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Abstract

Background: Heavy metals can cause serious health problems that affect different organs. Cadmium (Cd) is an environmental contam-
inant known for its toxicological consequences on different organs. Hepatotoxicity is a serious effect of exposure to Cd with oxidative
stress (OS) and inflammation playing a central role. Diallyl disulfide (DADS), an organo-sulfur compound found in garlic, is known
for its cytoprotective and antioxidant effects. In this study, the effect of DADS on Cd-induced inflammation, oxidative stress and liver
injury was investigated. Methods: DADS was supplemented for 14 days via oral gavage, and a single intraperitoneal dose of Cd (1.2
mg/kg body weight) was administered to rats on day 7. Blood and liver samples were collected at the end of the experiment for analy-
ses. Results: Cd administration resulted in remarkable hepatic dysfunction, degenerative changes, necrosis, infiltration of inflammatory
cells, collagen deposition and other histopathological alterations. Cd increased liver malondialdehyde (MDA) and nitric oxide (NO)
(p < 0.001), upregulated toll-like receptor (TLR)-4, nuclear factor-kappaB (NF-κB), pro-inflammatory mediators, and caspase-3 (p <

0.001) whereas decreased glutathione (GSH) and antioxidant enzymes (p< 0.001). Cd downregulated peroxisome proliferator activated
receptor gamma (PPARγ), a transcription factor involved in inflammation and OS suppression (p < 0.001). DADS ameliorated liver
injury and tissue alterations, attenuated OS and apoptosis, suppressed TLR-4/NF-κB signaling, and enhanced antioxidants. In addition,
DADS upregulated PPARγ in the liver of Cd-administered rats. Conclusions: DADS is effective against Cd-induced hepatotoxicity and
its beneficial effects are linked to suppression of inflammation, OS and apoptosis and upregulation of PPARγ. DADS could be valuable
to protect the liver in individuals at risk of Cd exposure, pending further studies to elucidate other underlying mechanism(s).

Keywords: heavy metals; garlic; diallyl disulfide; hepatotoxicity; oxidative stress; inflammation

1. Introduction

Exposure of humans to heavy metals (HMs) can cause
serious health problems that affect the liver, kidney, ner-
vous system, heart, and other main organs. Given the non-
biodegradable nature of HMs, they accumulate within the
body and disrupt normal function of the cells, leading to se-
rious disorders that deteriorate over time [1,2]. Cadmium
(Cd) is one of the HMs that can pose serious health issues
if reached the body in levels exceeding the permissible lim-
its. It is a non-essential element known as an environmen-
tal pollutant that can reach the human body via multiple
sources. Food, water, cigarette smoke and industrial activ-
ities such as mining, plastics, petroleum, stone quarrying,
and batteries are sources of Cd [3–7]. Exposure to Cd is on
increasing trajectory in developing countries and this is as-

sociated with adverse effects on animals and human health
[8]. It has been estimated that 60% of the absorbed Cd de-
posited in the liver and kidney and approximately 0.007–
0.009% is excreted in feces and urine [9]. Cd has no spe-
cific channels and enters the cells via calcium (Ca) and zinc
(Zn) channels where it accumulates and binds to proteins
including metallothionein (MT), ultimately leading to cell
death [10,11]. Exposure to Cd for either short or long pe-
riods of time results in its accumulation in the liver which
acts as the main site of HMs deposition. Studies on humans
and animals revealed Cd accumulation in the liver, kidney,
and many other organs [12–14], demonstrating its serious
health consequences.

Hepatotoxicity represents one of the hazardous conse-
quences of exposure to Cd with oxidative stress (OS) play-
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ing a central role in the mechanism of toxicity [1]. In hu-
mans exposed to Cd, a strong positive correlation between
soil Cd concentrations and fatty liver disease [15] and other
metabolic alterations such as type 2 diabetes [16] has been
reported. High blood Cd levels were associated with liver
steatosis and fibrogenesis in both male and female human
subjects [17], and liver cirrhotic/cancer patients exhibited
increased levels of serum Cd [18]. Excess levels of reac-
tive oxygen species (ROS) production and consequently OS
provoked by Cd disrupt the cellular redox balance and acti-
vate inflammatory responses and cell death [19]. ROS can
activate many signaling molecules such as toll-like recep-
tor (TLR)-4 and subsequently nuclear factor-kappaB (NF-
κB) and the release of multiple mediators of inflammatory
response [20,21]. Along with ROS, the released mediators
provoke mitochondrial dysfunction and cell death via apop-
tosis. In human hepatocytes, Cd causes apoptotic cell death
mediated via mitochondrial damage [22]. Thus, attenuation
of inflammation and OS can confer protection for hepato-
cytes against Cd-induced injury.

Plants are valuable sources of numerous components
with beneficial pharmacological properties. Garlic is a
functional food that has beneficial effects in preventing sev-
eral disorders and toxicities [23]. The organic sulfur com-
pounds are believed to mediate the beneficial biological and
health-promoting activities of garlic [24]. Diallyl disul-
fide (DADS) is a major bioactive organosulfur compound
of garlic. DADS showed promising pharmacological ac-
tivities, including antioxidant, anti-inflammatory and pro-
tective efficacy against infections, cancer and other disor-
ders affecting different organs [25]. The effect of DADS
on inflammatory response in different disorders has been
well-acknowledged. In murine pancreatitis and lung injury,
DADS was effective in attenuating inflammation via sup-
pressing NF-κB [26]. In microglia [27] and macrophages
[28] challenged with lipopolysaccharide (LPS), DADS pre-
vented the release of inflammatory mediators, demonstrat-
ing its potent anti-inflammatory activity. Moreover, DADS
suppressedROS generation in Barrett’s epithelial cells chal-
lenged with deoxycholic acid [29] and mesenchymal stem
cells treated with interleukin (IL)-1β [30]. By suppressing
inflammation and OS, DADS conferred protection against
liver steatosis induced by ethanol in mice [31]. In an in
vitro study, pre-treatment with DADS protected rat hepa-
tocytes against injury induced by Cd [32]. Despite the re-
ported beneficial efficacies of DADS, its protective effect
against inflammation and OS associated with Cd-induced
liver injury hasn’t been elucidated yet. Therefore, this study
investigated the effect of DADS on liver injury, OS, inflam-
mation, and fibrosis induced by Cd, pointing to the possi-
ble involvement of TLR-4/NF-κB signaling and the nuclear
receptor peroxisome proliferator activated receptor gamma
(PPARγ).

2. Materials and Methods
2.1 Animals and Treatments

Twenty-four male Wistar rats (180–200 g) were kept
on a 12 h dark light cycle under standard temperature (22
± 1 °C) and humidity (50–60%) with ad libitum standard
food (62% carbohydrates, 19% protein, 6% fibers, 3.5%
fats, 1% vitamin mix, 6.5% ash, and 2% minerals) and wa-
ter. All animal experiments comply with the National In-
stitutes of Health guide for the care and use of Laboratory
animals (NIH Publications No. 8523, revised 1996). The
experimental protocol was approved by the ethics commit-
tee at Al Azhar University (Assiut - Egypt) (AZ-AS/PH-
REC/28/24). The rats were allocated into four groups (n =
6). CdCl2 (1.2 mg/kg) [33] (Sigma, St. Louis, MO, USA)
was administered via intraperitoneal route to groups III and
IVwhereas groups I and II received 0.9% saline. Tenmg/kg
DADS (Sigma, St. Louis, MO, USA) was supplemented to
groups II and IV via oral gavage [34]. DADS was supple-
mented for 14 days and CdCl2 (1.2 mg/kg dissolved in 5
mL) was injected on day 7. Following treatments, blood
was collected under ketamine anesthesia and the animals
were then sacrificed via cervical dislocation. Samples from
the liver were collected on 10% neutral buffered formalin
(NBF) and others were kept at –80 °C. Another set of sam-
ples was homogenized (10% w/v) in cold Tris-HCl buffer
(10 mM, pH = 7.4) and the supernatant was collected fol-
lowing centrifugation at 8000 rpm for 10 min and stored at
–80 °C.

2.2 Biochemical Assays
Serum transaminases (aspartate aminotransferase

(AST) and alanine aminotransferase (ALT)), alkaline
phosphatase (ALP), lactate dehydrogenase (LDH), and
albumin were measured using Bio-diagnostic (Giza, Egypt)
kits. To determine the content of liver malondialdehyde
(MDA), reduced glutathione (GSH), and nitric oxide (NO),
and activities of superoxide dismutase (SOD), and catalase
(CAT), specific kits from Bio-diagnostic (Giza, Egypt)
were used. Tumor necrosis factor (TNF)-α, IL-1β, and
IL-6 were assayed using ELabscience (Wuhan, China)
ELISA kits.

2.3 Histopathology and Immunohistochemical
Investigations

Liver samples were fixed in a 10% NBF for 24 h and
then dehydrated in ethanol and cleared in xylene. The sam-
ples were infiltrated in pure soft paraffin followed by em-
bedding in paraffin and 5-µm sections were cut. The sec-
tions were stained with hematoxylin & eosin (H&E) [35],
periodic acid-Schiff (PAS) [35], and Sirius red [36]. An-
other set of sections were dewaxed, rehydrated, and im-
mersed in 0.05 M citrate buffer (pH 6.8) and then 0.3% hy-
drogen peroxide (H2O2) and protein block. The sections
were probed with anti-inducible NO synthase (iNOS), anti-
cleaved caspase-3, and anti-PPARγ (Biospes, Chongqing,
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China) overnight at 4 °C, followed by the secondary anti-
body for 1 h at room temperature. 3,3′-diaminobenzidine
(DAB) in H2O2 was employed for color development and
hematoxylin was used for counterstaining [37]. The color
intensity was measured (6/rat) using ImageJ 1.52 (NIH,
Bethesda, MD, USA).

2.4 Western Blotting

The effect of Cd and/or DADS on TLR-4 and NF-κB
was conducted as we previously reported [38]. Liver sam-
ples were homogenized in RIPA buffer supplemented with
phosphatase/proteinase inhibitors, centrifuged at 10,000
rpm for 10 min and the supernatant was separated for
protein assay using Bradford reagent. Forty µg protein
was subjected to SDS-PAGE followed by transfer onto
PVDF membranes and blocking with 5% bovine serum al-
bumin (BSA; Sigma, St. Louis, MO, USA). The mem-
branes were propped with anti-NF-κB p65, anti-pNF-κB
p65, anti-TLR-4, and anti-β-actin (Biospes, Chongqing,
China) overnight at 4 °C, followed by washing and incu-
bation with the secondary antibody for 1 h at room tem-
perature. After washing, the bands were developed, and
the band intensity was determined using ImageJ 1.52 (NIH,
Bethesda, MD, USA).

2.5 Statistical Analysis

The findings are shown as mean ± standard error
of mean (SEM). Statistical analysis and multiple compar-
isons were accomplished using one-way analysis of vari-
ance (ANOVA) with subsequent Tukey’s post-hoc analy-
sis. The statistical analysis was conducted using GraphPad
Prism 8.0 (GraphPad Software, La Jolla, CA, USA). A p
value < 0.05 was considered significant.

3. Results
3.1 DADS Mitigates Cd-induced Liver Injury

The biochemical findings revealed significant eleva-
tion in circulating ALT, AST, ALP, and LDH (Fig. 1A–
D) and declined albumin (Fig. 1E) in Cd-treated rats (p <

0.001). DADS effectively decreased the activities of the as-
sayed enzymes and increased albumin in serum of rats that
received Cd (p < 0.001). These data were supported with
microscopic examinations using three different stains as de-
picted in Fig. 2. H&E, PAS and Sirius red staining showed
normal hepatocytes, sinusoids, and collagen fibers in con-
trol (Fig. 2a) and DADS-supplemented rats (Fig. 2b). Cd
induced severe alterations, including loss of hepatic cord
regularity, hydropic degeneration with cytoplasmic vacuo-
lation, congestion, necrosis, inflammatory cell infiltration,
and high amount of collagen deposition (Fig. 2c). Treat-
ment of Cd-challenged rats with DADS resulted in marked
recovery represented by intact central vein, less congestion,
regular hepatic cords, mostly normal hepatocytes, and no-
ticeable decline in collagen fiber deposition (Fig. 2d).

3.2 DADS Suppresses Cd-induced Liver Oxidative Stress
Administration of Cd increased liver levels of MDA

(Fig. 3A), and decreased GSH (Fig. 3B), SOD (Fig. 3C),
and CAT (Fig. 3D) significantly (p < 0.001) as compared
to the control rats. While showed no effect in normal rats,
DADS decreasedMDA and increased GSH, SOD, and CAT
in Cd-challenged rats.

3.3 DADS Attenuates Cd-induced Liver Inflammation
The effect of DADS on Cd-induced inflammation was

evaluated by assessing TLR-4/NF-κB signaling and inflam-
matory mediators (Figs. 4,5). Cd upregulated TLR-4 ex-
pression and NF-κB p65 phosphorylation in the liver of rats
(Fig. 4A). Consequently, hepatic TNF-α (Fig. 4B), IL-1β
(Fig. 4C), and IL-6 (Fig. 4D) showed significant increase
in Cd-challenged rats (p < 0.001). IHC staining revealed
significant upregulation of iNOS (Fig. 5A,B) and NO lev-
els were also increased (Fig. 5C) in Cd-treated rats. DADS
remarkably downregulated TLR-4, NF-κB p65, iNOS, and
cytokines in Cd-administered rats.

3.4 DADS Mitigates Liver Apoptosis and Upregulates
PPARγ in Cd-administered Rats

Changes in cleaved caspase-3 (Fig. 6) and PPARγ
(Fig. 7) were determined in the liver of rats that received
Cd and/or DADS. Cd-administered rats exhibited remark-
able upregulation of cleaved caspase-3 and downregula-
tion of PPARγ (p < 0.001). DADS effectively suppressed
hepatic cleaved caspase-3 and upregulated PPARγ in Cd-
administered rats.

4. Discussion
Hepatotoxicity and other liver disorders been reported

as hazardous effects of exposure to Cd, particularly in de-
veloping and industrial countries [1,8]. Inflammation and
OS are key elements in Cd hepatotoxicity and the develop-
ment of strategies to mitigate or prevent these processes can
protect against liver injury in vulnerable individuals. This
study demonstrated the protective role of DADS against
Cd-induced OS, inflammation, and liver injury in rats.

Liver injury following Cd administration was evi-
denced by altered biochemical parameters (ALT, AST,
ALP, LDH and albumin) of hepatocyte injury and
histopathological alterations. Elevation of circulating ALT,
AST, LDH, and ALP has been acknowledged in animals
exposed to Cd [39,40]. In adult humans, exposure to Cd
resulted in elevated blood transaminases as reported by
Kang et al. [41]. Exposure to Cd is associated with
liver disorders, including steatohepatitis [15], and increased
serum transaminases was closely associated with Cd levels
[42]. Rats that received Cd showed declined serum albumin
which along with the elevated transaminases denoted hep-
atocyte injury. The decrease in albumin was linked to de-
creased hepatic and renal Klotho-methylation as a result of
Cd exposure [43]. Examination of tissue sections from Cd-

3
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Fig. 1. Diallyl disulfide (DADS) prevented Cd-induced liver injury. DADS ameliorated serum alanine aminotransferase (ALT) (A),
aspartate aminotransferase (AST) (B), alkaline phosphatase (ALP) (C), lactate dehydrogenase (LDH) (D), and albumin (E) in Cadmium
(Cd)-administered rats. Data are mean ± SEM, (n = 6). *p < 0.05, **p < 0.01, and ***p < 0.001 versus Control. ###p < 0.001 versus
Cd.

exposed rats revealed severe alterations, including necro-
sis, loss of hepatic cord regularity, congested central vein
and sinusoids, severe hydropic degeneration, pyknosis, in-
flammatory and fat cells infiltration, and increased colla-
gen deposition. Previous studies have shown hyperplasia,

necrosis, inflammatory cells infiltration, and apoptosis as-
sociated with Cd hepatotoxicity [44,45]. A relationship be-
tween circulating Cd and liver steatosis and fibrogenesis in
both male and female human subjects [17], and liver cir-
rhotic/cancer patients [18] was reported. This explained the

4
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Fig. 2. Photomicrographs demonstrated the protective effect of Diallyl disulfide (DADS) on histopathological alterations induced
by Cadmium (Cd) in rat liver. Hematoxylin & eosin (H&E): (a,b) Liver section from control (a) and DADS-treated (b) groups exhibit-
ing the normal central vein (cube) and hepatocytes with central vesicular nucleus (wave arrow) arranged in regular cords (arrow) and
separated by blood sinusoids (arrowhead). (c) Liver section from Cd-administered group revealing necrotic area (circle), loss of hepatic
cord regularity (arrow), congestion of the central vein (cube) and blood sinusoids (arrowhead), severe hydropic degeneration with cyto-
plasmic vacuolation (wave arrow), deep basophilic pyknotic nuclei of hepatocytes (curvy arrow), inflammatory cell infiltration encircling
central vein (star), and obvious appearance of fat cells in between hepatocytes (arrow with tail). (d) Liver section from Cd-administered
rats treated with DADS showing a marked recovery represented by intact central vein (cube), less congested blood sinusoids (arrowhead),
and regular hepatic cords (arrow). Most hepatocytes appear nearly normal with acidophilic cytoplasm and central vesicular nuclei (wave
arrow). However, few inflammatory cells observed surrounding central vein (star). (×400, Scale bar = 50 µm). Periodic acid-Schiff
(PAS): (a,b) Liver section from control (a) and DADS-treated (b) groups showing marked intense positive PAS staining of most hepato-
cytes (arrow) in area surrounding central vein. (c) Liver section from Cd-administered group emphasizing noticeable decline in intensity
of PAS staining in addition to the number of hepatocytes (arrow) with positive PAS staining encircling central vein area. (d) Liver section
from Cd-administered rats treated with DADS showing marked obvious increase in the strength of staining along with moderate number
of hepatocytes (arrow) close to central vein with positive PAS staining than positive model group. (×400, Scale bar = 50 µm). Sirius
red: (a,b) Liver section from control (a) and DADS-treated (b) groups showing the usual few amounts of collagen encircling portal area
(arrow). (c) Liver section from Cd-administered group showing the highest quantities of collagen fibers accumulated around portal area
(arrow). (d) Liver section from Cd-administered rats treated with DADS showing noticeable decline in collagen fibers (arrow). (×200,
Scale bar = 100 µm).
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Fig. 3. Diallyl disulfide (DADS) suppressedCadmium (Cd)-induced liver oxidative stress. DADS ameliorated liver malondialdehyde
(MDA) (A), and increased glutathione (GSH) (B), superoxide dismutase (SOD) (C), and catalase (CAT) (D) in Cd-administered rats. Data
are mean ± SEM, (n = 6). *p < 0.05, and ***p < 0.001 versus Control. ##p < 0.01 and ###p < 0.001 versus Cd.

increase in collagen deposition and fat cells in the liver of
Cd-administered rats. In support of our findings, Li et al.
[45] demonstrated a higher collagen peak in liver samples
exposed to Cd by using Raman confocal imaging. DADS
effectively mitigated liver injury in Cd-administered rats,
supporting its previously reported hepatoprotective activity
[31]. Treatment of ethanol-administered mice with DADS
ameliorated circulating transaminases and prevented hep-
atic lipid deposition and tissue injury [31]. This protec-
tive efficacy of DADS was also established in rats chal-
lenged with carbon tetrachloride (CCl4) [46] where it ef-
fectively prevented tissue injury and ameliorated transami-
nases. These studies along with our findings demonstrated
the efficacy of DADS to confer protection against different
hepatotoxic chemicals.

The mechanism of Cd hepatotoxicity involves signifi-
cant contribution of OS and inflammation [1]. Given the
reported antioxidant and anti-inflammatory properties of
DADS [25,28,29], it is noteworthy assuming that these ef-
ficacies contributed to its protection against Cd hepatotox-
icity. Here, rats exposed to Cd showed increased hepatic
MDA, NO, NF-κB p65, iNOS, and pro-inflammatory cy-
tokines, and decreased GSH and enzymatic antioxidants,
demonstrating OS and inflammation. Ionic Cd can enter
hepatocytes through voltage-gated Ca2+ channels or via
binding to Fe2+ and Zn2+ transporters. Cd can also form
complexes with MT which enter hepatocytes via receptor-
mediated endocytosis and Cd is then released through the
action of lysosomes [10,11]. Owing to its presence in the
+2 oxidation state, Cd doesn’t generate ROS via redox reac-
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Fig. 4. Diallyl disulfide (DADS) attenuated Cadmium (Cd)-induced liver inflammation. DADS downregulated toll-like recptor
(TLR)-4 and nuclear factor-kappaB (NF-κB) p65 (A) expression, and decreased Tumor necrosis factor (TNF)-α (B), interleukin (IL)-1β
(C), and IL-6 (D) in Cadmium (Cd)-administered rats. Data are mean ± SEM, (n = 6). *p < 0.05, **p < 0.01 and ***p < 0.001 versus
Control. ###p < 0.001 versus Cd.

tions but produces H2O2, NO, and superoxide and hydroxyl
radicals indirectly via other reactions, including Fenton-
type reactions mediated via Cd-induced liberation of un-
bound iron [47–49]. Excess ROS oxidize cellular macro-
molecules and produce peroxynitrite by interacting with
NO, thereby increasing ROS further and oxidize DNA [50].
Within hepatocytes, Cd directly binds the sulfhydryl groups
on GSH and other proteins [1], resulting in GSH deple-
tion and thereby fostering ROS generation and OS. In ad-
dition, Cd can accumulate within the organelles, in particu-
lar the mitochondria [51] and the resultant dysfunction and
injury can result in more ROS generation. Mitochondrial
damage was reported to mediate Cd-induced apoptotic cell
death in human hepatocytes [22]. Cd-triggered ROS pro-
voke inflammatory reactions by activating TLR-4/NF-κB
axis and subsequent production of pro-inflammatory medi-
ators which in concert with ROS promote cell death [52].
ROS and inflammatory mediators elicit mitochondrial dys-
function and apoptotic cell death. Excess ROS disrupts mi-
tochondrial membrane potential and increases its perme-
ability with subsequent release of cytochrome c. Within

the cytosol, cytochrome c combines with caspase-9 and
Apaf-1 and the produced apoptosome activates caspase-3
which initiates apoptotic cascade [53]. In human hepato-
cytes, Cd caused apoptotic cell death mediated via mito-
chondrial damage [22]. Cd-administered rats in this study
exhibited upregulation of hepatic caspase-3, demonstrating
apoptotic cell death.

DADS effectivelymitigatedOS and prevented inflam-
mation and cell death in the liver of Cd-administered rats.
DADS attenuated lipid peroxidation (LPO), suppressed
TLR-4 and NF-κB and the subsequent release of cytokines
and caspase-3, and enhanced antioxidant defenses. Sev-
eral in vitro and in vivo investigations demonstrated the an-
tioxidant and anti-inflammatory activities of DADS [25].
The protective effect of DADS against ethanol hepatotoxi-
city was associated with its ability to attenuate OS and in-
flammation [31]. The effect of DADS on inflammatory re-
sponse in different disorders has been well-acknowledged.
It reduced colonic mucosal and submucosal edema in a
murine model of colitis [54] and prevented acute inflamma-
tion andOS inmouse pawmodel [55]. Inmicroglia [27] and
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Fig. 5. Diallyl disulfide (DADS) downregulated inducible NO synthase (iNOS) in liver of Cadmium (Cd)-administered rats. (A)
Photomicrographs showing upregulated iNOS in the liver of Cd-administered rats and the ameliorative effect of DADS. (×400, Scale
bar = 50 µm). (B) Image analysis of iNOS immunostaining. (C) DADS decrease liver NO levels in Cd-administered rats. Data are mean
± SEM, (n = 6). **p < 0.01 and ***p < 0.001 versus Control. ###p < 0.001 versus Cd.

macrophages [28] challenged with LPS, DADS prevented
the release of inflammatory mediators, demonstrating its
potent anti-inflammatory activity. The anti-inflammatory

role of DADS was linked to its efficacy to modulate cir-
culating immune cells and the activation of NF-κB [34].
In mice with pancreatitis, DADS suppressed the transcrip-
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Fig. 6. DADS downregulated cleaved caspase-3 in liver of Cadmium (Cd)-administered rats. (A) Photomicrographs showing
upregulated caspase-3 in the liver of Cd-administered rats and the ameliorative effect of DADS. (×400, Scale bar = 50 µm). (B) Image
analysis of caspase-3 immunostaining. Data are mean ± SEM, (n = 6). *p < 0.05 and ***p < 0.001 versus Control. ###p < 0.001
versus Cd.

tional activity of NF-κB [26], effects that were demon-
strated in a rat model of hepatotoxicity by Lee et al. [46].
Moreover, DADS suppressed ROS generation in Barrett’s

epithelial cells challenged with deoxycholic acid [29] and
mesenchymal stem cells treated with IL-1β [30]. By sup-
pressing inflammation and OS, DADS conferred protection
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Fig. 7. Diallyl disulfide (DADS) upregulated peroxisome proliferator activated receptor gamma (PPARγ) in liver of Cadmium
(Cd)-administered rats. (A) Photomicrographs showing downregulated PPARγ in the liver of Cd-administered rats and the ameliorative
effect of DADS. (×400, Scale bar = 50 µm). (B) Image analysis of PPARγ immunostaining. Data are mean ± SEM, (n = 6). *p < 0.05
and ***p < 0.001 versus Control. ###p < 0.001 versus Cd.

against liver steatosis induced by ethanol in mice [31]. The
antioxidant properties of DADS were demonstrated via ac-

tivation of enzymes such as SOD, CAT, and HO-1 and sup-
pression of ROS [29]. In ethanol-challenged mice and hu-
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man hepatocytes [56] and LPS-treated macrophages [57],
DADS upregulated antioxidants via activation of Nrf2, and
restored CAT activity in H2O2-treated epithelial cells [58].

The beneficial role of DADS on Cd-induced OS and
inflammation could be associated with PPARγ activation.
PPARγ directly promotes the expression of enzymatic an-
tioxidants and suppresses ROS generation via NADPH ox-
idase inhibition [59,60]. Its activation is linked to atten-
uation of inflammation via its suppressive effect on NF-
κB. PPARγ controls NF-κB transcriptional activity, re-
duces p65 nuclear translocation and inhibits the degrada-
tion of IκBα [61,62]. The activation of PPARγ can mit-
igate fibrogenesis in different organs through suppression
of TGF-β/Smad signaling [63]. In this study, Cd downreg-
ulated PPARγ whereas DADS increased its expression in
the liver. The role of PPARγ upregulation in protecting the
liver against toxicity of drugs and chemicals was demon-
strated in several studies [64–66]. In support of our find-
ings, activation of PPARγ by DADS suppressed NF-κB in
a mouse model of pancreatitis and lung injury as reported
recently by Marimuthu et al. [67]. In mice with hepatic
steatosis, treatment with DADS upregulated the gene ex-
pression of PPARγ [68]. It activated PPARγ coactivator 1
alpha and potentiated the effect of green tea in experimental
obesity [69]. The role of PPARγ in the protective mecha-
nism of DADS against nephrotoxicity induced by glycerol
was supported by the study of Sharma et al. [70] where
pretreatment of the rats with PPARγ antagonist abolished
DADS renoprotection. Very recently, Qu et al. [71] demon-
strated the involvement of PPARγ in mediating the benefi-
cial role of DADS against lung cancer. However, the lack
of data showing the dose-response and the use of PPARγ
agonists/antagonists could be considered limitations of this
study.

5. Conclusions
This study shows new information on the protective

role of DADS against Cd-induced liver injury and the in-
volvement of PPARγ. DADS prevented liver tissue in-
jury, and suppressed MDA, NO, TLR-4/NF-κB pathway,
caspase-3, inflammatory mediators, and enhanced PPARγ
and enzymatic antioxidants in Cd-administered rats. This
study may have significant clinical implications and un-
derscore the protective role of Cd against Cd hepatotoxi-
city. DADS could be valuable to confer hepatic protection
against Cd toxicity in vulnerable individuals. However, fur-
ther research is needed to explore other mechanism(s) of
action od DADS.
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