hand and wrist motion via a 24 channel FES electrode array (Excell,
Freeman, Meadmore, et al., 2013). Although accuracy has been high,
the time needed for identification has become prohibitively long, and
recent trials which avoided re-identification by reusing previous models
yielded significantly degraded tracking accuracy (Kutlu et al., 2016).

To solve the above deficiencies, a new control approaches is needed
that requires little or no model identification tests, but is capable
of accurate tracking in the presence of substantial model uncertainty
(e.g. fatigue, spasticity and electrode movement). ILC is an obvious

starting point given its pedigree in rehabilitation, and there already
exist a range of robust ILC algorithms that may be suitable for appli-
cation in rehabilitation. However, closer inspection reveals these have
focused on highly structured parametric (Ahn, Moore, & Chen, 2005;
Xu & Xu, 2013) or multiplicative/additive (Donkers, van de Wijdeven,
& Bosgra, 2008; Freeman, Lewin et al., 2009; Owens, Freeman, & Chu,
2014) forms. Model predictive and simple adaptive strategies have
also been embedded into the ILC framework to address time-iteration-
dependent uncertainties. Unfortunately, their accuracy is subject to
modelling error (Ma, Liu, Kong, & Lee, 2021) and relies on restrictive
assumptions on the form of uncertainties (Zhang, Meng, & Cai, 2023).
Methods that can be applied to more general uncertainties typically
require substantial identification/training time, excessive tuning, or
place additional structural assumptions (Lee, Lee, & Kim, 2000; Meng,
2019; Meng & Moore, 2017). A promising avenue are ILC approaches
that update the model in order to better capture the plant dynamics.
Li, Wang, and Liu (2014) and Li and Zhang (2010) used fuzzy neural
networks to approximate multiple underlying nonlinear models and
select the best one for ILC at every time sample. Longman, Peng, Kwon,
et al. (2011) updated the model in between ILC trials using a standard
model identification approach. This focused on linear systems, and only
considered inverse ILC. It also did not provide any stability or robust
performance guarantees. Instead of switching between different ILC
updates, Zhu, Xu, Huang, et al. (2015) specified multiple linear models
to capture unknown iteration-varying parameters, and designed a single
ILC update using 𝐻∞ tools which can stabilise all specified models.
Similarly, Padmanabhan, Bhushan, Hebbar, et al. (2021) captured para-
metric uncertainty by producing multiple linear models, and designed
ILC using a convex combination of all plants. Unfortunately, there is
currently no switched multiple model framework that derives robust
performance bounds for the most common ILC update structure when
the plant model is subject to a general class of modelling uncertainty
specified by the designer. Additionally, there is no principled multiple-
model guidelines allowing the designer to systematically and efficiently
generate the required plant models and associated ILC updates. In terms
of application, none of the above approaches has been used in FES
upper limb rehabilitation.

This paper develops a multiple-model ILC framework that addresses
the above limitations. It is motivated by the previous multiple-model
approach of Brend et al. (2015), which applied optimal control to
stabilise the isometric elbow using FES. This was a direct application
of theory developed in Buchstaller and French (2016a) and Buchstaller
and French (2016b) which considered only regulation (i.e. maintaining
the system states at zero). Despite this narrow remit, the MMAC theory
is less conservative than competing multiple-model approaches since it
derives bounds on the output that do not scale with the number of plant
models. In addition, it permits a broader class of uncertainties through
use of the gap metric, a powerful measure of plant mismatch. Our re-
sults in Freeman and French (2015) showed how the MMAC framework
could be extended to address ILC through two major extensions: (1)
MMAC operates from sample to sample, whereas ILC resets after each
trial. We addressed this by packaging ILC as a single sample of a high
dimension system, and (2) by modifying the operating point to extend
the regulation problem to tracking. Both components are non-trivial,
and require substantial extension of all components of the framework
(i.e. the estimators, gap metric definitions, controller properties, and
overall performance bounds). Unfortunately, the resulting EMMILC
framework (Freeman & French, 2015) entailed intensive computational
burden, limiting its practicality. It was only applied numerically to
a simple problem. To solve these problems, we make the following
contributions:

1. We propose the first multiple-model ILC framework that is both
simple to apply in practice, and guarantees robust performance
for general uncertainty classes. A key component is a new robust
performance bound that defines the uncertainty space stabilised
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by existing ILC laws. Another critical component is a novel de-
sign procedure that produces a candidate model set without re-
quiring any further model identification. This set guarantees ro-
bust stability while transparently balancing computational load
and tracking accuracy.

2. We describe the first experimental application of EMMILC, focus-
ing on a clinically important rehabilitation problem. We show
how a model set can be designed to capture the full range of
physiological variation while imposing minimal computational
load. Results confirm the practical efficacy of EMMILC and opens
up the possibility of translating effective FES technology to
patients’ own homes for the first time.

We build on preliminary work in Zhou, Freeman, and Holderbaum
(2023a) which applied EMMILC in simulation, but contained no per-
formance bounds, identification procedures or experiments.

This paper is organised as follows: Section 2 gives an overview of
ILC preliminaries and applies robust stability analysis. Section 3 intro-
duces a multiple-model control framework together with a practical
design procedure guaranteeing robust stability. Then, Section 4 defines
a wrist model, and expands its identification to capture an uncertainty
set. Section 5 applies the framework to rehabilitation and describes the
associated hardware implementation. Results involving four healthy
subjects are given in Section 6, including comparison with standard ILC
to confirm its practical efficacy.

2. Problem statement

This section summarises the ILC framework and uses gap metric
analysis to derive bounds on the maximum modelling error that may
be tolerated while preserving stability.

2.1. ILC framework

ILC is applicable to systems that repeat the same finite duration
tracking task. Each attempt is termed a trial, with index 𝑘 = 0, 1, 2,….
Each trial runs over 𝑁 samples, after which the plant is reset to the
same initial condition 𝑥0 = 0. The signals have a natural 2D structure,
thus we denote �̃�1(𝑘, 𝑡), �̃�1(𝑘, 𝑡) to be the underlying input and output
signals, and assume the discrete time state-space system dynamics

�̃�(𝑘, 𝑡 + 1) = 𝐴𝑝�̃�(𝑘, 𝑡) + 𝐵𝑝�̃�1(𝑘, 𝑡), �̃�(𝑘, 0) = 𝑥0
�̃�1(𝑘, 𝑡) = 𝐶𝑝�̃�(𝑘, 𝑡) +𝐷𝑝�̃�1(𝑘, 𝑡), 𝑡 = 0, 1,… , 𝑁 − 1,

(1)

where the state-space quartet 𝑝 = (𝐴𝑝, 𝐵𝑝, 𝐶𝑝, 𝐷𝑝) ∈ R𝑝×𝑝 × R𝑝×𝑚 ×
R𝑛×𝑝 ×R𝑛×𝑚. The corresponding plant operator 𝑃𝑝, defines the mapping
�̃�1(𝑘, ⋅) = 𝑃𝑝�̃�1(𝑘, ⋅). The ILC objective is for �̃�1(𝑘, 𝑡) to track a fixed
reference signal 𝑦𝑟𝑒𝑓 (𝑡) as the trials progress, i.e.

lim
𝑘→∞

�̃�1(𝑘, 𝑡) = 𝑦𝑟𝑒𝑓 (𝑡), 𝑡 = 0, 1, 2,… , 𝑁 − 1. (2)

ILC typically operates in the lifted (or supervector) framework, in which
data is packaged from the 𝑘th trial as

𝑢1(𝑘) = (�̃�1(𝑘, 0), �̃�1(𝑘, 1), �̃�1(𝑘, 2),… , �̃�1(𝑘,𝑁 − 1))⊤

𝑦1(𝑘) = (�̃�1(𝑘, 0), �̃�1(𝑘, 1), �̃�1(𝑘, 2),… , �̃�1(𝑘,𝑁 − 1))⊤

𝑦𝑟𝑒𝑓 = [𝑦𝑟𝑒𝑓 (0), 𝑦𝑟𝑒𝑓 (1), 𝑦𝑟𝑒𝑓 (2),… , 𝑦𝑟𝑒𝑓 (𝑁 − 1)]⊤
(3)

and the lifted plant dynamics are then expressed as the map

𝑦1(𝑘) = 𝑃�̂�𝑢1(𝑘), (4)

where �̂� denotes the lifted realisation of plant 𝑝, with associated matrix
operator 𝑃�̂� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐷𝑝 0 ⋯ 0 0
𝐶𝑝𝐵𝑝 𝐷𝑝 ⋯ 0 0

𝐶𝑝𝐴𝑝𝐵𝑝 𝐶𝑝𝐵𝑝 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

𝐶𝑝𝐴𝑁−3
𝑃 𝐵𝑝 𝐶𝑝𝐴𝑁−4

𝑝 𝐵𝑝 ⋯ 𝐷𝑝 0
𝐶𝑝𝐴𝑁−2

𝑝 𝐵𝑝 𝐶𝑝𝐴𝑁−3
𝑝 𝐵𝑝 ⋯ 𝐶𝑝𝐵𝑝 𝐷𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R𝑚𝑁×𝑛𝑁 . (5)

Fig. 1. Closed-loop system structure [𝑃�̂� , 𝐶𝑐 ].

As 𝑃�̂� describes a linear system, we can represent the lifted dynamics by
a state space system in the lifted space with parameter �̂� = (0, 0, 0, 𝑃�̂�) ∈
R𝑝𝑁×𝑝𝑁 × R𝑝𝑁×𝑚𝑁 × R𝑛𝑁×𝑝𝑁 × R𝑛𝑁×𝑚𝑁 . Each ILC trial can be regarded
as a single sample of this high dimension lifted system. Given 𝑝 we will
denote the same plant dynamics in the lifted space as �̂�, with respective
operators 𝑃𝑝 and 𝑃�̂�, where

𝑃�̂� ∶ 𝑢1 ↦ 𝑦1, �̃�1(𝑘, ⋅) = 𝑃𝑝�̃�1(𝑘, ⋅). (6)

Since the lifted dynamics are expressed in a single variable (𝑘), they
fit in the standard closed loop structure of Fig. 1 where 𝑤𝑖 = (𝑢𝑖, 𝑦𝑖)⊤

represents the plant input and output (𝑖 = 1), external disturbances
(𝑖 = 0) and controller signals (𝑖 = 2). The reference 𝑦𝑟𝑒𝑓 appears as
an external bias, so that the controller input 𝑦2 is equal to the tracking
error. A wide variety of ILC designs exist, see, for example, Bristow
et al. (2006) for a review. The majority of ILC updates take a lifted
form and therefore can be expressed by the lifted control operator 𝐶𝑐 .
In particular, the most common ILC update algorithm is

𝑢2(𝑘 + 1) = 𝑄𝑐(𝑢2(𝑘) − 𝐿𝑐𝑦2(𝑘)), (7)

where 𝑄𝑐 ∈ R𝑚𝑁×𝑚𝑁 is a robustness filter and 𝐿𝑐 ∈ R𝑚𝑁×𝑛𝑁 is a
learning operator. Signal 𝑦2 is the measured tracking error, which,
in the absence of disturbance, is 𝑦𝑟𝑒𝑓 − 𝑦1. From (7), lifted operator
𝐶𝑐 is a state-space system parameterised by 𝑐 = (𝑄𝑐 ,−𝑄𝑐𝐿𝑐 , 𝐼, 0) ∈
R𝑚𝑁×𝑚𝑁 × R𝑚𝑁×𝑛𝑁 × R𝑛𝑁×𝑚𝑁 × R𝑚𝑁×𝑛𝑁 .

The standard ILC convergence condition is

𝜎 ∶= ‖𝑄𝑐 (𝐼 − 𝐿𝑐𝑃�̂�)‖ < 1 (8)

which, if there are no disturbances, i.e. (𝑢0, 𝑦0)⊤ = 0, guarantees 𝑦1(𝑘) →
(𝐼 − 𝑄𝑐(𝐼 − 𝐿𝑐𝑃�̂�))−1𝑄𝑐𝐿𝑐𝑃�̂�𝑦𝑟𝑒𝑓 as 𝑘 → ∞. In particular, if 𝑄𝑐 = 𝐼 ,
then tracking objective (2) holds. Note that ‖ ⋅ ‖ denotes the 2-norm
throughout this paper.

2.2. ILC robust stability

This section derives a robust stability condition for the nominal
ILC system [𝑃�̂�, 𝐶𝑐 ] which will be used in the later EMMILC design
framework. This employs the gap metric, a well known measure charac-
terising the distance between two systems (Zames & El-sakkary, 1980)
that underpinned the EMMILC design framework of Buchstaller and
French (2016a). Given two unlifted plant operators 𝑃𝑝, 𝑃𝑝∗ , the gap
metric between them is denoted 𝛿(𝑝, 𝑝∗). It was shown in Bradley (2010)
that 𝛿(𝑝, 𝑝∗) is related to the corresponding lifted gap by

𝛿(�̂�, �̂�∗) ≤ 𝛿(𝑝, 𝑝∗), (9)

where �̂�, �̂�∗ are the lifted forms of plants 𝑝, 𝑝∗. This relation is used in
the next result which establishes a robust stability margin for ILC. This
uses the following maps from external to internal signals for [𝑃�̂�, 𝐶𝑐],
[𝑃�̂�∗ , 𝐶𝑐] respectively

𝛱𝑃�̂�∕∕𝐶𝑐
∶ (𝑢0, 𝑦0)⊤ ↦ (𝑢1, 𝑦1)⊤ (10)

𝛱𝑃�̂�∗ ∕∕𝐶𝑐
∶ (𝑢0, 𝑦0)⊤ ↦ (𝑢1, 𝑦1)⊤. (11)
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Fig. 2. Gap ball of plants stabilised by ILC update 𝐶𝑐 , with centre 𝑃𝑝, and radius
‖𝛱𝑃�̂�∕∕𝐶𝑐

‖

−1.

Theorem 1. Let 𝑃𝑝, 𝑃𝑝∗ be systems of form (1) and 𝐶𝑐 be an ILC design
for 𝑃𝑝 such that condition (8) holds. Then this ILC design also stabilises the
true plant 𝑃𝑝∗ provided

𝛿(𝑝, 𝑝∗) < ‖𝛱𝑃�̂�∕∕𝐶𝑐
‖

−1, (12)

where the mapping

‖𝛱𝑃�̂�∕∕𝐶𝑐
‖ =

‖

‖

‖

‖

‖

(

(𝐼 − 𝐶𝑐𝑃�̂�)−1 −(𝐼 − 𝐶𝑐𝑃�̂�)−1𝐶𝑐
𝑃�̂�(𝐼 − 𝐶𝑐𝑃�̂�)−1 −𝑃�̂�(𝐼 − 𝐶𝑐𝑃�̂�)−1𝐶𝑐

)

‖

‖

‖

‖

‖

(13)

≤ ‖(𝑃�̂�, 𝐼)‖
(

‖(𝐼, 𝑃�̂�)⊤‖‖𝑄𝑐𝐿𝑐‖

1 − 𝜎
+ 1

)

. (14)

The internal signals are bounded from their ideal values as

‖𝛱𝑃�̂�∗ ∕∕𝐶𝑐
‖ ≤ ‖𝛱𝑃�̂�∕∕𝐶𝑐

‖

1 + 𝛿(𝑝, 𝑝∗)
1 − ‖𝛱𝑃�̂�∕∕𝐶𝑐

‖𝛿(𝑝, 𝑝∗)
. (15)

Proof. This is an extension of the 1-norm and ∞-norm cases shown
in Bradley (2010), to the 2-norm case. First set 𝑤 = (𝑢0, 𝑦0 + 𝑦𝑟𝑒𝑓 )⊤ in
(10) and apply (4), (7) to give

[

𝛱𝑃�̂�∕∕𝐶𝑐
𝑤
]

(𝑘)=
( 𝐼

𝑃�̂�

)(

𝑘
∑

𝑖=1

{

[

𝑄𝑐 (𝐼 − 𝐿𝑐𝑃�̂�)
]𝑖−1(𝑄𝑐𝐿𝑐𝑦𝑟𝑒𝑓

−𝑄𝑐𝐿𝑐(𝑃�̂�,−𝐼)𝑤0(𝑘 − 𝑖))
}

+ 𝑢0(𝑘)
)

and it follows that an upper bound on ‖𝛱𝑃�̂�∕∕𝐶𝑐
‖ is

sup
𝑤0(𝑘) ∈ R𝑚𝑁×𝑛𝑁

‖𝑤0‖ ≠ 0

(

∑∞
𝑘=0

‖

‖

‖

( 𝐼
𝑃�̂�

)

∑𝑘
𝑖=1

[

𝑄𝑐 (𝐼 − 𝐿𝑐𝑃�̂�)
]𝑖−1𝑄𝑐𝐿𝑐(−𝑃�̂�, 𝐼)

×𝑤0(𝑘 − 𝑖) + 𝑢0(𝑘)
‖

‖

‖

2) 1
2

(

∑∞
𝑘=0 ‖𝑤0(𝑘)‖2

)
1
2

Setting 𝑢0 = 0 and 𝑦0 = 0 separately and applying relationship

‖𝛱𝑃�̂�∕∕𝐶𝑐
𝑤0‖

‖𝑤0‖
=

‖

‖

‖

𝛱𝑃�̂�∕∕𝐶𝑐

( 𝑢0
0

)

‖

‖

‖

+ ‖

‖

‖

𝛱𝑃�̂�∕∕𝐶𝑐

( 0
𝑦0

)

‖

‖

‖

‖

‖

‖

( 𝑢0
𝑦0

)

‖

‖

‖

≤ ‖

‖

‖

𝛱𝑃�̂�∕∕𝐶𝑐
|

|

|𝑦0=0
‖

‖

‖

+ ‖

‖

‖

𝛱𝑃�̂�∕∕𝐶𝑐
|

|

|𝑢0=0
‖

‖

‖

yields (14) after significant further manipulation. □

Theorem 1 provides a transparent condition for robust stability
of ILC. To illustrate this, suppose 𝑃𝑝 is a plant model and  is the
uncertainty space specified by the designer as the set of all plants that
must contain the unknown true plant 𝑃𝑝∗ . Then (12) defines a gap ‘ball’
of plants that are stabilised by the ILC update (7). This is illustrated in
Fig. 2. Relation (14) makes computation of the ball radius both simple
and transparent: the designer must reduce 𝜎 as well as ‖𝑄𝑐𝐿𝑐‖ in order
to reduce ‖𝛱𝑃�̂�∕∕𝐶𝑐

‖ and therefore increase the gap ball radius. Since
reducing 𝜎 implies using a more aggressive ILC operator with larger
gain, the role of the filter 𝑄𝑐 is key to increasing both robustness and
convergence speed.

Remark 1. From (10), (15) it is evident that reducing ‖𝛱𝑃�̂�∕∕𝐶𝑐
‖

also reduces the sensitivity of the plant signals (𝑢1, 𝑦1)⊤ to external
disturbances.

3. EMMILC framework

In practice, model-based ILC usually achieves better performance
but has poor robustness against a general class of uncertainties, with a
small gap radius ‖𝛱𝑃�̂�∕∕𝐶𝑐

‖

−1 generated by ILC update (7). EMMILC
addresses this by introducing a set of ‘candidate’ plant models  =
{𝑝1, 𝑝2,… , 𝑝𝑁𝑝

}, where each is used to design an ILC controller 𝑐 =
𝐾(𝑝),∀𝑝 ∈  with 𝐾 denoting the ILC design procedure. The set of
all ILC controllers is denoted  = {𝑐1, 𝑐2, 𝑐3,… , 𝑐𝑁𝑝

}. Note that here
state-space parameterisations 𝑝𝑖 and 𝑐𝑖 refer to the systems 𝑃𝑝𝑖 and 𝐶𝑐𝑖
respectively.

By suitably switching between controllers, the aim is for EMMILC
to guarantee bounded-input bounded-output stability for any true plant
𝑃𝑝∗ ∈  . To decide on which ILC update to apply for each trial, a bank
of Kalman estimators are designed to establish how well each plant
model fits the measured data (𝑢2, 𝑦2). Each estimator 𝐸(�̂�) computes a
residual, 𝑟�̂�, equal to the size of the minimum disturbance necessary
to explain the measurement (𝑢2, 𝑦2) assuming that 𝑃�̂� is the true plant.
Specifically, suppose  [0,𝑘]

�̂� (𝑢2, 𝑦2) is the set of all disturbances (𝑢0, 𝑦0)
compatible with plant 𝑃�̂�, the measured signals (𝑢2, 𝑦2) and the signal
connections in Fig. 1 over ILC trials [0, 𝑘]. The residual on trial 𝑘 is then
defined as

𝑟�̂�[𝑘] = inf{𝑟 ≥ 0|𝑟 = ‖𝑣0‖, 𝑣0 ∈  [0,𝑘]
�̂� (𝑢2, 𝑦2)}. (16)

Since ILC trials are independent, this can be calculated recursively as

𝑟�̂�[𝑘] =
√

(𝑟�̂�[𝑘 − 1])2 + (𝑟𝑘𝑝 [𝑁 − 1])2, 𝑟�̂�[0] = 0 (17)

where the unlifted residual over interval [0, 𝑡] on trial 𝑘 is

𝑟𝑘𝑝 [𝑡] = inf{𝑟 ≥ 0|𝑟 = ‖𝑣0‖, 𝑣0 ∈  [0,𝑡]
𝑝 (�̃�2(𝑘, ⋅), �̃�2(𝑘, ⋅))}. (18)

Here  [0,𝑡]
𝑝 (�̃�2(𝑘, ⋅), �̃�2(𝑘, ⋅)) is the unlifted equivalent of  [0,𝑘]

�̂� (𝑢2, 𝑦2)
on trial 𝑘. It is shown in Willems (2004) that (18) can be computed
by the standard discrete-time unlifted Kalman filter using the unlifted
‘along-the-trial’ update

�̃�𝑝(𝑡 + 1∕2) = �̃�𝑝(𝑡) − 𝛴𝑝(𝑡)𝐶⊤
𝑝 [𝐶𝑝𝛴𝑝(𝑡)𝐶⊤

𝑝 + 𝐼]−1

⋅ [�̃�2(𝑘, 𝑡) + 𝐶𝑝�̃�𝑝(𝑡)] (19)
𝛴𝑝(𝑡 + 1∕2) = 𝛴𝑝(𝑡) − 𝛴𝑝(𝑡)𝐶⊤

𝑝 [𝐶𝑝𝛴𝑝(𝑡)𝐶⊤
𝑝 + 𝐼]−1

⋅ 𝐶𝑝𝛴𝑝(𝑡) (20)

�̃�𝑝(𝑡 + 1) = 𝐴𝑝�̃�𝑝(𝑡 + 1∕2) + 𝐵𝑝(�̃�2(𝑘, 𝑡)) (21)

𝛴𝑝(𝑡 + 1) = 𝐴𝑝𝛴𝑝(𝑡 + 1∕2)𝐴⊤
𝑝 + 𝐵𝑝𝐵

⊤
𝑝 (22)

with initial conditions 𝛴𝑝(0), �̃�𝑝(0) and sample 𝑡 ∈ [0, 𝑁 − 1]. The
required 𝑟𝑘𝑝 [𝑁 − 1] is then given by the weighted norm

𝑟𝑘𝑝 [𝑁 − 1] =

[𝑁−1
∑

𝑡=0
‖�̃�2(𝑘, 𝑡) + 𝐶𝑝�̃�𝑝(𝑡)‖2[𝐶𝑝𝛴𝑝(𝑡)𝐶⊤

𝑝 +𝐼]−1

]

1
2

. (23)

Computations (17),(19)–(23) incur far less load than solving (16) since
they do not involve large matrices.

The ILC update corresponding to the candidate plant with the
smallest residual is then used to compute the next trial’s control input.
The switching signals is therefore defined by

𝑞(𝑘) ∶= argmin
𝑝∈

𝑟�̂�[𝑘] ∀𝑘 ∈ N (24)

with corresponding ILC operator 𝐶𝐾(𝑞(𝑘)). The overall EMMILC scheme
is illustrated by Fig. 3.
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Fig. 3. EMMILC framework: the bank of estimators 𝐸(⋅) defined by (17), (19)–(23)
outputs the residuals 𝑟�̂�1 to 𝑟�̂�𝑛 , the minimum residual is used to produce the switching
signal 𝑞, which then selects the next ILC update to apply to 𝑃𝑝∗ .

Fig. 4. (a) Uncertainty set  covered by balls of radius 𝜌. (b) Every plant 𝑝 ∈  has
a stabilising controller 𝑐 ∈ .

3.1. EMMILC robust performance conditions

Conditions for the stability of EMMILC were derived in Freeman and
French (2015), including bounds on the internal signals. However they
involved a substantial computational load that made them infeasible to
use in practice. Here they are presented in a simpler form suitable for
subsequently developing an efficient design framework.

Theorem 2. Let true plant 𝑃𝑝∗ ∈  . Let  be a set of candidate plant
models of form (1) and  a set of corresponding ILC controllers designed
using (7) such that (8) holds. Then the EMMILC implementation defined
by (17), (19)–(24) stabilises the true plant provided the following two
conditions are met:

1. The candidate model set  satisfies

∃𝑝 ∈  , 𝑠.𝑡. 𝛿(𝑝, 𝑝∗) < 𝜌( ,, ), (25)

where 𝜌 is a positive scalar function of the controller set , plant set
 and uncertainty space  .

2. The set of controllers  satisfies

∃𝑐 ∈ , 𝑠.𝑡. ‖𝛱�̂�∕∕𝑐‖ < ∞ ∀𝑝 ∈  . (26)

In particular, the controller signals of the switched closed-loop system
[𝑃�̂�∗ , 𝐶𝐾(𝑞)] are bounded with respect to their ideal values as

‖𝑤2‖(−𝑃−1
�̂�∗ ,0)⊤ < 𝜂( ,, )‖𝑤0‖, (27)

where 𝜂 is a positive scalar function defined in Freeman and French (2015).

Proof. This is a simplified restatement of Freeman and French (2015)
which contains the full computation of functions 𝜌 and 𝜂. Note that EM-
MILC is an extension of the MMAC framework developed in Buchstaller
and French (2016a) for feedback stabilisation. □

The two conditions (25), (26) guarantee robust performance of
EMMILC when applied to an unknown plant 𝑃𝑝∗ ∈  , and can be
interpreted as follows:

Condition (1) specifies a minimum radius of gap balls covering
the uncertainty space, and hence dictates the number of estimators
required. It is illustrated by Fig. 4(a).

Condition (2) states that there must exist a stabilising controller for
each plant in set  . This is illustrated in Fig. 4(b).

3.2. EMMILC design procedure

Computing 𝜌( ,, ) entails a large computational burden, and
is also conservative (i.e. more candidate plants are specified than
required). To address this, an efficient design procedure is now devel-
oped, which does not explicitly require calculating 𝜌( ,, ).

Firstly, criterion (26) requires every plant in the uncertainty set 
to be stabilised by at least one of the controllers in . The obvious
approach to satisfy this is using the stability bound (12) to design
a minimal candidate plant set  whose gap balls (each with radius
‖𝛱�̂�∕∕𝐾(𝑝)‖

−1) cover the uncertainty space  . This is achieved by using
Theorem 1, i.e. selecting a radius for each ball of

𝜌 = 𝛾‖𝛱𝑃�̂�∕∕𝐶𝑐
‖

−1, (28)

where 𝛾 = 1. This can be used to design a candidate plant set which
satisfies criterion (26), however, criterion (25) may not be satisfied.
Hence the tuning parameter 0 < 𝛾 ≤ 1 will be employed to reduce
the radius of the gap balls. As 𝛾 → 0, more gap balls will be included
to cover the same set  , hence (25) will always be satisfied for any
possible 𝜌, avoiding the need to calculate it.

To compute the minimal set of candidate plants that cover set  , a
practical approach is to first define the largest set of plant models that
resources permit, denoted  = {𝑝1, 𝑝2,… , 𝑝𝑁𝑚

}. These are uniformly
distributed in the uncertainty space  . Then, 𝛾 = 1 is chosen to
satisfy criterion (26). For each 𝑝 ∈ , (28) is computed and other
plants are removed which are within this radius of 𝑝, as measured
by the gap metric. If criterion (25) is not satisfied, the value of 𝛾 is
reduced and this process is repeated. When all unnecessary models are
removed, the minimal set  is obtained. The overall approach is stated
in Algorithm 1, where the ILC controller set  is produced using the
resulting minimal plant set. The principle is illustrated by Fig. 5.

Algorithm 1 Design Procedure.
Require: ILC design procedure K, uncertainty space  and tunable

parameter 0 < 𝛾 ≤ 1
Ensure: Minimal candidate plant set 
1: Define  = {𝑝1, ..., 𝑝𝑁𝑚

} as the finest grid to cover  ;
2: Set 𝑆 = {0, 0, ..., 0} with 𝑁𝑚 elements, 𝑆𝑗 denoting the 𝑗𝑡ℎ element;
3: for each 𝑖 ∈ {1, 2, 3, ..., 𝑁𝑚} do
4: for each 𝑗 ∈ {1, 2, 3, ..., 𝑁𝑚} do
5: if ∃𝑎 ∈ {1, 2, 3, ..., 𝑁𝑚}, s.t. 𝑆𝑎 = 0 then
6: Design 𝑄𝑐𝑖 , 𝐿𝑐𝑖 for 𝑐𝑖 = 𝐾(𝑝𝑖) to reach a compromise between

minimising (14) and (8).
7: if 𝛿(�̂�𝑖, �̂�𝑗 ) < 𝛾||𝛱�̂�𝑖∕∕𝐾(𝑝𝑖)||

−1 then
8: 𝑆𝑗 = 𝑖;
9: end if

10: else
11: Delete repetitions from 𝑆, set 𝑁𝑝 = |𝑆|;
12:  = {𝑃𝑝𝑆1

, 𝑃𝑝𝑆2 , ..., 𝑃𝑝𝑆𝑁𝑝
}; Exit loops;

13: end if
14: end for
15: end for
16: Return  .

4. Model description

This section defines the structure of the wrist dynamics, together
with a suitable procedure to identify the uncertainty space  required
by the EMMILC design procedure.
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Fig. 5. The black and red plant models comprise the initial candidate plant model set
 and are spread uniformly across uncertainty set  . The black plant models are not
needed and are removed from the set . The remaining red plants form the minimal
candidate plant model set  , which still covers  . (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Wrist model excited by stimulation inputs 𝑢𝑓𝑐𝑟 and 𝑢𝑒𝑐𝑟 to wrist flexor and
extensor muscles respectively, with output torques 𝜔𝑓𝑐𝑟 and 𝜔𝑒𝑐𝑟. Output 𝑦1 is the wrist
angle.

4.1. Stimulated wrist dynamics

The rehabilitation aim is to enable the wrist angle to follow a
desired trajectory using electrical stimulation applied to muscles in
the forearm. Bi-directional wrist movement is achieved via stimula-
tion of the Flexor Carpi Radialis (FCR) and Extensor Carpi Radialis
(ECR) muscles. The torque produced by each muscle can be modelled
as a Hammerstein structure, comprising a static non-linearity which
comprises the isometric recruitment curve (IRC), in series with linear
activation dynamics (LAD). The IRC can be modelled as piecewise
linear function, with segments corresponding to the deadzone, con-
traction, and saturation characteristics of the muscle (Le, Markovsky,
Freeman, & Rogers, 2010). The fixed transition between deadzone and
linear region can be readily measured and will be denoted 𝑢𝑐,𝑓𝑐𝑟, 𝑢𝑐,𝑒𝑐𝑟
for ECR and FCR, respectively. The gradient of the contraction region
will be likewise denoted 𝛼 and 𝛽. The LAD component is typically mod-
elled as a critically damped second order system (Gföhler, Angeli, &
Lugner, 2004; Rouhani, Popovic, Same, Li, & Masani, 2016), and will be
denoted 𝐻𝐿𝐴𝐷,𝑓𝑐𝑟(𝑠) and 𝐻𝐿𝐴𝐷,𝑒𝑐𝑟(𝑠) for the FCR and ECR respectively.
The resulting torque is summed and feeds into the rigid body dynamics
(RBD) of the wrist, denoted 𝐻𝑅𝐵𝐷. These can be parameterised by
damping, 𝐵𝑠, stiffness, 𝐾𝑠, and inertia 𝐼𝑠 values (Copur, Freeman, Chu,
et al., 2016). The overall model structure is shown in Fig. 6.

To produce a single input system, a static function is added to
split the control signal 𝑢1(𝑡) between the two muscles. This strategy is
known as co-activation, and is widely used in FES-based upper-limb
studies (Bó, da Fonseca, & de Sousa, 2016; Copur et al., 2016; Klauer,
Ambrosini, Ferrante, et al., 2019). It replicates natural human motor
control, and therefore reinforces the rehabilitation aim. However, to
avoid fatigue it is necessary to minimise the level of co-activation
of antagonistic muscles while effectively compensating for the dead-
zone (Schauer, 2017). In general, the co-activation level should be
minimised to avoid impeding movement and hastening fatigue (Zhang,
Chu, Liu, et al., 2020). In addition, it reduces the operational range of
𝑢1(𝑡) and the angular response. The co-activation function hence takes
the form

𝑢𝑓𝑐𝑟(𝑡) =

{

𝑢1(𝑡) + 𝑢𝑐,𝑓𝑐𝑟, 0 ≤ 𝑢1(𝑡) ≤ 300 − 𝑢𝑐,𝑓𝑐𝑟
𝑢𝑐,𝑓𝑐𝑟, 𝑢𝑐,𝑒𝑐𝑟 − 300 ≤ 𝑢1(𝑡) < 0

(29)

𝑢𝑒𝑐𝑟(𝑡) =

{

𝑢𝑐,𝑒𝑐𝑟, 0 ≤ 𝑢1(𝑡) ≤ 300 − 𝑢𝑐,𝑓𝑐𝑟
𝑢𝑐,𝑒𝑐𝑟 − 𝑢1(𝑡), 𝑢𝑐,𝑒𝑐𝑟 − 300 ≤ 𝑢1(𝑡) < 0

(30)

Fig. 7. Co-activation function with levels 𝑢𝑐,𝑓𝑐𝑟 , 𝑢𝑐,𝑒𝑐𝑟.

where co-activation levels 𝑢𝑐,𝑓𝑐𝑟, 𝑢𝑐,𝑒𝑐𝑟 ≥ 0 are the twitch responses
measured during calibration (i.e. the stimulation values just before
torque is produced). The co-activation function is illustrated by Fig. 7.
For simplicity it is assumed the stimulation amplitude is set such that
saturation occurs above the maximal stimulation pulsewidth (300 μs).

With the co-activation function applied, the overall system model
can then be written as the operator 𝑃𝑝 ∶ 𝑢1 ↦ 𝑦1, where

𝑤 = ℎ𝐼𝑅𝐶 (𝑢1) ∶=

{

𝛼𝑢1, 𝑢1 ≥ 0

𝛽𝑢1, 𝑢1 < 0
, (31)

𝑌1(𝑠) =
1

𝐼𝑠𝑠2 + 𝐵𝑠𝑠 +𝐾𝑠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑅𝐵𝐷

𝜔2
𝑛

𝑠2 + 2𝜔𝑛𝑠 + 𝜔2
𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐻𝐿𝐴𝐷

𝑊 (𝑠), (32)

where 𝑋(𝑠) denotes the Laplace transformed signal 𝑥(𝑡) in the time do-
main. This linear model form simplifies the identification and candidate
model design procedures described in the next section, but it reduces
accuracy due to neglecting non-linearities in the damping and friction
terms. However, due to the relatively slow dynamics of human move-
ment, their effect is not significant in the current scenario (Freeman,
Hughes et al., 2009).

4.2. System identification

This section defines a suitable procedure to identify the parameters
in the wrist model (32), (31).

Definition 1 (Identification Problem). Suppose an FES sequence {�̃�1(𝑡)}𝑁𝑡=1
is applied to system (32), (31) generating the measured output signal
{�̃�1(𝑡)}𝑁𝑡=1. The overall input/output data set with length 𝑁 is defined
as

𝑍𝑁 = {�̃�1(1), �̃�1(1), �̃�1(2), �̃�1(2),… , �̃�1(𝑁), �̃�1(𝑁)}. (33)

Then the parameters are the solution to the cost optimisation problem

𝑝 ∶= min
(𝐾𝑠, 𝐼𝑠, 𝐵𝑠, 𝜔𝑛, 𝛼, 𝛽)

𝑁
∑

𝑡=1

(

�̃�1(𝑡) − �̃�′1(𝑡)
)2 , (34)

where (�̃�1, �̃�1) ∈ 𝑍𝑁 , and �̃�′1 is computed using

𝑥(𝑡 + 1) = 𝐴𝑑𝑥(𝑡) + 𝐵𝑑ℎ𝐼𝑅𝐶 (�̃�1(𝑡))

�̃�′1(𝑡) = 𝐶𝑑𝑥(𝑡), 𝑡 = 0, 1, 2…
(35)

where

𝐴𝑑 = 𝑒𝐴𝑐𝑇𝑠 , 𝐵𝑑 = (𝑒𝐴𝑐𝑇𝑠 − 𝐼)𝐴−1
𝑐 𝐵𝑐 , 𝐶𝑑 = 𝐶𝑐 , (36)

is the discrete representation of system (32), which has state-space
realisation (𝐴𝑐 , 𝐵𝑐 , 𝐶𝑐 ) where

𝐴𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
0 0 1 0
0 0 0 1

−𝑎0 −𝑎1 −𝑎2 −𝑎3

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐵𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

0
0
0
1

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐶𝑐 =
[

𝑏0 0 0 0
]

,

(37)
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Table 1
Quantified performance 𝑃𝐼50 and 𝑃𝐼10 values for each subject with AE and ME electrode positions.

Subject
Standard ILC EMMILC

AE(𝑃𝐼50) AE(𝑃𝐼10) ME(𝑃𝐼50) ME(𝑃𝐼10) AE(𝑃𝐼50) AE(𝑃𝐼10) ME(𝑃𝐼50) ME(𝑃𝐼10)

a 14.94 4.75 23.17 7.67 13.95 5.81 15.11 5.77
b 16.33 5.98 23.44 7.55 12.32 3.68 12.09 4.06
c 16.42 4.93 21.94 5.45 16.39 4.91 14.88 4.67
d 30.94 7.69 105.11 (diverging) 9.35 26.76 7.96 32.54 8.89

Fig. 8. Experimental set-up showing test subject seated in the validated wrist rig
(permission received from Turk et al., 2008).

with 𝑏0 = 𝜔2
𝑛∕𝐼𝑠, 𝑎0 = (𝜔2

𝑛𝐾𝑠)∕𝐼𝑠, 𝑎1 = (2𝜔𝑛𝐾𝑠 + 𝜔2
𝑛𝐵𝑠)∕𝐼𝑠, 𝑎2 =

(𝐾𝑠 + 2𝜔𝑛𝐵𝑠 + 𝜔2
𝑛𝐼𝑠)∕𝐼𝑠, 𝑎3 = (𝐵𝑠 + 2𝐼𝑠𝜔𝑛)∕𝐼𝑠.

4.3. Model uncertainty set

This section defines a suitable procedure to construct a candidate
plant set by solving the Identification Problem.

Definition 2 (Uncertainty Set Computation). Suppose a collection of 𝑚
sufficiently varied identification data sets 𝑍𝑁

𝑖 has been collected, each
of form (33). For each set 𝑖 = 1, 2,…𝑚, solve the Identification Prob-
lem to generate (𝐾𝑠,𝑖, 𝐼𝑠,𝑖, 𝐵𝑠,𝑖, 𝜔𝑛𝑖 , 𝛼𝑖, 𝛽𝑖). Then a convex set containing
all individual models 𝑝𝑖 can be computed as

 ∶=
{

𝑃𝑝|𝑝 = (𝐾𝑠, 𝐼𝑠, 𝐵𝑠, 𝜔𝑛, 𝛼, 𝛽), 𝐾𝑠 ∈ , 𝐼𝑠 ∈ ,

𝐵𝑠 ∈ , 𝜔 ∈  , 𝛼 ∈ , 𝛽 ∈ 
}

,
(38)

where the individual parameter variation sets are  ∶=
[min𝑖{𝐾𝑠,𝑖},max𝑖{𝐾𝑠,𝑖}],  ∶= [min𝑖{𝐼𝑠,𝑖},max𝑖{𝐼𝑠,𝑖}],  ∶=
[min𝑖{𝐵𝑠,𝑖},max𝑖{𝐵𝑠,𝑖}],  ∶= [min𝑖{𝜔𝑛,𝑖},max𝑖{𝜔𝑛,𝑖}],  ∶=
[min𝑖{𝛼𝑖},max𝑖{𝛼𝑖}],  ∶= [min𝑖{𝛽𝑖},max𝑖{𝛽𝑖}]. The set  is then fed
into Algorithm 1 to construct the desired candidate plant model set.

5. Experimental test procedure

EMMILC is now applied to the common rehabilitation scenario in
which FES supports wrist flexion and extension during a reach, grasp
and return motion. The test subject places their arm in the instrumented
wrist rig described in Turk, Notley, Pickering, Simpson, Wright, and
Burridge (2008) and shown in Fig. 8. This supports their arm and
restricts movement to only the horizontal plane. The reference 𝑦𝑟𝑒𝑓 is
a smooth 20◦ wrist motion of duration 8 seconds. The subject’s wrist
is manually reset to 0◦ between trials, in order to guarantee identical
initial conditions.

FES surface electrodes (Pals PLUS, 5×5 cm) are first applied to FCR
and ECR muscles using the aligned electrode (AE) positions shown in

Fig. 9. Electrode placements: (a) AE and (b) ME positions.

Fig. 10. Upper-limb FES system components.

Fig. 9 (a). Then Standard ILC and EMMILC will be applied and their
performance compared. To replicate real conditions over a programme
of rehabilitation, a sufficiently large number of ILC trials will be run
to elicit significant fatigue. After a period of rest, both tests will be
repeated using the misaligned electrode (ME) positions shown in Fig. 9
(b) in order to replicate the variation in electrode placement that would
naturally occur in clinical practice.

The hardware and suitable experimental procedure to compute the
uncertainty set (using the results of Section 4) and subsequent EMMILC
implementation (using the design framework of Section 3) are now
described.

5.1. Experimental system

The wrist angle is measured using a resolver, with range [−90◦, 90◦]
and transmitted to a Raspberry Pi 4B board (Raspberry Pi Founda-
tion, UK). This runs the software which is programmed using the
Matlab/SIMULINK toolbox for Raspberry Pi. This low-cost portable
hardware is chosen since the system will ultimately be deployed in
the homes of stroke patients. The control software generates two 40 Hz
pulse-width modulated (PWM) square wave signals, whose pulsewidth
corresponds to signals 𝑢𝑓𝑐𝑟 and 𝑢𝑒𝑐𝑟 in Fig. 6. These signals have a
maximum value of 300 μs and are amplified by a commercial stimulator
(Odstock Medical Limited, UK) which outputs the resulting high voltage
pulse-train to the electrode pairs. The sampling frequency in all tests is
40 Hz. The system components are shown in Fig. 10.
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Fig. 11. (a) [Red line] Tracking error ratio of EMMILC in each trial with standard
electrode positioning. [Blue line] Tracking error ratio of Standard ILC in each trial
with standard electrode positioning. (b) Switched plant for EMMILC in each trial. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

5.2. Design of the candidate plant set

To design a candidate plant set, the first step will be to define
the uncertainty space. The Uncertainty Set Computation will be run
with the input component �̃�1,𝑖 of each set 𝑍𝑁

𝑖 taking the form of
a sequence of sine-wave signals with frequencies comprising 0.7 Hz,
1.1 Hz, 1.5 Hz, 1.9 Hz, and 2.3 Hz. These frequencies are chosen to
sufficiently excite the wrist while also ensuring comfort. Physiological
variation will be captured by performing the identification test seven
times (over 15 minutes) per day using a different electrode placement
each time. This guarantees the model identified can capture highly
fatigued conditions (Brend, 2014). This will be repeated over seven
days to capture the full day-to-day variation in patient physiology. The
resulting collection of 𝑚 = 49 data sets, 𝑍𝑁

𝑖 , and respective models, 𝑝𝑖,
will be used to compute  via (38).

For each identification, fitting accuracy will be defined as

𝐹𝑝𝑖 =

(

1 −
‖�̃�1,𝑖 − �̃�′1,𝑖‖

‖�̃�1,𝑖‖

)

× 100, (39)

where �̃�′1,𝑖 is the result of applying �̃�1,𝑖 to model 𝑝𝑖. Each input �̃�1,𝑖 will be
applied twice and only the first data set will be used for identification.

Fig. 12. (a) [Red line] Tracking error ratio of EMMILC in each trial with misaligned
electrode positioning. [Blue line] Tracking error ratio of Standard ILC in each trial with
misaligned electrode positioning. (b) Switched plant for EMMILC in each trial. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

The second will be used purely to compute a prediction accuracy which
will be termed 𝑉𝑝𝑖 .

Having identified uncertainty set  , the next step is to define the
control design procedure used in Algorithm 1. Here the norm optimal
ILC algorithm is chosen, due to its success in five clinical trials using
FES for upper limb rehabilitation (Freeman, 2016).

For a plant model 𝑝, this corresponds to the ILC update 𝐶𝑐 , where
𝑐 = 𝐾(𝑝) is given by

𝑢2(𝑘 + 1) = 𝑄𝑐(𝑢2(𝑘) − (𝐼 + 𝛽𝑃�̂�𝑃
⊤
�̂� )−1𝛽𝑃⊤

�̂� 𝑦2(𝑘)), (40)

which has a convergence condition satisfying (8). The filter 𝑄𝑐 is
designed as a 5th order zero-phase low-pass filter with cut-off frequency
3 Hz in order to remove frequencies that are not contained in the
reference. This hence maximises robustness bound (14). The step size
𝛽 = 0.001 is chosen as a suitable compromise between robustness (14)
and convergence (8) as required by Algorithm 1.

Within Algorithm 1, the parameter 𝛾 = 1 is chosen to investigate the
coarsest candidate model set. Also, 𝑁𝑚 = 120 is specified as the initial
plant set size  since it is the maximum the hardware can support.
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Fig. 13. (a) [Red line] Control energy ‖𝑢2(𝑘)‖ of EMMILC in trial 𝑘 with AE positioning.
[Blue line] Control energy ‖𝑢2(𝑘)‖ of standard ILC in trial 𝑘 with AE positioning. (b)
As above but with ME positioning. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

When applied to track 𝑦𝑟𝑒𝑓 , the control performance will be quan-
tified by a performance index

𝑃𝐼𝑁𝑘
=

𝑁𝑘
∑

𝑘=1

‖𝑦2(𝑘)‖
‖𝑦𝑟𝑒𝑓‖

, (41)

where 𝑁𝑘 denotes a total trial number of interest. This index accu-
mulates the error ratio over the first 𝑁𝑘 trials and captures both con-
vergence speed and final tracking accuracy (Ratcliffe, Lewin, Rogers,
Hatonen, & Owens, 2006). The smaller the value of 𝑃𝐼𝑁𝑘

, the better
the tracking performance over the 𝑁𝑘 trials.

6. Experimental results

Ethics approval was granted by University of Southampton Ethics
and Research Governance Online (ERGO), ID 72855. Four unimpaired
subjects were recruited, as a prerequisite for later clinical tests with
stroke patients. The subjects were seated and electrodes were placed
in the AE position as previously described. A stimulation pulsewidth of
300 μs was applied to each muscle in turn, and the amplitude was slowly
increased to a maximum comfortable limit. The pulsewidth was then
set to zero, and is the controlled variable. The stimulation levels corre-
sponding to the twitch response of each muscle were then measured to
determine the co-activation levels 𝑢𝑐,𝑓𝑐𝑟, 𝑢𝑐,𝑒𝑐𝑟. The experimental results
are now given.

6.1. Identification results

The procedure described in Section 5.2 was applied to construct
the candidate model set. It was decided to perform this with only
one subject, in order to evaluate whether a single candidate model set
could yield satisfactory performance with all subjects. If successful, this
would effectively remove the need for model identification and hence
constitute a major step towards achieving model-free, home-based FES
rehabilitation.

Having collected data sets 𝑍𝑁
𝑖 , the corresponding 𝑚 = 49 identified

models had a fitting accuracy range of 61% − 71% and a validation
accuracy range of 59% − 68%, computed using (39). Applying the
Uncertainty Set Computation yielded the overall uncertainty set

 ∶= {𝑃𝑝|𝑝 = (𝐾𝑠, 𝐼𝑠, 𝐵𝑠, 𝜔𝑛, 𝛼, 𝛽), 𝐾𝑠 ∈ [0.01, 0.08],

𝐼𝑠 ∈ [0.00001, 0.0001], 𝐵𝑠 ∈ [0.001, 0.01],

𝜔𝑛 ∈ [5, 15], 𝛼 ∈ [0.6, 1.2], 𝛽 ∈ [0.9, 1.1]}.

(42)

Taking the controller form (40) within Algorithm 1 then produced a
minimal candidate set  = {𝑝1, 𝑝2,… , 𝑝𝑁𝑝

} comprising 𝑁𝑝 = 116 plants
(4 having been removed).

6.2. Performance with AE placement

The first tests compare standard ILC with EMMILC for all subjects
using AE positioning. Standard ILC requires a new model to be identi-
fied. Therefore the Identification Problem was solved for each subject
by applying stimulation input �̃�1 designed in Section 5.2. The resulting
identified model was then lifted to give 𝑃�̂� which was applied with
standard ILC update (40) to track 𝑦𝑟𝑒𝑓 over 50 trials.

After a 20-minute rest, EMMILC was then performed over 50 trials
using the same candidate set defined above for each subject. The
tracking performance for each subject is shown in Table 1.

This shows that all subjects performed better using EMMILC, as the
𝑃𝐼50 values are smaller than those of standard ILC. Specifically, Fig. 11
shows the results with subject 𝑎, where EMMILC has approximately
25% better performance. In terms of the convergence over the initial
10 trials, measured using 𝑃𝐼10, EMMILC provides similar performance
compared with standard ILC.

Fig. 13 (a) shows the control effort ‖𝑢2(𝑘)‖ applied to subject 𝑏 over
trial 𝑘 = 1, 2,… , 50 using standard ILC and EMMILC. In both cases
the FES energy increases over time due to muscle fatigue. However,
this continuous increase of stimulation increases patient discomfort,
especially in the case of standard ILC. In comparison, EMMILC has
reduced the stimulation required by using the most accurate plant
model on every trial, thereby minimising energy. In contrast, standard
ILC has employed an inaccurate plant model which wastes effort by
exciting modes/frequencies not required by the task.

In a home-use or wearable scenarios there is limited processing
power, meaning that fewer candidate plant models can be supported.
To investigate the effect of limited computational resources, EMMILC
was next redesigned to have fewer candidate plants. This was achieved
by designing 𝑄𝑐 in Algorithm 1 to reduce robustness when minimising
(14) and hence cover the uncertainty space with fewer candidate plants.
As a compromise, the convergence rate of each plant model is reduced.
To examine this, four candidate sets were produced with a descending
number of plants. Each of them was applied on one subject with AE
positioning over 50 trials. The results are then presented in Table 2.

The results show that the tracking performance of EMMILC reduces
as the number of candidate plants (and hence computational load)
reduces. Comparison between Tables 2 and 1 shows that, even with
only 30 models, the performance of EMMILC is still superior to that
of standard ILC. This supports the efficacy of EMMILC to be used for
home-based FES rehabilitation. However, the subject reported a larger
oscillation of wrist movements as the number of candidate models
decreased, slightly reducing comfort during testing.
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Table 2
Quantified performance for four different plant sets.

Plant set No. plants 𝑃𝐼50 value

1 𝑁𝑝 = 116 12.32
2 𝑁𝑝 = 97 13.81
3 𝑁𝑝 = 71 14.03
4 𝑁𝑝 = 30 14.66

6.3. Performance with ME placement

The test procedure was then repeated with the ME position. Results
show that EMMILC significantly outperformed standard ILC, which
could not stabilise the system with subject 𝑑. This is manifested in both
short-term (𝑃𝐼10) and long-term (𝑃𝐼50) convergence in Table 1. These
results are remarkable given that the candidate plant set used for all
subjects was built only for subject 𝑏. This confirms the possibility that
no further identification is required for different subjects.

To illustrate the switching process, the tracking results of subject 𝑎
are shown for AE (Fig. 11) and ME (Fig. 12), positioning. As in Fig. 11
(a), standard ILC decreased its tracking error to 26% of its initial value
within 10 trials. In comparison, EMMILC required 10 trials to reach 14%
of its initial value. The switching process is shown Fig. 11 (b), where
the change in wrist dynamics started to increase after trial 29. EMMILC
adapted to this by switching to other candidate plants. As shown in
Fig. 12 (a), EMMILC decreased to 19% of its initial error after 10 trials,
but standard ILC decreased to only 47% of its initial error. Similarly,
EMMILC also adapted to the increased physiological variation following
trial 29, as shown in Fig. 12 (b).

Fig. 13 (b) shows the control effort used by each ILC type. EMMILC
clearly applied much smaller stimulation inputs to subject 𝑏 compared
to standard ILC with ME positioning, illustrating that it can deal
with fatigue much more effectively. EMMILC also achieved far better
performance with ME positioning, as shown in Table 1.

7. Conclusion

This paper has addressed the key problem of FES-based upper-limb
rehabilitation by implementing a multiple-model adaptive framework.
Building on the initial numerical results in Zhou, Freeman, and Holder-
baum (2023b) and Zhou et al. (2023a), it combined an efficient design
procedure with EMMILC to transparently balance computational bur-
den and tracking performance. By using this protocol, this research
has designed a candidate plant model set which can be applied to all
subjects. This removes time-consuming identification tests, and hence
increases the possibility of accurate FES control when progressing to
home-use scenarios. The EMMILC framework has been experimentally
tested with four healthy test subjects and has automatically adapted
to their fatigue and electrode re-positioning. As a result, EMMILC has
improved performance by 28% compared to standard ILC. Future inves-
tigations will involve EMMILC with higher dimensional multiple-input,
multiple-output systems (e.g. electrode arrays), which have greater
muscle selectivity and can provide intensive and goal-oriented FES
training that supports a variety of upper-limb activities.
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