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Abstract

Binary logistic regression is one of the most widely used statistical tools. The

method uses odds, log odds, and odds ratios, which are difficult to understand

and interpret. Understanding of logistic regression tends to fall down in one of

three ways: (1) Many students and researchers come to believe that an odds

ratio translates directly into relative probabilities. (2) Alternatively, they learn

that coefficients tell us whether the variables make the outcome more or less

likely, without knowing how to interpret changes in the odds. (3) They may be

instructed in how to calculate predicted probabilities, but the additional steps

are too complicated for them to follow. Our key aim is to highlight and correct

the common mistake of confusing differences in odds with relative risks. Sim-

ply reporting the odds ratio is unhelpful, however, so we describe an easy

method of estimating probabilities for both binary and continuous variables.
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1 | INTRODUCTION

Regression is probably the most widely used method in
inferential statistics. Linear regression is one of the first
techniques that students learn, and binary logistic regres-
sion tends to follow swiftly. That is understandable,
because we often want to predict a binary outcome: win/-
lose, pass/fail, mover/stayer, infected/not, and so
on. Logistic regression generates odds ratios, and “there
is a problem with odds: unlike risks, they are difficult to
understand.”1

If odds ratios were merely viewed as mysterious signs
that a variable has a positive or negative influence on the
outcome, with no further attempt at interpretation,
the situation would be regrettable but not disastrous.
Unfortunately, “most people misinterpret odds ratios as
risk ratios,” that is, as relative probabilities, in the view of

Norton et al.2, p. 492 The assertion that an exponentiated
coefficient of 2.0 means that increasing the predictor vari-
able by 1 makes the outcome twice as likely is easy to
find in online teaching material, never mind student
papers.

The authors of the key publications in the Sage Quan-
titative Applications in the Social Sciences series (popu-
larly known as the “little green books”) are aware of this
problem. In the second edition of Logistic Regression: A
Primer, Fred Pampel writes

In interpreting the exponentiated coeffi-
cients, remember that they refer to multipli-
cative changes in the odds rather than
probabilities. It is incorrect to say that an
additional year of education makes smoking
16.7% less probable or likely, which implies
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probabilities rather than odds. More pre-
cisely, the odds of smoking are .833 times
smaller or 16.7% smaller with an additional
year of education.

[3]

Similarly, Scott Menard reveals some frustration in a pas-
sage added to the second edition of Applied Logistic
Regression Analysis:

I have repeatedly seen the mistake of equat-
ing the odds ratio (a ratio of two odds) with a
risk ratio (a ratio of two probabilities), some-
times with the justification that the two are
‘approximately’ equal under certain fairly
restrictive conditions (a base rate less than
.10). In general, the use of an odds ratio to
‘represent’ a risk ratio will overstate the
strength of the relationship. An odds ratio of
about .22 for males … does not mean that the
risk of marijuana use is only a little over
one-fifth as high for males as for females or
that the odds ratio of 4.5 for females … indi-
cates that the risk of marijuana use is nearly
five times as high for females as for males.
To compare the relative risk of marijuana
use for males and females, it is necessary to
use the model to calculate the probabilities
for each, assuming values of the other pre-
dictors. … Suggestion: Do the math. There is
no excuse here for approximations that can
so easily be misleading.

[4]

These warnings seem clear, but they are brief and buried
in the middle of long chapters on interpreting logistic
regression coefficients. The problem needs to be made
much more visible to students, teachers, and researchers.
The idea that odds ratios express relative risks is persis-
tent and (as we shall see below) highly misleading except
when the probabilities in question are very low (less than
0.1 or so).

The misinterpretation of odds ratios has been a prob-
lem for decades. In 1991, Roncek highlighted the issue in
the social sciences, pointing out that an article published
the previous year in Social Forces (then one of the top
three journals in sociology) presented findings in which
odds ratios were described as “times as likely,” in other
words as relative risks.5 The situation did not improve in
the years that followed, leading one scholar to conclude a
major review of a more technical problem in logistic
regression with the statement that “odds ratios are fre-
quently misunderstood as relative risks, so it is often a

good choice to present at least one effect estimate in
terms of effects on probabilities.”6, p. 80 In the bio-medical
arena, Holcomb et al.7 reviewed all of the articles pub-
lished in 1998–1999 in the two leading journals in obstet-
rics and gynecology, finding that “Of 151 studies using
odds ratios, … In 39 (26%) articles the odds ratio was
interpreted as a risk ratio without explicit justification.”

Even textbooks can be misleading. The first edition of
Statistics at Square Two sets out the statistical concepts—
even mentioning that odds ratios are not relative risks—
but then interprets odds ratios using “times as likely” lan-
guage when giving two practical examples concerning
breastfeeding and hypertension.8, pp. 43–45 The breastfeed-
ing example was corrected in the second edition, and the
odds ratio is explicitly contrasted with relative risk, but
the mistake persists in the other example: Based on an
odds ratio of 2.24, “we would predict that the older sub-
ject would be 2.24 times more likely to have hyperten-
sion.”9, p. 41 Finally, in the third edition, the examples
have been changed and the authors stress the difference
between odds ratios and relative risks.10

The bestselling Discovering Statistics using IBM SPSS
Statistics includes problems at the end of each chapter,
with answers on the companion website. One task
involves using logistic regression to analyze the factors
that influence condom use, and the resulting odds ratios
are interpreted as showing that the variable makes the
outcome that many times more or less likely.11, pp. 933–934,
12, Task 20.6 The same problem appeared in earlier editions,
which suggests that no one has ever brought the issue to
the attention of the author and publishers.

Even the excellent Sage little green book on logistic
regression, possibly the best introduction to the topic,
creates some confusion with an example of men's and
women's differing levels of support for the legalization of
marijuana.

According to the 2016 GSS … The ratio of
odds of men to women equals 1.93/1.34 or
1.44. This odds ratio is a group comparison.
It reflects the higher odds of supporting
legalization for men than women. It means
specifically that 1.44 men support legaliza-
tion for each woman who does.

[3]

The author of the book acknowledges that “It would have
been better to say ‘It means specifically that odds for
men of supporting legalization are higher by a factor of
1.44 than for women’” (F. Pampel, personal communica-
tion, January 2, 2024).

Our point is not to criticize individual authors but to
illustrate how easy it is to misinterpret odds ratios—a
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tendency that has no doubt been encouraged by the fact
that odds ratios are approximately the same as risk ratios
when the underlying probabilities are very small, as they
often are in applications involving rare medical condi-
tions. Unfortunately, the mistake is so pervasive that web
searches using terms such as “interpreting logistic regres-
sion coefficients” do not reliably lead to clear and correct
explanations; an unwary scholar is likely to find material
that is misleading, confused, or confusingly technical.

Some researchers have sufficient skill in statistics to
navigate these difficulties. In the social sciences, how-
ever, many students have limited mathematical knowl-
edge and may even resist training in quantitative
methods for ideological reasons.13,14 In any case, it can
be challenging for them to grasp logistic regression, a tool
based on equations involving e, natural logarithms, and
the overlapping concepts of probabilities, odds, log odds,
and odds ratios. Misunderstandings can easily take
root—particularly when the mistaken interpretation is
less complicated than the true one.

A partial solution is to teach students that odds ratios
cannot be interpreted as relative probabilities. They can
learn that coefficients tell us whether the variables make
the outcome more or less likely, without knowing how to
interpret changes in the odds. Many textbooks take this
approach, but it is hardly very satisfying.

A better solution is to use the output from logistic
regression to calculate probabilities. The initial barrier is
the fact that relative risks, unlike odds ratios, change
depending on the values of the predictors and the depen-
dent variable. Once that is understood, the usual method
is to specify a typical case as the baseline, but the subse-
quent calculations are laborious to perform manually
and require further training if done by statistical
software.

To summarize, understanding of logistic regression
tends to fall down in one of three ways:

1. Many students and researchers come to believe that
an odds ratio translates directly into relative
probabilities.

2. Alternatively, they learn that coefficients tell us
whether the variables make the outcome more or less
likely, without knowing how to interpret changes in
the odds. They will correctly write that “the odds for
women are twice as high as the odds for men,” but
such a statement means little on its own.

3. They may be instructed in how to calculate predicted
probabilities, but the additional steps are too compli-
cated for them to follow.

Our key aim is to highlight and correct the common
mistake of confusing differences in odds with differences

in probabilities. Simply reporting the odds ratio is
unhelpful, however. Predicted probabilities are much
more informative, and students using statistical software
like R or Stata should be taught how to produce them.
SPSS it is poorly suited to this task, but it continues to be
the package most widely used by academic
researchers,15,16 particularly for teaching purposes and in
the social sciences. Moreover, scholars often encounter
journal articles that report on odds ratios but not pre-
dicted probabilities. We describe a simple method for
estimating them for both binary and continuous indepen-
dent variables.

2 | UNDERSTANDING ODDS AND
ODDS RATIOS

2.1 | Odds

However one introduces logistic regression—and we sug-
gest that it is best not to start with the technical
material—it is necessary to talk about odds at an early
stage. The odds are the probability p that something hap-
pens divided by the probability (1 � p) that it does not.
People who bet on horse races use them all the time, but
for everyone else, odds seem odd.

Most of us are accustomed to thinking of how likely
or probable an event is as a percentage, as in “there is a
25% chance of rain today.” That is equivalent to saying
that we could expect rain in these circumstances 25 times
out of 100.

A different way of expressing the same thing is that
there is one chance in four that it will rain, which
means that there are three chances in four that it will
stay dry. The odds are one to three that it will rain, or
to flip things on their head, three to one that it will
be dry.

If you want to bet on a horse race, most bookies will
make you an offer expressed as the odds that your horse
will lose, such as 8 to 1 against Blaze winning the race.
Why do it this way, instead of saying that the chances are
one in nine that it will win? One reason is that the odds
tell you how much you stand to gain in relation to what
you risk. If you gamble £1 and your horse comes in, you
will win £8 that you did not have before (as well as get-
ting back your £1 stake).

It is not hard to convert probabilities into odds and
vice versa, but we have to be aware that the two values
are different. Let us go back to the 25% chance of rain.
Probabilities are traditionally expressed as proportions
(values between 0 and 1), so the probability of rain is
0.25. The odds are 1/3, which we can treat as a fraction,
so the decimal value is 0.33. That is already a
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considerable difference between probability and odds,
but the gap is much larger when it comes to events that
are especially frequent. The probability that it will stay
dry is 0.75. The odds are 3/1 or 3.0.

Why does this difference increase so much as the
event becomes more likely? Probabilities are all between
0 (impossible) and 1 (certain), but there is no limit to
how high the odds can be. As an event becomes more
probable, the chances of it happening divided by the
chances that it will not happen go up and up. For exam-
ple, a probability of 0.15 produces odds of 0.15/(1–0.15)
= 0.18, a probability of 0.85 gives odds of 0.85/(1–0.85)
= 5.7, a probability of 0.98 means odds of 0.98/0.02 = 49,
a probability of 0.999 takes us to odds of
0.999/0.001 = 999, and so on towards infinity. Note the
absence of a straight line (or linear) relationship between
probability and odds. One can see that probability and
odds are similar for very small values (up to about 0.1),
but they can be very far apart when the values are much
larger.

2.2 | Odds ratios and avoiding the big
mistake in logistic regression

Statistical software like SPSS typically produces output
for logistic regression that includes a list of independent
variables with the coefficient B in one column and Exp
(B) in another. The exponentiated coefficient gives us the
odds ratio, which could be a value below 1 (meaning that
the variable makes the outcome less likely) or greater
than 1 (meaning that the variable makes the outcome
more likely).

Textbooks and research articles often go no further
than providing a basic interpretation of the odds ratio: If
it is 2.5, for example, a unit change in the independent
variable increases the odds of the outcome by two and
half times; if it is 0.8, a unit change in the variable
reduces the odds of the outcome by 20%. Such statements
are at least correct, but no one has an intuitive sense of
how to interpret those values, which makes the exercise
seem slightly pointless.

To do better, it helps to start with an example of how
odds and odds ratios work. Let us say that we want to
know whether women are more likely to pass a particular
course, all else being equal. The dependent variable is
pass/fail; the independent variable of interest is gender,
with 0 = male and 1 = female.

Assume that 60% of men pass a course, and so 40%
fail. That means that for a man, the odds of passing are
0.6/0.4 = 1.5. Now suppose that we run a logistic regres-
sion, and the exponentiated coefficient for gender
(remember that female = 1) is 2.0. That value for Exp(B)

is the odds ratio—the odds of passing for women divided
by the odds of passing for men:

odds of passing for women
odds of passing formen

:

So, the exponentiated coefficient of 2.0 tells us that
the odds of passing are twice as high for women as
for men.

Here is where we often encounter the most common
error in statistical interpretation. The coefficient does not
mean that women are twice as likely to pass as men. We
are dealing with odds, not probabilities. Given that 60%
of men pass, it would obviously make no sense to assert
that women are twice as likely to pass.

Recall that for men, the odds of passing are 60/40, or
1.5. Since the odds ratio for women relative to men is 2.0,
the odds of passing for women are 1.5 � 2.0 = 3.0.

If the odds of passing for women are 3.0, that means
that they are three times as likely to pass as to fail:

probability of passing for womenð Þ
probability of not passing for womenð Þ¼ 3:0:

The only question remaining is how likely women are
to pass. By definition, odds = p/(p-1). A few lines of alge-
bra transform this equation to:

p¼ odds
1þodds

:

And so we can work out the probability from the
odds. Since we know that the odds are 3, it is easy to cal-
culate that the probability is 3/4 = 0.75. That makes
sense, because if the probability of passing is 0.75, the
probability of failing is 0.25, which means that the odds
are 0.75/0.25 = 3.0. To summarize, our logistic regression
model predicts that 75% of women will pass.

In this situation, the odds of passing are twice as high
for women as for men: the Exp(B) in the logistic regres-
sion output is 2.0. But women are only 25% more likely
than men to pass (because their projected pass rate is
75% rather than 60%, and 75/60 = 1.25). Interpreting a
difference in the odds as a difference in probabilities
would be a serious mistake.

If the event represented by the dependent variable is
fairly rare, the odds ratio and relative risks are similar.
For example, if 10% of men and 15% of women have
experienced depression, the ratio of women's odds to
men's odds is (15/85)/(10/90) = 1.59. The odds are 59%
higher for women, and the probability is 50% higher (0.15
vs. 0.10), which is fairly similar. As the likelihood of the
outcome rises, however, the divergence grows. The pass/
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fail scenario described above is an example. When the
chances of the event occurring are very high, the odds
ratios are typically large while the difference in probabili-
ties becomes small. For example, suppose that 98% of
women pass a course, compared to 92% of men. The odds
ratio is (98/2)/(92/8) = 4.26, but women are obviously
not four and a quarter times more likely than men
to pass.

In the main example above, gender had been coded
with male = 0, female = 1. A curious student might won-
der whether the results would be different if the coding
had been female = 0, male = 1. Such a question offers
the opportunity to show that only the calculations along
the way would change. This time our starting point
would be the probability of passing for women, which is
0.75, and so, their odds of passing are 0.75/0.25 = 3.0.
The logistic regression would now give us 0.5 as the odds
ratio for men relative to women:

odds of passing formen
odds of passing for women

:

That means that the odds of passing for a man are
half those for a woman. Once again, it would be a mis-
take to jump to the conclusion that men are half as likely
to pass: odds are not probabilities. Since the odds for
women are 3.0, we know that the odds for men are
3.0 � 0.5 = 1.5. And because odds/(1 + odds) gives us
the probability, we can work out that the probability of
passing for men is 1.5/2.5 = 0.6. Thus 60% of men pass,
which was where we started.

It does not matter whether we look at women relative
to men or men relative to women; the odds ratio will be
flipped over (2 in one case, ½ in the other), but we arrive
at the same result. In either case, it is important to avoid
confusing odds and probabilities: women are not twice as
likely to pass the course as men, nor are men only half
as likely to pass as women.

3 | INTERPRETING THE
COEFFICIENTS

3.1 | Straight lines versus S-shaped
curves

By this point, everyone should understand that an odds
ratio of X does not mean that the predictor makes the
outcome X times more likely. Saying that the odds are
X times higher, though, is correct but not very useful. We
need to translate the results back into probabilities. To
take that step, it helps to have a basic grasp of how logis-
tic regression works.

With linear regression, the concept is simple: you
have a variable (like a measure of health and wellbeing)
that you want to explain, and at least one variable (like
number of cigarettes smoked each day, or hours spent on
social media each week) that may have an influence
on it. You can create a scatterplot with health along the
vertical axis (high is good, low is bad) and smoking or
social media use along the horizontal axis, so there is one
dot for every person in your dataset. If you draw a line
through the dots in a way that fits the best—that is, the
line is as close as possible to as many points as possible—
you have done linear regression.

The key point about the linear or “straight line”
model is that the effect of an independent variable on the
dependent variable is constant at all levels. The interpre-
tation of a coefficient in linear regression is simple: it is
the change in the outcome that results from increasing
the value of the independent variable by 1. No other
information is needed, and no calculations are required.

Imagine, for example, that the dependent variable in
linear regression is a happiness scale and the indepen-
dent variable of interest is a measure of health, with con-
trols for age, gender, and so on. If the coefficient for
health is 2, that means that every additional point on the
health scale adds 2 points to the happiness scale.
The 2-point boost holds for young and old, men and
women, and at all levels of happiness, high and low. One
can state the effect of health on happiness without know-
ing anything else.

In binary logistic regression, the dependent
variable—the thing we want to explain—takes one of
two values: yes or no, good or bad, pass or fail. One might
think that the binary outcome would make things sim-
pler, but in fact, it complicates matters. Instead of pre-
dicting the value of the dependent variable, we now aim
to predict the probability that it is 1 rather than 0. And
instead of fitting a straight line (the “linear model”), we
are going to use an S-shaped curve (the “logistic model”).

In its basic form, the logistic curve starts very close to
0, rises gradually, and then more rapidly before leveling
off, ending up very close to 1. The effect of an indepen-
dent variable on the probability that the dependent vari-
able equals 1 is not constant at all levels. The effect is
greatest when the probability is 0.5 and smallest at the
extremes.

Consider the example of sporting events with a binary
outcome: win or lose, no draws (ties). The predictors of
whether a team wins a particular match include whether
they are at home or away. We can ask how much home
advantage increases the probability of winning, but the
answer depends on the base probability, taking every-
thing else into account. If Liverpool is playing another
team that is equally strong, being at home might be a
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substantial advantage. If Liverpool were to play an ama-
teur team, the venue would have little influence on the
outcome.

The exact form of the logistic curve will be deter-
mined by the data to which the model is fitted. The
basic pattern is always the same, however, as shown
in Figure 1. There is an S-shaped curve
representing—as a function of the independent
variable(s)—the probability that the dependent vari-
able equals 1. The probability is bounded by 0 and
1, which is an important reason the line on the graph
is curved rather than straight. Shifting an independent
variable has most influence on the probability when
the binary outcome might go either way; it is least
influential when the initial probability is close to 0 or
1. The logistic function is illustrated in Figure 1, and
the underlying mathematics are outlined in the
Appendix A.

3.2 | Going back to probabilities

We can convert the findings from logistic regression into
probabilities, but the point made in the previous
section is crucial: there is no single answer. The logistic
curve is not a straight line, so the slope (the rate of
change in probability as the x-variable changes) is not

constant. We can say how much difference an increment
in the independent variable has on the probability of the
outcome, but only with reference to a particular
situation.

For example, if we are going to predict how a change
in health affects the probability of being happy, we have
to know how likely the person is to be happy anyway.
But being happy or unhappy is the dependent variable: it
depends on age, gender, income, and everything else,
including how healthy the person is already. We there-
fore have to specify all of those values to calculate the
probability of being happy (given that particular set of
characteristics) and then how much that probability
would go up or down if there is a change in health. The
answer may be different if we chose another kind of per-
son as the reference case.

The usual recommendation is to select an average or
a “typical” case (such as a single white woman aged
20, employed, and so on) and then to insert all of the
values of the independent variables into the logistic
regression equation and do the calculations required to
come up with an answer. Once we work out the probabil-
ity of being happy for the baseline case, we can compare
it to the probability we find when health goes up by a
point. There are routines in R and Stata that will auto-
mate the process, but many students and researchers do
not use those packages.

FIGURE 1 A simple logistic curve. [Color figure can be viewed at wileyonlinelibrary.com]
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A simple alternative is to set all of the independent
variables to zero, but the result is likely to be unrealistic
unless the variables are standardized (so that zero repre-
sents the mean value). The predicted probability of pass-
ing a course for someone aged 1 rather than 0 is not
helpful to know.

A third and arguably better option is to use the actual
frequency from the sample. To return to the example of
passing a course, a basic crosstab will give us the percent-
age of men who pass. By calculating p/(1-p), that
percentage can be turned into the odds of passing for
men. Multiplying these odds by the odds ratio from the
logistic regression gives the odds of passing for women,
controlling for the other independent variables, and those
odds can then be turned into a predicted probability or
percentage.

Remember that the probability of passing depends on
the individual's characteristics. If we follow the procedure
just described, we would be predicting the outcome for
women if they were like the general sample in every
respect other than gender. The sample distribution by
age, qualifications, ethnicity, family income, and so on
might not be exactly what we want (though weighting
can help), but whatever it is, the method gives us the
approximate pass rate for female students compared with
male students who were otherwise similar.

As shown earlier, we could just as easily compare
men to women as women to men. The reciprocal of the
odds ratio just considered represents the odds for men
relative to those for women. Multiplying it by the
observed odds for women and then converting odds to
probability would give us the approximate pass rate for a
set of male students who resembled the female students
in all respects except for gender.

The take-away lesson should be reassuring for
scholars who feel mystified by odds and odds ratios. The
odds ratio does not mean much on its own. If we are con-
tent with knowing whether a particular predictor has a
positive or negative effect (and whether that influence is
statistically significant), then the logistic regression out-
put will tell us. If we want more insight into the size of
the effect, we need to convert odds back into
probabilities.

3.3 | Predicted probabilities with binary
variables

Descriptions of logistic regression often stop at odds
ratios. When textbooks do explain how to calculate pre-
dicted probabilities from the model, the procedure typi-
cally involves lengthy calculations using the full
regression equation with values assigned to every

independent variable. The alternative method just
described is easy to use, but it is worth reviewing the
steps carefully.

If we are interested in the effect of a binary indepen-
dent variable, the starting point is to run a crosstabula-
tion with the dependent variable (Table 1). In our
example, we have been looking at the effect of gender on
a pass/fail outcome. The table gives us pass rates for both
men and women, but they might differ in relevant ways,
potentially including age, qualifications, ethnicity, family
income, and so on. We performed a logistic regression in
order to control for those socio-demographic differences.
What we are aiming to do now is to take the percentage
of men who pass and then estimate, for a hypothetical set
of women whose other characteristics are the same, the
percentage who will pass.

Let us label the probability a man will pass as p0; the
probability that a woman will pass is p1. Take the follow-
ing steps:

1. Find the proportion of men who pass, p0, from a
crosstab (converting percentages into proportions,
e.g., 62% becomes 0.62).

2. Calculate the odds that a man will pass, which is
p0/(1 � p0).

3. Multiply that value by the odds ratio (the Exp[B] from
the logistic regression output); the result is the odds
that a woman will pass.

4. Calculate odds/(1 + odds), which is the probability
that a woman will pass, p1. It will differ from the
value in the pass-by-gender crosstab if the other inde-
pendent variables in the regression model have
accounted for some of the gender gap.

With the pass rate by gender in hand, along with the
output of the logistic regression, the entire calculation
can be done in less than a minute. An alternative formula
is described in the next section.

Recall that the object of logistic regression is to con-
trol for other factors. What we have done is to calculate a
pass rate for women that can be compared to what was
found for men, controlling for other variables included in
our regression model. It is only an approximation—the
most rigorous approach is to predict probabilities using a
set of specified characteristics—but it is a quick and easy

TABLE 1 Pass rates by gender (%).

Men Women

Pass 62 70

Fail 38 30

Total 100 100
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way of estimating the magnitude of the variable's effect
(here, the effect of gender on the probability of passing a
course). Published articles that show odds ratios and con-
fidence intervals would benefit from including some
information about relative risks, even if they do not go as
far as providing a full analysis of risk ratios, marginal
effects, or predicted probabilities.2, 3,ch. 2

3.4 | Predicted probabilities with
continuous variables

If the independent variable of interest is not binary, the
calculations are a little different. With a binary predictor,
as described above, we start from the relative frequency
of the outcome variable (like passing the course) for one
value or the other (like male or female). With a continu-
ous variable, we use the mean of the outcome variable as
the baseline. For example, we might be interested in how
the number of hours spent studying each week affects
the chances of passing. If 68% of students pass the course,
the odds of passing are 68/32 = 2.125.

Suppose that on average students devote 15 h per
week to their studies. The regression coefficient tells us
what happens when that independent variable is incre-
mented by one unit. In this example, it will give us the
change in the odds for an additional 1 h per week of
study. Suppose that the odds ratio is 1.2. Multiplying the
odds of passing if you study for 15 h by the odds ratio
gives us the odds of passing if you study for 16 h:
2.125 � 1.2 = 2.55. We can translate that back into a
probability using the formula odds/(1 + odds), so
2.55/3.55 = 0.718 is the probability of passing if you study
for 16 h. An additional hour of study beyond the average,
then, raises the chances of passing from 68% to almost
72%. An alternative approach to estimating the change in
probability is described in the next section.

In some instances, a single unit increase will not be a
useful indicator. If the variable is a scale from 0 to
100, for example, a change from 42 to 43 may not have
much impact. In the case above, we might not be particu-
larly interested in the marginal change represented by an
additional hour per week. How much difference would it
make if a student committed to studying 5 h more than
the average: 20 h per week rather than 15? The odds of
passing are multiplied by 1.2 for each additional hour
of study, so the new odds ratio is
1.2 � 1.2 � 1.2 � 1.2 � 1.2 = 1.25 = 2.488. That means
that the odds of passing are now 2.125 � 2.488 = 5.288.
Converting that into a probability, we have odds/(1
+ odds) = 5.288/6.288 = 0.841. The extra 5 h a week
have lifted the chances of passing from 68% to 84%.

It is interesting to compare what happens to the odds
ratios and the predicted probabilities of passing with an
extra 1, 5, or 10 h of study per week. The odds ratio
quickly becomes very high, going from 1.2 to 1.25 to
1.210, that is, from 1.2 to 2.488 to 6.192. The predicted
probabilities, by contrast, show that additional study has
diminishing returns. The extra 1, 5, or 10 h take the prob-
ability of passing from 0.72 to 0.84 to 0.93. Reliance on
odds ratios would give a misleading impression—though
we encourage students to work hard!

4 | ALTERNATIVE WAYS OF
ESTIMATING RELATIVE RISK

4.1 | Binary variables

A different route to obtaining the same result when the
predictor variable is binary is the formula below, where
OR is the odds ratio and p0 is the probability of the out-
come when the independent variable equals 0:

p1
p0

¼ OR
OR�p0þ1�p0

:

The expression p1/p0 is generally called the risk ratio
or relative risk. This formula can be found in some arti-
cles and textbooks; it is usually attributed to Zhang and
Yu,17 though it was anticipated by the “Mantel-Haenszel
adjusted risk difference” in a technically sophisticated
article by Holland.18, p. 1014

If the aim is to estimate p1, as discussed above, we
would calculate

p1 ¼
OR�p0

OR�p0þ1�p0
:

The problem with this formula is that it results from
a very convoluted algebraic exercise—see the appendix in
Shrier and Steele19—and so becomes yet another black
box for producing a result. By contrast, our preferred
approach helps to reinforce an understanding of the pro-
cess at work: Take the probability of the outcome for the
reference case (x = 0), calculate the odds, multiply by
the odds ratio from logistic regression to obtain the odds
for the comparison group (x = 1), and then convert those
odds into a probability. Thus,

Oddsx¼0 ¼ p0
1�p0ð Þ ,

Oddsx¼0 �OR¼Oddsx¼1,
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p1 ¼
Oddsx¼1

1þOddsx¼1
,

Which route one chooses to take is a matter of individual
preference, of course.

The value obtained for p1 should be regarded as an
approximation. Some statisticians argue that because
there is some bias and it is hard to calculate correct confi-
dence intervals, the Zhang and Yu formula (which is
equivalent to our procedure) should not be used. The
contrary view, which we share, is that the best should
not be the enemy of the good. The alternatives are sophis-
ticated statistical methods that will be inaccessible to
many students and researchers.

4.2 | Continuous variables

If the independent variable of interest is continuous, a
different option is available. The change in the proba-
bility of passing can be calculated using a simple for-
mula, but the method will be opaque unless the user
is familiar with differential calculus. Again, the means
are the starting point: students devote 15 hours a week
on average to studying; the probability of passing is
0.68, and hence, the probability of not passing is 0.32.
Instead of working out the odds and then multiplying
by the exponentiated coefficient (the odds ratio), how-
ever, we can calculate the following: the coefficient
B � the probability of passing � the probability of not
passing (see Agresti,20, p. 164 but note that the formula
has been known for at least a century: see Pearl and
Reed21, p. 365). The result is the rate of change in the
probability of the outcome at that specific point on the
curve, or approximately, the amount by which a one-
unit change in the independent variable alters the
probability.

In the case discussed above, where the logistic regres-
sion output told us that the odds ratio was 1.2, it would
also have given the coefficient B (prior to being exponen-
tiated) as 0.1823. The formula would therefore be
0.1823 � 0.68 � 0.32 = 0.0397. In other words, an extra
hour of study would increase the probability of passing
by almost 0.04, from 0.68 to about 0.72. This procedure
produces what we want without using odds.

We are attracted to the slightly longer process (calcu-
lating odds, multiplying by an odds ratio, and then con-
verting the result back from odds into a probability)
because it is consistent with the recommended method
for binary independent variables and the logic is clear.
The alternative (going directly from the coefficient) is
simple, but it compounds the inscrutability of logistic
regression unless one understands the concept of finding

the derivative for a point on a logistic curve. It also
becomes more difficult to estimate the probability of the
outcome for a larger increase in the continuous variable
because the amount by which the probability shifts is
constantly changing.

5 | CONCLUSION

Our main aim has been to highlight a common error in
presenting the results of binary logistic regression: Odds
ratios must not be interpreted as relative probabilities.
We need to ensure that students and researchers do not
fall into this trap.

Relatedly, though, it is hardly satisfactory to say that
a particular independent variable has a significant effect
without giving some sense of the size of that effect. As
the odds ratio itself does not express the magnitude of
the change in likelihood, we need to translate the results
into probabilities in some other way. The conventional
approach is to calculate the probability of the outcome
by putting average or characteristic values of all of the
independent variables into the regression equation
(so that age = 20, hours studied = 15, and so on); that
probability can be compared with the value obtained
when just one of the predictors is changed (for example,
by increasing age or the hours studied). The calculations
are laborious to perform by hand, however, and require
further training if the job is done using R or Stata. We
have described (in sections 3.3 and 3.4) a quick and easy
way of estimating a particular variable's impact on the
probability of the outcome when the other independent
variables take their average values (or frequencies, in
the case of dummy variables). We recommend this
approach for students who are using SPSS rather than
statistical software that includes straightforward routines
for predicting probabilities. It can also be useful when
looking at published output that gives only odds ratios
and descriptive statistics.

Finally, the underlying problem is that logistic regres-
sion is based on a nonlinear model that is challenging for
people with limited mathematical backgrounds to grasp.
The concept of odds requires only basic numeracy, how-
ever. Going further requires knowing about natural loga-
rithms, but with that knowledge in hand, it is not
difficult to understand logistic regression (as shown in
the Appendix A). The methods described above are acces-
sible to all: anyone can make sense of odds ratios if they
take a moment to do a quick conversion into
probabilities.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

VOAS and WATT 9



ORCID
David Voas https://orcid.org/0000-0003-4094-1369

REFERENCES
1. H. T. O. Davies, I. K. Crombie, and M. Tavakoli, When can

odds ratios mislead? Br. Med. J. 316 (1998), 989–991.
2. E. C. Norton, M. M. Miller, and L. C. Kleinman, Computing

adjusted risk ratios and risk differences in Stata, Stata J. 13
(2013), no. 3, 492–509.

3. F. C. Pampel, Logistic regression: a primer, 2nd ed., Sage,
London, 2021.

4. S. Menard, Applied logistic regression analysis, 2nd ed., Sage,
London, 2001.

5. D. W. Roncek, Using logit coefficients to obtain the effects of
independent variables on changes in probabilities, Soc. Forces 70
(1991), no. 2, 509–518.

6. C. Mood, Logistic regression: why we cannot do what we think
we can do, and what we can do about it, Eur. Sociol. Rev. 26
(2010), no. 1, 67–82.

7. W. L. Holcomb, T. Chaiworapongsa, D. A. Luke, and K. D.
Burgdorf, An odd measure of risk: use and misuse of the odds
ratio, Obstet. Gynecol. 98 (2001), no. 4, 685–688.

8. M. J. Campbell, Statistics at square two: understanding modern
statistical applications in medicine, BMJ Books, London, 2001.

9. M. J. Campbell, Statistics at square two: understanding modern
statistical applications in medicine, 2nd ed., Blackwell, Hobo-
ken, NJ, 2006.

10. M. J. Campbell and R. M. Jacques, Statistics at square two:
understanding modern statistical applications in medicine, 3rd
ed., Wiley Blackwell, Hoboken, NJ, 2023.

11. A. Field, Discovering statistics using IBM SPSS statistics, 5th ed.,
Sage, London, 2017.

12. A. Field, Discovering statistics using IBM SPSS statistics, 5th ed.,
Student Resources, Smart Alex's Solutions, Sage, London, 2017.
https://edge.sagepub.com/field5e/student-resources/smart-
alexs-solutions; https://milton-the-cat.rocks/dsus_alex.
html#Task_206.

13. R. Crompton, Forty years of sociology: some comments, Sociol-
ogy 42 (2008), no. 6, 1218–1227.

14. G. Payne, Surveys, statisticians and sociology: a history of (a lack
of) quantitative methods, Enhanc. Learn. Soc. Sci. 6 (2014),
no. 2, 74–89.

15. E. Masuadi, M. Mohamud, M. Almutairi, A. Alsunaidi, A. K.
Alswayed, and O. F. Aldhafeeri, Trends in the usage of statisti-
cal software and their associated study designs in health sciences
research: a bibliometric analysis, Cureus 13 (2021), no. 1,
e12639. https://doi.org/10.7759/cureus.12639.

16. R. A. Muenchen. The popularity of data science software.
https://r4stats.com/articles/popularity/, 2024.

17. J. Zhang and K. F. Yu, What's the relative risk? A method of cor-
recting the odds ratio in cohort studies of common outcomes,
JAMA J. Am. Med. Assoc. 280 (1998), 1690–1691.

18. P. W. Holland, A note on the covariance of the Mantel-Haenszel
log-odds-ratio estimator and the sample marginal rates, Biomet-
rics 45 (1989), no. 3, 1009–1016.

19. I. Shrier and R. Steele, Understanding the relationship between
risks and odds ratios, Clin. J. Sport Med. 16 (2006), no. 2,
107–110.

20. A. Agresti, Categorical data analysis, 3rd ed., Wiley, Hoboken,
NJ, 2013.

21. R. Pearl and L. J. Reed, A further note on the mathematical the-
ory of population growth, Proc. Natl. Acad. Sci. USA 8 (1922),
no. 12, 365–368.

22. E. Maor, e: the story of a number, Princeton University Press,
Princeton, NJ, 1994.

How to cite this article: D. Voas and L. Watt,
The odds are it's wrong: Correcting a common
mistake in statistics, Teach. Stat. (2024), 1–12,
DOI 10.1111/test.12391.

10 VOAS and WATT

https://orcid.org/0000-0003-4094-1369
https://orcid.org/0000-0003-4094-1369
https://edge.sagepub.com/field5e/student-resources/smart-alexs-solutions
https://edge.sagepub.com/field5e/student-resources/smart-alexs-solutions
https://milton-the-cat.rocks/dsus_alex.html#Task_206
https://milton-the-cat.rocks/dsus_alex.html#Task_206
https://doi.org/10.7759/cureus.12639
https://r4stats.com/articles/popularity/
info:doi/10.1111/test.12391


APPENDIX A: GOING FURTHER

A.1 | UNDERSTANDING LOGARITHMS
It is possible to treat logistic regression as a machine for
generating odds ratios, but many people will wish to
know how the method works. To do so, one needs
to have a basic understanding of logarithms and the
exponential function ex.

The logarithm (or “log” for short) is just the power to
which you have to raise the base to obtain a given num-
ber. You have to raise 10 to the power 4 to produce
10,000, so log10(10,000) = 4.

Any number can be raised to a higher power (so, for
example, 23 = 8), and likewise, any number can be used
as the base for logs. In statistics and most other branches
of mathematics, we typically use the value e as the base,
rather than 10.

But what, students will want to know, is e? The sim-
plest answer is that like π, it is a fundamental constant
that pops up everywhere. Both e and π appear in the for-
mula for the normal distribution, for instance. The value
of e is approximately 2.71828. For anyone wishing to
know more, a good starting point is the article on
e (mathematical constant) in the online Britannica, the
section on compound interest in the Wikipedia article
headed “e (mathematical constant),” or the first three
chapters of Maor.22

For practical purposes in understanding logistic
regression, it is enough to know that e is a numerical
value, just like 2 or 10 or π, and it can be raised to a
power or used as the base of a logarithm. Logs to base
10 are called “common logarithms”; logs to base e are
“natural logarithms.” We can use the symbol loge(x) for
logs to the base e, but it is worth knowing that ln(x) is
widely used as the notation for natural logarithms.

Two mathematical facts are particularly important for
what follows. The first is that logarithms change division
into subtraction: log(a/b) = log(a) � log(b). The second
is that exponentiation and logarithms are inverse func-
tions: eloge

(x) = x and loge(e
x) = x. Just as multiplication

and division can cancel each other out, the same is true
of the exponential and log functions.

A.2 | HOW LOGISTIC REGRESSION WORKS
The role of odds ratios in logistic regression can be under-
stood if one knows about logs and can follow elementary
algebra. The exposition could proceed along the following
lines.

Figure 1 was produced by the simplest logistic model:

y¼ 1
1þ e�x

:

That is in fact exactly the equation used in logistic
regression. It probably helps to use “p” rather than “y”
because we should think of it as the probability that the
dependent variable equals 1. In addition, “x” here repre-
sents the whole expression we know from linear regres-
sion: a + b1x1 + b2x2 + …. Thus, the starting point is:

p¼ 1
1þ e� aþb1x1þb2x2þ…ð Þ :

But here is the problem with logistic regression. We
have something simple that we are interested in—the
probability of the outcome, given the predictors—on the
left-hand side of the equation, but the right-hand side is
cumbersome. We can fix that problem, but it comes at
the cost of turning the left-hand side into something
more complicated.

Some basic algebra allows us to turn the equa-
tion into:

p
1�p

¼ e aþb1x1þb2x2þ…ð Þ:

So at this point, instead of a probability, we are now
working with odds: p/(1 � p).

Things are going to get worse. Taking the natural log-
arithm of both sides of the equation gives us log odds on
the left-hand side:

log e
p

1�p

� �
¼ aþb1x1þb2x2þ…

Now we can see the trade-off. We started with an
S-shaped (logistic) curve to represent the probability of
the outcome. We have transformed it to work just like
linear regression in the sense that the right-hand side is a
linear expression with independent variables xi and their
coefficients bi. There is a crucial difference on the left-
hand side of the equation, though. Instead of predicting
the actual value of the dependent variable, we are pre-
dicting the log odds that it is 1.

The good news is that we can still discover whether
our independent variables have a significant influence on
the outcome and in what direction. The bad news is that
interpreting the coefficients is not as easy as it is in linear
regression. It is still the case that each coefficient gives us
the effect on the outcome of a one-unit change in the
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predictor variable, but here the outcome is the log odds
rather than the value of the dependent variable—and no
one has an intuitive sense of what log odds mean.

To make the situation more concrete, let us assume
that x1 is a dummy variable, such as 0 = male and
1 = female. The probability that someone passes a course
is p, and more specifically, the probability that a man will
pass is p0, while the probability that a woman will pass is
p1. The coefficient of x1 (representing gender) is b1. A
one-unit change in x1 (that is, the change from male to
female) produces a change of b1 in the log odds of passing
the course, and so, the log odds for men plus b1 gives us
the log odds for women:

loge
p0

1�p0

� �
þb1 ¼ loge

p1
1�p1

� �
,

which means that b1 is the log odds for men minus the
log odds for women:

loge
p1

1�p1

� �
� loge

p0
1�p0

� �
¼ b1:

And because log(a) � log(b) = log(a/b) for any values
a and b, that is equivalent to:

loge

p1
1�p1

� �
p0

1�p0

� �¼ b1:

Exponentiating both sides gives us:

p1
1�p1

� �
p0

1�p0

� �¼ eb1 :

Thus, the exponentiated coefficient is the odds ratio.
Again, there is good news and bad news. The good news
is that the crucial information is easy to spot: a value
below 1 means that women are less likely than men to
pass, while a value greater than 1 means that women are
more likely than men to pass. The bad news is that the
actual value of the odds ratio is of limited help because it
means very little on its own. We have to convert the odds
into probabilities.
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