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Abstract 

Global warming’s negative effect on the environment necessitates the timely need to reduce 

CO2 emissions. Commercial buildings are major contributors into such emissions in the UK 

that consume 277TWh from the Government’s latest data collection and 89% of non-

domestic energy consumption was from the grid. Therefore, government legislations 

worldwide are becoming increasingly stricter on carbon dioxide emissions from buildings. 

However, the buildings must continue to run, fully functioning, while still reducing emissions. 

While some building management systems (BMS) can manage the demands of the building 

and reduce energy waste, they rely on the current demand instead of planning for future 

demand. Moreover, some space heating methods are not fully understood such as with 

recently developed infrared technologies. Electric vehicle charging schedules are not 

previously optimised, and neither is energy management from on-site renewable generation.   

In this research work, already existing machine learning algorithms (MLA) methods are 

applied to optimise energy efficiency of commercial buildings. Neural networks, random 

forests, support vector machines, and linear regression are developed to accurately forecast 

the buildings’ energy characteristics for various resolutions and horizons to determine the 

best method and application to the BMS.  

From the developed MLA’s, the random forest has an accuracy as high as 96% and can 

forecast the energy demand in 15-minute resolutions on 24-hour horizons. One outcome of 

this research is a developed strategy that saves 64.7% on costs through using the energy 

capacity of electric vehicles. This allows energy to be purchased from the EV instead of from 

the grid at peak-times. Moreover, the heating consumption of a lecture hall is reduced by 

75.97% through using infrared heating combined with MLA occupation density forecasting. 

Furthermore, neural networks, random forests, support vector machines, and linear 

regression to forecast the active solar panels are developed and critically analysed to 

determine data requirements and surrounding affecting factors. The MLA’s used to forecast 

the energy consumption of the case study building are trained on a 16GB intel core i7, with a 

dataset of 97,185 samples of 11 features, with average training times of 172s (neural 

network), 61.9s (random forest), 270.3s(support vector machine), and 41.7s (linear 

regression) respectively.  
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Nomenclature  

Air Exchange 𝑞𝑖−𝑗 

Alternating Current AC 

Amps per Hour 𝐴ℎ 

Association Between Variables  𝜆𝑗𝑘 

Biomass Energy Output  Δ𝐸𝑡𝑜𝑡𝑎𝑙  

Building Energy Storage BES 

Building Information Modelling BIM 

Building Management System BMS 

Carbon Trading Scheme  CTS 

Decision Tree DT 

Direct Current DC 

Direct Irradiance from FIR Panel 𝐷𝐼 

Display Energy Certificate DEC 

Dwelling Emission Rate DER 

Electric Vehicle EV 

Electrical Capacity of Charging Stations 𝑆𝐶 

Energy Generated from a PV System  𝑃𝑃𝑉  

Energy Management System EMS 

EV Battery Discharge 𝐷𝑐  

FAR Infrared IR, FIR 

Flywheel Energy Storage Capacity  𝐸 

Flywheel Energy Storage System FESS 

Gini Impurity 𝐺𝑖𝑛𝑖(𝐷) 

Heating, Ventilation, and Air Conditioning HVAC 

Horizontal Axis Wind Turbine HAWT 

Hot Water System HWS 

HVAC Energy Consumption  𝐸ℎ𝑟 

Hydrogen Energy Storage HES 

Illuminance of Lighting 𝐼(𝑡) 
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Kinetic Door Energy Output 𝐸𝑖𝑛 

Light Dependent Resistor LDR 

Light Emitting Diode LED 

Lighting Energy Consumption  𝐸𝑙𝑟 

Linear Interpolation 𝑦 

Linear Regression LR 

Linear Regression 𝑚 

Machine Learning Algorithm MLA 

Manchester Metropolitan University MMU 

Maximum Relevance Minimum Redundance MRMR 

Maximum Relevance Minimum Redundance 𝑉𝑠, 𝑊𝑠 

Mean Actual Percentage Error MAPE 

Mean Actual Percentage Error 𝑀 

Mutual Information 𝐼(𝑋, 𝑍) 

Net Zero Energy NZE 

Neural Network NN 

Number of Batteries  𝑁𝑏 

Number of Full EV Charges  𝑁𝐹𝑐  

Output Power from Electrolysis 𝑃𝐸𝐿,𝑖
𝑜𝑢𝑡 

Parts Per Million PPM 

Passive Infrared PIR 

Phase Change Material PCM 

Photovoltaic Storage PV, PVS 

Power Required from IR Panels 𝑅𝑃 

Probability of a Zone being Occupied  𝑃𝐷𝑇 

Proton Exchange Membrane PEM 

Random Forest RF 

Random Forest Out Of Bag RF-OOB 

Rate of Heat Exchange  𝑞 

Rate of Heat Transfer over Time 𝑄 
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Renewable Energy RE 

Required Power from FIR Panel 𝑅𝑃 

Return On Investment ROI 

Rolling Average 𝜇 

Root Mean Squared Error RMSE 

Simplified Building Energy Model SBEM 

Solar Energy Storage SES 

Standard Assessment Procedure SAP 

Standard Capacity of EV Battery 𝑆𝑐 

State of Charge SOC 

Support Vector Machine SVM 

Thermal Energy Storage System TESS 

Tonnes of Oil Equivalent toe 

V2G Profit 𝑃 

Variable Air Volume VAV 

Vehicle To Building V2B 

Vehicle To Grid V2G 

Vertical Axis Wind Turbine VAWT 

Wind Turbine Energy Output 𝑃 
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CHAPTER ONE: INTRODUCTION 

This chapter serves as an introduction to non-domestic buildings’ energy consumption and 

explains environmental, political, and financial reasoning for the energy reduction of non-

domestic buildings. It critically analyses the energy generation and consumption of non-

domestic buildings with an explanation of building management systems. Contributions to 

knowledge are outlined and finally, the aims, objectives, and structure of the thesis are 

explained.  
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• Storage and Distribution.  

• Mills, dairies, and farming processing.  

Transport includes any vehicles on the road, from lorries to busses to cars and domestic 

buildings include houses and flats.  

An average UK temperature increase of 1.3oC between 1961-2020 provides clear evidence 

that all CO2 emissions produced must be reduced to stop the effects it is having on global 

warming [4]. To prevent further damage, the UK Government plan to eliminate greenhouse 

gas emissions from buildings by 2050 [5], stating that driving, manufacturing, heating, and 

electricity generation must emit as close to zero emissions as possible. Government 

regulations have a large effect on net zero energy (NZE) buildings as [6] climate, technology, 

and economic factors contribute widely. The transition to NZE is challenging when buildings 

rely on fossil fuels [7], but carbon trading schemes (CTS) [8] show some support for this 

transition. However, more supportive government policies are required for a wider adoption 

of NZE buildings. The UK energy mix from 2023 consists of coal (0.41%), petroleum (37.73%), 

natural gas (33.27%), bioenergy (11.36%), nuclear (9.41%), and renewable energy (7.79%) [9]. 

The UK only exports energy and heat at 0.65MWh at 7.45% and 0.08MWh at 1.29% 

respectively compared with Sweden, Denmark, Germany, and the Netherlands as a whole 

[10]. Overall net imports account for 35.2% of UK total energy use with energy generation of 

1,652.63MWh [11]. Higher levels of renewable energy generation can decrease the amount 

of imported energy,  but this can produce more unpredictability into the energy mix. Higher 

energy storage capacity within the national grid can reduce the amount of necessary 

imported energy. This can save costs for the UK through energy imports as well as reducing 

the CO2 produced from conventional energy generation methods. The UK requires 43TWh of 

storage to enable 100% renewable energy generation which equates to 0.16% of the UK’s 

total energy consumption in 2022 at 22,756Mtoe (265TWh). This would cost £165 billion, or 

7% of the UK’s GDP [12].   

Energy consumption demand for heating is higher in colder climates such as the UK, making 

it a necessary focal point, but different climates will benefit from independent heating and 

cooling systems [13].  



The UK’s national grid is reducing carbon emissions by using 
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The government regulations for the reduction of carbon emissions from all buildings within 

the UK require the effective use of energy generation and demand. To calculate the energy 

performance of the buildings, the government issue each building a personalised energy 

performance certificate (EPC) and a display energy certificate (DEC) [15]. An example of a DEC 

is shown in Figure 1.3.   

 

Figure 1.3. The display energy certificate of 10-12 Downing Street. 

The certificate is presented with a unique number, an expiration date, the location, and the 

operational rating. The rating scale is shown in Figure 1.4.  

 

 

 

 

  

 

 

Figure 1.4. The operational rating scale from A-G. 
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The typical rating for a similar building is 100 whereas the selected building only has a rating 

of 109, meaning it is underperforming and must be improved to reduce carbon emissions. 

Previous rating for this building were 108, 136, and 109 for the years 2018, 2019, and 2020 

respectively. This shows that the building isn’t being improved through the years. The 

buildings’ total energy use and fuels used, total usable floor area, and any renewable 

generation methods are also provided with the certificate. 

A useful way of measuring the energy characteristics of a specific non-domestic building is for 

a government selected specialist to analyse the building. This analysis includes: 

• The efficiency of the heating, if it is over/under working, and if the system is well 

equipped to handle the building or zone(s). 

• The lighting systems, as they should be light emitting diodes (LED) instead of halogen 

bulbs. It is also important that they are never left on when the zone is unoccupied. 

• The use of ventilation and if it is ventilating at the correct rate to match 2010 

government building regulations [16]. 

• The efficiency of air conditioning, and if it is working harmoniously with the heating 

system instead of working against it.  

• Insulation of the building materials, including walls and the glazing of windows. 

• On site energy generation and storage. 

After the main features of a building are assessed, a DEC is issued to the building which 

dictates how efficient the building is while in operation. Once this is issued, further 

improvements on the building may be simulated to determine an EPC, a theoretical 

performance on the building after improvements. This is done through a comparison of 

similar building types and functionalities to copy the energy performance of the similar, 

already functional building. This method, however, doesn’t have any measurable accuracy 

and doesn’t help the user to determine the correct steps to maximise the energy performance 

of the building.  

To increase efficiency of energy generation and consumption, control methods are used to 

determine how the building will function. Occupants’ control over systems often involves the 

use of heating and lighting when it is not necessary, so optimisation algorithms are able to 
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reduce wasted energy. BMS’s can control lighting, HVAC, fire alarms and smoke detection, 

motion detectors, CCTV, ICT systems, and elevators.  

Smart lighting algorithms are designed to illuminate with dependence on the occupation of 

the zone. This allows the lighting demand to be reduced when there is no occupation such as 

on weekends or in educational buildings, during the summer holidays. The lighting can also 

be made dependent on the natural light coming in through the windows from outside. This 

can save more energy by not over illuminating the zones.  

The HVAC system works through measurement of outdoor and indoor temperatures, and 

occupation. Real time analysis of outdoor air temperature is used to control the indoor 

heating and cooling. The systems’ energy consumption is linear with the outdoor air 

temperature which means it is not considering internal lighting and occupation heat gains. 

For increased efficiency, the heating of zones can be determined through occupation, as 

unoccupied zones can be heated to a lower degree. When the zone is unoccupied or 

overheated, the heating can gradually reduce the temperature instead of turning it off to 

maintain a consistent heating system over time. Fire alarms, smoke detection, motion 

detectors, CCTV, and ICT systems are difficult to improve as they consume little energy 

already. Elevators energy consumption can be forecasted for the consideration of the 

buildings’ total energy demand but again, they are efficient and aren’t considered for 

improvement.  

1.2 Energy Consumption, Management and Optimisation 

The energy demand of buildings is often seen as a whole, like a black box, but this doesn’t 

allow the improvement of the energy demands within. To better understand the energy 

characteristics of buildings, the internal demands must be analysed and understood. The 

internal energy consumers of non-domestic buildings are the lighting, heating, ventilation, 

and air conditioning (HVAC), major appliances (refrigerators, ovens, machinery, dryers), and 

minor consumers such as computers and wall sockets. This is shown in Figure 1.5.  

 

 

 



the buildings’ energy consumption systems

management and improvement of the consumers’ use. 

’s

doesn’t increase or decrease the heat as 
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The lighting works the same as the room is lit until it is no longer occupied through CO2 or 

passive infrared (PIR) sensors. For the kitchen, ventilation, and others, it is more complicated 

because of the high correlation with the occupation. The demand often increases with the 

occupation as more people use the kitchen, more CO2 must be ventilated, and more energy 

is consumed through sockets and elevators.  

The systems can present the collected data for management through a dashboard shown in 

Figure 1.6.  

 

Figure 1.6. The dashboard of a typical building management system [17].  

The system can present the data of system efficiency, consumption of fuels and energy, total 

savings, split into categories, CO2 saved, and current load. Each part of the buildings’ energy 

systems can be viewed through the collected data. The various systems that can be controlled 

by a BMS are shown in Figure 1.7.  
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Figure 1.7. The building management system’s capabilities of management for a commercial 

or non-domestic building [18]. 

The systems include controllers, HVAC, security, fire, and hazard protection, building services, 

lighting, operational intelligence, and loss prevention (optimisation of the various systems), 

energy storage, and retail systems (any profit or required purchases).  

BMS optimisation can be used to ensure there is no wasted energy by consuming, storing, 

and trading it where necessary. To optimise something is to ensure it is providing the 

maximum intended output it is capable of. Non-linear optimisation can be constrained, it can 

use continuous or discrete data, single and multi-objective, stochastic, and deterministic 

models. Constrained optimisation includes limitations such as lack of resources and data. 

Energy cost and times of consumption may be constraints within SEMS. The data in this 

research can be defined as continuous as it contains various collections of data such as cloud 

coverage (%), energy consumption (kWh), and air temperature (oC). The optimisation models 

used for SEMS are multi-objective as considerable optimisation variables include times and 

intensity of energy consumption, energy generation and storage, and demand side response. 

Rule-based optimisation and reinforcement optimisation may be used. Rule-based is where 

there are defined parameters in which the system should operate to maintain optimum 

results, in this case, minimum energy consumption and maximum comfort. Reinforcement 
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learning is where a target is set, such as the indoor air temperature, and a higher score is 

obtained from the algorithm when the temperature is closest to the target. Temperatures 

further from the target will provide a smaller score and therefore the algorithm would resist 

these occurrences. This can be multi-objective such as a combination between the air 

temperature and the lowest energy consumption possible. Optimisation of the MLA ensure it 

has reached the minimum error possible. This does not always occur though as the local 

minima can be reached instead of the global minima. In the case such as with gradient descent 

(GD), the error is finitely decreased until it reaches a minimum by changing the algorithms 

parameters. Once the error cannot be decreased instantly in either direction, the algorithm 

terminates. Often, the parameters that reach the local minima can be changed through an 

increase in error to reach a global error minimum which is the actual lowest error possible. 

To overcome this issue, the algorithm can be run for more iterations to determine which is 

the actual minimum error, but for algorithms with more finite parameters, the iterations must 

increase. Particle Swarm Optimisation (PSO) works through developing a selection of initial 

MLA models and evaluating the performance with a defined number of available MLA before 

the PSO algorithm selects an optimum MLA. The parameters of new models are close to the 

initial model with the highest performance, and this is repeated for a defined number of 

iterations. If the initial models do not find the global minima and instead the local minima, 

then all proceeding models will find the local minima too. Bayesian Optimisation (BO) can 

create MLA with all parameters to ensure it finds the global minima and not the local minima. 

This is often a slower algorithm, requiring more computational power, but providing an 

algorithm that can find the lowest error.  

There are more than 39 BMS’s commercially available for installation onto a non-domestic 

building with the ability to reduce energy emissions. A BMS is able to monitor equipment, 

occupancy, increase safety, and control the buildings’ facilities remotely [19]. It has the ability 

to detect thermal leakage, it can integrate renewable energy sources into the functions of the 

BMS and can reduce energy consumption through more efficient power conversion and 

distribution [20]. Case studies of BMS applications include the Sydney Opera House, 

Eindhoven University of Technology, and Incheon International Airport [21]. These 

installations include automated HVAC and lighting, energy metering, video surveillance, 
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elevator and parking control, and other safety features. These case studies are explained 

further in the literature review.  

Eindhoven University of Technology has been improved through an 80% reduction in CO2 

emissions for the Helix building [22]. This was done through installing a BMS to automate the 

buildings’ systems and to eliminate human error and energy waste. The main objective of the 

installation of the BMS was to reduce heating and cooling demands by having natural 

ventilation and by allowing maximum daylight and solar gains to enter the building. A curtain 

wall can insulate the building better to keep it cooler or warmer while using less energy from 

the HVAC systems. The windows can be automatically opened to provide natural ventilation 

and have triple solar-controlled glazing. The model couldn’t eliminate carbon emissions even 

through the automated systems and thermal energy storage system (TESS). Future work 

includes eliminating the opening of windows at low temperatures or when it rains but no 

energy forecasting techniques are previously or planned to be employed. Forecasting of the 

buildings’ energy parameters and forecasted climate conditions can be used for pre-heating 

and cooling or zonal heating if the occupation density and locations are forecasted. With the 

BESS, the Helix building could employ optimised energy trading and renewable generation 

actuation through forecasting of the energy characteristics [22].  

The Sydney Opera House claims to be carbon neutral, although the building itself is still 

producing carbon. This is due to its carbon offset scheme where it is funding the planting of 

trees to make up for the carbon emissions the building produces [23]. The building’s efficiency 

was improved through using LED’s, using seawater to cool the building instead of only artificial 

air conditioning, and through an external company that uses the waste from the building to 

generate energy. These systems reduced the energy demand by 31% in total. To offset the 

carbon emissions of buildings, the cost is £14.82/tonneCO2. This could cost £25,735 for the 

case study building in this research to offset gas and electricity per annum. The average 

carbon reduction per unit of crown cover of trees is 0.5kg/m2/year [24], requiring an 

estimated 868m2 of trees to offset the case studies’ carbon emissions. This isn’t a viable 

option for business’s who don’t have disposable income and there also needs to be enough 

land for the trees to be planted.  

A BMS is able to automate HVAC, lighting, and security, but no previous BMS’s are able to 

forecast and integrate the buildings’ energy characteristics to eliminate carbon emissions 
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[25]. Applications for commercial buildings and university campuses are recommended [26]. 

Energy storage capabilities such as hydrogen provides more flexibility with energy trading and 

generation [27]. Hydrogen storage techniques do not degrade like chemical batteries do. This 

allows more financial savings over the same period from hydrogen energy storage than if a 

chemical battery is used.  

As is described in this chapter, new methods of energy consumption and building parameter 

forecasting are necessary to optimise energy management within non-domestic buildings. 

MLA can be used to accurately forecast energy parameters and can therefore inform a BMS 

to improve energy management.  

BMS’s can automate the buildings’ systems to reduce wasted energy and to improve comfort. 

They are tailored towards improved comfort and ease of use for the occupant through remote 

controlling of the systems parameters. They can improve security and data analysis so the 

BMS can manage the system’s parameters. The CO2 of various buildings aim to be eliminated 

with a fully decarbonised electricity supply by 2035 [28] but this has not been accomplished 

by any case studies in previous research. The accurate forecasting of a buildings’ energy 

characteristics and application into the BMS’s to eliminate CO2 aren’t accomplished in any 

previous work.  

1.3 Research Aims 
The aim of this research is to develop cost-effective methods to reduce energy consumption 

and CO2 emissions of non-domestic buildings. This chapter concludes that non-domestic 

buildings consume 38% of the UK’s total energy and that the government is reducing fossil 

fuel consumption. Government regulations are being used to push buildings into being more 

energy efficient, but previous case studies show that this is complex and financially expensive 

and laborious. More cost efficient and practical methods of reducing carbon emissions of 

heating and cooling, renewable generation, electric vehicle management, and energy 

management must be developed to hit government targets.   

This will be achieved in three parts.  

Firstly, reduce peak-time energy consumption of the case study building and increase grid 

stability. This will be achieved by developing an optimised charging and discharging schedule 
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for an electric vehicle fleet, alleviating national grid peak-time demand while providing 

financial benefits for the building and for the EV owner. 

Secondly, occupation density forecasting will be investigated and coupled with existing FAR 

infrared heating. This will be conducted through a computational fluid dynamics software and 

will improve attractiveness for infrared heating methods by reducing initial investment on 

occupation sensors and by giving a comprehensive study on a case study application.  

Lastly, forecasting renewable generation management will allow the building management 

system to manage any generated energy optimally. This will be done by deriving accurate 

machine learning forecasting methods for the rooftop PV system on the case study building 

to determine requirements and benefits. This provides information on how data quality, 

varied inputs, and number of iterations affect the models accuracy.  

1.4 Research Objectives  
Research objectives are as follows:  

• Conduct a thorough literature survey on previous work surrounding non-domestic 

buildings energy consumption to identify the research gap. 

• Critically analyse existing design tools used to increase a buildings’ energy efficiency. 

These include renewable energy generation, building energy storage systems, and 

various methods of reducing energy consumption.   

• Assess the possibility of utilising electric vehicles available on site for better energy 

management and storage by developing an effective method of bi-directional 

charging. 

• Search for more cost-effective heating methods such as through infrared applications.  

• Develop MLA’s capable of forecasting the energy characteristics of the case study 

building, and more precisely, the overall energy demand. Various MLA’s will be 

developed to allow an accurate comparison between the models. 

• Apply the MLA methods to the case study building to reduce the energy demand and 

to increase the energy generation with optimised storage and energy trading.  

• Evaluate the MLA’s through the forecasted energy demand compared to the actual 

energy demand of the case study building.  



Chapter Four compares conventional forecasting of a buildings’ energy characteristics 

’
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Chapter Five shows the application of the MLA results into heating systems’ for the purpose 

of optimisation. Occupation density and location can be forecasted and used to improve the 

buildings’ heating efficiency.  

Chapter Six develops MLA’s capable of accurately forecasting the on-site energy generation 

of the Business Schools’ photovoltaic (PV) system while analysing the potential of applying 

MLA’s to other methods of renewable energy generation.  

Chapter Seven explains the necessity of applying the developed MLA’s to the case study 

building, how the building currently functions, and how the developed methods in this study 

can decrease the carbon emissions of the building. The impact that the MLA’s have on the 

BMS is addressed through comparing the current BMS to a novel version with integrated MLA 

forecasting.  

The thesis is summarised by the contribution to knowledge, conclusions of the work in the 

research, and assessment what work can be done to further the research in the future.  

1.6 Contributions of this Study 
 The main contributions are as follows: 

1. A developed occupancy forecasting method through machine learning methods, using CO2 

density data from the room as the input. This novel occupancy forecasting system is paired 

with already existing infrared heating to show how it may be applied, and to improve the 

energy efficiency of the heating within the case study by 75.97% [29].   

C. Scott, A. H. Ferdaus, T. Kenan, and A. Albarbar, "Cost-effective occupation dependant 

infrared zonal heating system for operational university buildings," Energy and Buildings, vol. 

272, p. 112362, 2022/10/01/ 2022, doi: https://doi.org/10.1016/j.enbuild.2022.112362. 

[Q1 Energy and Buildings, IP: 7.201, SNIP: 2.069] 

2. A method of using the energy capacity of electric vehicles is developed. Instead of 

purchasing batteries or selling all the energy surplus, the electric vehicles can be used to save 

non-domestic building costs by between 35%-65%, reducing required energy from the 

national grid [30].  

C. Scott, M. Ahsan, and A. Albarbar, "Machine Learning Based Vehicle to Grid Strategy for 

Improving the Energy Performance of Public Buildings," Sustainability, vol. 13, no. 7, 2021, 

doi: 10.3390/su13074003.  

[Q1 Sustainability, IP: 3.889, SNIP: 1.310]. 

https://doi.org/10.1016/j.enbuild.2022.112362
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3. A comparison of existing MLA’s used for forecasting renewable energy generation of a local 

solar PV system installed on the roof of the case study, providing important knowledge on 

how each algorithm is affected by poorer quality data, less inputs, and less iterations to be 

trained and tested on. The solar PV system can be forecasted with 95% accuracy, allowing the 

application of optimised energy actuation from the on-site generation techniques [31, 32].  

C. Scott, M. Ahsan, and A. Albarbar, "Machine learning for forecasting a photovoltaic (PV) 

generation system," Energy, vol. 278, p. 127807, 2023/09/01/ 2023, doi: 

https://doi.org/10.1016/j.energy.2023.127807. 

[Q1 Energy, IP: 8.857, SNIP: 2.038] 

C. Scott, A. Albarbar “Machine Learning Forecasting for Optimisation of Green Energy 

Generation in Non-Domestic Buildings,” 3rd International Virtual Conference on Industry 4.0 

(IVCI 4.0) 2022, 2022/01/01 2022.  

4. An evaluation of feature selection and baseline machine learning algorithms for the 

forecasting of energy consumption of the case study building. Various sizes and quality 

datasets are used with four feature selection and four machine learning models. The outcome 

of this is a conclusion that the F-test and random forest is the ‘best’ combination in 

consideration for forecasting accuracy, development speed, and computational power. All 

combinations are analysed to stand as a framework for future applications of machine 

learning to non-domestic buildings with benchmark models.  

C. Scott, M. Ahsan, A. Albarbar “Evaluation of Feature Selection and Machine Learning 

Algorithms for Energy Consumption Forecasting in Commercial Buildings”. Submitted in the 

journal of Energy and Buildings 18/01/2024.  
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CHAPTER TWO: LITERATURE REVIEW 

This chapter introduces previous and current works on low emission non-domestic buildings 

with emphasis on building management systems.  

Renewable energy generation and building energy storage systems are explored with the 

integration of machine learning algorithms and artificial intelligence applications for energy 

characteristic forecasting. At the end of this chapter, a clear research gap has been identified 

to be addressed in the following chapters. 
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2.1 Introduction  
Retrofitting of heating and building materials are analysed first to give context to the 

literature survey. Building management systems are analysed, machine learning algorithms 

are compared to building information modelling, the potential to incorporate the growing EV 

market into non-domestic buildings is contextualised, conventional and novel heating 

methods are compared, and renewable energy technologies are explained, all within the 

context of previous work and potential improvements for energy efficiency. It is finalised 

addressing the research gaps to be explored in this work.  

The efficiency of a non-domestic building may be improved through the installation of new 

windows, doors, wall cavity and roof insulation, draft proofing openings, and through 

changing heating methods. Heat losses may be minimised through new windows and doors 

through double glazing or vacuum insulated windows and through thicker doors or materials 

with lower thermal conductance than typical wood such as polyvinyl chloride (PVC). Wall 

cavity and ceiling insulation may be improved through adding more insulation such as through 

reaction injection moulding (RIM) [33] which improves the thermal resistance of the walls and 

ceiling, keeping heat in during the winter and out during the summer. Draft proofing openings 

such as doors can ensure less heat is lost through gaps in the installation. This can be done 

with any material with a high thermal resistance and can be a cheaper alternative than a full 

replacement, saving an average of 3.2% on heating and cooling demand [34].  

The heating methods used can be improved by replacing convection radiators with underfloor 

heating such that the heat must pass through more area before it is lost through the ceiling 

and windows. The replacement of a gas boiler with a heat pump, a pellet boiler, or electric 

boiler costs £2,400,000 £583,000 and £933,000 per MW. This translates to an initial 

investment for the Business School of £115,000, £27,950, £44,730 respectively, and an 

operating cost of £3,260, £1,965, and £383 per year. [35]. For an average energy price of 

13.5p/kWh, these methods could save the Business School £21,968, £23,263, and £24,845 

per year respectively if the only source of heating was a gas boiler. With an average lifetime 

of 25 years too, these methods can be a good investment, but it is dependent on how the 

building functions and on the shape and size of the rooms. The retrofitting of an office building 

with 1.2GW annual energy consumption reduces energy consumption by 39% with a return 

on investment (ROI) of over 5 years [36].  
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An energy simulation for 2- and 3-bedroom domestic houses with an average floor area of 

195m2 costs £27,614 to improve the thermal efficiency of a building with an insulation rating 

of 7-stars. In this previous research, it is rated from 5-stars to over 8-stars, and a higher star 

rating shows greater thermal insulation [37]. The physical characteristics of this simulation 

equate to a retrofitting cost of £1.7 million if the costs increase linearly for the Business 

Schools’ floor area of 12.6km2. This could save the Business School £180,987 per year, 

following the relationship between energy consumption and floor area, showing a ROI of 9.4 

years. 

The retrofitting of a building through improving the thermal resistivity of the materials can 

ensure there is limited heat gains and losses, and therefore the heating and cooling systems 

may require less energy for the same outputs. The absolute cost of retrofitting building 

materials and heating methods for the Business School cannot be defined, although it can be 

concluded that the retrofitting of heating systems can reduce costs of fuel and maintenance. 

Previous retrofitting methodologies can improve energy efficiency of the building, but they 

require initial investment, often much larger as the building size increases. 

2.2 Building Management Systems  
A building management system can optimise the energy management of the building through 

both software and hardware. Software’s within the method include data storage, processing, 

and servers for monitoring and controlling the buildings’ systems. The buildings’ systems are 

often controlled with dependencies on collected data such as how the heating operation can 

be dependent on the outdoor air temperature. Hardware’s within the method include 

automation controllers, smart meters, sensors, and manual room controllers. Automation 

controllers are used for management of the buildings’ systems through data collected by 

smart meters and sensors. A level of occupation input can be considered through manual 

room controllers.  

Main features in residential buildings include appliances, water and space heating [38]. A case 

study of an installed BMS to a domestic building is able to save between 34-57% of cost by 

implementation of HVAC and lighting models that optimise energy consumption [39]. Heat 

gains from surfaces, lights, building appliances, occupants, and insulation must be calculated. 

The energy management of residential buildings can be used in conjunction with PV and ESS 

to allow accurate and fair payments for selling generated energy to the national grid. The 



37 
 

forecasting of energy parameters with a rolling average allows the battery to be 

charged/discharged, and for all energy to be managed optimally. [40]. This is on a communal 

scale and is for residential purposes, but it provides optimisation.  

Influence factors of non-domestic buildings include cooling, thermal-energy, temperature, 

behaviour, comfort, climate, heat transfer, indoor air quality, heating, and ventilation, with 

other influencing factors included [41]. As there are various factors affecting the energy 

performance of non-domestic buildings, a BMS must be able to make real time decisions on 

what components to use (heating, cooling etc.). The heating is often controlled through 

measuring the current outdoor temperature to decide how much energy the internal heating 

needs and therefore how hot the inside of the building must be. Artificial variable ventilation 

is critical to maintain good air quality [42] which maintains health of occupants [43]. As the 

occupancy of a building may change at any moment, and as no ventilation system can have 

an instant effect on the zone(s), without any occupancy or temperature forecasting, artificial 

ventilation cannot be fully optimised. BMS’s can involve building energy storage systems 

(BESS) such as a battery [44], TESS [45], flywheel energy storage system (FESS) [46], and 

hydrogen energy storage (HES) [47]. These storage systems can be controlled through the 

BMS to determine when they need to be charged and discharged. Currently, when the energy 

generation of the building is higher than the demand, with an installed BESS, the energy can 

be stored to use later when the demand is higher than generation. This surplus of energy can 

then be used or sold at peak-times to reduce energy costs. This is only valid when the building 

has more generation than consumption, which is very rare in the cases of non-domestic and 

public buildings. There are many commercially available BMS’s with the capability to be 

installed on non-domestic and domestic buildings alike. They are all able to determine how 

to best control the buildings’ energy features (HVAC etc.) but the application of MLA 

forecasting can optimise the control of these features [19, 21, 25-27].  

Dwelling emission rate (DER) of a large residential building is measured with a BMS, and 

provides demand response to an aggregator, with overall demand response potential 

totalling 7.4MWh/y. Collected input data has 6 consumers all inside the apartments [48]. An 

energy management system (EMS) is proposed, considering outside environment such as 

orientation, automatic shading, and double façade. This allows more inputs for the BMS, 

requiring more computational power but by calculating variables that effect the energy 
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consumption, automatic shading and other parameters can be controlled, producing a lower 

electricity cost by up to 97% when the EMS is used with inside and outside design tools [49]. 

The problem with more inputs towards the BMS and any AI that may be involved is not just 

computational power, but the importance of the selected features and how they affect the 

forecasts and decision-making progress. In previous work, only two inputs are needed for an 

accurate forecast of CO2 density as the correlation between the inputs and output is high [42]. 

This can be an important factor as CO2 density scales with occupation, and therefore, already 

installed CO2 sensors may be used to forecast occupancy, but this is not covered in previous 

work.  

A climate-independent EMS based on fuzzy logic is proposed to use on prosumers, integrating 

solar, wind, battery energy systems (BES), EV loads, and tariff rates into the system to reduce 

total energy bill [50]. This eliminates the need for the installation of sensors and thus the 

collection of indoor data while still being able to reduce the energy cost up to 429.9%. This 

method also heavily relies on the accurate forecasting of the surrounding climate for the input 

into the fuzzy logic algorithm. Multiple energy sources are crucial for a BMS [51, 52] where 

operation costs are reduced by up to 26% and an active distribution network (ADN) is 

researched. This is achieved through using dimmable lighting, HVAC, EV’s, BESS, and PV 

generation. Reproducibility is a critical issue that must be considered [53] where data is 

becoming more accessible, and must be interoperable [54]. This mixture of rule-based control 

and reinforcement learning can save up to 80% on energy costs [55]. A HVAC system may be 

optimised through reinforced learning methods to reduce energy consumption by 13%. This 

is achieved through measuring the energy consumption against the indoor air temperature, 

ensuring it stays between 22oC and 25oC. The lower the energy consumption, and the closer 

the air temperature is to 23.5oC, the higher the reward is for the system [56]. These 

optimisation methodologies for BMS can save energy and costs by reducing the amount of 

wasted energy.  

The real time management of energy systems is achieved in the reviewed BMS’s with the 

ability of reducing wasted energy. Energy trading schemes are applied to allow any excess 

energy to be stored or sold. If there is no energy parameter forecasting, this energy cannot 

always be sold at the correct time to have maximum financial and CO2 reduction benefits. 

Also, any stored energy then does not have to be sold and can be used later in the day, but it 
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can only be guaranteed that this is necessary if the future energy demand is known. Although 

previous BMS’s are capable of increasing energy efficiency, they still cannot optimise it due 

to the real time actuation instead of forecasting. They cannot know how much energy is 

needed to be purchased, sold, or stored, depending on renewable generation or energy 

demand. Instead, they manage the systems with dependencies on the building’s current 

needs, ending with the building possibly purchasing the energy at a higher price or selling at 

a lower price. 

Each method has applied case studies and recent research, proving they work under different 

circumstances.  

2.3 Machine Learning Algorithms and Building Information Modelling 
Building information modelling (BIM) software is used to model how the building will function 

through simulating air flow,  HVAC, and power requirements [57]. BIM requires building data 

such as construction materials and orientation, all electricity users, installed HVAC system, 

and any other planned characteristics can be added into the software. A large difference 

between BIM and MLA’s is that BIM’s need much more data and time to develop, but they 

can also provide much more data than the MLA’s. MLA can be used to accurately forecast the 

energy characteristics of a building without the need for generating a model through 

simulation software. MLA’s mostly consist of supervised data, where historical data can be 

used to train the algorithm, and a specified output, such as the energy demand can be 

forecasted. BIM accuracy when forecasting energy characteristics can be more difficult than 

MLA due to BIM modelling all areas of the building, whereas an MLA can be trained through 

the energy data and less inputs.  

BIM aggregated forecasting has 13.9% and 206.7% average error over 17 software’s and 7 

software’s respectively [57, 58]. Single buildings’ have 251.5% average error over 18 

software’s, giving an average error of 132.55% between 35 forecasts. BIM results include air 

flow, precise energy demand, heating parameters, and various other parameters. The error 

ranges from 0% to 665% between the previous case study and the BIM forecast. The BIM can 

produce necessary results for analysing buildings’ systems but as is shown in previous 

research, the energy demand forecasting can often be inaccurate.  
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The forecasting of energy characteristic of domestic and non-domestic buildings can be 

achieved through MLA’s. Two branches of machine learning exist: supervised and 

unsupervised. Unsupervised is where there is no previously collected data to train the 

algorithm with. Unsupervised algorithms are previously used to measure cultural 

homogeneity [59], data annotation in anatomic pathology [60], and various other previous 

research. The problem with unsupervised methods is that it can’t accurately produce an 

energy demand forecast. Instead, it is capable of clustering or associating any data it is given. 

To forecast the energy demand, supervised learning techniques must be employed. A 

supervised MLA is an algorithm capable of forming mathematical bonds from inputs to 

outputs of a given dataset. When new input data is added, the bonds remain, and the outputs 

can be predicted [61]. Applications of ML are used in drug discovery and development [62], 

removal of contaminants on chemistry [63], and in transportation data analytics too [64], 

showing an application for almost every prediction and classification requirement. An 

abundance of previous applications of MLA’s towards energy characteristic forecast can be 

seen in previous research. They can be optimised through Gradient Descent (GD), Bayesian 

Optimisation (BO), Particle Swarm Optimisation (PSO), and various others.  

When forecast a buildings’ energy demand, MLA’s have an average error of 6.33% over 5 

forecasts [65-69]. These forecasts range from 30-minutes to daily forecasts for single buildings 

to clusters. The various machine learning algorithms able to be implemented is due to each 

having advantages and disadvantages when forecasting certain characteristics, and when 

trained with certain characteristics and amount of data. The inputs for these algorithms 

include building and climate data such as outdoor air temperature, rainfall, humidity, cloud 

coverage, energy demand(s), indoor CO2 density, and time of day. The MLA’s require less data 

than the BIM’s, but they can only produce information and forecasts that have a relationship 

with the training data.  

Higher errors within energy consumption forecast result in a less informed and un-optimised 

BMS, and therefore more wasted energy due to inaccurate energy management. This may 

result in the heating system being pre-activated too early or too late, either wasting energy 

or reducing occupants comfort. It could result in generated on-site energy being sold to the 

grid because the energy consumption forecast is lower than the actual energy consumption, 

and therefore energy must be purchased back for a higher price than it was sold for, resulting 
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in a loss for the building. If the energy consumption can be accurately forecasted, the BMS 

can be optimised, and energy waste can be reduced.   

When forecasting a buildings’ energy demand, Neural Network’s (NN’s) provide the highest 

performance [70], with 7 types of data processing, 30 types of feature selection, and 128 

types of MLA’s used for prediction of a buildings energy demand [71]. These include a few 

main types of algorithms, but each algorithm can be fine-tuned to the circumstance, creating 

a personalised algorithm each time. Various activation functions allow different amounts and 

types of data to be used, each using various computational power allowing for different 

accuracies [72]. A NN with GD is used for predicting cardiovascular disease with an error 

decrease of 3% and 6% compared to RF and NN without GD respectively [73]. A NN and BO is 

used to forecast the energy consumption of residential buildings with an error decrease of 

25% and 67% for a SVM and a NN without BO respectively [74]. An energy saving of 8% can 

be found through employing PSO and a NN to optimise the use of a HVAC system by 

eliminating excess energy use [75]. 

Backpropagation involves working backwards through the created model to reduce the error 

of each input through altering the given weights. There are various ways of doing this with 

the Levenberg-Marquardt (LM) showing significant benefits over other types [76, 77]. This is 

a mixture of two previous methods of minimising the cost function, the Gauss Newton 

method, and the Steepest Descent method. The Steepest Descent can be explained through 

Equation 2.1.  

𝜃𝑘+1 = 𝜃𝑘 − 𝛼∇𝑓(𝜃𝑘)        Eq. 2.1 

The value of ‘𝜃𝑘’ are the parameters at the current value of the cost function at iteration k, 

the ‘𝜃𝑘+1’ is the updated parameters at the next value of the cost function, ‘𝛼’ is the learning 

rate, or the step size, and ‘∇f(θₖ)’ is the gradient vector of the function ‘𝑓’ with respect to the 

parameters at the current iteration. A negative of the steepest descent is that it may have a 

small step size, and it identifies the local minima and not global.  

This can be combined with the Gauss Newton method in Equation 2.2.  

𝐸(𝜃) = ∑ 𝑖 (𝑦𝑖 − 𝑓(𝑥𝑖; 𝜃))2        Eq. 2.2 
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Where ‘𝐸(𝜃)’ is the objective function which is defined as the sum of squared residuals, or 

the variance in error. ‘𝑥𝑖’ and ‘𝑦𝑖’ are the input and output variables, ‘𝑓(𝑥𝑖; 𝜃)’ is the function 

between the value of ‘𝑥𝑖’ and the internal parameters of the NN such as the weights. Due to 

the nature of the algorithm always seeking to move the cost function towards the negative 

gradient, the local minima may be found instead of the global minima.  

The Levenberg-Marquardt method can be used to reach the global minima and faster than 

previous methods through using a damping factor to change the method between the Gauss 

Newton and the Steepest Descent. It often starts with the Gauss Newton approach for larger 

step sizes and as it approaches convergence, it switches to the Steepest Descent with a 

smaller step size to reach final convergence. The Levenberg-Marquardt can be explained 

through Eq. 2.3. 

(𝐻 + 𝜆𝐼)Δ𝜃 = 𝐽𝑇𝑟         Eq. 2.3 

 ‘𝐻’ is the Hessian matrix which is the sum of the Gauss Newton approximation (𝐽𝑇𝐽) and ‘𝜆𝐼’ 

is the damping factor used to determine the method in which the algorithm uses (Gauss 

Newton or Steepest Descent). ‘Δ𝜃’ is the parameter update vector such as the direction and 

amount of weight change, ‘𝐽’ is the Jacobian matrix which contains the partial derivatives of 

the function with respect to each input, and ‘𝑟’ is the vector of the residuals, which is the 

error of the  

2.4.1 Decision Tree 

A decision tree is a method of recursively splitting the data until it cannot be split to a better 

degree. The Gini method of node purity is used to decide whether the node is pure or not, 

meaning the data cannot be split any better. It is measured by the sum of all the probabilities 

of each class from a node subtracted from 1. This is shown in Equation 2.4. [78]. 

𝐺𝑖𝑛𝑖(𝐷) = 1 − ∑ 𝑝𝑖
2𝑘

𝑖=1         Eq. 2.4.  

Where ‘𝐷’ is the dataset that contains samples from ‘𝑘’ classes. The probability of samples 

belonging to class ‘𝑖’ at a given node is ‘𝑝𝑖’. Maximum impurity is given when the node has 

uniform distribution and minimum is given when all records belong to a single class. The tree 

splits the data so when new predictor features are added, it can split them the same way to 

give the target feature. This is a quick but often not very accurate algorithm due to the 

simplicity of it.  





inputs and sample data points, making it a robust model but prone to overfitting so it doesn’t 

work well with poor quality data. This is where the algorithm learns the data too well and isn’t 

An input cannot also be an output in the same NN so wouldn’t be included in the inputs if it 

𝑦 = 𝐵𝑜 + 𝐵1𝑋 + 𝜀

Σ
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Where ‘𝑦’ is the predicted output value when an input value is specified, ‘𝐵𝑜’ is the predicted 

value of the output when the input is 0, ‘𝐵1’ is the relationship between the input and the 

output, ‘𝑋’ is the input variable, and ‘𝜀’ is the error between the estimated value of the output 

and the actual value [79]. Once the slope is calculated with the training data the function 

remains the same with new data and is able to forecast the target data. It works well with 

data that is highly correlated. As this is such a simple method of forecasting, it is used for 

comparison towards other methods and whether they are worth the extra computational 

power.  

2.4.5 Support Vector Machine 

Support Vector Machines work by separating predictor and target variables through a 

hyperplane. The kernel functions used to separate the data are linear, polynomial, radial basis 

function, and sigmoid. The separation of two classes is shown in Figure 2.3.  
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Figure 2.3. The linear separation of two classes in a support vector machine [80].  

The margin that is ‘W’ can be determined to stop under or overfitting. A narrow margin results 

in overfitting and a wide margin result in underfitting. The kernel function has a regularisation 

function to optimise the size of the margin. The kernel function used to fit the hyperplane is 

used for regression as when a new input is added, it is fed through the function to give output 

data. 

2.4.6 Feature Importance and Selection 

The target features are the kitchen, heating, ventilation, and air conditioning (HVAC), lighting, 

and overall demand. The training features include these, but with additional features which 

are rainfall, outdoor temperature and air pressure, and the time of day/day of week. The 

algorithm chosen to determine feature importance is maximum relevance minimum 
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redundance (MRMR). The various feature importance algorithms all gave similar results, but 

when MRMR was used, it provided more accurate forecasts when used with the algorithms. 

MRMR is calculated through Equations 2.6, 2.7, and 2.8.  

The maximum relevance equation is shown below: 

𝑉𝑠 =
1

|𝑆|
∑ 𝐼(𝑥, 𝑦)𝑥∈𝑆         Eq. 2.6. [81] 

The importance of the feature with respect to the target is calculated. Where ‘𝑆’ is the set of 

features, ‘𝑥’ is the predictor, ‘𝑦’ is the target, and ‘𝐼’ is information gain. The information gain 

of the given feature to the target is summed for each iteration to give maximum relevance of 

the feature to the target.  

The minimum redundance equation is shown below: 

𝑊𝑠 =
1

|𝑆|2
∑ 𝐼(𝑥, 𝑧)𝑥,𝑧∈𝑆        Eq. 2.7. [81] 

Where ‘𝑍’ symbolises another feature and not the target. It is calculated the same way as 

maximum relevance, but instead of with respect to the target, it is with respect to a different 

feature, giving minimum redundance of a feature. MRMR provides information on how 

important a feature is towards the forecasting of a target, while comparing it with other 

features, allowing the removal of features that are highly correlated. MRMR is effective and 

requires low computational power. 

𝐼(𝑋, 𝑍) = ∑ 𝑃(𝑋 = 𝑥𝑗 , 𝑍 = 𝑧𝑗)𝑙𝑜𝑔
𝑃(𝑋=𝑥𝑗,𝑍=𝑧𝑗)

𝑃(𝑋=𝑥𝑖)𝑃(𝑍=𝑧𝑖)𝑖,𝑗     Eq. 2.8.  [81] 

Eq. 4.6 shows the mutual information between two variables, where the uncertainty of one 

variable can be reduced by knowing the other variable. ‘I’ is information gain, ‘(X, Z)’ are 

variables and ‘P’ is the probability of that event occurring. It can be described as each 

variable’s probability of occurring simultaneously divided by the probability of them occurring 

independently. The iterations are summed and it is multiplied by log to give an answer 

between 0 and 1, where the variables are independent at 0 and are completely dependent at 

1 .[81] 

An application of machine learning [82] provides a variety of results for predicting energy 

consumption of a building between 2.42% and 68.31% error depending on the ML method in 
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use. MLA’s can forecast a buildings’ energy demand [65-67, 83-88]. These buildings are in 

various climates from Spain, Australia, China and more. Case study buildings include 

universities, commercial buildings, with domestic applications too. This shows that the energy 

characteristics of any building can be forecasted through MLA’s. The accuracy though, is 

dependent on many variables.  

Future environment trends are predicted using generalised corr-entropy assisted long short-

term memory (GC-LSTM) to improve a BMS [89]. This domestic application is achieved 

through the forecasting of outdoor temperature, electricity price, and PV generation. No 

previous non-domestic applications of temperature forecasting and application to a BMS are 

available. Occupancy forecasting involves 78 ML methods, with 63% of them being used for 

heating, ventilation and air conditioning (HVAC) system optimisation with accurate data being 

of upmost importance [90]. This can be very important due to the high causation towards the 

energy demand of the building, providing an important input variable for training. Data 

collection must be of high accuracy, with a strong correlation between occupancy, wi-fi, and 

electricity consumption [91], and a higher spatial resolution of occupancy possibly results in 

poorer predictions [92].  

Table 2.1. The summary some of MLA methods, accuracy, and applications used.  

Citation Main MLA method Application Accuracy 

[65] NN, CNN  University building 13.26, 9.38 MAPE 

[66] NN University campus 4.31 MAPE 

[67] NN University campus 3.46 MAPE 

[83] LSTM NN University campus 0.36 MAE 

[84] LSTM NN Sports centre  2.67 MAPE 

[85] NN Cooling load of a 

shopping mall 

0.8 MAPE 

[86] LSTM NN HVAC system of a 

university building 

5.31 RMSE 

[87] Gaussian process 

regression, DT, NN, 

and LR 

Cooling load  0.4, 1.7, 2.5, and 13 

MAPE respectively 
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[88] NN Business centre 2.14 MAPE 

[93] RNN HVAC system of a 

simulated building  

5.5 MAPE 

 

From previous research analysed in this thesis, the main applications include a type of NN. 

Citations [65], [83], [84], and [86] use a LSTM, [66] uses an ELM, and [87] uses a mixture of 

DT, NN, LR, and gaussian process regression. Although Gaussian process regression has a 

higher accuracy, it is only forecasting the cooling load and therefore there are fewer affecting 

parameters than if it were to forecast the buildings’ whole energy consumption. This is due 

to the cooling load affecting the entire energy consumption, and therefore, any affecting 

factors of the cooling load are added into the affecting factors of the entire energy 

consumption. Citation [65] uses a CNN which outperforms the NN with 38 inputs, showing 

that the standard NN could be overfitting, but this is not analysed within the previous 

research.  

The ELM is forecasting a university campus, and not a single building, and does not compare 

this model with other MLA methods. It does state that the method may be better at 

forecasting larger-scale energy consumption such as from the power grid. The RNN used in 

[93] is applied to a HVAC system and not an entire building, and there is a similar theme when 

using RNN such as the application [94-96] into a power grid. There is not a comparison of a 

NN, RF, SVM, and LR in any previous studies for the energy consumption forecasting of a non-

domestic building, apart from the work in chapter six of this thesis. In previous research, there 

can be a difficult comparison of MLA methods due to the variables involved such as quality 

and quantity of training data, volatility of the target data, and computational power available. 

The NN is most used to forecast the energy consumption of non-domestic buildings and for 

larger-scales, and although most previous research do not specify the reasoning for this,  

There are 27 NN, 7 LR, 19 SVR, 8 RF, and 8 genetic algorithms reviewed in previous works [97] 

for the forecasting of a buildings’ energy consumption. This previous research states that the 

NN, SVR, and RF is most used because: “This is mainly due to the difference in capabilities of 

the observed approaches in capturing useful information in time series data and for increasing 

the prediction accuracy.” which is like the data and work in this thesis.  
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This mixture of rule-based control and reinforcement learning can save up to 80% on energy 

costs [55]. A HVAC system may be optimised through reinforced learning methods to reduce 

energy consumption by 13%. This is achieved through measuring the energy consumption 

against the indoor air temperature, ensuring it stays between 22oC and 25oC. The lower the 

energy consumption, and the closer the air temperature is to 23.5oC, the higher the reward 

is for the system [56]. These optimisation methodologies for BMS can save energy and costs 

by reducing the amount of wasted energy. The machine learning methods can be more 

accurate and less expensive to develop in the context of data collection and time. They give 

less data than building information modelling, but for the purpose of energy demand 

forecasting, they can be more practical.   

2.4 Electric Vehicle Applications  
Electric vehicles (EV) are becoming more popular with the aid of government incentives [98] 

and through domestic bi-directional charging to increase EV market share [99]. Global EV 

sales have increased by 444% from 2012 – 2021 [100] with an expected increase of 20.5 

million new sales from 2022 – 2027 [101]. This will increase more strain on the national grid 

as they  consume electricity instead of petrol or diesel which must be supplied by the grid. 

Better charging and discharging management is done through a vehicle-to-grid (V2G) and 

vehicle-to-building (V2B) method that charges the EV at night. Buildings’ with higher demand 

require more EV’s to maximum the method. This can be optimised with renewable generation 

for cost efficiency [102], grid flexibility [103], and number of connected EV’s [104] with high 

dependency on electricity price variability and optimal charging and discharging times [105]. 

Battery degradation of the EV must be considered with these methods [106]. As EV’s are 

becoming increasingly equipped with larger batteries and can be charged quicker, the 

method’s cost and energy saving potential increases. They are not previously used with an 

optimised schedule to reduce the peak-time load of non-domestic buildings with 

consideration of battery degradation and business-as-usual for the EV owner. This could 

improve grid flexibility while promoting increase of research in the EV sector due to more 

applications and benefits.  

2.5 Conventional and Novel Heating Methods  
Conventional heat sources include furnaces, boilers, heat pumps, active solar heating, and 

electric heating. Furnaces use natural gas or electricity, where air can be heated and 
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circulated around the building, with an efficiency of 64% [107]. Boilers heat hot water that 

can be circulated around the building into convection radiators with an efficiency of up to 

95%. Fuel sources include natural gas, oil, coal, and wood [108]. Heat pumps can be sourced 

from the ground or the air with a potential efficiency of 63.4% which can vary for ground or 

air sourced [109]. Active solar heating works through absorbing the heat from the sun to heat 

circulating water to heat the building or for showers. Although the efficiency can vary greatly, 

solar collectors can generate 90% and 95% of hot water and space heating respectively [110]. 

Conventional distribution systems include variable air volume (VAV), wall or underfloor 

radiators, and hot water and electric baseboards. 

VAV generates heat in the boilers which is distributed through a series of ducts throughout 

the building. This allows the building to be zoned and gives control over the volume of air in 

the room to regulate the ventilation. Outdoor air can be used for cooling. Conventional 

radiators heat water in the boilers and distribute it around the building into the specified 

radiators. They can be wall mounted but work better when underfloor due to convection. 

They are fuelled from heated water from the boiler, usually powered by natural gas.  

Baseboards can be fuelled by either hot water or electricity. They can be placed in any room 

to achieve zonal heating, and while replacing traditional skirting boards, they are able to 

generate heat for the room. Due to the placement being at the bottom of the space, the 

convection heating they produce can heat more space and surfaces than if it were placed at 

the top of a space. Hot water baseboards are fuelled from water from a boiler or from an 

active solar heating system. Electric baseboards have the same potential as gas powered 

baseboards but due to them being fuelled by electricity, they can be powered from renewable 

energy sources.  

Electric heating can be powered purely renewables. The problem with electric heaters and all 

previous conventional methods is that although conventional methods of heating can have 

high efficiencies towards 100%, the way the generated energy is used results in energy losses. 

Convection heat is not efficient as it heats the air which rises and results in losses through the 

ceiling or roof so even if the production is efficient, the execution is not. To eliminate 

convection losses, novel methods of heating are introduced. Infrared radiation can be 

considered a novel method of heating. It is a natural source of radiation produced by the sun 

with various applications for health benefits and food processing [111-116]. It can also be 



used for space heating as infrared doesn’t target the air when it heats, and instead, infrared 
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Firstly, outdoor air is pulled into the building and is mixed with either the heated air or the 

cooled air in the mixer, depending on whether the system is intending to heat or cool the 

spaces. This is done due to ventilation recommendations in public spaces, requiring at least 

10 litres/second/occupant [120]. Heated air must be removed from the spaces due to 

ventilation requirements so the energy from the heated air is mixed with cooler outdoor air 

to improve efficiency of the system. Cooling and heating coils are powered from electricity or 

from a boiler to manipulate the air to an optimum temperature for the spaces. The air is then 

passed into a variable speed supply fan, capable of maintaining a desired air pressure within 

the rooms through pumping the heated or cooled air into the rooms. Once the rooms are set 

to a desired temperature, the air within them can be maintained with less energy required, 

but the ventilation must still be maintained. The air is then passed through a variable speed 

return fan, capable of pulling the air out of a room and reducing the air pressure. The supply 

and return fans work together to maintain air pressure and ventilation rate. The return fan 

then pushes the air out of the spaces, through the mixer, and finally outside the building. This 

system works well due to the flexibility of the system as it can specify temperature, air 

pressure, and ventilation rate with ease while also conserving energy through the mixer.  

Wall and underfloor radiators work through heating air or water from a boiler or ground 

source heat pump or an active solar heating system. The heated water is then distributed 

around the home from a pump into whichever room requires to be heated. The zoned system 

is explained in Figure 2.5.  
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Table 2.2. A comparison of conventional and novel heating methods. 

Name Heating Method Benefits  

Variable-Air-Volume Pushing conditioned air into 

an environment. 

Can change the density of 

the air while heating and 

cooling with a highly 

efficient heat exchange 

plate.  

Underfloor Radiators  Heats up the air through 

convection. 

The heat passes through 

more space and materials 

and therefore can have 

greater heating effect. 

Baseboards Heats up the air through 

convection. 

Has the same effect as 

underfloor radiators except 

it is simpler to install and 

can have greater losses due 

to it being closer to the 

building envelope. 

Electric Heating Uses electricity for 

convection heating. 

This can be applied to any 

radiator and can therefore 

be used anywhere in a 

building. 

Infrared Heating Passes electricity through a 

material such as carbon 

fibre to generate infrared 

radiation. 

Is more efficient than 

convection heating 

methods, can be applied 

anywhere in a building, and 

can be powered with 

renewably generated 

electricity instead of gas. 

 

Each heating method has its own benefits, depending on the application. The most efficient 

method of heating for a large open space might not be the most efficient method for an 
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enclosed space. Although infrared heating currently exists and are applied commercially, they 

are not previously applied with any MLA methods to improve their operation.  

2.6 Renewable Energy Technologies 
Renewable energy can be produced through solar, wind, kinetic, and from biomass on-site, 

allowing the building to become decentralised [121], as the source of energy has great effect 

on the buildings’ CO2 emissions [122]. The application of renewable energy generation to 

hotels in the Mediterranean show an energy demand reduction of 36-64% from the grid [123]. 

Ground source heat pumps (GSHP) are able to reduce CO2 emissions by up to 5.9% [122]. This 

is dependent on the method that the renewables are applied to the building as the ground 

source heat pump (GSHP) also increased CO2 emissions by 3.7%.  

Solar photovoltaic energy generation is reviewed in 246 rooftop systems. These residential 

systems installed in the Netherlands have between 2-5 years of collected data from 2016-

2020. Weather conditions effect the PV systems greatly, but without high correlation as the 

effect cloud coverage has on the systems vary greatly. PV generation is also able to be 

forecasted using weather conditions with a root mean square relative error (RMSRE) of 

between 6.43-12.2% [124]. These systems are for domestic use so the application towards 

commercial use would require an increase in scale, but if the correct data is collected, this 

method can scale. Larger scale PV systems that are installed on grid level are able to generate 

273.75MWp which is able to reduce the national load by 200MW in a given month in Poland 

[125]. Various weather conditions make it difficult to calculate how much energy PV systems 

can generate. Commercial, rooftop PV systems in Vancouver are too expensive to be 

financially viable and require cost reductions of 50%. After this, the system is viable and can 

reduce the energy demand from the grid [126].  

Kinetic floor tiles are capable of powering low consumption electrical devices, [127] producing 

520mW per tile compression. There are 44 case studies including retail, education, transport 

hubs, sports stadiums, and smart city development where kinetic floor tiles are installed to 

generate energy from footfall [128]. The piezoelectric floor tiles are able to power low electric 

such as a wireless sensor. The tiles should be installed in a crowded place to ensure maximum 

generation [129]. This method has promising potential as the material of the tiles can be 

altered for improved energy generation and performance. The tiles can also produce 

important information on the volume of occupation for use in MLA’s [130].  
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The rotational energy from manual rotating doors can be harvested to produce 40W per 180o 

rotation, or 331W per minute of constant use [131]. A swing door can be used to generate 

energy through occupants. A damper can be used to control the speed of the door during 

closing through a generator. The energy generated through the action ‘𝐸𝑖𝑛’ can be explained 

through Equation 2.9.  

𝐸𝑖𝑛 = 𝐾𝐸 × 𝑃𝐸 × 𝐸𝑔𝑜       Eq. 2.9. 

Where ‘𝐾𝐸’, ‘𝑃𝐸’, and ‘𝐸𝑔𝑜’ are kinetic energy of the door, potential energy stored in the 

torsional spring, and the energy absorbed by the generator, all measured in Joules (J), 

respectively. This method can be used for both the revolving door and the swing door.  

This study is through a simulation, assuming optimum conditions. A case study develops a 

revolving door capable of generating 110W every two seconds, 0.61kWh per day. By 

increasing the mass of the three doors, the energy generated increases with the torque [132]. 

No rotating or swinging door energy harvesting has been applied to domestic or non-domestic 

buildings.  

Wind energy can be produced in various ways such as turbine installation on a high ridge. A 

model is 13m long and produces between 4kW-12.5kW of energy depending on wind speed 

[133]. A conventional vertical wind turbine can be problematic as they produce too much 

noise and affect comfort conditions of the building [134]. The installation of a conventional 

wind turbine between two high buildings was able to generate more energy than usual due 

to the wind being focused between the buildings. Wind speed increases with heigh, meaning 

a ridge installed wind turbine will generate less energy the smaller the building is. No previous 

work has a case study where a wind turbine is installed on a ridge.  

Biomass is a method that uses organic matter to produce energy which can be implemented 

into decentralised buildings [135]. The energy of combustion ‘Δ𝐸𝑡𝑜𝑡𝑎𝑙’ (J) is explained in 

Equation 2.10. 

Δ𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑠 × ∆𝑇         Eq. 2.10. 

Where ‘𝐶𝑠’ is the heat capacity of the calorimeter and ‘∆𝑇’ is the temperature increase of the 

biomass material. To optimise the application of biorefinery, government policies must 

support further innovations into the method. There are 14 factors that affect the conversion 
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from biomass to biofuel with 12 conversion methodologies [136]. Various fuels provide the 

system with various energy outputs as wetter fuels require more energy to dry, and some 

fuels don’t have a high enough energy content [137].  

Hydrogen technology shows high potential but can be costly, with green hydrogen providing 

the best potential for a low carbon footprint among simulations [138]. It is called green 

hydrogen when the electrolysis is achieved using renewable energy. Once the hydrogen is 

collected through electrolysis and stored, it can be passed into a proton exchange membrane 

(PEM) [139]. A hydrogen fuel cell is installed in a commercial building where it is able to 

reduce emissions by more than 50%, providing better results than the PV system [140].  

The cost of carbon neutral grid connected residential communities in a hot climate show there 

are enough renewable sources for net zero buildings where initial cost has the biggest effect 

on overall effectiveness [141]. Each methods’ energy generation can be forecasted to some 

degree of accuracy, resulting in viable options for the installation onto non-domestic and 

domestic buildings alike. The continued research into improvements for renewable 

generation make them almost a certainty for net zero energy (NZE) buildings.   

An effective way for a building to reduce its carbon emissions is to match the energy 

consumption through RE generation. This can be done through a variety of ways. As sunlight 

is the most abundant source of energy, solar PV is the most common method of energy 

harvesting. Solar PV works through harvesting energy from the photons to excite electrons 

within semiconductor materials. The hourly power output ‘𝑃𝑃𝑉’ (W) generated from the PV 

array of a given area is shown in Equation 2.11.  

𝑃𝑃𝑉 = 𝜂𝑃𝑉 × 𝑆𝐼 × 𝐴𝑃𝑉(1 − 0.005(𝑡𝑜 − 25))     Eq. 2.11.  

Where ‘𝜂𝑃𝑉’, ‘SI’, and ‘𝐴𝑃𝑉’ are the efficiency of solar generation, solar irradiation (kWh/m-2), 

and PV array area (m2), respectively [142].  

Solar thermal is a different method of harvesting energy from the sun. Instead of using the 

photons to charge a material, the heat from the sun can be focussed to heat a material such 

as salt or water. Solar thermal energy can either be used to reflect solar heat at a conductor 

to store for later use or for the heating of water or gas to pump round a building or to provide 





on climate conditions but isn’t affected as much as other renewable met



61 
 

where water has already been heating. This heated water is pumped out of the system and 

into the building where it can be used. Common practise is for the heated water to either be 

distributed around the building as heating, or to be used as hot water for in bathrooms and 

kitchens etc. Deeper systems provide hotter water but require more initial investment than 

smaller systems. This system requires there to be space for the geothermal system to be built, 

in which case, many public buildings do not have. Previous research shows that the thermal 

conductivity and type of ground affects the way the systems work. Dry sand and wet ground 

have a specific extraction rate of 10-15W/m2 and 30-35W/m2 respectively, and hard rock can 

be up to 70W/m2 which can provide a yield of 100-120kWh/m2 [149]. This is used for district 

heating due to the amount of energy that can be extracted from the sub-terrain, so it is 

practical for urban environment. Geothermal energy generation techniques are affected by 

the size of the system for depth and width, the global location, as hotter temperatures yield 

hotter extracted water or air, and the material of the ground, as they have different 

insulations. 

MLA’s are used to forecast exploration, seismicity, drilling, petrophysics, reservoir 

characterisation and engineering, and production [150]. The production of thermal power 

from geothermal systems can be forecasted with an average MAPE of 0.28% through a NN 

[151]. This system was trained with 4 inputs for 3 case studies with temperatures of 190oC, 

160oC, and 140oC, showing that MLA’s can be utilised for accurately forecasting geothermal 

energy generation.  

Wind energy can be harvested through 2 types of wind turbines. These are most commonly 

large-scale and part of a wind farm where the energy can be distributed through the national 

grid. The 2 types of wind turbine are horizontal-axis wind turbine (HAWT) and the vertical-

axis wind turbine (VAWT). These are illustrated in Figures 2.8 and 2.9 respectively.  

 

 

 

 

 



Both turbines are capable of generating output power from wind ‘𝑃’

𝑃 = 0.5 × 𝜌 × 𝐴 × 𝑉3 × 𝐶𝑝
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Where ‘𝜌’, ‘𝐴’, ‘𝑉’, and ‘𝐶𝑝’ are air density (kg/m
3), swept area of blades (m2), the velocity of 

the air (m/s), and the power coefficient respectively [152]. In a previous study, a HAWT wind 

turbine generated 55% more energy than a VAWT. This is due to the HAWT turbine not being 

affected by backtracking; the reduction in energy due to the wind turbine having to push 

against the wind for a small period of time due to the turbine rotating [153]. Although HAWT 

can produce more energy, they can be difficult to install in an urban environment due to the 

amount of space they require to move. Larger turbine blades provide a larger surface area 

and thus more generated energy, but there is not always enough space for this. As VAWT 

turbines don’t require as much vertical space and can be increased in height to provide a 

larger blade area, they can be the preferred model to use in an urban environment. They can 

also be repaired easier due to the gearbox and the generator being at the bottom of the 

turbine, allowing the maintenance to be conducted from the ground.  

In previous research, wind data comprises of wind speed (m/s), dry bulb temperature (oC), 

rainfall (mm/h), snowfall (mm/h), snow mass (kg/m𝐴̂2), surface radiation (W/ m𝐴̂2), radiation 

at the top of the earths’ atmosphere (W/ m𝐴̂2), cloud cover (%), previous days’ and weeks’ 

wind speed (kW), air density (kg/ m𝐴̂2), and total wind power production (kW). Solar PV data 

comprises of direct irradiance (kW/ m𝐴̂2), diffuse irradiance (kW/ m𝐴̂2), outdoor dry bulb 

temperature, rainfall, snow fall and mass, surface and top of atmosphere radiation, cloud 

cover, ambient temperature, and total solar power production (kW) [154].  

Through both conventional methods of wind generation, there cannot be a unanimous 

decision on which turbine will provide the most benefits. A VAWT is more practical for an 

urban environment, but it may generate less energy and there may be no rooftop space if 

there is an installed solar PV system.  

 A novel method of generating wind energy is through a horizontal turbine installed on the 

highest ridge of a roof allowing them to be fitted in an urban environment. They work through 

channelling the wind up the roof and into the turbine as is show in Figure 2.10.  

 

 

 



11,382 datapoints for training and 11,383 for testing. The MLA’s could forecast the wind 

. The application of MLA’s for forecasting the energy 

on cloud coverage and total amount of solar hitting the panels’ surface. Solar thermal relies 
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The literature review shows the importance of renewable energy generation [122, 123, 125, 

127, 131, 133, 135, 138], building management systems [39, 42, 49, 51, 52], building energy 

storage systems [44-47], the application of machine learning algorithms to forecast buildings’ 

energy demands [70, 71, 82], and the importance of variables to optimise electric vehicle 

charging and discharging schedules [102-105]. From previous literature on the subjects, the 

following statements can be made:  

1. The research and application of the above-mentioned energy storage, generation, and 

utilisation methods provide undeniable benefits towards the building. This includes 

through saving costs and reducing the buildings’ carbon emissions. Further energy 

improvements though, require more investment and helpful government schemes 

such as a higher selling electricity price from the building to the grid or cheaper 

renewable energy installation etc.  

2. Building management systems that use renewables in conjunction with electric 

vehicle bi-directional charging, especially green hydrogen, can reduce carbon 

emissions the most. The systems can save energy while working on a real-time 

schedule, but no previous works are able to produce net zero energy non-domestic 

buildings.  

3. The DEC produced by the government do not provide enough information for the 

improvement of the building, requiring further work to determine the energy 

performance of the building if the energy efficiency was improved.  

4. The MLA’s can accurately forecast a buildings’ energy demand more accurately and 

more easily than BIM software’s and use less computational power, but they require 

initial data. They also cannot produce as much information as BIM’s such as air flow 

and physical parameters.  

5. Occupation density and behaviour can be difficult to predict due to different 

behaviours. Occupation has high correlation to the energy demand of buildings so by 

optimising comfort to the buildings’ occupants, the BMS can automate without the 

need for the occupants to interfere. This allows the BMS to optimise other energy 

characteristics to reduce waste and carbon emissions.  
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2.7 Summary and Research Gap Identification  
The UK Government regulations aim to have a fully decarbonised electricity supply by 2035 

[28].  This requires both increased renewable energy generation and energy efficiency of 

buildings. Non-domestic buildings are among the highest energy consumers worldwide and 

in the UK, requiring improvement to meet government targets.  

The application of MLA’s for energy demand forecasting of various case studies prove that 

they can forecast the energy characteristics more accurately with less initial data and 

computational power than BIM software’s. These techniques are previously applied to non-

domestic building’s BMS. Novel methods of MLA applications for energy consumption, 

management, and storage aren’t exploited enough which can have large benefits for the 

reduction of carbon emissions.  

The techniques used for forecasting the energy characteristics and for generating and 

consuming the energy within non-domestic buildings are reviewed. Various commercially 

available BMS’s can reduce carbon emissions but are not able to apply MLA energy demand 

forecasting. It can be concluded that the BMS’s require further improvement to eliminate 

carbon emissions from buildings. Building’s energy demand forecasting is accomplished for 

the purpose of improving and fine tuning the MLA’s. These forecasts range from 30-minutes 

to daily forecasts for single buildings and clusters [65-69, 157, 158]. This allows the building 

to optimise energy trading through purchasing at off peak for storage and selling or using at 

peak time, pre-heating and cooling only forecasted occupied zones, and lighting through LED’s 

and LDR lighting.  

In the aforementioned work, the application of machine learning forecasting to non-domestic 

buildings and installed BMS is under-explored. The aim of this research is to reduce non-

domestic buildings’ energy consumption through more efficient methods of energy 

management.  

There are three major research gaps to be explored in this work. One research gap is within 

the field of EV’s. They carry large energy capacity and are left plugged into the building for 

the majority of the workday, when their energy capacity can be used. This research target is 

a method that utilises the energy capacity of EV’s by discharging the EV’s at peak-time to save 
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energy consumption from the building. The cars can be charged at off-peak times and the EV 

owners can be paid so that all parties find this solution profitable.  

Another research gap is the application of MLA occupation density to infrared heating. As 

infrared heating’s popularity is increasing, the forecasting of occupation can reduce wasted 

energy by only being in use while the room is occupied. The room can be split into zones and 

the heating can be occupation dependant, providing more control over the heat and reducing 

wasted heat by only using it when the room is occupied.  

A third research gap is the exploration of MLA applications for local PV systems. Previously, 

there has not been a comprehensive analysis of benchmark models. This exploration would 

provide information on which models can be used, with respect to what type and amount of 

data there is to train the models.  
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CHAPTER THREE: PUBLIC BUILDINGS IN AN ENERGY 

CONTEXT 

This chapter presents a general background on non-domestic buildings in the UK, the energy 

grades of non-domestic buildings’, and how they are graded. Government recommended 

improvements and how the energy grades and improvements are calculated are also 

explained.  

University buildings have a high carbon footprint so are actively seeking to reduce the carbon 

emissions. Manchester Metropolitan University is ranked the number two sustainability 

University in the UK and has had a top 3 finish for the past 11 years, providing validity for it to 

be used as the case study. This work is an endeavour to improve the CO2 print of the MMU 

Business School. The MMU Business School building’s energy characteristics, operations and 

recommended improvements are described with the MMU Business School’s building 

management system.  

 

 

 

 

 

 

 

 

 

 

 



69 
 

3.1 Introduction 
The UK contains over 1,755,000 non-domestic buildings [159]. Each building has its own 

function, physical parameters, occupants, and location, and some building’s energy 

consumption is easier to reduce. Although lower energy consumption results in reduced 

carbon emissions, this does not always translate to a better energy grade by the UK 

Government. Instead, the energy performance of the building is also compared against other 

similar buildings to provide comparisons, so this is explored further in this chapter. UK 

building trends are analysed, showing the progress-to-date of how often non-domestic 

buildings are built, how their energy consumption changes through time, and in what industry 

this is occurring.  

To determine how best to improve the energy performance of non-domestic buildings, the 

energy grades must be analysed. This includes exploring how building’s data collected by the 

UK Government can be compared against average UK buildings for context, and how energy 

grades can be improved considering the function and other parameters of the building.  

The main objectives of this chapter are to: 

• Analyse how energy grades are obtained and how they can be used to reduce carbon 

emissions. 

• Determine what an average UK public building looks like in an energy context. 

• Explain how energy grades can improve and how these factors look when applied to 

the MMU Business School.  

• Describe what types of public buildings exist and their functions.  

3.2 Display Energy Certificates and Energy Grades  
For non-domestic building’s, among the highest energy consumers are offices, shops, and 

educational buildings, which are given a display energy certificate (DEC) by the UK 

government. This is a scale from A-G with ‘A’ being most efficient, and is evaluated through 

characteristics including location, size, age, and condition. This shows how much CO2 the 

building produces. If the floor area is more than 1km2 then the DEC is only valid for one year 

whereas if the floor area is under 1km2, the DEC lasts for ten years [160]. As UK buildings’ 

energy efficiencies are improved and carbon emissions are lowered, a better energy grade is 

also more difficult to obtain. ‘D’ or 100 is the average rating for a building of the same size 
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and function, and the lower the number score, the more efficient the building is. This allows 

larger buildings with larger energy consumptions to be compared to smaller buildings with 

smaller energy consumptions fairly. The energy consumption does not always convey the 

energy efficiency of the building. Systems such as lighting or the HVAC demand will naturally 

be lower for a building with less occupants than for a building with more occupants due to 

the systems operating less. This does not mean that the systems themselves are efficient; just 

that they don’t need to operate as much. Larger buildings whose systems are dependent on 

the occupancy can be considered more efficient, but again, this does not correlate to highly 

efficient systems just because they are being operated efficiently. Systems must be operated 

efficiently, such as not over or under working, and while operating, the systems should not 

be wasting energy such as by using LED’s lighting instead of halogen lighting.  

As energy grades of similar buildings are improved, the average energy grade becomes more 

difficult to obtain due to the requirement of reduced carbon emissions for the same grade. If 

all other similar buildings reduce their carbon emissions and a single building does not, even 

though it has not changed functionality, the energy grade will decrease. This ensures that all 

buildings are improving and are investing in more energy efficient methods of operations.  

Table 3.1. The building objects that put together the energy system of the building and the key 

parameters defining them [161].  

Building 
Object 

Key Parameters Linked Objects 

Zones Dimensions, activity type, lighting, heating, and 
ventilation 

HVAC and HWS 

Envelope 
Elements 

Wall, floor, or roof, area, orientation, construction 
type, thermal bridges, perimeter length, and 

condition of adjoining space 

Zones 

Windows Dimensions, glazing type, thermal bridges, shading 
system, frame factor, and aspect ratio 

Envelope  

Doors Area, construction type, thermal bridges, and type 
of door 

Envelope 

HVAC System type, heat source, fuel type, efficiency, 
duct leakage, fan power, and controls 

Zones 

Hot Water 
System 

Generator and fuel type, efficiency, and if it is a 
storage system 

Zones 

Solar Energy 
Storage 

Dimensions, orientation, inclination, and storage Hot Water System 



71 
 

Photovoltaic 
Energy 
Storage 

Dimensions, orientation, inclination, and type NA 

Wind 
Generator 

Terrain type, dimensions, and power NA 

Combined 
Heat and 

Power 

Fuel type, efficiency, building heat and hot water 
supply, thermal and electrical efficiency 

HVAC 

Solar 
Collectors 

Type, operation, control type, absorptivity, and 
design air flow 

Zones and 
Envelope 

Showers Shower type, efficiency, and pump power Hot Water System 

 

The energy rating is adjusted for the floor are of the building, so it is independent of size and 

dependent on the function of the building. The energy grade is then estimated through the 

standard assessment procedure (SAP) which is a government owned software. The SAP 

calculates generated and consumed energy, building function, size of the building, and 

various other factors such as building materials and orientation. These calculations are 

derived from other buildings where the data is known, and with similar sizes and functions. 

The outcome from the SAP allows a comparison between the selected building’s energy 

generation, consumption, insulation, and therefore the carbon emissions. Once the building’s 

energy profile is better understood, improvements may be analysed and acted on. There are 

no measurements of energy management or internal storage, neglecting a crucial factor 

within improving a building’s energy efficiency.  

3.3 Public Buildings in an Energy Context 
A simplified building energy model (SBEM) is a method of measuring the energy required for 

the various energy consumers within the building. It contributes to the DEC and is a 

measurement of how much energy the buildings use and generates. It is different from the 

SAP as it requires more data and can calculate the necessary information with a higher degree 

of accuracy. The building objects and key parameters of definition are described in Table 3.1.  

The SBEM considers: 

• The zones of the building, how it is split, and how many rooms it has. The energy 

consumers within the room are addressed to determine the lighting and HVAC 

consumption. 
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• The envelope of the zones need to be determined. This involves collecting data on the 

surface area, materials, and various other parameters on the envelope of the zone.  

• The size, orientation, shading system, and insulation of the doors and windows must 

be determined.  

• Hot water system (HWS) needs to be added such as if water is heated, what fuel, and 

if the water is stored is determined. 

• Solar energy storage (SES) and a photovoltaic system (PVS) can be added if they are 

installed, where the PVS generates the energy and stores it in a SES. The dimensions 

and orientation of the PVS and the size of the SES must be defined.  

• Solar collectors can be added into the system where the heat from the sun is 

concentrated and used to heat water.  

• Any installed wind generation along with the size and power output of them.  

• A CHP generator, the fuel type, efficiency, and output power.  

• Showers are also added with information about them such as the system efficiency 

and power of the water pump.  

The collected data can be explained using Figure 3.1. 



Figure 3.1. The buildings’ systems and how they are connected from the generators to the 

the data needed to complete the SBEM can be found with the buildings’ 
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buildings as more data is required. To determine the energy and physical characteristics of 

buildings more accurately, BIM software’s have been previously used. They are capable of 

generating a 3D model of the building with consideration of material, physical properties, and 

efficiencies of consumers, allowing more data to be collected. This is good in principle but due 

to simplifications in the calculations for carbon emissions and physical parameters etc., they 

are often not accurate enough for industry use. Previous case studies of BIM show a large 

error when forecasting the heating demand during the summer. When calculating the SBEM, 

some data is approximated, and some data cannot be used as inputs. There are no novel 

parameters such as energy storage methods (HESS) or kinetic energy generation additions to 

the models. The output is an energy report, showing various parameters such as CO2 

emissions target, and the actual emissions.  

Energy trends of public buildings show an increase of 0.9% from 2020 to 2021 due to Covid-

19 restrictions being eased in 2021 and cooler average temperatures in the first half of the 

year. For all building types, energy consumption increased by 1.8% from 2020 to 2021 [9]. The 

Business School’s energy consumption has increased by 0.21% from 2020 to 2021.  

Types of non-domestic buildings and the amount include education (39,000), commercial 

(476,000), offices (335,000), factories (227,000), hospitality (162,000), warehouses (204,000), 

and other (132,000). There were 1,656,000 non-domestic buildings in England and Wales in 

2020 with education, offices, and hospitality consuming 32.48% of total energy consumption. 

Education includes all schools, colleges, and universities. The number of people in the UK 

between the ages of 3-22 are 14,272,979 (21.27%) [162]. This is the typical age where people 

would study and use educational buildings, but offices and hospitality make up the category 

of public buildings too. Historical energy consumption of non-domestic buildings is shown in 

Figure 3.2.  
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Figure 3.2. The median electricity consumption in non-domestic buildings in England and 

Wales [163].  

The median electricity consumption has decreased as a whole for each sector of non-domestic 

buildings by 10.47% between 1998-2020 and 5.28% between 2018-2021. Commercial 

buildings’ energy consumption are reduced by 18% between 2015-2021 with a record low of 

62,761kW in 2020. This is accredited to the effects of the pandemic as footfall, sales, and 

occupation decreased among the sector. The historical energy consumption per sector are 

show in Figure 3.3. 

Figure 3.3. The energy consumption by sector from 2000-2021 [164].  
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The average energy demand has been reduced by 14.6% from 2000-2021.  

 Energy intensity of the sectors can be seen in Figure 3.4. 

 

Figure. 3.4. The median electricity intensity of non-domestic buildings in England and Wales 

in 2020. ACL is arts, community, and leisure [163].  

The energy intensity can be described as the amount of energy used per meter squared of a 

building. Hospitality has the highest energy intensity (111 kWh/m2) due to operating in small 

premises but with activities such as catering which have high electricity demands. Energy not 

consumed from the public distribution system (national grid) can be determined to be 

generated from on-site generators. This has increased by 35% between 1998-2021 for all 

building sectors as a whole. Although this does not necessarily show an increase in on-site 

renewable generation, the growing necessity of renewable generation increases the 

probability that it is from renewables.  

The energy efficiency of non-domestic buildings vary with insulation, function, and the 

efficiency of the internal consumers’. The insulation of the building is dependent on the 

materials and the thickness that they are made from. The age of the building can provide 

information on the heating and cooling requirements so the age of the building is important 

to determine the insulation.  
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Figure 3.5. A breakdown of the non-domestic building stock in England and Wales by year of 

construction [164].  

18.21% of buildings have been built before the 1900’s with 89.43% of buildings being built 

before the year 1995, showing the need to be retrofitted with BMS’s, smart energy measures, 

and better insulation to retain heat to increase energy efficiency and reduce carbon 

emissions.  

The rate of non-domestic building construction is shown in Figure 3.6. 

Figure 3.6. The number of buildings in the non-domestic building stock constructed between 

1900 and 2020 in England and Wales by number and total floor area [164].  
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In summary, the 10 sectors of buildings’ that consume energy are currently reducing energy 

consumption and will continue to do so. As buildings’ reduce energy consumption and 

Although the MMU Business School is an educational building, it has café’s, offices, labs, and 
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and it is in use from 7am until 10pm. The functions of the building are varied due to the 

volume of people using the building. It is used for events, by students and teachers, for 

research, and for professional development and employment.  

The Business School has a basic BMS but doesn’t employ any form of MLA demand 

forecasting. If the results of the MLA’s are used within the BMS, the BMS could optimise 

energy trade and actuation of the buildings’ functions. The functions of the current BMS are 

automatic lighting, semi-automatic heating, PV generation, air conditioning, and there is no 

energy trade other than purchasing to meet the demand. The lighting is controlled by PIR 

sensors with a timer, so any unused space isn’t being unnecessarily illuminated. The heating 

has a set temperature of 21oC but can be further controlled through a thermostat within each 

space. The PV generation does not generate enough energy to be in a surplus, and thus 100% 

of the generation is consumed within the building at the time of generation. The air 

conditioning is fully automated and works when the heating is no longer in use and when the 

buildings’ internal temperature is consistently over 21oC. The B.S. is split into 3 parts to better 

manage the energy, blocks A, B, and C as is shown in Figure 3.8  

Figure 3.8 The layout of the ground floor of the Business School, showing where the blocks A, 

B, and C are separated.   





The buildings’ demand often increases with the occupation as more people use the kitchen, 

The lighting within the case study building isn’t entirely conventional as it is dependent on the 
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occupation decreases and due to the lights using PIR sensors, the demand decreases with the 

occupation. The ambient lighting for the Business School is shown in Figure 3.11.  

 

Figure 3.11. The lighting for the Business School. Daylight is used for the atriums and LED’s are 

installed throughout the walkways and rooms with less natural light.  

To increase efficiency further, light dependant dimmable lighting can be employed. For a 

building such as the Business School with a large WWR, the lighting system must consider 

sunlight bleeding into the building to optimise energy efficiency. If the outdoor light is 

sufficient to match the desired input and comfort level, then the lighting isn’t needed at all. 

The WWR is apparent in Figure 3.12 

 

Figure 3.12 The façade of the MMU Business School, illustrating the high window to wall ratio. 
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Concrete supports are located on the ground floor and glass is the primary material for the 

walls. The building can use natural lighting to lower the energy demand of the lighting system.  

The main entrance for the Business School is illustrated in Figure 3.13  

 

Figure 3.13 The three revolving doors for the main entrance to the Business School.  

These are the main entrances to the Business School, reducing heat losses and gains from a 

standard swing door. For research that requires occupation measurements of the building, 

these swing doors are useful as they can be fitted with PIR sensors.  

The 20.5% and 11.69% of the main and additional HVAC system already uses an efficient 

method of convection heating for the building. As the heat is generated through a boiler and 

distributed among the building, the demand isn’t instant, and the HVAC system often must 

adjust to over and under heating. This is illustrated in Figure 3.14.  



during a weekday, and the HVAC systems’ demand can be seen over the 

temperature cannot be defined, it can be stated that this isn’t

application of MLA’s 

The current VAV heating system for block ‘C’ of the Business School is described in Figure 
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Figure 3.15. The current variable-air-volume heating system for the 7th floor of the Business 

School in block ‘C’.  

The systems’ rate of ventilation and volume of space is 1,510 l/s and 1, 00mx350m 

respectively. This covers spaces 6,7,8, and 9. Each VAV header is tailered for the space, 

allowing the system to condition and ventilate the spaces with limited energy waste. The VAV 

vents are located throughout all floors and zones of the building. This is shown in Figure 3.16.  
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Figure 3.16. The variable-air-volume system vents. They are located on the walls throughout 

the Business School.  

The VAV system vents consider each zone and ensure it is climatised to the desired 

temperature. The vents are located from the bottom to the top of the atriums, where the 

ceiling is made of glass with a low thermal resistivity, allowing the heated air to escape, 

especially when emitted from vents near the ceiling.  
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Figure 3.17. The open plan of the atrium and canteen, illustating how thermal losses can be 

large due to nothing stopping the air flow. 

This is showing how there is no physical materials seperating the spaces between the low 

ceiling of the canteen and the atrium, enabling thermal losses and requiring more energy for 

air conditioning. 

As the ground floor consists of an open space, it is more complex to heat the zones efficiently. 

This can be improved through removing convection losses through using FIR heating or 

through seperating the zones with physical materials with high thermal resistivities. As 

occupation comfort is an important consideration within the function of commercial 

buildings, splitting zones up into smaller zones can be difficult due to the appearance of the 

interior of the building.  

The Business School has an energy rating of C, or a score of 67 out of 150. This is an upgrade 

from previous energy ratings of 99 (D), 83 (D), and 71 (C), from 2019, 2020, and 2021 

respectively. These improvements come from rooftop installed PV generation and a BMS, 

capable of automating the lighting and HVAC systems to some degree. The Business School 

has been assessed by a government appointed expert to determine the energy grade and to 

recommend some improvements. The recommendations for the MMU Business School from 

the government are as follows [167]:  

• Higher energy efficient lamps with automatic PIR/daylight sensors to reduce heat 

produced by lighting, which can reduce cooling load.  



•

•

•

•

•

•

•

system doesn’t need to use more energy as an increased cooling load. 

8. The Business Schools’ energy consumers, showing heating and cooling, lighting, 
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The year 2020 is used because it is the last year with a full dataset and no errors in the data 

collection. The heating/cooling, lighting, and ventilation use account for 32%, 28%, and 18% 

respectively. The remaining 22% of the energy demand is through power such as computers 

and elevators etc. The lighting consumption is linear with the month of the year, the length 

of each day, and the occupation density of the building. No natural lighting measurement is 

used for the artificial lighting system, so it is not dependant on the length of the day. As it is 

an educational building, the summer holidays and December have the largest breaks in use. 

It is most likely that the occupation density is the reason for the change in lighting due to the 

automatic lighting system installed. Heating and cooling data is combined before collection 

and therefore the correlation cannot be calculated. The systems work oppositely as when one 

of the systems is in use, it is not efficient to be using the other system as they have opposing 

effects on the internal environment. It is unlikely that the building is at a desired temperature 

throughout without using one of the systems. The demand does increase during the summer 

months showing that cooling requires more energy than heating to keep the building at a 

desired temperature. The building has such large windows which can explain why it has large 

solar heat gains. This could be the reason for the increased cooling demand, or it could be 

due to the cooling systems efficiency, that it is less efficient than the heating system. If the 

heating system is activated, the cooling system shouldn’t be used to conserve energy and vice 

versa. This is the reason for the energy consumption not varying throughout the year. The 

ventilation varies drastically throughout the year, with a peak in January and a trough in April. 

This is due to the ventilation being used in large lecture halls. The exam periods start in April 

through to September where the students will use the building again. When the students 

aren’t in the lecture halls, they aren’t used at all and the ventilation for them is not necessary.  

The energy consumption of a building can easily be identified by how much they are taking 

from the national grid and the buildings’ systems can be identified primarily as HVAC and 

lighting systems. To determine how much energy these systems use once they are broken 

down though can be difficult as each system requires an energy reader and there can be many 

systems within a building. There isn’t a previous study providing a breakdown of the average 

public buildings’ energy consumption into its systems in the UK. A comparison of the Business 

Schools’, Australia and USA’s average heating/cooling, ventilation, and lighting is shown in 

Figure 3.19.  



C respectively. As Australia’s temperature is in the middle of the two, it uses less 

average energy consumption of the ventilation system. The lighting systems’ energy 
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solar heat gains through the windows. One of the government recommendations is to fit 

glazing and blinds to the windows to reduce these gains and reduce the cooling load.  

Table 3.2. Five of the 24 buildings on the MMU campus.  

Building Energy Grade  Energy Consumption 

(kWh/m2/year) 

Useful Floor 

Area (km2) 

Business School 67 (C) [172] 123.87 24.441 

All Saints Main 

Building 

80 (D) [173] 186.14 11.148 

Ormond Building 53 (C) [174] 157.25 3.116 

Bell House 38 (B) [175] 113.35 0.332 

Brooks Building 77 (D) [176] 215.83 23.852 

 

The energy grade does not correlate with the energy consumption or useful floor area. This 

is because the display energy certificate compares the building with other buildings of the 

same function and size and these buildings have different functionalities and sizes. Although 

the Bell House may look like it functions better than the Business School, it is a renovated 19th 

century townhouse with only 1.35% of the Business Schools’ floor area. Other buildings of the 

same functionality and age and do not have good thermal conductivity and therefore 

consume more energy than the Bell House, giving it a good energy grade.  

Heat loads and solar gains have a large impact on the operation of buildings’ HVAC systems. 

The better the buildings’ insulation, the better the resistance to solar gains. Due to the 

Business School having such a large WWR, the buildings’ HVAC system is highly correlated 

with the outdoor temperature and insolation. To prevent these heat gains the glass could be 

fitted with extra glazing or with reflective glass. The use of solar blinds can reduce incoming 

solar gains, but also require the building to provide artificial indoor lighting instead, requiring 

more power to do so. The trade-off is often beneficial towards reducing energy demand due 

to the high efficiency of LED PIR lighting.  

The current HVAC system functions broadly throughout the building. There are three sections 

of the building, each able to be controlled separately. This works theoretically, but when one 

section is warmer than the other, due to large atriums within the building, the systems can 
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end up indirectly heating and cooling the same zone. To negate this, the zones could be made 

smaller, and the HVAC system can be split further into each room for optimised energy 

efficiency.  

Currently, there is no planned strategy for maintenance on the lighting and HVAC systems. 

When a system malfunctions or breaks they are repaired as soon as possible but this isn’t 

always quick enough such as on the weekend or if multiple functions break simultaneously. 

LED’s malfunctions are difficult to forecast, so often when one breaks, it is fixed but then soon 

after, another LED also needs replacing. A common way of saving costs on repairing the LED’s 

is to wait for multiple to break and repair them at once. This leaves multiple systems down at 

once which isn’t ideal as it can impede the occupant’s comfort.  

The skylights work the same way as the windows as they allow daylight in but also solar heat 

gains, requiring further work for the air conditioning. This works oppositely with the heating 

too as the windows’ thermal resistivity isn’t as good as the ceilings’ solid materials, so more 

heat is lost during heating periods too. The recommendation from the government is to fit 

secondary glazing to the skylights which increases insulation. This reduces heating demand 

during cooler outdoor temperatures and cooling demand during warmer outdoor 

temperatures. Improved cavity wall insulation plays the same role as secondary glazing, 

saving energy on heating and cooling.  

The Business School has three large revolving doors at to allow large volumes of footfall to 

enter the building with small time periods such as in the times 9am and 5pm. Although 

revolving doors help reduce heat transfer from indoors to outdoors, it does not eliminate it. 

On the inside of the building next to the revolving doors, the main lobby spans the entire eight 

floors. To better control the draught and HVAC systems, the size of open space can be reduced 

which will reduce heat loss.  

Finally, the implementation of biomass boilers could have a large impact on the reduction of 

carbon emissions from the building. Biomass heating has the potential to generate energy 

from waste produced by the building or through imported local waste. The Business School 

has 108 toilets, and with 36,000 students enrolled on campus, the waste could be collected 

and processed for fuel with the biomass boilers. The volume of occupants using the building 

generate waste food too and the bins throughout the building have separate food collection 
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to other rubbish types. This could also be collected to be used as fuel. Biomass boilers can be 

used to heat the building instead of using conventional techniques such as gas boilers.  

To determine these recommendations, the building must be surveyed, and data must be 

collected. Building data needed to calculate the energy grades are [177]: 

• Type of building. 

• Age of building.  

• Number of habitable rooms. 

• Dimensions of the building and number of floors. 

• Amount and type of window glazing. 

• Material(s) used to build the property. 

• Wall insulation. 

• Roof construction (flat, pitched etc.) and insulation. 

• Number of chimneys and open flutes. 

• Heating system and type of fuel used.  

The type of buildings denotes their function, such as commercial or educational. The age of 

the building often helps with understanding the building materials which are measured if 

possible. The building materials also produce CO2 such as with concrete. Dimensions of the 

building and the materials used greatly affect the thermal insulation. The wall insulation, roof 

construction, and open flutes contribute to the thermal insulation of the building too. The 

heating system and type of fuel provides information on the amount of carbon emissions 

produced by the building. Number of habitable rooms have a high correlation with the 

footfall, affecting the buildings’ functionality.  

The MMU Business School has an installed BMS that automates the lighting, air quality and 

flow, and air conditioning. The heating is automated, or it can be manually controlled to some 

degree through thermostats in each room of the building. There is no trading of energy for 

profits or for alleviating demand from the grid. The energy is purchased to match the 

buildings’ demand after the PV system has generated the 1 .2% (157,753 kW) average 

generation of the whole demand. A borehole is installed on campus with the purpose of 

supplying the building with enough heat to match 100% of the heat demand but it has been 

out of service since 2019, providing no benefits. The heating is provided through electric 



95 
 

boilers but there are back up gas boilers for if the electric boilers are out of service. The 

heating system is variable-air-volume, with a rotary wheel heat exchanger, providing a very 

efficient convection heating system. Although the heating system is very efficient and is 

suitable for the building, the cooling system is running at 100% and the building can become 

too hot in the summer due to the large window to wall ratio. One of the main improvements 

recommended by the government for the improvement of the Business School is that the 

heat from solar gains should be examined and considered when cooling.  

3.4 Summary  
This chapter demonstrates how non-domestic buildings can be graded and compared against 

other buildings of similar sizes, functions, and locations. The energy grading is then applied to 

the MMU Business School and government recommendations towards the carbon reduction 

is assessed. Historical analysis of total buildings shows that most non-domestic buildings are 

pre-1900 and therefore require energy saving methods and management. The energy 

consumption of on-campus buildings is compared and analysed for a year to decipher major 

causes and patterns of the energy consumers.  

Although more efficient methods can be implemented into the building’s energy functions 

such as FIR heating and a BESS, a BMS must be able to optimise the management of these for 

the benefit of energy conservation. If the future energy generation and demand of the 

building can be accurately forecasted, the BMS can optimise what to do with surplus energy, 

or how to optimise the operation of the buildings’ functions. To determine the optimal 

method of forecasting the energy characteristics, novel techniques must be compared to 

conventional techniques. The comparison allows a clear understanding on how the 

techniques work and how they may be applied to a BMS.  

An optimised BMS must be tailored to the building it is controlling, considering the functions, 

times of use, energy profile, location etc. To determine how to optimise the BMS, the building  

must first be analysed, and then the MLA can be developed and applied to the BMS to ensure 

it is controlling appropriate functions, with dependency on what data can be collected to be 

used for the MLA forecast. The theoretical application with real-data of the MLA-informed 

BMS to the MMU Business School encourages reproducibility of the novelties in this thesis 

due to the Business School not having any outstanding features, and it being multi-purpose.  
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Modern and conventional methods of energy forecasting are critically analysed and 

developed further into chapter 4 to determine optimal methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



97 
 

CHAPTER FOUR: CONVENTIONAL AND NOVEL BUILDING 

ENERGY FORECASTING TECHNIQUES WITH ELECTRIC 

VEHICLE APPLICATIONS FOR ENERGY DEMAND 

REDUCTION  

This chapter explores the application of various AI and ML methods of energy forecasting. The 

comparison of MLA’s and BIM software’s provide an understanding on how they are used and 

in which context. The most popular methods of energy forecasting in previous research are 

employed for the forecasting of the MMU Business Schools’ energy characteristics. Included 

are current methods of forecasting, classification, and the evaluation of algorithms’ input 

features importance. The MLA processes and results are attained through the chapter.  

An application of MLA energy consumption forecasting is introduced. A method of benefitting 

from the increasingly popular electric vehicle use is developed and validated to provide 

benefits for both the owners of the EV’s and the buildings it is applied to. The energy capacity 

from the electric vehicles is used to reduce costs for the building and for the car owners 

through the implementation of ML methods onto the Business School.  
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4.1 Introduction  
To employ an optimised BMS, the energy performance and buildings’ functions must be 

accurately forecasted. As is described in chapter three, the government have their own 

method of forecasting a buildings’ energy performance. The SAP algorithm is too vague to be 

used to improve the energy efficiency of buildings as it gives information on if the building is 

meeting carbon emission requirements but not exactly where or how it can be improved. It 

is a good guideline on how the building is performing but does not promote innovation or 

major improvement. A novel application of MLA methods for forecasting actions of EV’s is 

proposed to benefit the Business Schools’ energy costs while reducing peak load from the 

grid.  

The aim of this chapter is to apply currently existing MLA models to a building’s BMS to 

accurately forecast energy characteristics. This provides a framework to calculate optimised 

EV charging schedules.  

The methods of energy and physical characteristic forecasting can be analysed and compared. 

Conventional techniques are compared against ML methods. MLA processes and models are 

developed for the specified problem.  

4.2 Conventional and Machine Learning Energy Forecasting Methods  
Before practical machine learning techniques, a new build’s energy was forecasted through 

comparisons of other buildings energy performance with the same floor area and functions. 

This is still widely done today but through a software for more accurate forecasting. The 

energy forecasting software SBEM measures the geometry, heating, air conditioning, and 

installed renewables. The required data inputs for the SBEM algorithm include ten inputs 

mentioned in section 3.3. The collection of the data can also be invasive as the required inputs 

include building materials, dimensions, and number of habitable rooms, where the buildings’ 

physical properties must be assessed.  

From this data it can calculate the energy demand, insulation efficiency, and is able to analyse 

the energy used for space heating, water heating, electric showers, cooling, pumps and fans, 

lighting, and other features. Each of these calculations can be compared to the target result, 

providing information on where the building isn’t meeting the target efficiency. This allows 

the building to be improved through adding renewables or upgrading the thermal insulation.  



•

•

•

geometry, and 130 values for the buildings’ services to make a total of 2 8. For the Business 
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Figure 4.2. The results of the SBEM software, showing the energy consumption and carbon 

emissions.  

The heating, cooling, auxiliary, lighting, and hot water energy consumptions are calculated 

with the building emission rate (BER) and the target emission rate (TER). This software must 

be used by the UK government but a demo can be downloaded to show how it works, which 

is what has been done here.  

Unfortunately, the assessment is based on a standardised assumption of what the occupant 

behaviour is like, whereas the occupant behaviour clearly has great effect on the energy 

behaviour of building’s [178, 179]. It also doesn’t provide enough information for the 

application of an effective BMS into the building. The target energy efficiency for each 

building is different due to the operation and building variables but the target currently 

doesn’t require the building to generate 100% of its energy consumption. This target must 

change to cater towards government plans for carbon neutrality [5].   

The more novel machine learning energy consumption forecasting does not need the same 

inputs as the previously used SBEM software such as the address, and physical parameters, 

but instead needs data that has a relationship with the energy consumption. This data 

depends on the buildings functions and BMS management, but generally includes occupancy, 

local climate variables, and energy consumption. Other inputs may be added to increase the 

information gain further but can make the MLA more complex without adding value. Instead 

of simulating a model of the building and calculating air flow and through the software, the 

MLA strictly calculates patterns from the input data to the target data. MLA vary through the 

methods used, but they are all purposed towards calculating the relationships between 

datasets.  
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4.3 Data Collection and Processing  
The collected data contains overall demand (kW), lighting demand (kW), HVAC demand (kW), 

kitchen demand (kW), outdoor temperature (oC), rainfall (mm), cloud cover (%), outdoor air 

pressure (mb), and time of day. All data is collected in 15-minute resolutions so can be 

aggregated to form any large resolution (15-minutes to hourly, etc.). The data is collected 

from 03/09/2015 at 10:45 up to 31/12/2019 at 23:45, giving 36,935 samples and 332,415 

datapoints in the set. It is collected through a total of 102 energy meters for lighting, power, 

risers, ventilation, and chillers for the kitchen, separated into blocks A, B, and C. Sensors are 

installed in each room to measure the CO2 density. The lighting, power, risers, and ventilation 

are also aggregated from another energy meter to show the building use as a whole. The data 

is stored on an online database, which can be downloaded at any time through a CSV file onto 

excel and is extracted directly to the processing algorithm.  

The collected data often contains incorrect values due to faults in the energy meters or in the 

storage database. Missing and outlying data points are included in the dataset which will 

negatively affect the performance of the algorithms. To eliminate this data, two algorithms 

are used. Firstly, any missing data points are addressed. In the original dataset there are 

332,406 datapoints and an additional 112,959 missing datapoints. 110,688 of these are all 

missing in one section, meaning there are no energy readings at all and therefore there is no 

data to train, so these are removed from the set. The remaining 2,271 points are scattered 

across the dataset, meaning there is data for other building features at the same reading time 

as the missing data, so this data is useable if it can be corrected.  

To do this, a moving mean is calculated, and the missing values are substituted with the mean 

of a selected number of surrounding values. This is chosen to be 5,000 in the 15-minute 

resolution dataset as this equates to about two months which allows the method to work if a 

month of data is missing. One month is the maximum amount of missing data after the 

110,688 are removed. Linear interpolation is used for outliers that account for less than 2% 

of the dataset. Various methods of interpolation include linear, piecewise, shape preserving 

piecewise, Spline, Pchip, and modified Akima cubic Hermite. The difference between them 

being that linear interpolation plots a linear relationship between the points and piecewise 

plots a sine curve that often adds more curve than the actual data contains. Shape preserving 

piecewise plots often don’t follow curves in peaks and troughs of the data. Makima is the 
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most suitable algorithm for maintaining flow between empty data as it calculates weights to 

affect the rate at which the value changes and therefore how steep the curve is. This ensures 

the curve is flattened towards a local extreme, whereas other methods have a curve that is 

either too broad or too sharp, not representing the real data. The Makima interpolation is 

explained through Eq. 4.1 

𝑑𝑖 =
𝑊1

𝑊1+𝑊2
𝜕𝑖 − 1 +

𝑊2

𝑊1+𝑊2
𝜕𝑖        Eq. 4.1 

Where ‘𝑑𝑖’ is the derivative and ‘𝑊1’ and ‘𝑊2’ are the calculated weights at the sample point, 

and ′𝜕𝑖′ is the slope of the line. Weight 1 and weight 2 are calculated through Equations 4.2 

and 4.3 respectively. 

𝑊1 = |𝜕𝑖+1 − 𝜕𝑖| +
|𝜕𝑖+1−𝜕𝑖|

2
        Eq. 4.2 

𝑊2 = |𝜕𝑖−1 − 𝜕𝑖−2| +
|𝜕𝑖−1−𝜕𝑖−2|

2
       Eq. 4.3 

The Makima algorithm produces fewer undulations compared to the Spline interpolation 

algorithm, allowing quick changes between flat regions with sharper curves. Although it is 

more aggressive than the Spline algorithm, it is less aggressive than the Pchip, meaning the 

curves are not flattened as aggressively and therefore the curve of the line is retained [180-

182].  

The problem with this though is that the actual data is volatile and often doesn’t curve at a 

peak. The algorithm that best suits the given data is linear interpolation due to its simplicity 

and ability to follow peaks and troughs without adding a curve.  

Methods of linear interpolation aren’t used for missing values because the data often has 

large variance between two points, meaning it doesn’t follow a straight line and has many 

peaks and troughs between the points which cannot be followed. Using a calculated average 

results in the data not having great effect on the output of the model while still being able to 

use the correct datapoints of other features within the set. Due to there being enough 

collected data, incorrect data can be removed, and the algorithm still has enough data to train 

for an accurate result. If there was not enough collected data for accurate forecasting, then 

linear interpolation is able to fill in missing data to a degree that benefits the algorithm more 

than having no training data at all. Linear interpolation ‘𝑦’ can be explained by Equation 4.4.   



𝑦 = 𝑦1 + (
(𝑥−𝑥1)

(𝑥2−𝑥1)×(𝑦2−𝑦1)
)

‘𝑦1’ and ‘𝑥1’ is the previous values of ‘𝑦2’ and ‘𝑥2’

, and ‘𝑥’ is the 

variable ‘𝑦’. 

within the features that don’t 

meter. When the smart meters malfunction, they don’t give any reading 





many years of collected data, there isn’t more than six months 

and there are no missing or outlying data points, it can be used to train the MLA’s.
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Figure 4.6. The method of data collection and processing, feature evaluation and selection, 

and target forecasting and validation.   

The methods used for characteristic forecasting vary as each algorithm provides different 

accuracies and have varied training times and dataset size requirements. Each MLA is 

personalised depending on available inputs and the desired forecasted output. This gives 

includes various methods and fine-tuning within those methods. As the BMS is designed to 

optimise every autonomous tool the building has equipped, for accurate results, each tool 

can have a different MLA with different inputs and predicted output. To validate the 

forecasted results, they are compared against collected energy readings from the building.  

The performance of the algorithms is measured in mean actual percentage error (MAPE) 

which is explained below in Equation 4.5. 

𝑀 =
1

𝑛
∑ |

𝐴𝑡−𝐹𝑡

𝐴𝑡
|𝑛

𝑡=1          Eq. 4.5. 

Where ‘𝑛’ is the number of iterations, ‘𝐴𝑡’ is the actual value, and ‘𝐹𝑡’ is the forecasted value. 

This method of validation is chosen because it gives a result that isn’t affected by the type of 

data being forecasted because it is proportional. The overall demand is greater than the 

lighting demand so the lighting demand could have a high MAPE, but a lower root mean 

squared error (RMSE) which is a different method of validation.  

The NN is most commonly the most complex algorithm requiring more computational power, 

but with the capacity to calculate more complex relationships between variables than other 

MLA. This means that it can have the highest accuracy but risks overfitting which must be 

considered. In the case of a building, if the energy consumption changes are volatile, but the 

collected data does not have a very high relationship with the energy consumption, then the 

NN would be the most suitable choice as it can calculate the relationships to a higher degree. 

It is a suitable choice to calculate the relationship between the energy consumption and the 

variety of input data such as the local climate and the occupancy of the building due to there 

being high-dimensional non-linear data.  

The DT can be used for shallow data, in which one dataset is almost entirely reliant on another 

dataset. It is not prone to overfitting and would be suitable for the relationship such as 

between the lighting demand and the occupancy of a single room with light-dependant 
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resistor lighting. This is because the lighting would be entirely reliant on the occupancy of the 

room to operate.  

The RF is one step up from the DT as it is an accumulation of multiple DT’s. Instead of a single 

DT which can calculate the relationship between shallow data, the RF can aggregate the 

results of multiple DT’s allowing more splitting of input data with respect to the target data, 

and therefore a higher accuracy. Due to the capability of the RF to split small datasets up 

recursively, it can sometimes have higher forecasting accuracy than a NN as it can essentially 

generate multiple datasets from a single dataset. It is useful for if a building only a month of 

has collected data, but an accurate forecast is needed for the energy parameters.  

The LR calculates the average relationship between an input and an output. In the LR 

developed in this work, it calculates the relationships between each input and the target, and 

then aggregates the calculated relationships. It ensures there is a little overfitting, and it can 

handle large datasets better than other MLA due to the simplicity of the method. It can be 

useful for forecasting any target data that has a high relationship with the input data, but it is 

also useful as a benchmark MLA to compare other methods to. For example, if the NN had an 

accuracy of 90% but the LR has an accuracy of 80%, then the NN is not calculating the 

relationship to a high enough degree, or vice versa. 

The models are trained, validated, and tested with the same original dataset before the 

MRMR algorithm. They are validated against real data collected from the MMU Business 

School’s energy meters to determine the accuracy of the algorithms. They are evaluated for 

training and forecasting speed, required computational power, and accuracy.   

4.5 The Application of developed Machine Learning Forecasting to Optimise On-Site 

Electric Vehicles  
The use of energy consumption forecasting has importance for varied methods such as energy 

trading, energy storage, and a method of utilising the energy capacity from EV’s. The data 

described in chapter four is used to develop a MLA that can optimise the energy management 

of the on-site EV’s.  

4.5.1. Methodology 

As buildings reduce their carbon emissions, naturally, renewable energy systems are installed 

due to them supporting energy requirements while not increasing generated carbon. The 



too. The increasing popularity of EV’s can be utilised for the benefit of the building that the 

owner is using. As EV’s are charged in the building, they are o

5pm. This means that the EV’s are connected to the building all day even though 

methodology of utilising the battery of the EV’s is shown in Figure  .

Method of utilizing EV’s 
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Figure 4.7. The method of utilising the EV’s battery to alleviate peak time energy demand.  

The method is split into hourly actuations, where the tariff rate is determined by how much 

the energy costs within the selected hour. It is assumed that the EV owners are arriving and 

leaving at 8am and 5pm respectively, and the EV’s are fully charged by 5pm. If the tariff rate 

is high, the energy from the EV’s can be used to supply the building for an hour. If the tariff 

rate is low, the EV’s are charged for an hour. If the EV doesn’t have enough charge that it will 

be full by 5pm, then the rest of the demand is purchased from the grid. To forecast the cost 

of energy for the EV owner’s and the building, a NN is developed.  

The major attraction from this method is the profit ‘𝑃’ for both the building and the EV 

owners. This is calculated through Equation 4.6.  

𝑃 = 𝑀 − 𝐼         Eq. 4.6.  

Where ‘𝑀’ and ‘𝐼’ are generated income and installation costs. This is used to determine the 

ROI for the system by plotting generated income through time until the profit is no longer a 

loss.  

4.5.2. Required Capacity and Battery Degradation  

The energy consumption of the Business School on a selected day was 8256kW. The amps per 

hour ‘Ah’ and number of batteries ‘𝑁𝑏’ can be calculated through Equations  .10, and 4.11 

respectively.  

The number of batteries with a given size can be used to determine the capacity of 10 EV 

charging stations ‘𝑆𝐶’ connected to the Business School through Equation  .7.   

𝑆𝐶 = 𝐶𝑟 × 𝑁𝑐 × 𝑁ℎ = 6.66 × 10 × 12 = 799𝑘𝑊/𝑑𝑎𝑦   Eq. 4.7.  

Where the charging rate, number of charging stations, and number of hours they are required 

for are ‘𝐶𝑟’, ‘𝑁𝑐’, and ‘𝑁ℎ’ respectively.  

𝐴ℎ =
𝑤

𝑡
=

799.2𝑘𝑊

12
= 66.6𝑘𝐴       Eq. 4.8.   

Where ‘𝑤’ and ‘𝑡’ are Watts and the amount of time the batteries are filled for.  

𝑁𝑏 =
𝐴ℎ

𝐶
=

66.6𝑘𝐴

4560𝐴/ℎ
= 14.6 = 15 𝑏𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠     Eq. 4.9. 

Where ‘𝐶’ is the battery capacity.  
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The price for this is estimated as £27,432.90 for 15 batteries, where the price of a battery can 

be affected by various factors including capacity, size, and the supplier. Two main methods 

are developed which either use the EV’s energy at peak times or at all times of the day.  

A pivotal observation in the research is the effect that charging/discharging has on the EV’s 

battery degradation. Each time the battery is charged/discharged, the EV’s battery degrades 

and the range of driving the car has from a full charge is reduced. Eventually, the battery must 

be replaced to maintain practicality for the owner. The number of full charges ‘𝑁𝐹𝑐’ and the 

standard capacity ‘𝑆𝑐’ is calculated through Equations  .10 and 4.11.  

𝑁𝐹𝑐 =
𝐷𝐿

𝐷𝐹𝑐
=

152,000

73
= 2,082        Eq. 4.10.  

Where ‘𝐷𝐿’ and ‘𝐷𝐹𝑐’ are the distance travelled before 20% battery capacity loss, and the 

distance from a full charge, in miles. Assuming the EV is plugged in at 80% at 08:00 and is un-

plugged at 100% at 17:00, the battery discharges by 25.3 kW/day, and charges 33.3 kW/day. 

The battery is discharged 63.25% per day. The standard capacity over 20 years is shown in 

Equation 4.11.  

𝑆𝑐 = 𝑁𝐹𝑐 × 𝐹𝑐 = 2,082 × 40𝑘𝑊 = 83,280𝑘𝑊    Eq. 4.11. 

Where ‘𝐹𝑐’ is the battery capacity when fully charged.  

Due to the proposed method, a standard EV will be charged by an extra 52,674.6kW over 20 

years. At a rate of being charged by 16,656kW/year, the battery capacity is reduced to 80% in 

20 years. This equates to a battery capacity loss of 4.16%/year. The battery lifespan is 

calculated in Equation 4.12.  

20𝑌

4.16%
= 4.81𝑌         Eq. 4.12. 

Where ‘20𝑌’ and ‘4.16%’ are the 20 years of operation and the battery capacity loss per year. 

When the EV is used in the proposed method, the battery is reduced to 80% of the total 

capacity in 20 years. For a battery with a cost of £4,265 every 4.81 years, the EV owner must 

make £0.825/hour from the Business School purchasing the energy from the EV.  

A simulated day of charging and discharging, assuming the EV is plugged in at 80% at 8am and 

unplugged at 100% at 5pm, is described in Figure 4.8.  



𝐷𝑐 = 𝑂𝑐 + 𝐶𝑟 − 𝐹𝑐 = 32𝑘𝑊 + 33.3𝑘𝑊 − 40𝑘𝑊 = 25.3𝑘𝑊

Where ‘𝐷𝑐’ is discharge/day, ‘𝑂𝑐’ is original charge before the EV is plugged in, ‘𝐶𝑟’ is how 

much the EV is charged during a cycle, and ‘𝐹𝑐’ is the EV’s capacity at full charge. This method 
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Figure 4.9. The Business Schools’ net profit when while paying off peak prices throughout the 

day and purchasing energy from the EV’s in peak times.  

The campus must pay the EV owner £268.52/year and will save £1,749.45/year when only 

using energy from the EV’s at peak times and charging them at off peak times. The benefit of 

this method is dependent on the energy demand of the building and the number of EV 

chargers available at a single time. If the battery storage is only for peak times, it would only 

need to have a capacity of 1916 kW over 4 h, which is equivalent to 72 charging stations. A 

10-year simulation on the cost analysis and ROI of installing EV chargers on campus with 

storage equivalent of peak times of the day showing V2G storage is significantly less costly in 

Figure 4.10.  
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Figure 4.11. Monthly energy consumption forecast for the years 2018 and 2019.  
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In this case, higher variations of the energy consumption result in less accurate forecasts such 

as in May, June, July, and August. More complex algorithms with more data or data with more 

importance to the target can produce more accurate results when the data becomes more 

volatile. The accurate forecasting of the energy consumption of the building is necessary to 

the effectiveness of the V2G system with the charging rate and number of EV chargers. A 

larger energy consumption will benefit more from higher capacity and volume of EV chargers.  

The price of electricity MLA error in MAPE over the years of 2018 and 2019 is displayed in 

Figure 4.12.  

  

Figure 4.12. The NN forecasting errors of the price of electricity for the years of 2018 and 2019.  

The NN has been trained with the years prior to 2018 to determine the years of 2018 and 

2019. The largest error percentage was 32% in April 2018. The month with the lowest error 

was in September 2019 at 1.74%. The average error in prediction is 7.94% over 2018 and 

2019. April is more varied through the years than the other months. It ranges from £15,662 

to £4081 for the use of the V2G method between 2016 and 2019. This is a difference of 

£11,581. September is less varied. It ranges from £5711 to £9105. This is a difference of 

£3393. The average error across all months is 7.9%. The more varied the data is, the more 

data is necessary for an accurate prediction. Between 2017 and 2019, April’s calculated V2G 
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cost varied by £6822, whereas between 2017 and 2019, it varied by £5823. The cost of the 

V2G method is directly linked to energy consumption.  

As conventional methods of energy characteristic forecast in previous research are unable to 

provide accurate forecasts, novel methods are developed. MLA’s are developed to forecast 

the buildings’ energy characteristics. The processes from data collection and processing, 

algorithm development, and validation are established. An application for MLA’s forecasting 

is developed to save costs for the Business School through utilising the energy capacity of the 

EV’s plugged into the ports at the building.  

Due to the Business Schools’ large peak time energy demand, 72 charging stations and EV’s 

are required. For buildings with less or no parking, this can be a difficult method to implement. 

The buildings’ features can be improved through changing the lighting from halogen to LED’s 

or through changing the heating from convection heating to infrared. These methods 

decrease the buildings’ energy demand by consuming less energy but still produce the same 

outputs (same illuminance and thermal output). By decreasing the energy consumption of 

the building, the developed V2G method doesn’t need as many EV’s, and thus, less car parking 

space, allowing a building with less space to still use the method.  

4.6 Summary 
Conventional and modern energy forecasting methods are compared and critically analysed 

to determine which methods are most viable. As the MLA’s require historical data to train, 

the collected data is processed through an algorithm to remove any incorrect data. Each 

method of MLA forecasting is then explored, showing how they work. A NN is then developed 

to forecast the energy consumption of the Business School for the V2G method.  

By exploring modern methods of energy characteristic forecasting, MLA’s have the highest 

capability. The application of MLA’s in chapter   aid in developing a generalised method of 

reducing peak-time energy demand for the Business School, with the capability to be applied 

to any non-domestic and domestic building alike. The management of the energy demand 

can be improved through methods explained in chapter 4, although the reduction of the 

energy demand also aids in the reduction of carbon emissions. This can be done through 

methods such as more efficient heating, cooling, ventilation, and lighting.  
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The monthly energy consumption forecasting is achieved in this chapter through MLA 

methods. Although this can be used to aid in calculating the energy price in this chapter, more 

finite data and complex MLA must be developed as in chapters 5 and 6 to provide more 

accurate forecasts for the energy parameters of a non-domestic building.  

MLA’s are developed to forecast the occupancy of a lecture hall to aid in the heating of the 

space. This is applied to an infrared heating system to reduce energy demands while 

producing the same comfort levels for chapter 5.  
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CHAPTER FIVE: OPTIMISATION OF PUBLIC BUILDINGS’ 

HEATING SYSTEMS THROUGH MACHINE LEARNING 

OCCUPATION DENSITY FORECASTING 

This chapter introduces methods of heating for a building. Fuel sources, generation 

methodologies and distribution techniques are analysed for the purpose of improving the 

energy efficiency of public buildings. A novel method of combining CO2 – based occupancy 

forecasting and infrared heating to provide heat for a building is proposed to reduce energy 

consumption. The application of infrared heating to a lecture hall in the Business School can 

improve heating efficiency compared to conventional techniques. This is further improved 

through validated occupation density forecasting and a novel method of occupation location 

within the lecture hall. Both methods are forecasted through ML methods to provide forecasts 

on which areas within the room are occupied.  
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5.1.  Introduction  
Carbon emissions of heating systems are dependent on the fuel source, efficiency, and 

heating methods. Changing the fuel sources increases energy efficiency through powering the 

systems through electricity generated through renewable sources. The efficiency of systems 

varies greatly as the methods used to produce the heat from the fuel sources vary. The main 

type of heating includes convection heating, where the energy is used to heat the air within 

the building. Previous heating methods are still producing carbon emissions, accounting for 

almost 25% of all UK carbon emissions [183]. The UK governments’ legislation targets for 

complete carbon neutrality from buildings by 2050, meaning all systems, including heating, 

must operate without producing any carbon emissions. This can be achieved by both:  

• Reducing the energy consumption of the heating systems through both occupation 

dependent heating and through more efficient heating methods.  

• Transitioning heating systems to electricity or biomass based instead of the 

conventional natural gas or wood.  

As heating systems make the transition from natural gas to electricity-based methods, more 

efficient heating methods and fuel types must be developed to meet the UK governments’ 

regulations on carbon emission reduction.  

The aim of this chapter is to analyse previous methods of heating and how these can be 

improved for the reduction of carbon emissions. A general background of heating and a more 

novel method is proposed.   

The application of currently available FIR heating techniques to a public building: the Business 

School, is achieved. A lecture hall is equipped with FIR panels to reduce the energy 

consumption of the heating system while forecasting the occupation density through MLA 

methods.  

5.2. Infrared Heating Application Methodology 
Current methods of heating include convection wall-mounted radiators, baseboards, 

underfloor heating, ground, and air-source-heat-pumps. Although each method can have 

benefits for various functions, they all use convection heating. As is analysed in this chapter, 

the convection heating method can have reduced efficiency compared to newer heating 
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methods due to the way that heat is transferred throughout the air and materials in the room. 

This results in energy losses that can be avoided.  

A heating method that already exists commercially but is newer than other methods is 

infrared heating. Instead of passing the heat through the air to the desired target, infrared 

heat can target a zone, such as an occupant, wasting less thermal energy on heating the air, 

so the target can be directly heated. This can require less energy to achieve the same result.  

The process of retrofitting a generic room is explained through Figure 5.1 below and a 

description of the case study zone and method is described in this section.  
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Infrared heating can be applied to any space, where the IR panels are powered by mains 

electricity from the building. To determine how to optimise FIR panel applications details on 

the room and heating requirements must be considered. This is illustrated in Figure 5.1 above.   

The case study building’s lecture halls are all the same size, measuring 11m x 10.25m x 8.6m, 

with a maximum occupation of 118 people. The room characteristics are analysed such as the 

size and function. If only one zone of the room is usually occupied, the heating can be focussed 

in that zone and can often be disregarded in other zones of the room. The heating 

requirements of the room affect the required power output of the FIR panels, as does the 

placement. The panels shouldn’t be facing a window or opening due to loss of heat. To 

eliminate any unnecessary heating, the developed system is dependent on the occupancy of 

the room. If the zone is occupied, the heating is activated, and if it is not, then the heating can 

be deactivated or reduced to a lower temperature. Material thermal characteristics have a 

large effect on the application of the FIR panels as materials that have a higher thermal 

conductance are easier to heat, but don’t retain the heat well. Materials that have a lower 

thermal conductance require more heat to reach a desired temperature but retain that heat 

better. This allows the materials within the room to act as heaters themselves, once heated, 

as they radiate to the surrounding area. The novel FIR heating is compared to typical 

convection radiators, powered by gas or electric, to determine the advances in the novel 

heating system.   

The FIR panels measure 60cm x 60cm and are designed to replicate a ceiling tile with a 

maximum rating of 350W and they can be installed with wireless communication to a 

thermostat. They are ceiling mounted and are targeting specific zones that are described in 

Figure 6.4. The wall mounted convection radiators are 1m x 2m with a maximum rating of 

2kW. The room is split into 118 zones, with the capability of heating each zone and occupant 

independently.  

5.2.1. Heating Power Requirements  

All conventional heating methods, although they may vary in fuel sources and generation 

techniques, use convection heat for space heating. To determine this, Equation 5.1. can be 

used.  

𝑞 = 𝛼(𝑡𝑠 − 𝑡𝑓)         Eq. 5.1.  



124 
 

Where ‘𝑞’ is the heat exchanged, ‘𝑡𝑠’ and ‘𝑡𝑓’ are surface and fluid temperatures respectively, 

and ‘𝛼’ is the convection coefficient [184]. Underfloor heating methods have the highest 

efficiencies due to the convection heat passing through more space, able to pass on more 

heat before it is lost through the buildings’ envelope. Water and air can both be heated 

through electricity with the potential of being powered through 100% renewable sources, 

providing a carbon neutral heating system. This relies on the system not requiring more 

energy than can be gathered by renewable techniques. Infrared radiation though, can 

increase this efficiency further.  

The average required power to heat an occupant is 712 W whereas to heat the epidermis it 

requires 0.0005 W/m2.K [185]. The average surface area of an adult is 2.74 m2 [186] so to heat 

the epidermis of an occupant from 0 °C to 21 °C the required direct energy output from the 

FIR panels is 0.02877W. It is assumed that each occupant is of the same dimensions and 

thermal conductivity, with nothing between them and the FIR panel to impede conductance, 

and direct FIR from the panel to the occupant. Tables and seats are made from wood with a 

thermal conductivity of 0.1664 W/m.K [187]. Infrared panels don’t only provide direct heat, 

and instead evenly distribute the heat over 45° angles throughout the spectrum. Direct 

irradiance from the face of the panel ‘𝐷𝐼’ (W/m) and required power ‘𝑅𝑃’ (W/m) is explained 

below in Equations 5.2 and 5.3 respectively.  

𝐷𝐼 =
𝑃𝑜𝑢𝑡

𝐴𝑅
         Eq. 5.2.  

𝑅𝑃 = 𝐾 × 𝑇         Eq. 5.3.  

Where ‘𝑃𝑜𝑢𝑡’ is the output power of the panel, ‘𝐴𝑅’ is the area of irradiance, ‘𝐾’ is thermal 

conductivity of the occupant or material, and ‘𝑇’ is the desired temperature of the occupant 

or material.  

The rate of heat transfer over time can be expressed using Stefan Boltzmann’s constant ‘𝜎’ in 

Equation 5.4.  

𝑄 = 𝜀𝜎𝐴(𝑇1
4 − 𝑇2

4)        Eq. 5.4.  

Where ‘𝑄’ is the rate of heat transfer over time, ‘𝜀’ is emissivity of the receiving body, ‘𝐴’ is 

the surface area of the receiving body (m2), and ‘𝑇’ is the emitting and receiving temperatures 

respectively.  
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5.2.2. Occupation Probability and Prediction 

Rolling data of occupation is used to develop occupation prediction used for pre-heating. 

Previous data of occupation is analysed and added into the prediction to evaluate whether 

the heater will activate for pre-heating. Each zone has its own occupation prediction which is 

calculated using Equation 5.5.  

𝑃𝐷𝑇 =
∑ 𝑃𝐷𝑇𝑍𝑥𝑛

𝑍𝑥1

𝑃𝐷𝑇𝑍𝑥𝑛
        Eq. 5.5.  

Where ‘𝑃𝐷𝑇’ is the probability of occupation on a certain day at a certain time such as 

Monday at 9am. ‘Z’ is the unique occupation zone which is shown as ‘x’, ‘x1′ and ‘xn’ that 

show all of the collected data between the first and the last record. The Equation develops as 

more data is added where there are more points between ‘x1′ and ‘xn’. For the case study, 

each room has a timetable when it will be occupied as lectures are held there. This method is 

useful only for when only occupation data is accessible but can accurately calculate the 

probability that a given zone within the room is occupied.  

The occupation density can also be forecasted through ML techniques. Actual collected data 

included in the two occupation prediction simulations are rain (mm), wind (mph), 

temperature (oC)(K), time of day (15-minutes), cloud coverage (%), and indoor CO2 density 

(PPM). The developed NN algorithm is made from an input layer, two hidden layers, and an 

output layer, with a sigmoid symmetric transfer function. Inputs for training the algorithm are 

outdoor temperature, rain, cloud coverage, air pressure, time of the day and day of the week, 

with CO2 data used for targeting using only 10 days of data for training. The RF algorithm 

contains the same data set as the NN with 50 decision trees for feature selection and 

regression. New input data can be fed into the NN while it retains the same weights, bias, and 

functions, which allows it to make a prediction for the target. For the RF, when new data is 

added, the importance of each feature is saved from the training stage which allows an 

accurate output. Classification of input variables is part of pre-processing where each variable 

is replaced with random selections and the output error is measured. This eliminates 

correlation results and produces causation results instead, allowing any unwanted data to be 

removed from the training set. This is done through 50 decision trees too.  



back of the hall which in this case acts as an overflow if there aren’t enough seats. This is 
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m by 0.75 m, containing 13 zones, and for the professor zone they are 0.55 m by 0.55 m for 9 

zones. The professor area could have one large panel but for a seating professor, smaller 

zones give more control. This allows for independent zones to be heated depending on 

occupancy. Each FIR heater is equipped with a smart thermostat allowing it to control the 

temperature depending on the occupancy or expected occupancy for pre-heating of the 

zones. The zones are independent from each other as they are occupied but to maximise 

energy efficiency in convection heating when there are multiple occupied zones that are 

connected, the zones have various energy requirements to maintain the same heat. This is 

determined by heating of the first zone to be occupied, and then the surrounding zones will 

be heated using less energy as they are occupied.  

To simulate the occupiers of the room, two variations are implemented: standing and sitting. 

Both occupier types are cylinders with an emissivity of 0.98. The standing occupier has a 

height of 1.75 m, and the sitting occupier has a height of 1.55 m.  

Table 5.1. The physical specifications of the simulation.  

Object Specification (length x width x height) 

Wall-mounted convection radiator 2𝑚2 x 0.02𝑚2 x 1𝑚2 

Infrared panel heater  0.75𝑚2 x 0.75𝑚2 x 0.02𝑚2  

Professor heating zone  1.65𝑚2 x 1.65𝑚2 

Floor thickness  0.01𝑚2 concrete and 0.005𝑚2 rubber  

Wall thickness 0.006𝑚2 concrete and 0.01𝑚2 fibre glass 

insulation  

Ceiling thickness 0.01𝑚2 concrete and 0.005𝑚2 rubber 

Seating bench and desks 4.5𝑚2 x 1𝑚2 

Standing occupants 1.75𝑚2 x 0.5𝑚2 x 0.5𝑚2 

Sitting occupants  1.55𝑚2 x 0.5𝑚2 x 0.5𝑚2 

Air pressure  101,325 Pa 

Humidity  55% 

 

Table 5.2. The thermal specifications of the simulation.  



𝑾/(𝒎𝟐 × 𝑲)
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The materials consist of two layers of concrete, containing a layer of fibreglass. The fibreglass 

is used as insulation to improve the thermal resistivity of the wall and retain the heat within 

the room.  

 

Figure 5.4. The material composition of the floor and ceilings of the lecture halls 

The concrete is used for structural stability and the rubber is used for comfort, but it also has 

increased thermal insulation.  

The computer-aided design (CAD) was designed through the Solidworks software,  allowing 

the development of the methodology in this research. Solidworks uses computational fluid 

dynamics (CFD) to analyse the behaviour of the room’s thermal and physical properties of 

solid material and air. The software was used with the help from A. H. Ferdaus. The use of 

CFD allows the simulation to provide accurate predictions of fluid-flow [188] with reduced 

costs compared to practical experiments. The solver used is the FFEPlus iterative due to the 

ability to solve non-linear problems while requiring less memory than the Direct Sparce 

Solvers [189]. The model is validated through a Mesh Convergence Study. This involves 

splitting the problem into smaller parts and measuring the changes in critical parameters such 

as thermal conductivity or air movement. As a more complex or smaller mesh requires more 

computational power, a larger mesh is beneficial, although a smaller mesh can also provide 

more accurate results within the simulation. To determine the trade-off between complexity 

and accuracy, the mesh is iteratively reduced in size such that there are more elements until 

the changes of critical parameters are minute within a defined parameter. This could be a 
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percentage change in critical parameters such as the air flow or heat exchange, but this is 

calculated by the algorithm. The mesh convergence study is shown in Figure 5.5 below: 

 

 

 

 

 

 

 

 

Figure 5.5. The results of the mesh convergence study, showing the plateau of the temperature 

of the selected body as the temperature increases from 18oC to 21oC. 

The number of blocks within each mesh within the study is increased per mesh. The block size 

in mesh one is 0.1m2 and is decreased by 0.01m2 until mesh eight at 0.03m2. 

The number of grid blocks in each mesh is described through Table 5.3 below. 

Table 5.3. The number of grid blocks in each mesh. Each mesh contains more blocks, and 

therefore splits the room into smaller portions, allowing more accurate results to be obtained.  

Mesh 1 2 3 4 5 6 7 8 

Total 

Blocks 

4848 5386 6060 6926 8080 9696 12120 16160 

 

A more complex mesh could give more accurate results from mesh eight, but this would 

require more computational power and time, in which it becomes impractical, so there is a 

trade-off between how accurate the results must be. A more powerful machine could 

generate a more accurate study with a more in-depth mesh, but in this study, the above 
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descriptions have been used for the mesh, and mesh number eight plateaus, showing that 

out of all of them, it has the highest accuracy.  

5.4. Comparison of Convection and Infrared Heating Systems 
The results from six convection heating simulations are shown in the results section. 

Occupation density is varied from minimum, medium, and maximum. This is tested with both 

the convection system and FIR heating. Minimum occupation is assumed to have 10 

occupants, medium has 27, and maximum has 98 occupants.  

5.4.1. Energy Consumption 

The FIR heating method is done through zones that are activated when under occupation, 

enabling concentrated heated parts of the room.  

The FIR panels can be placed at any point in the room so long as they provide heat to the 

required zone. In this case, the occupant is heated from above, so it is important that they 

are heated evenly from top to bottom. Each occupant and zone have a corresponding ceiling 

fitted FIR panel. The temperature of the bottom and the top of the professor is 21.19 °C 

(294.34 K) and 20.6 °C (293.75 K) respectively, giving a difference of 0.59 K. The seating area 

heating varies between 0 W and 320 W to heat the occupiers with a variance of 0.05 K from 

the top to the bottom of the occupier in the best case. The highest variance results are 2.17 

K between the bottom and the top of the occupier. The simulated heat distribution for 

connection radiators and the proposed FIR heating system is illustrated in Figure 5.6. and 5.7. 

respectively.  
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Figure 5.6. The current fitted radiator system.  

The convection method heats the room from the radiators installed at the sides under 

medium occupation.  
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Figure 5.7. The FIR zonal heating system for medium occupation.  

Both heating systems can heat the occupiers to the desired temperature of 21 oC but the heat 

distribution for FIR is more precise.  

The FIR heaters vary in power, depending on the time of occupation for each zone. When all 

heaters are activated in the seating area, the heat is too high, so some of the heaters operate 

at a lower wattage or in the case of medium occupation, they don’t operate at all. 

To heat the room using occupation dependant heating with medium occupation, the FIR 

heating uses 3.46 kW. For the same occupation, the wall mounted radiators used 14.4 kW to 

heat the occupiers to the same temperature as the occupation dependant method. The 

energy needed to heat the professor per zone is 130 W. There are 9 panels/zones in the area 

allowing room for movement. 

When in medium occupation, the energy requirements for each panel are shown in Figure 

5.8.  
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Figure 5.8. The varied energy requirements of the FIR heating zones to maintain the same 

heat.  

The highest energy demand is 320 W and the lowest is 0 W. To heat just one occupied space, 

it requires 320 W and when all spaces around an occupied space is heated, that space doesn’t 

require any, or as much heat. This method maintains the required heat for each zone while 

saving 5.2 kW compared to heating all the zones with 320 W. 

Minimum and maximum occupations for both FIR and convection heating are simulated to 

show how the effectiveness of the method vary depending on occupation. 

The energy demand, material, and air temperature variance simulation results for minimum 

and maximum occupations using FIR and convection methods show that FIR has a much lower 

demand for both minimum and maximum occupations. FIR also has lower material and air 

temperature variance. The energy demand for the methods are illustrated in Figure 5.9.  



heating system’s energy demands over 1000 days under medium occupation. 
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Figure 5.10. The FIR occupation dependant air flow and speed when heated to 21 °C (294.15 

K) in medium occupation.  

The colour blue shows slower air movement and as the air velocity increases, the colour 

changes through green, yellow, and then to red. The air flow has a range of 0.375 m/s all 

through the room, as heated air moves up the steps to the back of the room, then cools as it 

falls and moves towards the front of the room to be recycled. The temperature of the air has 

a range of 13.39 K.  
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Figure 5.11. The air flow of the convection system when occupants are heated to 21oC.  

The air flow has a speed range of 0.263 m/s through the room but has most of the movement 

at the front of the room where the air is cooling while also being heated by the radiators as a 

whole room. The SOLIDWORKS simulation is used to compare air temperatures of the hottest 

and coldest air temperature between FIR and convection heating methods. 

For the medium FIR heating, the air flow has a maximum speed of 0.375 m/s whereas the 

convection heating has a maximum air flow of 0.263 m/s. Minimum and maximum occupation 

air flow speed and temperature for occupational and convection heating are shown below in 

Table 5.4.  

Table 5.4. Showing air speed and air temperature variance for FIR and convection heating for 

varied capacities.  





’ accuracy decreases 
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Classification of input data shows time of day, outdoor air temperature and pressure are the 

most important variables. Rain, cloud coverage, and the day of week don’t affect the levels of 

CO2 as much as the other input variables, although they still aid the algorithm to an accurate 

prediction. 

The occupation densities are split into minimum, medium, and maximum, with minimum CO2 

density from 490PPM to 550PPM, medium is from 550PPM to 580PPM, and maximum is from 

580PPM to 1060PPM or higher. Any lower than 490PPM and the room is deemed to be out 

of use until sensors are activated or the room is heated manually.  

5.5. Achievements and Importance  
This chapter focusses on the types of heating from conventional to more energy efficient 

techniques and how ML methods can be applied to improve them further. Convection heating 

is previously used and although fuels, methods of generation and distribution can improve 

efficiency of the system, the method of convection heat still produces more losses than FIR. 

The retrofitting of a single non-domestic lecture theatre with a FIR occupation dependant 

heating system to improve energy efficiency, thermal comfort, and flow of air is achieved. 

This was done through occupation prediction for pre-heating of occupied spaces to improve 

thermal comfort.  

Machine learning forecasting is implemented for occupation prediction in 15-minute 

segments over a day with comparisons between convection and FIR heating methods. Results 

show the FIR occupation heating was more energy efficient by 10.36kWh in maximum 

occupation, 10.94kWh in medium, and FIR heating required 11.99kWh less than convection 

heating in minimum occupation. Air velocity is higher for convection heating at 0.633 m/s 

compared to FIR heating at 0.379 m/s. Financial benefit calculations show a saving of 75.97 % 

or £11.79/day with a return on investment of 520 days, providing incentives. Occupation 

prediction from the RF MLA show an accuracy of 97.75 % for 15 min intervals which allows 

the preheating of rooms and zones for optimal comfort. Zonal FIR heating is more efficient 

than convection methods by 75.97 %.  

5.6. Summary 
The MLA application for occupation forecasting provides accurate results, capable of 

providing information on the occupation density of a room. This was achieved without the 

need for facial recognition or PIR sensors, and instead through already installed CO2 sensors 
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which are a requirement in public buildings already. This has been used to optimise a FIR 

heating system but can be used for HVAC controls, lighting, or for other methods that can be 

optimised through occupation density forecasting.  

The development of an occupancy forecast through collection of CO2 data is novel. For this 

application where the occupancy and CO2 density have a high relationship, The CO2 density 

can be used to forecast occupancy density. This can remove the need for installing passive 

infrared sensors, resulting in a more cost-effective outcome. This also saves time in waiting 

for enough data to be collected to start the method, as for public buildings, CO2 sensors must 

be installed by law, and so that data already exists.  

Reducing the energy consumption through more efficient heating methods can reduce CO2 

emissions, but producing more renewable energy and having more control over the produced 

energy can be used in parallel. Using the energy with more efficient heating methods is 

explored in this chapter, whereas optimisation of renewable energy generation is explored in 

the next chapter. The active PV generation system for the Business School has been 

forecasted through MLA methods in chapter 6, allowing the results to be implemented into 

the currently equipped BMS.  
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CHAPTER SIX: MACHINE LEARNING FORECASTING OF 

INTERNAL ENERGY GENERATION TECHNIQUES 

This chapter investigates the various methods of energy generation within a public building 

with more attention towards the methods the generate less or no carbon emissions. The 

analysis addresses issues where renewable energy generation can be difficult to use due to 

the unpredictability of renewable sources. To overcome this problem, MLA forecasting 

techniques are applied to the Business Schools’ currently installed renewable generation to 

optimise management of storage, use, and trading of the generated energy. 
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6.1 Introduction 

As buildings are reducing carbon emissions, both the efficiency of the energy consumers must 

increase as well as on site energy generation. The methods of generating energy without 

producing carbon emissions is through renewable energy (RE) sources. These include solar 

PV, solar and geothermal, wind, kinetic, biomass, hydropower, and hydrogen. Each method 

can have positive effects on public buildings with dependencies on the buildings’ 

characteristics such as function and size. Although each method can be utilised to reduce the 

buildings’ carbon emissions, it can be difficult to forecast how much energy they will produce 

due to the unpredictability of the weather and occupancy, and waste. When they do not 

produce enough energy to support the building, energy must be used from the national grid 

which is often from fossil fuels. To solve this problem, MLA’s can be developed to accurately 

forecast how much energy will be produced at a specified forecast horizon.  

The solar PV generation is partially dependent on insolation, geothermal is partially 

dependent on the depth of the pipeline and thermal conductance of the ground material, and 

the wind generation is partially dependent on the direction and speed of the wind. To 

optimise energy management within a building, the renewable energy generation techniques 

must be accurately forecasted to provide the BMS with enough information to make an 

informed decision.  

This chapter aims to:  

• Develop MLA’s capable of accurately forecasting the energy generation of the 

currently installed solar PV system on the case study building.  

• Compare and analyse the developed MLA’s on necessary training data, training time, 

accuracy, and internal parameters.  

• Analyse the application of MLA’s for forecasting other renewable sources and how 

they would work.  

There are currently 128 variations of MLA’s used for prediction of a buildings’ energy demand 

[71]. This statistic includes slight changes in a category of MLA such as a hyperparameter 

changed in a NN, showing that there are many variables to decide when developing 

appropriate MLA’s. generation through RE cannot be considered a reliable source [190] but 

can provide a more reliable energy mix [191], with promotion of RE by world leaders 
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improving application [192]. Energy generation in the UK connected at the distribution level 

accounts for 28% of all generation [193] which shows there is clear room for increasing 

decentralised RE. RE generation contributes 17.18GW which is  3% of the UK’s total energy 

demand [194], with 4% solar and 31% wind due to the 6500 wind turbines installed across the 

country. This shows usability of various RE sources to contribute to the whole demand. 

Multiple MLA’s can be applied to forecast PV generation [195] with different results of 

accuracy. Supervised machine learning relies on historical data of inputs and PV generation 

data to train the algorithm, but with various algorithms, it cannot be undisputed which 

algorithms provide the most accurate forecasts.  

Once the developed MLA’s are used to forecast the buildings’ renewable energy generation, 

the MLA’s can then be compared to decide which is the most suitable MLA and how they 

differ. The application of MLA’s for other methods of energy generation other than solar PV 

provides information on the process of data collection, processing, MLA development, and 

validation.  

6.2 Development and Validation of Machine Learning Algorithms  
As is previously mentioned, there are 128 variations of MLA’s used when forecasting a 

buildings’ energy demand. Previous research shows the application of different types of 

MLA’s used, as different sized buildings and datasets are used for training and validation. To 

fully optimise the actuation of the generated energy, it needs to be forecasted. To do this, the 

most common methods of MLA’s are developed, trained, and validated against various 

datasets of collected campus data. The solar PV generation output is forecasted through 64 

algorithms for the Business School to show the effectiveness of the developed algorithms. 

The developed methodology is illustrated in Figure 6.1.  

 

 

 

 

 





for daily. Daily forecasting has larger errors when used with a ‘time of day’ input, so it isn’t 



𝑦 = 𝑦1 + (
(𝑥−𝑥1)

(𝑥2−𝑥1)×(𝑦2−𝑦1)
)

Where the previous and next points in the dataset are ‘𝑦1’, ‘𝑦2’, ‘𝑥1’, and ‘𝑥2’

each variable. Current points are represented with ‘𝑥’ and ‘𝑦’.

𝜇 =
1

𝑁
∑ 𝐴𝑖

𝑛
−𝑛

The rolling average is ‘𝜇’ and is the sum of the selected values, from ‘−𝑛’ to ‘𝑛’ divided by 

thenumber of variables between those points ‘𝑁’. 

incorrect data that isn’t outlying and missing. This still results in errors within the training of 
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the algorithm, but they can be reduced through data processing. The 3 datasets that the 

MLA’s are trained with from 10 months of data are shown in Table 6.1.  

Table 6.1. The average size of the datasets used for training when forecasting various horizons 

with 10 months of data. 

Iteration Inputs Total Datapoints  Training Features  

15 minutes 8 220,000 Cloud coverage, 

humidity, rainfall, 

air pressure, 

temperature, wind 

speed, PV 

generation, and 

time of day 

Hourly 8 58,228 Cloud coverage, 

humidity, rainfall, 

air pressure, 

temperature, wind 

speed, PV 

generation, and 

time of day 

Daily 7 2,285 Cloud coverage, 

humidity, rainfall, 

air pressure, 

temperature, wind 

speed, and PV 

generation 

The three iterations are used to train the models on 2 different horizons each. 15-minute 

iterations are forecasted for 15-minutes in advance and a full day in advance. Hourly 

iterations are forecasted for 1-hour and 1-day horizons, and daily iterations are forecasted 
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for 1-day and 1-week horizons, so each horizon has a different sized dataset. The total 

datapoints are the sum of iterations multiplied by the sum of the input variables. The ‘time of 

day’ input that is used for the 15-minute and hourly datasets are not included in the daily 

dataset due to there being no ‘time of day’ as it is an aggregated result of the whole day. The 

3 datasets that the MLA’s are trained with from 1 month of data are shown in Table 6.2.  

Table 6.2. The average size of the datasets used for training when forecasting various horizons 

with 1 month of data.  

Iteration Inputs Total Datapoints Training Features 

15 minutes 8 23,087 Cloud coverage, 

humidity, rainfall, 

air pressure, 

temperature, wind 

speed, PV 

generation, and 

time of day 

Hourly 8 5,764 Cloud coverage, 

humidity, rainfall, 

air pressure, 

temperature, wind 

speed, PV 

generation, and 

time of day 

Daily 7 2,045 Cloud coverage, 

humidity, rainfall, 

air pressure, 

temperature, wind 

speed, and PV 

generation 



he PV systems’ energy generation. This is shown in 
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training dataset. This allows deeper MLA to be developed which can have higher accuracies 

than simpler MLA.  

Importance of the collected input data towards the predicted data is both dependent on the 

quality of the data, and what data is collected. When forecasting the solar PV generation there 

are 6 inputs and 1 output. It can be difficult to distinguish whether the data has importance 

before it has been collected and evaluated through a feature importance algorithm. Data such 

as climate variables is logical that they have large effect on the energy generation of the PV 

system although rainfall had the least effect. Although rainfall and cloud coverage have a high 

correlation, it is not the rainfall that causes a change in the PV generation, but the cloud 

coverage, allowing less light to pass through onto the panels. Although this data can be used 

to train an accurate algorithm for forecasting the output of PV systems, other data might need 

to be collected to forecast other types RE generation.  

There are 6 inputs and 1 output for the Business School compared to the previous study of 10 

inputs and 1 output [154]. It is difficult to compare the results between the PV generation 

plant in China and the local PV system on the Business School due to the size difference of 

199,970,000W and the location. After the data is processed and the feature importance is 

calculated, the algorithms can be developed and evaluated. This provides information on how 

they are functioning such as if they are being trained on too much data. After the MRMR 

algorithm calculates the importance of the input features, the algorithms can be evaluated 

through removing the features with less importance. This is shown in Figure 6.5.   
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LR is the simplest and thus is the quickest to train, but NN is the quickest algorithm to use 

once it is trained. This is due to the way that the models function. Linear regression calculates 

the linear relationship through Equation 2.5.  

𝑦 = 𝐵𝑜 + 𝐵1𝑋 + 𝜀         Eq. 2.5.  

Where ‘𝑦’ is the predicted output value when an input value is specified, ‘𝐵𝑜’ is the predicted 

value of the output when the input is 0, ‘𝐵1’ is the relationship between the input and the 

output, ‘𝑋’ is the input variable, and ‘𝜀’ is the error between the estimated value of the output 

and the actual value [79]. As this equation requires only one iteration to determine, it can be 

used to train a relatively simple algorithm. Although this can be used for one iteration, where 

multiple iterations are used for training, the calculated relationships between the inputs and 

outputs are aggregated. The NN’s are more complex in the way the relationship is calculated. 

The NN’s in this method use the Levenberg-Marquardt back propagation method of 

calculating the weights and thus importance of the input variables. Each input is given a 

weight that can be between -1 and 1, which specifies the effect it has on the prediction and 

if it is negative or positive. Due to the algorithm being supervised, predictor data is already 

known for the training dataset and thus, the algorithm can determine the optimum value of 

the weights to assign to the inputs. The weights are randomly altered and the error between 

the forecasted data and actual data is evaluated. The weights are then altered again and if 

the error increases they are altered oppositely. If the error decreases for this, the weights are 

continuously altered in the same direction until the error starts to increase again. Once the 

minimum error is reached, the weights for the inputs can stop being altered.  

6.3 Forecasting Results of On-Site Renewable Energy Generation  
Once the collected data is processed and used to develop an algorithm(s) for forecasting the 

RE generation, it can be tested. In this case, the algorithms are validated against actual 

collected PV generation data from the Business School. The validated algorithms comprise of 

NN, RF, NN, LR, and SVM.  

Results for NN forecasting MAPE are illustrated in Figure 6.6.  







doesn’t have great importance as is evaluated by the MRMR feature importance algorithm. 

of decision trees per dataset, it doesn’t necessarily use all of the data it is provided with for 
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America. 8.04  30MW Peak 4.1MW Gaussian 

Regression 

Belgium. 11.73 368kWh Peak 3.23kW Neural Network 

Italy. 15.04 327kWh Peak 1.04kW Neural Network 

This research’s results are shown in the first row. The other results show that most research 

is done for forecasting a PV solar farm and not for localised systems. The accuracy of the 

forecasts are difficult to compare due to the different sized systems and climate they are in. 

The largest system is in South Africa with 75MW peak, and the smallest is in this research for 

the local PV system at 30kWh peak. The coolest climate is in America with a temperature of 

8.04oC and was still able to forecast with an error of 4.1MW of the peak output power. The 

warmest climate is in South Africa with 19.76oC was able to forecast with an error of 4.56MW 

of the peak output power. There is low correlation between errors, system sizes, and air 

temperature, showing there is no optimal location or size for a PV system to be forecasted.  

In this research, 64 models are developed and tested with a variety of sizes for training data 

and horizons. RF algorithms produced the lowest error with an average RMSE of 32kW and it 

required less data to successfully train the algorithms. This is due to the algorithm generating 

a set amount of decision trees and more data having more incorrect datapoints that the 

processing algorithm cannot remove. The NN’s showed the highest RMSE at 38.8kW however 

it had a lower error on 7 of the 12 datasets it was trained and validated with compared to the 

RF with the lowest error on only 3 of the 12 datasets. The LR algorithms trained the fastest 

on average at 41.7 seconds per algorithm. Overall, RF provided the highest accuracy among 

the tested algorithms in this research work while requiring the least amount of training data. 

The collected data for each method of energy generation differs with data types. This includes 

weather variables and the design of the energy systems.  

The Business School has no other on-site energy generation, although, the method of MLA 

applications for accurately forecasting the energy generation of on-site renewables covers all 

methods of energy generation. This is dependent on the volume and quality of the data, and 
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the importance of the input data to the output data. As the occupancy, renewable energy 

generation, and energy consumption within the building can be forecasted, they can be 

applied to methods such as infrared heating and electric vehicle bi-directional charging. The 

accuracy of the developed MLA’s and the improvement of energy efficiency and the reduction 

of carbon emissions must be evaluated to determine the effectiveness of applying MLA’s to 

BMS’s.  

6.4 Summary 
As renewables produce energy with no or reduced carbon emissions, they are imperative for 

improving the energy performance of non-domestic buildings. Their generation can be 

unpredictable though, so MLA’s are developed to forecast the Business Schools’ PV system. 

Various RE methods are analysed and compared to show the practicality and applications. 

The results from the MLA’s can be used to aid the BMS in optimising the energy management.  

The RF algorithm has the lowest error with 32kW RMSE and LR had the quickest training time 

with 41.7 seconds. The feature importance algorithm ranks the inputs in in order; humidity, 

cloud cover, wind speed, outdoor air pressure, outdoor temperature, and rainfall, concluding 

that if limited data is available, it should be collected in the specified order. The NN had the 

highest error among the selected MLA methods, so it is not recommended that it is used with 

this dataset, however, this does not mean that a NN would not work with different climate 

data and PV system. The RF forecasting accuracy increased the most when the three top 

features are removed by 33.19%, Showing that for the dataset used in this research, the RF 

algorithm provides the highest accuracy and LR has the quickest training speed.  

The applications of the developed methods of energy characteristic, generation, and 

occupancy forecasting must be considered for a functioning non-domestic building. The 

application to the Business School shows how the methods can be applied and how they aid 

in the reduction of the buildings’ carbon emissions. The novelty from this chapter is found in 

the data presentation. Previously, various applications, and therefore various datasets are 

used as inputs for RE forecasting machine learning models. The accuracy varies with different 

applications due to a number of variables such as quality and quantity of data, different 

inputs, location, and age of RE equipment. When deciding what data to collect and what ML 

models to develop, there is no defined conclusion due to there being too many variables.  
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The novelty in this chapter stems from using different sized datasets (10 months and 1 

month), different forecasting resolutions (15-minutes, hourly, daily), different input features, 

and different algorithms. They are all forecasting the same variable, but they are all being 

controlled instead of comparing them based on completely different renewable energy 

system forecasting. Future applications can know that on average RF is faster to train among 

all datasets and is more accurate with less input features, but a NN has higher accuracy when 

provided with more data iterations. This gives a reference for future applications of MLA 

forecasting to PV systems. This could be improved further by adding more RE systems in 

different locations into the method in this chapter, providing a more generalised conclusion.  

The combination of energy generation and consumption forecasting can be used to optimise 

a BMS. This chapter shows the applications of MLA’s for RE systems and chapter 7 shows how 

MLA’s can be developed and applied to a functioning non-domestic building to forecast 

energy consumption and characteristics.  
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CHAPTER SEVEN: ANALYSIS AND IMPROVEMENT OF 

ENERGY PERFORMANCE FOR OPERATIONAL UNIVERSITY 

CAMPUS THROUGH MACHINE LEARNING FORECASTING 

This chapters’ focus is on the application of the developed machine learning algorithm’s into 

the Business Schools’ building management system to increase the energy efficiency of the 

building. The developed algorithms can forecast the energy demand and surrounding 

characteristics of the building. The forecasting accuracy and parameters that determine the 

ease-of-use for the various algorithms are evaluated with a focus on the effects that the MLA 

has on the BMS.  

The application of renewables and energy trading schemes within the BMS are analysed to 

determine optimised management of the buildings’ resources. The novel methods of CO2 

density forecasting which can be applied to energy efficient heating, bi-direction electric 

vehicle charging, and renewable energy forecasting are explored. They have previously been 

explored independently, but this chapter is with regards to the application together in a multi-

purpose operational university building.  
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7.1 Introduction 

The Manchester Metropolitan University Business School is a non-domestic building within 

the Manchester campus. As it is ranked the number two sustainability university in the UK, 

the Business School has many smart features to reduce the CO2 emissions, but it is far from 

being a net zero building. As the government legislations have a target for a complete 

elimination of carbon emissions from buildings, the energy efficiency of the building must be 

optimised. The BMS controls the HVAC system, lighting, and PV generation where the 

systems’ energy waste is reduced in comparison with no applied BMS. The previously 

developed novel methods of energy reduction in this thesis such as bi-direction EV charging 

and CO2 occupation forecasting and the novel exploration of RE generation are applied with 

already existing methods of energy reduction such as FIR heating, kinetic floor tiles, and 

revolving doors. The application of energy forecasting allows optimisation of energy 

management and storage with regards to energy price and fluctuation in current and future 

energy demand.  

This requires accurate forecasting of the buildings’ energy requirements. Although MLA have 

been developed in chapter 4, they are used to forecast the monthly price of energy, whereas 

in this chapter, more finite data is collected, and more complex MLA are developed for an 

accurate forecast of the energy consumption. The application in chapter 4 provides 

information on the economic practicality of the V2G method whereas in this chapter the MLA 

allow the optimisation of the MMU Business Schools’ BMS.  

The MMU Business School has an energy consumption of 2.5GW for the year 2020 where the 

average commercial building in the UK used 62,761kW for the same year. This shows that the 

Business School is a large building due to it having many installed energy saving measures and 

it still using 97% more energy than the UK’s average commercial building. Although it is not 

exactly classed as a commercial building, it has commercial qualities that can consider it in 

that category. The building has many functions including two cafes, offices, lecture halls, 

computer rooms, a canteen, elevators, and a kitchen. The cafés are open spaces, with no 

ceiling until the roof of the building, and occupancy peaking at 9am and 12pm. This requires 

air conditioning for the occupied time and invokes a peak in HVAC and common energy 

consumption through the use of the coffee machines. The offices are often regularly 

occupied, from 9am – 5pm with a break at 12 – 1, and with ceiling between 2.4m – 2.7m high. 
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This invokes a peak at 9am and requires maintained air conditioning throughout the day. The 

lecture halls often have high peaks as large capacities of occupants arrive according to the 

schedule which often changes, bringing unpredictable energy consumption into the building. 

The lecture halls require more HVAC and lighting energy than other rooms due to them having 

no windows, high ceilings, and the required air ventilation and heating or cooling for the room 

under occupation. Computer rooms act like normal offices for the HVAC system, with 

standard ceilings and maintained air conditioning throughout the day but as occupants come 

and go, this can provide more unpredictable energy consumption. The canteen is opened at 

12pm and must condition the air for up to 50 occupants once open, with no regulations for 

how many can fit into the room, this could be a large energy consumer for the HVAC system. 

The elevators energy consumption peaks between 8:30am – 9am, at 12pm – 1pm, and again 

at 5pm. This is due to occupants entering the building, leaving for lunch, and then leaving 

again once the working day has finished. The 6 elevators being used constantly for up to an 

hour at a time can require large amounts of energy consumption but can be predictable with 

respect to time. The kitchen is in use for the morning until the canteen closes after lunch. It 

starts to consume energy at 8am when it opens and continues until between 2pm – 3pm. As 

it is scheduled, it can be easier to predict the consumption with respect to time.  

The current case study building has various smart measures and a BMS capable of automating 

some resources. The problem with non-domestic buildings in an energy context is that they 

work through real-time management of their systems instead of through forecasting. The 

benefits of forecasting the energy characteristics help the system to respond to changes 

faster such as starting the heating before the buildings’ temperature has dropped. Energy 

trading has the potential to reduce the buildings’ carbon emissions and energy costs through 

the forecasting of the buildings’ supply and demand. Potential renewable energy harvesting 

and trading applications are developed in this chapter. The aim of this chapter is to present 

the results collected from this thesis and the developed MLA’s in this chapter and how they 

are applied to the BMS. The improved BMS is then analysed to show the improvement in 

energy efficiency and costs compared to the BMS without any MLA applications.  

The aims of this chapter include analysis of:  
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• The buildings’ volume and times of energy consumption and renewable energy 

generation.  

• The buildings’ physical parameters such as open space, floor space, number of floors 

and other parameters.  

• Energy systems such as the HVAC and lighting in the context of the energy 

performance. 

• The current BMS to determine the management response to the above variables and 

how it can be improved.  

• How the application of machine learning algorithm forecasting of the energy 

parameters can improve already-existing methods when used in parallel with the 

novel methods proposed in this thesis.  

7.2 Application of Smart Energy Consumption, Storage, Generation, and Trading to an 

Operational University Campus  
Demand forecasting can be used instead of purchasing energy at the time it is needed. 

Instead, the energy can be purchased in advance at a cheaper rate. The demand is either 

peak-time or off-peak, with an electricity price of 15p/kW or 12p/kW respectively. This can 

only be done if the energy demand is accurately forecasted a day before. A smaller resolution 

and a larger horizon forecast provide the BMS with more information it can use to save costs 

and stabilise the grid. The average daily energy demand for the year 2022 is shown in Figure 

7.1.  



below the average is off peak where the price is 12p/kW. For an average day, the buildings’ 

peak times. When the buildings’ energy demand increases to peak time, the energy from the 
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The method of carbon emission reduction requires both the increase of renewable energy 

generation and the decrease in energy consumption from the buildings’ various required 

systems. This involves heating, lighting, the use of EV’s, building energy storage systems, and 

kinetic energy harvesting from the occupants’ behaviours and movement.  

It is necessary that the buildings’ lighting consists of LED’s as they can use 75% less energy 

and last 8 to 25 times longer than conventional halogen light bulbs [201]. The benefits of LED’s 

within the Business School are apparent through the installation and measurement of CO2 

emission reduction over the course of 5 years. LED’s and occupant dependent lighting started 

to be installed in 2013 under the supervision of Dr. Albarbar at the university, and between 

the years of 2013-2019, the yearly electricity demand and carbon emissions have been 

reduced by 124,690kW and 71,821kgCO2 respectively. This is an electricity demand and 

carbon emission reduction of 6%. Currently, all lighting within the Business School are LED’s 

and zones are controlled through PIR sensors, capable of detecting occupancy.  

The Business School has a total of 12.6km of usable floor space throughout all 8 floors, with 

a total of 2.55km of corridor and door space for the use of kinetic floor tiles. There are over 

 0 parking spaces used by the buildings’ staff, with the capability of using the V2B EV trading 

technique [30]. There are 4 revolving doors and 241 swing doors to generate electricity and 

70m of roof edge for ridge installed wind turbines. The building already has a borehole 

installed but it is not yet in operation.  

The application of MLA’s for the forecasting of occupation allows the pre-heating of zones, 

and in particular, the application of FIR to improve the energy efficiency of the heating system. 

In previous work, IR sensors has to be installed to record occupation, but CO2 can work if 

applied correctly to give the same results. Installed energy generation methods can involve 

kinetic floor tiles, revolving door generators, solar, wind, hydrogen fuel cells, and biomass.  

The potential generation if kinetic tiles [127] are installed within the revolving doors of the 

building could be up to 360kW/day, saving between £43-£54/day, assuming maximum 

occupation. The revolving doors can be used to generate energy from the kinetic energy of 

the occupants opening the doors. This can generate 960kW/day, saving £129/day. The 241 

swing doors can be used to generate energy from the occupants too, generating up to 



These methods of energy generation and utilisation can improve the buildings’ energy 

renewable generation isn’t a constant supply, in which they will reach peak output at 
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installed. The MLA’s can accurately forecast the wind speed and thus, the energy generation 

such as in previous research [156]. The wind turbine to be installed on a building with little 

dispensable space can be a turbine such as in previous research [133]. This allows the turbine 

to be installed on the highest ridge of the building, and due to the Business Schools’ roof being 

sloped, the wind can be channelled up the roof and into the turbine.  

The PV generation data isn’t calculated and is instead taken from the actual data from the 

installed PV system on the Business School and aggregating the results of an average day. To 

determine the energy generation of a PV system, the developed method in chapter six can be 

replicated. This is where MLA’s are employed and are given data surrounding the energy 

output of the system and climate data affecting the generation. The results from chapter six 

show that the energy generation from the PV system can be accurately forecasted with an 

error of 1.766kW when forecasting in 15-minute iterations over a 24-hour horizon when only 

being trained with 1 month of data.  

The kinetic floor tiles are only able to generate energy when the occupation volume is high, 

and the placement of the tiles also affects the generation. For an optimum method of utilising 

kinetic floor tiles, they can be installed in the doorways that see the most footfall such as 

through the main revolving doors. This allows the tiles to see the most generation and from 

an economical viewpoint, it reduces wasted costs due to installing the floor tiles where they 

might not see occupation. From an economical viewpoint of using doors to generate energy, 

larger doors that see the most use are preferred as they provide the most energy. Like the 

kinetic floor tiles, if the doors are installed with energy generation methods and aren’t used, 

such as in a boiler room that cannot be accessed by the public, then they won’t generate as 

much energy but will require the same investment. The revolving door provide the best 

benefits, but to meet the requirements of a net zero building, all doors can be fitted with 

generation capabilities. Although no previous revolving door energy generation is forecasted, 

the developed method of forecasting the occupation volume in chapter five show an accuracy 

of 97.76%. This shows that the revolving door energy generation can be forecasted through 

MLA methods, as the occupancy directly affects the energy generation.  

The energy surplus is illustrated in Figure 7.3.  



or stored, where the MLA’s forecasted results are necessary to optimise the actuation of the 
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can either be stored, sold, or used for electrolysis, generating up to 395kW in total energy 

which can be stored. Hydrogen is a good method of managing the energy surplus, but due to 

the low efficiency of 60% and large energy losses, the method relies on the results of the MLA 

forecasting to optimise. If the forecasted results show that there will be a large increase in 

energy demand, then the hydrogen storage method can provide benefits for the building. This 

is due to the energy being stored instead of being sold and then potentially bought at a higher 

price. If the results of the MLA forecast a decrease in energy demand, the hydrogen storage 

isn’t necessary, the energy can be sold, and no energy will be lost through the method of 

electrolysis. The trading of surplus energy isn’t absolute, as some of the energy can be sold, 

and if the results from the MLA’s are accurate enough, the energy can be stored for later use 

without selling or buying more than is necessary. The biomass energy generation can also 

provide different outputs, depending on the size of the system as a 7kW and a 20kW are 

previously tested [203].  

For a scenario where there is no installed BESS, the energy can be traded for the advantage 

of the building but only if there is an energy surplus. The generated energy that has not been 

consumed within the building can be sold to the national grid which offsets the carbon 

emissions of the building. For larger buildings such as the Business School, it can be difficult 

to produce an energy surplus as on-site renewable energy generation requires initial 

investment, but once these generation methods are installed, the building can reduce the 

carbon emissions.  

The bi-directional EV charging method developed in chapter four allows the EV’s battery 

capacity to be used for the advantage of the building, meaning that the building doesn’t have 

to purchase a BESS as large as it would without using the method. The CO2 forecasting method 

developed in chapter five can be applied to the revolving doors and elevator consumption to 

forecast energy generation and consumption to a more accurate degree instead of for the 

building entirely. The RE forecasting analysis from chapter six can be used to develop a more 

accurate forecast, and thus more accurate energy management from the BMS.  

7.3 Machine Learning Algorithm Energy Characteristic Forecasting  
There are 25 developed algorithms, capable of generating the Business Schools’ energy 

characteristics. The algorithms comprise of a neural network, decision tree, random forest, 

linear regression, and support vector machines. The energy characteristics comprise of the 
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kitchen, lighting, HVAC, overall demand, and the CO2 density. These are developed to produce 

results of multiple iterations and horizons, capable of being installed within any BMS for any 

type of building.  

The data used in this chapter is collected from the 102 energy meters within the MMU 

Business School. The data consists of the overall energy demand (kW), the lighting demand 

(kW), HVAC demand (kW), kitchen demand (kW), outdoor temperature (oC), rainfall (mm), 

cloud cover (%), outdoor air pressure (mb), and the time of day. The data is collected every 

15-minutes from the meters, meaning the minimum resolution the data can be forecasted 

from the MLA is 15-minutes. This can be aggregated to form larger resolutions such as hourly. 

The start and end dates for the collected data is from 03/09/2015 at 10:45 until 31/12/2019 

at 23:45, giving 36,935 samples and 332,415 datapoints across all the samples and the 

collected inputs. This data is stored into an online database and is downloaded locally to a 

CSV file that can be accessed by the machine learning software.  

The models are trained by splitting the whole dataset into 20% for testing and 80% for 

training. The target data (energy consumption) is split from the rest of the inputs, and the rest 

of the data is used to train the MLA. Once the relationship is calculated by the MLA, the input 

test data is fed into the MLA. As it has not seen this data before, the forecast of the target 

data is compared against the actual collected data to show the difference between the 

datasets to show the error.  

The models can be evaluated through measuring the error, in this case in mean-actual-

percentage error. The MAPE is beneficial because it shows the error for multiple MLA, 

allowing a simpler comparison between them than with other error metrics.   

The developed algorithms’ forecasting accuracies for 15-minute iterations are shown in Table 

7.1.  

Table 7.1. The forecasting error of the developed algorithms when forecasting the various 

energy characteristics on a 24-hour horizon and a 15-minute resolution.  

Method Demand % Kitchen % Lighting % HVAC % CO2 % 

NN 11.11 35.39 41.96 12.46 3.21 

DT 12.58 27.33 34.08 12.52 2.82 
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RF 10.9 24.76 36.39 13.02 2.76 

LR 13.64 39.5 36.24 16.8 2.61 

SVM 17.61 54 36.08 57.97 2.52 

They are trained with 123 days, 11,798 iterations, or 106,182 data points. They are validated 

against 31 days of data in December 2019. The target data is trained 24 hours in advance so 

the algorithm can forecast for the next 24 hours. The CO2 data is trained with 2 weeks, 1,283 

iterations, or 7,698 data points. They are validated against 7 days of collected CO2 data from 

a lecture hall in the Business School.  

MLA’s are also developed to forecast hourly and daily resolutions with the lowest errors of 

6.6% and 4.07% for a decision tree and for a random forest respectively.  

The correlation between the inputs and the target features has great effect on the accuracy 

of the various forecasts. The correlation’s are displayed in the confusion matrix in Figure 7.4.  

 

Figure 7.4. The correlations between the collected input variables for the MLA’s.  

The vertical axis follows the same variables as the horizontal axis from top to bottom: outdoor 

air temperature, lighting demand, cloud coverage, rainfall, outdoor air pressure, HVAC 

demand, kitchen demand, and the time of day.  

The correlations between the variables are measured through a DT algorithm. The 

calculations of associations between two variable splits ‘𝜆𝑗𝑘’ can be explained through 

Equation 7.1 [204].  

𝜆𝑗𝑘 =
min(𝑃𝐿,𝑃𝑅)−(1−𝑃𝐿𝑗𝐿𝑘−𝑃𝑅𝑗𝑅𝑘)

min (𝑃𝐿,𝑃𝑅)
       Eq. 7.1. 
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Where ‘𝑃𝐿’ is the proportion of observations in the left child node such that 𝑥𝑗 < 𝑢.  ‘𝑃’ is the 

proportion of observations in the right child node such that 𝑥𝑗 ≥ 𝑢. The value of 𝑢  is a 

threshold that is defined by how the data is best split. Where 𝑥𝑗 and 𝑥𝑘 are the predictor 

variables 𝑗 and 𝑘 respectively. ‘𝑃𝐿𝑗𝐿𝑘’ is the proportion of observations at the node such that 

𝑥𝑗 < 𝑢 and 𝑥𝑘 < 𝑣. ‘𝑃𝑅𝑗𝑅𝑘’ is the proportion of observations at the node such that 𝑥𝑗 ≥ 𝑢 

and 𝑥𝑘 ≥ 𝑣. This gives a value of between −∞ and 1 where any value above zero provides an 

important variable. The DT is grown, and an optimal split is identified through how even the 

data is split, and it is used as a reference. Among all the other decision splits that are 

compared to the optimal split, the best surrogate decision split yields the maximum predictive 

measure of association. This method can distinguish the similarities between decision rules 

that split observations in a DT. Pearson’s correlation is often used to measure the correlation 

between two variables, but it can only measure the linear relationship. As the data isn’t linear, 

the method of predictive association provides a more accurate correlation. Correlation 

provides information on the relationship between two variables, but it does not show 

causation or explain the reasoning behind the change in the variables. This must be calculated 

through a method such as the MRMR algorithm.  

The feature importance and selection method that provided the best results was MRMR when 

compared to the F-statistic and RF-OOB. The top three features are the lighting, time of day, 

and outdoor temperature. Removal of the three features with the lowest importance score 

provided an error improvement of 1.05%, from an original error of 11.08% to 10.03%. These 

are rainfall, outdoor air pressure, and cloud cover. This is due to the MRMR algorithm not just 

measuring the predictor against the target, but also against other predictors, so if two 

predictors are highly correlated, only one of them needs to be included in the target. This 

works well specifically with the RF because the same number of decision trees can still be 

created, but they can focus on predictors with a higher importance to the target.  

Currently, RF provides the best results because the average Pearson correlation from the 

demand to the other features is 0. 6, meaning there isn’t a high linear relationship. NN’s 

require more data for training compared to RF and as this method is using a limited number 

of inputs, other MLA performance is lower. 



The features with the lowest importance are removed from the MLA’s to measure the effect 

effect on the demand. The buildings’ main functions are the HVAC system and the lighting 

techniques such as LED’s
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Collection and critical analysis of training data for the MLA’s is completed through an 

algorithm that removes outlying and missing data. Feature importance is calculated through 

the MRMR algorithm, and finally, the MLA’s are developed.  

The importance of accurate energy characteristic forecasting is demonstrated with various 

applications of MLA’s being applied to the developed methods. For the building to be 

considered net-zero, it must generate more or equal energy than it is consuming. The energy 

can be reduced through methods such as FIR heating and more energy can be generated 

through methods such as kinetic tiles. The energy deficit and surplus vary throughout the day 

as does the demand. To ensure the energy management is optimised, the MLA’s have been 

developed and employed to accurately forecast the specified variables to ensure the energy 

is stored, traded, and consumed with minimum waste. This can be more accurate than 

previous methods such as building information modelling and the Government standard 

assessment procedure tool to forecast energy characteristics with less intrusive data 

collection and can be an efficient and reliable tool to help reduce the carbon emissions of 

non-domestic buildings. 

The novelties in this research are applied to a functioning non-domestic building with already-

existing methods of energy reduction. These include combining the EV V2G method from 

chapter four with previous energy generation and storage techniques to reduce energy 

demand by up to 45% on the case study building. This requires accurate forecasting of the 

energy generation of kinetic tiles and revolving doors, and consumption of elevators, lighting, 

and HVAC. This requires occupancy forecasting. As the CO2 forecasting from chapter five does 

not require PIR or facial recognition sensors to be installed, it is a cheaper option of occupancy 

forecasting, and it allows more management of generation and consumption. On top of this, 

the RE forecasting can be achieved through the analysis from the method in chapter 6 and 

can be combined with the above methods. This results in accurate forecasting of CO2 (which 

can be used to determine occupancy) and renewable generation, and with more control over 

energy management through using the battery capacity of connected EV’s. More control 

through MLA forecasting can reduce energy consumption by 45% for the case study building.  

This chapter demonstrates that reducing energy consumption, increasing production, and 

optimising management through machine learning methods can be a necessary contributor 

to the reduction of carbon emissions for non-domestic buildings.  
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CHAPTER EIGHT: ACHIEVEMENTS AND FURTHER WORK  

This chapter starts by outlining achievements as compared to the objectives set in section 1.4. 

After this, more precise conclusions are outlined and finally, recommendations for future 

works are stated.  
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8.1 Contributions to Knowledge and Significance of this Research 
In this work, the application of machine learning to the building management system, electric 

vehicle fleet, heating system, and renewable energy system is achieved. This allows analysis 

of energy management optimisation through energy storage, trading, and consumption. The 

application of MLA forecasting can aid in better energy management, reducing energy 

consumption, and increasing energy generation.  

The work achieved in this research include numerous novel aspects. These are summarised 

below:  

1. A developed occupancy forecasting method through machine learning methods, 

using CO2 density data from the room as the input. This is combined with a FAR 

infrared heating for a public building, showing an energy reduction of 75.97% 

compared to the existing heating system for the specific application. The 

applications of MLA forecasting were able to predict what times the lecture hall 

was occupied, allowing pre-conditioning of the zone.  

2. A method of using the capacity of electric vehicles is developed. This is important 

not only because it can save the case study building and other public buildings 

costs, but because it reduces the energy demand from the national grid. The cost 

reduction from this method could total 64.7%.  

3. A comparison of existing MLA’s used for forecasting renewable energy generation 

of a local solar PV system, providing important knowledge on how each algorithm 

is affected by poorer quality data, less inputs, and less iterations to be trained and 

tested on. The solar PV system can be forecasted with 95% accuracy, allowing the 

application of optimised energy management from the on-site generation 

techniques.  

The significance of this research is summarised below: 

1. In the UK, prices of energy are increasingly difficult to afford for the average home 

and business owner, affecting profits for businesses and quality of life for 

homeowners. If the energy consumption of non-domestic buildings is decreased, 

there is less demand while maintaining the same supply for the national grid, and 
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there is more energy to be provided for domestic buildings, and therefore the 

price of energy is reduced.  

2. Currently, the UK has a single coal power plant which produces CO2 emissions and 

is activated to meet peak power loads for the national grid. Other countries rely 

on coal or other fossil fuels as their main source of energy, generating more CO2 

emissions than necessary. This proves there is a timely need for applying research 

such as this into all situations including non-domestic buildings.  

3. In densely populated cities and places of production, more carbon emissions will 

be generated through transport, production of materials and products, and 

various other methods. By targeting electric vehicles and non-domestic buildings, 

these CO2 emissions can be alleviated, providing better air quality for all living 

creatures.  

8.2 Objectives, Achievements, and Discussions 

The main achievements that are described in the introduction chapter and how they have 

been accomplished are explained.  

Objective 1: Conduct a thorough literature survey on previous work surrounding non-

domestic building’s energy consumption to identify the research gap. 

Achievement 1: A diverse range of sources are collected to show current methods of energy 

forecasting, carbon emission measurement, renewable energy generation, electric vehicle 

applications, and building management systems. These sources range from government 

documents, scientific review and journal publications, and websites from previous case study 

buildings. This provides a comprehensive analysis of previous work in this field, allowing the 

conclusion that current techniques of reducing carbon emissions are not good enough to 

meet government regulatory targets, and can be improved through machine learning 

applications.  

Objective 2:  

Critically analyse existing design tools used to increase a buildings’ energy efficiency. These 

include renewable energy generation, building energy storage systems, and various methods 

of reducing energy consumption.   
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Achievement 2:  

The analysis of previous design tools for increasing the energy efficiency of buildings’ has been 

accomplished. Conventional energy generation techniques are evaluated, and the 

applications of novel techniques are explored. Chemical battery building energy storage is 

compared against hydrogen and the utilisation of the battery capacity of electric vehicles. 

Hydrogen has the potential to reduce carbon emissions and V2G applications can reduce 

stress from the national grid while reducing energy costs from the building. Energy reduction 

techniques are developed through applying infrared heating and machine learning to the 

Business School and comparing the results to a convection heating system.  

Objective 3:  

Assess the possibility of using already-existing electric vehicles to improve energy efficiency 

of the building and demand side flexibility for the national grid.  

Achievement 3:  

A novel method of optimised bi-directional scheduling is developed, using the already existing 

electric vehicle fleet. This saves up to 64.7% on costs and provides higher flexibility for the 

national grid.  

Objective 4: 

Search for more cost-effective heating methods such as through infrared applications. 

Achievement 4:  

Available heating methods are firstly evaluated through the comprehensive literature review 

and causes of inefficiency are reviewed. The already-existing method of infrared heating can 

be considered highly efficient and is further improved by the application of machine learning 

occupation density forecasting. Occupancy forecasting provides more accurate management, 

reduces wasted heat when use with infrared heating, and when compared to a conventional 

convection heating system, it can save up to 75.97% of energy consumption in the case study. 

Objective 5:  
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Develop MLA’s capable of forecasting the energy characteristics of the case study building, 

and more precisely, the overall energy demand. Various MLA’s are developed to allow an 

accurate comparison between the models. 

Achievement 5:  

The MLA’s are developed with collected data from the Business School and the surrounding 

climate. With the data, they can be trained to forecast the energy demand, other energy 

parameters, and the CO2 density of the building, providing vital information on the footfall 

and how the energy is being consumed. Various algorithms are developed using conclusions 

from analysis of previous research, allowing the comparison and evaluation between them 

for this application. This allows them to be applied to the BMS to reduce energy consumption 

for the case study building. 

Objective 6:  

Apply the MLA methods to the case study building to reduce the energy demand and to 

increase the energy generation with optimised storage and energy trading.  

Achievement 6:  

The collected data from the Business School is used to train the algorithms and the dataset is 

split into training and testing. The MLA’s are used to develop the V2G research by forecasting 

the costs and the FIR heating by forecasting the occupation of the lecture hall. The MLA’s are 

used to determine the management of the energy within the building by forecasting the 

energy demand and generation. This stops incorrect energy management such as over and 

under purchasing and selling.  

As the surplus of energy fluctuates throughout the day from generation and consumption of 

the energy, the management has been optimised. This includes generation, storage, trading, 

and consumption. Generation techniques such as kinetic floor tiles and revolving doors have 

the capacity to power parts of the building. The storage of the generated energy can be done 

through techniques such as chemical battery storage, although if hydrogen energy storage 

becomes more accessible, it can be used while emitting no carbon emissions during operation 

and giving the building enough energy for when the demand increases. Energy trading can be 

achieved once the MLA’s have forecasted the buildings’ energy demand. This allows the BMS 
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to control the on-site energy better, allowing the energy to be stored or sold, depending on 

the forecasts. Smarter consumption such as FIR heating increases the buildings’ efficiency, 

making it easier for the generation techniques to match the energy demand. The Business 

Schools’ carbon emissions could be eliminated through energy saving methods and the 

application of MLA’s, allowing the BMS to purchase and store an optimal amount of energy, 

with dependence on the generation and consumption of the building. 

Objective 7:  

Evaluate the MLA’s through the forecasted energy demand compared to the actual energy 

demand of the case study building.  

Achievement 7:  

The algorithms are tested by forecasting a certain variable for a set number of iterations, and 

then compared against the actual value of the variable for the number of iterations. This is 

then evaluated through mean actual percentage error.  

The MLA can forecast the energy demand and parameters for 15-minute iterations and a 24-

hour horizon with an average error of 10.9% over 31 days. The random forest algorithm is the 

most accurate algorithm with 89.1% accuracy for 15-minute resolutions and 24-hour 

horizons. The accuracy increases to 96% for the RF algorithm when forecasting the energy 

demand in daily iterations for a 1-week horizon. MLA’s are applied to the Business School for 

CO2 and cost forecasting for both the FIR heating and the V2G method. Both methods showed 

accurate forecasts of 97.76% and 92.1% respectively. The energy generation from the solar 

PV system is forecasted with an accuracy of 95% compared to the total energy generation. 

Overall, the RF provides the better results as the accuracy is often higher while it requires less 

data to train. The accuracy of the algorithms has great importance for the application towards 

a BMS, but this can be increased through more complex methods, such as more decision trees 

in a RF or through more layers in a NN. It can be concluded then that at the present, MLA’s 

provide the best solution to forecasting energy characteristics of non-domestic buildings.  
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8.3 Conclusion 

This thesis concludes that the application of machine learning techniques on smart energy 

measures and on non-domestic buildings’ management systems can play a critical role in the 

reduction and elimination of carbon emissions.  

This can require less initial investment than retrofitting and can be more effective, depending 

on a multitude of factors such as thermal envelope and other uses that have been explored 

in this work. The machine learning in this thesis has higher accuracies than previous methods 

of energy forecasting through AutoCAD software’s.  

The machine learning has an energy demand forecast accuracy high of 96% when forecasting 

a 1-week horizon, for every day of the week with the RF algorithm. The solar PV system, 

occupancy through CO2 density, and cost forecasting of an electric vehicle to building bi-

directional charging method, all providing information for the building management system, 

and increasing the energy efficiency of the case study building.  

8.4 Further Work 

This section is split into MLA’s and data processing, occupancy data collection and forecasting, 

future buildings and how they may be designed, and novel technologies that can reduce 

carbon emissions.  

As the development of MLA’s are providing the capacity for less necessary data for training 

and more accurate forecasts, the applications for them become easier. Less training data 

means that the algorithms can be used on newer buildings, but the accuracy of the algorithms 

must be maintained to ensure the results can be used within BMS’s. As newer buildings often 

have the aim of having a low carbon footprint, the applications of MLA’s towards new builds 

and buildings with limited collected data must be explored. This could be completed by either 

using data from similar sized buildings and functions, such as in the case of how the 

government calculate the EPC, or through improving the MLA’s. The improvement of MLA’s 

includes more complex algorithms, requiring more computational power. As the government 

software’s are often inaccurate when comparing the selected building with previous similar 

buildings, the MLA’s are the preferred choice.  

Data processing must be improved if MLA’s are used in the industry. Incorrect data can 

negatively affect the performance of the algorithm but can be difficult to remove once the 
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data has been collected and stored. Processing algorithms can remove outlying and missing 

data, but any incorrect data included in the dataset cannot be removed. This must be 

removed or noted by the sensors for the dataset to be considered fully clean. This is especially 

important if there is a new build or a recent renovation and there is not enough data to train 

the algorithm effectively.  

Throughout previous research, occupancy forecasting can be viewed to be difficult to 

accurately forecast. This is shown where occupancy forecasting has 16.88% error [205]. In the 

future, tracking of occupancy through more PIR sensors throughout the building or through 

using the location on their smart phone can aid in the forecasting of occupancy density and 

behaviour. As behaviour is shown to affect the energy characteristics of buildings, this is an 

important factor to accurately predict and understand. This can be done through surveys, and 

in a piece of previous research, this was done through wrist bands that allow the occupants 

to show their comfort levels. The comfort and behaviour of occupants can be forecasted and 

the relationship between these variables and manual input on the building can be 

understood. This will allow the manual controls such as the lighting, HVAC, and window 

operation to be optimally controlled by the BMS, reducing the total energy demand of the 

selected building.  

Future new builds and renovations will have to consider the carbon emissions generated 

through the initial build and though the function of the building. This is affected by the 

buildings’ dimensions, type of heating, lighting, and ventilation systems, function, and global 

location. For a building with FIR heating, there can be larger open spaces such as in the 

Business Schools’ atriums, due to there being less convection heat being lost. For a V-A-V 

heating system, more energy can be saved when the zones are smaller and easier to 

condition. The lighting system in a location with less cloud coverage can be optimised through 

more windows, assuming there are well insulated if it is a hot or cool location. Global warming 

needs to be considered when selecting the level of insulation. If a building needs to retain 

heat better now, it doesn’t mean that it will need to retain heat better in the future. If the 

temperature rises, measures should be in place to reduce the insulation and allow better air 

flow to ventilate the spaces, even if it is not yet required. Research into how a renovation or 

a new build can be optimised to reduce energy consumption and to promote energy 

generation would greatly benefit the future building industry.  



domestic buildings’ energy 



185 
 

Figure 8.1. The consideration methodology when installing a FIR heating system towards a 

non-domestic building.  

Firstly, the physical parameters of the systems’ requirements need to be calculated. This 

involves the size of the panels and where they will be placed so that they can heat which 

zones are required. The functions of the zones affect the heating requirements as in an office 

it may be set to 21oC whereas in a dance studio, it may be set to a lower temperature due to 

the movement of the occupants.  

Secondly, the cost of the FIR heating system must be evaluated. This involves evaluating the 

current heating systems’ cost by fuel type and energy consumption. Most heating systems’ 

use natural gas and therefore FIR heating has the capacity to emit less CO2 if the electricity is 

generated through clean methods. Cost of initial purchase and installation must be evaluated, 

and the ROI must be calculated. This will allow the investor to determine whether their 

finances are being invested wisely.  

Finally, the comfort of the occupants must be evaluated. This can be affected by how long it 

takes to heat the zone if it is not pre-heated. FIR is the quickest method to heat solid mass, 

but the comfort of the occupants must still be considered. The appearance of the panels can 

be interchanged, and especially for modern buildings, the appearance often has high 

consideration.  

These main steps provide the building with enough knowledge to accurately consider the 

benefits of a FIR system and to conclude on the replacement of a conventional heating 

method.  

The V2G method is forecasted through MLA’s and uses real-time data from the Business 

School, but it also requires the input from owners of the EV’s. As the developed methods 

don’t consider whether the owners want to save costs and the occupants’ behaviour when 

using the method, this should be applied to a case study to evaluate the benefits. The real-

life applications of the developed FIR and V2G methods should be achieved to determine how 

effective they are and to boost the utilisation in the industry. The energy capacity of the EV’s 

batteries have a large effect on the benefits of the developed methods. If the capacity of the 

EV’s are smaller, more EV’s are required to match the same total capacity, or the system can 

only be applied to a building with less energy demand. As EV’s are becoming more 
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commercialised, one major attraction to a buyer is the range the EV can travel from a single 

charge, or the size of the battery capacity. As the battery capacities are increasing, the V2G 

method can provide larger savings for both the EV owners’ and the building in which they are 

being supplied from.  

Overall, newer buildings are being designed with consideration of the environmental impact, 

with the aim of emitting the least amount of carbon. As this is achieved by generating the 

buildings energy requirements from renewable sources and by minimising energy losses from 

the buildings’ systems, both of these classifications must continue to be invested in and 

applied to the industry. Emerging technologies include biomass and hydrogen, able to 

produce zero carbon and with the capability of contributing towards non-domestic buildings’ 

carbon reduction. Biomass has been used for practical domestic applications [206], 

generating more than 50% of the energy demand. This has not been applied to non-domestic 

buildings though. As they require more energy, the system must be larger and thus requires 

more investment. As this is shown to be practical for reducing the carbon emissions for 

domestic buildings, the application for non-domestic buildings must be investigated. 

Hydrogen energy generation and storage has been applied to Keele university in the UK by 

blending the hydrogen with natural gas to reduce carbon emissions. As natural gas deposits 

are depleting, it is necessary for HESS’s to be applied to non-domestic buildings to further 

reduce carbon emissions.  
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