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Abstract

Wrist-worn photoplethysmography (PPG) has become a popular method for continuous
and remote heart rate monitoring, but single-wavelength PPG faces limitations in
accuracy, robustness, and generalisability. This study explores multi-wavelength PPG
sensing to enhance heart rate estimation accuracy, robustness, and fairness across

diverse populations, particularly for healthcare applications.

A novel dataset comprising 26,442 samples from 20 participants with diverse skin
types (Fitzpatrick I-VI) and varying heart rates and motion types was introduced,
including blue, green, red, and infrared PPG wavelengths. Additionally, an uncertainty-
aware deep learning method was developed for wrist-worn PPG heart rate estimation,
optimised for single- and multi-wavelength PPG, using sensor fusion and LOSO cross-

validation.

The pilot study analysed the impact of skin melanin, biological sex, and wavelength on
PPG heart rate estimation. The blue-green-red-IR combination proved most effective.
Significant differences in error distributions across wavelengths were observed for skin
melanin and biological sex. High melanin content was associated with higher MAE
(8.4 + 2.1 BPM) compared to low melanin (6.1 + 2.2 BPM). An uncertainty-aware post-
processing method demonstrated competitive performance, mitigating the effects of
skin melanin content by equalising the MAE to 3.3 + 0.9 BPM for high melanin and 3.3
+ 1.3 BPM for low melanin. The method recorded lowest MAE values on three existing
single-wavelength datasets—1.3 + 0.6 BPM on IEEE Train, 1.2 + 0.4 BPM on BAMI 2,
and 2.5 + 0.9 BPM on PPG DaLiA-compared to existing deep learning methods. For
the newly collected multi-wavelength dataset, the method achieved a MAE of 3.3 + 1.1
BPM.

The pilot study improved reliability through selective rejection of uncertain samples,
despite lower retention rates. By investigating multi-wavelength PPG and introducing
reliability indicators, this research aims to enhance accuracy and reliability of wrist-
worn PPG heart rate monitoring across diverse populations, addressing disparities and
improving healthcare applicability. These findings lay groundwork for further research
advancing more inclusive and reliable wrist-worn PPG heart rate estimation methods.
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Chapter 1

Introduction

1.1 Monitoring the Cardiovascular System

The cardiovascular system, part of the broader circulatory system, consists of the heart,
blood vessels, and blood. Its primary functions are to deliver oxygen, nutrients, and
hormones to cells throughout the body while simultaneously removing metabolic
waste products, as illustrated in Figure 1.1. The heart, a muscular organ comprised
of chambers and valves, pumps blood through various circuits of blood vessels in
cycles [1]. Each cycle called a cardiac cycle, consists of two main phases: systole and
diastole. During systole, blood is ejected into the arteries from the heart. Conversely,
diastole is when blood is returned to the heart in preparation for the next systolic
period [2].

The cardiovascular system’s function can be assessed through various metrics. Heart
rate measures cardiac cycles per minute, while pulse rate, though similar, assesses blood
pulses in vessels. Both are counted in beats per minute (BPM). Blood pressure is another
key metric, reflecting the force blood exerts on arterial walls during systole and diastole.
Oxygen saturation denotes the percentage of oxygen-filled haemoglobin relative to its
total capacity. Additional metrics such as stroke volume and cardiac output are critical

in assessing cardiovascular functionality [1].

Cardiovascular diseases (CVDs), are a group of disorders affecting the heart and blood
vessels. These include conditions like coronary heart disease and stroke, which impair
the functionality of the cardiovascular system. Cardiovascular diseases (CVDs) remain
the leading cause of death worldwide, accounting for nearly one-third of all deaths
in 2021 [3]. In England and Wales in 2020, CVDs were responsible for approximately
20% of preventable deaths and half of all treatable deaths. Notably, research suggests
that up to 80% of premature CVD-related deaths could be prevented. Furthermore,
the economic burden of CVDs is substantial, with an estimated annual cost of £15.8
billion [4].
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FIGURE 1.1: Block Diagram of Basic Cardiovascular System Functional-

ity. The diagram illustrates the flow of blood through the cardiovascular

system, with blue representing de-oxygenated blood and red indicating

oxygenated blood. It includes the systemic and pulmonary circuits, depict-

ing the heart, lungs, and body. Blood flows from the body to the heart, then

to the lungs for oxygenation, and back to the heart before being pumped
throughout the body.

CVDs manifest variably across different populations, influenced significantly by health
disparities from behavioural, socioeconomic, psychological, and biological factors [4-6].
In England, South Asian and Black individuals are more vulnerable to CVDs than white
individuals [4]. In the USA, racial and ethnic minorities, especially black individuals,
confront heightened CVD challenges [5, 6]. They typically face delays in diagnosis
and receive inferior care, leading to worse health outcomes than white individuals.
Notably, while stroke rates have dropped for white individuals, black individuals are
about twice as likely to experience a first stroke, as well as have increased heart failure

hospitalisation rates [6].

1.2 Remote, Continuous and Non-invasive Heart Rate

Monitoring

The current paradigm of passive treatments at a late stage is advancing towards pro-
active preventative measures, such as cost-effective, non-invasive and continuous
monitoring tools aimed at enabling early and reliable diagnosis and treatment of CVDs
and improving patients” quality of life [7-9]. Heart rate monitoring is well-established
as an indicator of fitness levels and a training aid for various sports [10]. In healthcare,

elevated resting heart rates are an independent marker for mortality and morbidity in
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individuals with and without CVDs [11-14], as well as low resting heart rates being
associated with CVDs [15].

Electrocardiography (ECG) is considered the ‘gold standard’ for continuous, non-
invasive cardiovascular monitoring. While the single-lead ECG configuration is com-
monly used for heart rate monitoring, 12-lead ECG remains the cornerstone for com-
prehensive cardiac assessment, including arrhythmia detection and structural heart
disease evaluation. ECG records the depolarisation of the heart’s conductive pathway
and the related cardiac muscle tissues during each cardiac cycle. Despite its accur-
acy, conventional multi-lead ECG is not ideal for continuous monitoring due to its
lack of portability and convenience. The bio-electrodes used are obtrusive, can’t be
exposed to water, and require precise placement on the body, connecting to a recording
device [7,16]. Additionally, studies indicate that only 50% of nurses and less than 20%
of cardiologists correctly place leads V1 and V2, which can result in false diagnoses of

myocardial infarction [17].

Various techniques are available for continuous, non-invasive remote heart rate monit-
oring. In the UK’s health care system, it's common to equip at-risk CVD patients with
a 3-lead ECG Holter monitor. Though it’s more portable than its 12-lead counterpart,
it still lacks convenience. While single-lead ECG chest straps used in sports science
are more convenient, eliminating the need to administer electrodes, they remain too
obtrusive for continuous everyday use. Wearable phonocardiogram (PCG) sensors
capture the heart’s acoustics and are usually patches worn on the chest. They tackle the
issues of convenience and obtrusiveness associated with ECG. However, the PCG signal
is often weak and prone to noise interference. Additionally, sensors worn as patches

need frequent reapplication [8].

Wrist-worn photoplethysmography (PPG) has emerged as a popular method for continu-
ous, non-invasive heart rate monitoring, driven by the proliferation of smart watches
and fitness trackers over the past decade [9,18,19]. PPG is an optical technique that meas-
ures blood volume changes in the measurement site’s micro-vascular bed [7]. Despite
its susceptibility to noise and interference [7], PPG’s simplicity and cost-effectiveness
— requiring only an LED and photodiode [7] — contribute to its popularity. Addition-
ally, the convenience and unobtrusiveness of wrist-worn sensors, combined with their
historical use in timekeeping devices, further enhance their appeal and widespread
adoption [18].
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1.3 Wrist-worn Photoplethysmography

Commercial smartwatches and wrist-worn fitness trackers, often equipped with PPG
sensors, have gained popularity in recent years, with 21% of Americans using commer-
cial smart watches [9,19] and a projected market value of $96.31 billion by 2027 [19].
Their influence isn’t limited to the fitness sector; healthcare has utilised them, too. In
fact, over 600 clinical trials involving Fitbit fitness trackers alone are registered on clin-
icaltrials.gov [20]. Furthermore, evidence suggests that CVD patients who use fitness
trackers increase their physical activity [21], and nearly two-thirds more of them meet
their desired blood pressure targets [22].

However, known sources of interference and noise affect the accuracy of PPG sensing.
Alarmingly, a large body of research reveals that PPG sensing tends to be less accurate
for individuals with specific demographic attributes, such as higher concentrations
of skin melanin, being biologically female, and having a higher body mass index
(BMI) [7,9,19,23,24]. Additionally, these validation studies often lack a representative
sample of individuals with these attributes [7,9,25]. Furthermore, the algorithms
employed for estimating physiological parameters do not possess the functionality
to indicate their failure in providing reliable estimates, nor do they clarify how these
parameters are calculated [26,27]. This lack of transparency and reliability undermines
the credibility of these methods in medical settings.

Paradoxically, those most susceptible to CVDs and lacking adequate health care — who
would benefit most from such technology — are the ones for whom wrist-worn PPG
sensing might be least accurate. Furthermore, wearable fitness trackers and other digital
health solutions are under-utilised in low-income and minority communities, with
cost and lack of education being significant barriers [9]. This raises concerns about the

fairness and reliability of wrist-worn PPG sensing in serving those most in need.

1.4 Aim and Objectives

This thesis aims to develop an accurate, robust and reliable heart rate estimation deep
learning method from wrist-worn PPG sensing for a diverse cohort. Therefore, to

achieve this aim, the objectives of this thesis are set as follows:

1. Comprehensive Literature Review on PPG Sensing and PPG heart rate Monit-
oring: Conduct a comprehensive literature review on PPG sensing principles and
applications, focusing on wearable multi-wavelength PPG sensing and wrist-worn
PPG heart rate estimation methods.
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2. Design and Data Collection of Multi-wavelength PPG Dataset: Based on the
tindings from Objective 1; develop and acquire a comprehensive multi-wavelength
wrist-worn PPG heart rate monitoring dataset. This novel dataset should encom-
pass a diverse participant cohort, considering age, biological sex, BMI, and skin
melanin content. It should capture various motion types and intensities as well as

include variable heart rate profiles.

3. Quality Assessment of PPG Signals: Based on the findings from Objective 1,
develop and compare various methods for quantifying and subsequently assessing

the quality of the collected PPG signals across various activities and wavelengths.

4. Development of CNN for PPG Heart Rate Estimation: Develop a convolutional
neural network method for wrist-worn PPG heart rate estimation assessing the

performance of existing and collected datasets in generalisability and robustness.

5. Influence of Wavelength Selection on PPG heart rate Estimation: Following
objective 4, investigate the influence of wavelength selection on the accuracy and
robustness of the proposed methodology compared to the conventional green

PPG sensing.

6. Impact of Skin Melanin and Biological Sex on PPG Heart Rate Estimation: Fol-
lowing objective 4; investigate the influence of skin melanin content and biological

sex on the performance of the proposed heart rate estimation method.

7. Evaluation of Uncertainty Methods in Deep Learning: Compare and evaluate
aleatoric and epistemic uncertainty methods in deep learning, focusing on calibra-
tion, their distinctness or entanglement, and their relation to error rates and signal

quality.

8. Development of Post-processing Methods for PPG Heart Rate Estimations: Fol-
lowing objective 7; develop threshold-based post-processing methods, comparing
uncertainty-aware and assumption-based approaches, evaluating the effect on
accuracy, robustness, and mitigating the influence of skin melanin content and
biological sex.

9. Comparative Evaluation of PPG Heart Rate Estimation Methods: Following
objectives 4, 7, and 8; compare and evaluate the accuracy and robustness of the
proposed methodologies against existing conventional and deep learning PPG

heart rate estimation methods.

Building upon the outlined objectives, this thesis will further examine a series of research
questions to deepen the understanding and exploration of wrist-worn PPG heart rate

estimation techniques:
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1. How does the robustness and generalisability of the proposed wrist-worn PPG
heart rate estimation method differ across various wavelengths and wavelength
combinations, compared to the conventional green light used in consumer wrist-

worn smart watches?

2. What is the impact on heart rate estimation performance based on skin melanin
content and biological sex in deep learning methods for wrist-worn PPG heart

rate estimation?

3. In wrist-worn PPG heart rate estimation, does deep learning demonstrate superior

performance compared to conventional methods?

4. What are the most effective methods for estimating uncertainty in deep learning

methods for wrist-worn PPG heart rate estimation?

5. How does incorporating uncertainty in post-processing improve the reliability of

the proposed wrist-worn PPG heart rate estimation methodology?

1.5 Contributions

The main contributions of this thesis are summarised as follows:

1. A comprehensive literature review on multi-wavelength wearable PPG sensing,
encompassing theoretical foundations of PPG principles and skin optics, sources
of interference, hardware design considerations, and motion artefact reduction
techniques. The review explores various PPG applications and wavelength se-
lection criteria, followed by an in-depth examination of wrist-worn PPG heart
rate estimation methods. This includes an analysis of available datasets, signal
quality assessment methods, conventional beat detector and heart rate estimation
algorithms, and emerging deep learning approaches for wrist-worn PPG heart

rate monitoring.

2. A multi-wavelength wrist-worn PPG heart rate monitoring dataset that is com-
prised of data from 20 participants (13 female, 7 male), aged 26 + 8 years, with
proportionate representation of Fitzpatrick skin types I-VI. It contains 26,442
samples of 8-second windows with 2-second slides, representing nearly 15 hours
of data. The dataset features the largest representation of high heart rates (160-180
BPM) among similar available datasets, with a fifth of the dataset indicating phys-
ical effort rates of 60% or higher. It includes the most comprehensive collection
of PPG wavelengths, with two channels each for blue, green, red, and IR. The
data collection protocol incorporates erratic wrist movements, cross-over effects,
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motion-free periods, and increased heart rates with minimal motion, providing a

robust foundation for evaluating wrist-worn PPG heart rate estimation methods.

3. An uncertainty-aware convolutional neural network for wrist-worn PPG heart rate
estimation, optimised for both single- and multi-wavelength PPG sensing, using
a sensor fusion architecture with LOSO cross-validation. Aleatoric uncertainty,
quantified through distributional predictions strategy, captured data-related un-
certainty but remained intertwined with epistemic uncertainty. Three epistemic
uncertainty quantification methods were also evaluated, finding Concrete dropout
to be the most effective, improving MAE and providing well-calibrated uncer-
tainty estimates across all utilised datasets. Concrete dropout also showed a strong
correlation with absolute error and ECG-derived signal-to-noise ratio (SNR) across

utilised datasets, enhancing the method’s reliability in variable conditions.

4. A comprehensive analysis of the impact of skin melanin content, biological sex,
and wavelength selection on wrist-worn PPG heart rate estimation. It identified
the blue-green-red-IR wavelength combination as the most effective, reducing
MAE by 0.4 BPM compared to green light and improving accuracy by 1.3 BPM
during motion-based activities like running. The study revealed significant differ-
ences in absolute error distributions across most wavelengths and combinations
for both skin melanin content and biological sex. For the most accurate, blue-
green-red-IR, wavelength combination high skin melanin content was associated
with a MAE of 8.4 + 2.1 BPM, compared to a MAE of 6.1 + 2.2 BPM for low skin

melanin content— a statistically significant difference.

5. An uncertainty-aware post-processing method demonstrated superior perform-
ance, achieving the lowest MAE on three existing single-wavelength wrist-worn
PPG heart rate estimation datasets compared to other deep learning methods. It
also mitigated the effects of skin melanin content and biological sex, equalising
the MAE to 3.3 + 0.9 BPM for high melanin and 3.3 + 1.3 BPM for low melanin.
The method recorded low MAE values on the existing datasets—1.3 + 0.6 BPM on
IEEE Train, 1.2 + 0.4 BPM on BAMI 2, and 2.5 + 0.9 BPM on PPG DaLiA. However,
it was less effective on IEEE Test and BAMI 2, with MAE values of 6.6 + 8.3 BPM
and 2.3 + 1.1 BPM, compared to other deep learning approaches. For the newly
collected multi-wavelength dataset, the method achieved a MAE of 3.3 + 1.1 BPM.
By selectively rejecting uncertain samples during post-processing, the method

improved reliability but at the cost of lower heart rate estimation retention rates.

Collectively, these contributions represent a meaningful step in the right direction,
addressing key challenges and introducing novel methodologies that enhance accuracy,

reliability, and fairness in wrist-worn PPG heart rate estimation methodologies.
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1.6 Thesis Outline

The thesis is structured as follows: Chapter 2 reviews PPG heart rate estimation, focus-
ing on multi-wavelength and deep learning. Chapter 3 outlines research design and
methodology. Chapter 4 discusses the design and collection of the multi-wavelength
wrist-worn PPG heart rate estimation dataset. Chapter 5 analyses this dataset for its
efficacy and critical insights. Chapter 6 details a convolutional neural network’s design,
implementation, and heart rate estimation performance analysis. Chapter 7 covers
uncertainty quantification and post-processing methods. Chapter 8 concludes the thesis,
summarising key findings, limitations, and future research directions.



Chapter 2

Key Concepts and Related Works

This chapter includes a modified version of ‘Ray, D., Collins, T., Woolley, S., & Ponnapalli, P.
(2023). A Review of Wearable Multi-Wavelength Photoplethysmography. IEEE Reviews in Bio-
medical Engineering, 16, 136-151. https: //doi. org/ 10. 1109/ RBME. 2021. 3121476’

The preceding chapter established the necessity and methodologies for remote, con-
tinuous, non-invasive heart rate monitoring, positioning wrist-worn photoplethysmo-
graphy (PPG) sensing as a promising technique while acknowledging its limitations.
This chapter addresses objective 1 of the thesis by offering an exhaustive review of
PPG sensing, with an emphasis on multi-wavelength PPG and wrist-worn PPG heart
rate monitoring. It begins by detailing the theoretical underpinnings of PPG sensing,
including optical interactions and principles. The chapter then details interference
sources affecting signal quality and discusses key hardware considerations like sensor
geometry, measurement site, and contact force. The section culminates with explor-
ing motion artefacts, mitigation strategies, and diverse applications of PPG sensing,

including wavelength selection.

The latter section covers computational methods for wrist-worn PPG heart rate monit-
oring, examining various conventional approaches. It highlights the need for diverse
datasets regarding cohort characteristics and motion types/intensities for method valid-
ation. The chapter also discusses the key aspect of signal quality indicators, underlining
their importance in assessing the robustness of the developed downstream methods.
The chapter concludes with a comprehensive review of various deep learning ap-
proaches to PPG heart rate estimation, identifying research gaps and potential areas for
investigation, thereby setting the stage for this research.

2.1 Wearable Multi-wavelength Photoplethysmography

Wearable PPG sensing has increased in popularity over recent years as a simple and

unobtrusive method to monitor various physiological parameters remotely. However,
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showing promise as a tool to advance a proactive approach to healthcare and lifestyle
choices, various intricacies and considerations need to be addressed. This section details
the principles of PPG sensing, the complex interactions of skin and light, the numerous
sources of interferences and the various aspects of signal acquisition for wearable PPG
sensing. The section then covers motion artefacts reduction techniques, the selection of
the wavelength and the multitude of applications PPG sensing offers.

2.1.1 The Principles and Origin of Photoplethysmography Sensing

PPG is a low-cost, simple and unobtrusive method consisting of a light source and
photo-detector. Light is emitted into the skin, and the intensity of light transmitted into
the photo-detector will vary depending on the volume of blood in the vascular bed of
the measurement site, taking advantage of blood’s absorbent qualities to visible and
infrared (IR) light.
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FIGURE 2.1: A typical PPG waveform adapted from Lemay et al. [29,
Chapter 2.3]. The PPG waveform is divided into systolic and diastolic
phases, showing blood volume changes within vessels. Key waveform fea-
tures such as the systolic peak, the diastolic peak and the dicrotic notch are
shown. The diagram distinguishes between the AC component (pulsatile
arterial blood) and the DC component (venous blood and other tissue). Ab-
sorbed and transmitted light reflects blood volume changes, with emitted
light being a combination of LED and ambient light.

During the contraction of the left ventricle, blood is ejected out of the heart. It propagates
along the circulatory system, corresponding to the initial positive slope of a PPG pulse
(Figure 2.1). The systolic peak marks the maximum amount of blood in the vascular bed
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at the measurement site. The pulse waveform then decreases in amplitude until a local
minimum where it transitions into the diastolic phase. The local minimum or dicrotic
notch has been traditionally attributed to the closure of the aortic valves [28]. However,
an alternative theory suggests it may be related to reflected wave [28]. The mechanism
underlying the dicrotic notch remains an active area of research [28]. The end of the
diastolic phase marks the closure of the mitral valve and the completion of a cardiac
cycle [29]. As well as the AC (Alternating Current) or pulsatile component of the signal,
PPG sensing also collects the DC (Direct Current) or non-pulsatile component, which is
shaped by respiration, sympathetic nervous system activity, blood pressure control and
thermoregulation [16,28].

There are two modes of PPG sensing with different measurement sites (Figure 2.2).
Transmission PPG sensors are usually sited on the fingertip or earlobe, where the light
source and detector are separated by tissue. Reflectance PPG sensors, which have
both components positioned alongside each other on the same side of the tissue, are

commonly sited on the wrist, forehead or torso [16].
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FIGURE 2.2: The two modes of PPG sensing. The diagram illustrates the
reflectance (top) and transmission (bottom) modes of PPG sensing. The left
column shows minimal blood in the vessel, while the right column shows
maximal blood in the vessel. In reflectance mode, the LED emits light that
is reflected back to the photodetector (PD) through the skin and blood
vessels. In transmission mode, the LED emits light that passes through
the skin and blood vessels and is detected by the PD on the opposite side.
When there is maximal blood in the vessel, less light is transmitted back
to the PD in both modes, compared to when there is minimal blood in the
vessel.

A sensing method similar to PPG sensing was first devised in 1936 by two American
research groups [31], but Alrick Hertzman established PPG sensing in 1937 [32]. Since
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then, with the advancement of semiconductor technologies, transmission mode PPG
sensing has been widely adopted in clinical settings for pulse oximetry measurements
[24]. Reflectance mode PPG and PPG sensing for other physiological measurements
have been gaining popularity in recent years in both commercial and research settings

but have not been widely adopted in clinical practice.

2.1.2 Photoplethysmography Skin Optics

Human skin is a complex heterogeneous medium consisting of three main layers:
epidermis, dermis and hypodermis (or subcutaneous tissue). The thickness of these
layers varies based on the specific body location, adhering to a general pattern [33,34].
The outermost layer, the epidermis, is composed of multiple sub-layers of both living
and non-living cells, with minimal to no blood circulation. The stratum corneum, the
nonliving part of the epidermis, is usually about 20 pm in thickness and is made up
solely of dead squamous cells [34]. Directly below, the living epidermis has an average
thickness of 100 um and contains the majority of skin pigment compounds, including

pheomelanin and eumelanin, collectively known as melanin [33-36].

Located beneath the epidermis is the dermis, which is divided into two primary layers:
the papillary dermis, usually about 150 pm thick, and the reticular dermis, with a
thickness that typically varies between 1-4 mm based on the region of the body [34].
The papillary dermis is composed of loose connective tissue, which is vascularised by
a network of capillaries and small blood vessels typically ranging from 1 to 8 pm in
diameter [37]. These vessels exchange materials, such as oxygen and carbon dioxide,
between blood and tissue. The reticular dermis is made up of dense connective tissue
housing structures such as nerves, glands and hair follicles. Additionally, the reticular
dermis contains arterioles and venules, which are slightly larger blood vessels, typically
ranging from 2-30 pm in diameter [37], that connect the capillaries to the arteries and
veins [33].

The deepest layer of the skin is the hypodermis, which connects the skin to the under-
lying bones and muscles. Its thickness generally varies from 1-6 mm, contingent on
the specific body location [34]. The hypodermis contains larger blood vessels, arteries
and veins, typically ranging from 500-5000 yum in diameter [37], which transport blood
around the body. The hypodermis is mainly used to store fat and primarily consists of
loose connective tissue [33].

Due to the inhomogeneous distribution of blood, cells and pigments in the skin, meas-
uring the optical properties is challenging. Usually, the main optical properties of skin
are described as absorption, scattering and penetration depth along with reflection,
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transmission and fluorescence [30,31,34,35,38-41]. Researchers have employed several
methods to model these properties, such as the radiative transport equation, the Beer-
Lambert law, stochastic models like Monte Carlo simulation and random walk, and the
adding-doubling method, all with varying results [40,42].
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FIGURE 2.3: The light absorption coefficients of biological compounds
present in the epidermis-hypodermis layers of skin adapted from Lemay et
al. [30, Chapter 2.3]. (Hb - haemoglobin, HbO? - oxygenated haemoglobin).

The main light-absorbing components within the skin are water, haemoglobin and
melanin; however, each absorbs light differently depending on the wavelength of light
and chemical bonding (Figure 2.3). Water, the main component of skin, strongly absorbs
IR light (900-1100 nm) but exhibits minimal absorption in the visible light spectrum (390-
780 nm) [30,31,34,41,43]. Melanin protects the skin against the sun’s harmful ultraviolet
(UV) radiation [35]. Its absorption capacity intensifies with decreasing light wavelengths,
making it particularly effective at absorbing shorter wavelengths ranging from UV to
yellow light (200-600 nm) [16, 30,31, 34-36,38,39]. Similarly, haemoglobin’s absorbing
qualities decrease as the wavelength of light increases. However, when chemically
bonded with oxygen, its absorbing qualities dramatically reduce when exposed to light
in the range of 570-700 nm and is more absorbent to longer wavelengths such as IR
when compared to non-oxygenated haemoglobin [30,31, 34,35, 38,39, 41, 43].

Scattering in the skin can manifest in two primary ways: as a surface phenomenon
like reflection and refraction or as an interaction with skin components that have
distinct optical properties. The skin’s surface is estimated to reflect about 4-7% of light,
regardless of its wavelength [38]. Generally, as the light’s wavelength increases, the
scattering coefficients within the skin decrease [34,38-41]. Large melanosomes exhibit
mainly forward scattering in the epidermis, whilst small “melanin dust” has an isotropic
scattering profile. In the dermis, the scattering profile is primarily determined by the
fibrous structures of collagen. Meanwhile, in the hypodermis, the primary scatterers
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are spherical lipid droplets [34]. Research also indicates that scattering effects are more

pronounced in areas like the breast, abdomen, and forehead compared to the arm [41].
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FIGURE 2.4: Approximate maximum penetration depth of each wavelength
of light in the skin using reflectance mode sensing. The figure shows the
approximate maximum penetration depths of different wavelengths of
light in human skin using reflectance mode sensing. The light spectrum
ranges from ultraviolet (UV) to infrared (IR). UV light penetrates the shal-
lowest, mainly within the epidermis, while IR light penetrates the deepest,
reaching the subcutaneous tissue. The depth scale on the right indicates the
penetration in millimetres, illustrating how each wavelength interacts with
the skin’s layers, from the stratum corneum to the subcutaneous tissue.

In reflectance mode PPG sensing, the trajectory of light within the skin is theorised
to follow a “banana-like” shape [44]. The penetration depth, governed by the light’s
absorption and scattering coefficients in the tissue, is defined as the depth at which the
light intensity diminishes to 1/e (approximately 37%) of its original surface intensity [40].
Conversely, in transmission mode PPG sensing, the light’s path moves directly through
the skin, from the Light Emitting Diode (LED) source to the photodiode. Generally, the
penetration depth for reflectance mode sensing increases as the wavelength of light
increases in the range of visible and near-IR light (Figure 2.4) [16,30,31,34,39,41,43,45-47]
with the maximal penetration depth being 3-4mm for IR light (800-1100 nm) [34,41,46,48].
However, when the light’s wavelength extends beyond 1250-1400 nm, penetration depth
shows a notable decline [34,41,48]. The penetration depth in reflectance mode sensing
can also vary based on the measurement location. For instance, the breast and abdomen

tend to have deeper penetration compared to regions like the arm and forehead [41].

2.1.3 Sources of Interference

Several factors can affect the collected PPG signal’s intensity, morphology and noise

level, consequently interfering with the measurement of physiological data. These
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sources can be categorised as biological, physiological and external, as summarised in
Figure 2.5. Beyond these sources of interference, sensor design and configuration can
affect the quality of the collected PPG signal. These intricacies and implications are

comprehensively discussed in this section and subsequent sections.
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FIGURE 2.5: Sources of Interference in PPG Sensing and Their Impact on

the Signal [23]. This figure categories the factors that interfere with PPG

sensing into external, biological, and physiological sources, highlighting

their specific effects: green indicates changes in signal intensity, blue de-

notes alterations in signal morphology, and red represents increased noise

levels. Note that hardware-related factors, which can also affect PPG sens-
ing, are discussed in Section 2.1.4.

Age, Biological Sex and Obesity

Ageing causes anatomical and physiological shifts, especially in vascular structures,
such as arterial thickening and increased stiffness, and non-cardiovascular changes, such
as reduced skin thickness. These factors can modify the PPG waveform morphology,

reducing the clarity of the cardiac information within the signal [23].

Biological sex has been theorised to contribute to changes in the morphology of the PPG
waveform [23]. Differences in heart mass, arterial diameters and stiffness between sexes
can alter the amount and pressure of blood flowing through the vascular bed. Beyond
cardiovascular distinctions, studies indicate variations in skin thickness between sexes,
which may impact the amount of cardiac information in the signal [23]. Shcherbina et al.
found that biological male subjects have significantly higher error rates than biological
female subjects using several commercial wrist-worn reflectance mode PPG sensing [49].

The impact of biological sex on PPG sensing remains unclear due to limited research.

Obesity, linked to a higher BMI, brings about physiological changes that influence the
PPG signal’s intensity and quality. Factors such as increased skin thickness, variations

in blood flow, oxygen saturation, and capillary density all contribute to the alterations
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in the PPG signal. These changes, combined with the individual’s metabolic state, body
location, gender, skin tone and age, can lead to significant reductions in the quality of
the collected PPG signals [23].

Skin Tone

The accuracy and reliability of PPG sensing have been observed to vary across different
ethnic groups, with initial studies focusing on the influence of skin tone [7,23,24,49-55].
Pulse oximetry studies first highlighted potential inaccuracies for people with darker
skin tones [53]. Patients darker skin tones and low blood oxygen showed up to 10%
variation in oximetry readings [56]. In hypoxia, their oxygen saturation was often
overestimated [54]. A study of 1609 subjects found black patients had nearly triple the
rate of occult hypoxemia compared to white patients [55]. A comprehensive review
confirmed this trend, finding that most studies showed decreased oximetry accuracy in
patients with darker skin tones [24]. Yet, some studies found no impact on oximetry

performance from skin tone [57,58].

Preejith et al. found skin tone significantly impacts green light reflectance mode wrist-
worn PPG sensing in non-clinical active settings. Analysing 256 subjects, they found
a mean absolute error of 1.04 BPM for subjects with lighter skin tones compared to
10.90 BPM for subjects with darker skin tones when computing heart rate estimations
[51]. Shcherbina et al. discovered factors such as darker skin tone, greater wrist size,
and elevated BMI were associated with higher heart rate error rates in commercially
available reflectance mode wrist-worn PPG devices [49]. However, Bent et al. found no
statistically significant differences in heart rate estimation accuracy across skin tones for
commercially available wrist-worn reflectance mode PPG devices [59].

The use of green light in many non-clinical PPG systems is motivated by haemoglobin’s
high absorption spectrum in this range [23]. Fallow et al. examined blue (470 nm), green
(520 nm), red (630 nm), and IR (880 nm) reflectance mode wrist-worn PPG sensing,
finding green light produces the highest mean modulation at rest for all skin tones
but saw a trend towards decreasing mean modulation when increasing skin melanin
content. During exercise, they found blue and green wavelengths had higher signal-to-
noise (SNR) ratios compared to red or IR [52]. Yen et al. found similar results of green
light producing the highest mean modulation across all skin tones using a palm-worn
reflectance mode PPG sensor [60]. Contrastingly, Mohapatra et al. found orange (590
nm) PPG to produce increased perfusion index, pulsatile strength, and SNR across all
skin tones compared to green (520 nm) wrist-worn reflectance mode PPG sensing. The

improved performance was especially noticeable for subjects with darker skin tones,
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suggesting that specific wavelengths might be more effective for certain skin tones,

especially during physical activity [50].

Skin Temperature

Reduced skin temperature is associated with lower perfusion rates in the vascular bed,
a response linked to the Autonomic Nervous System constricting blood vessels in the
dermis to conserve body heat [61,62]. Reductions in skin temperature typically affect
the peripheral circulation more than the central areas of the body; for example, when
the body is exposed to 10°C ambient temperature, the blood flow in the hand decreases
to less than 1 ml/min [62]. All studies exploring temperature and PPG sensing agree
that temperature influences the signal [43,61-66] but to differing degrees.

Ralston et al. posited that skin temperature variations might not cause clinically signific-
ant errors in transmission mode PPG sensing [63]. Conversely, Budidha et al. observed
that cold exposure significantly reduced the amplitude of the PPG signal in some volun-
teers, rendering it ineffective for ear-worn reflectance mode PPG sensing [62]. Maeda et
al. determined that at temperatures below 15°C, green light (525 nm) PPG heart rate
estimates correlated better with ECG heart rate estimates than IR light (880 nm) [65]. In
another study, Maeda et al. found that cold exposure reduced the pulsatile component
of both green and IR signals. In contrast, hot exposure increased both the pulsatile and
non-pulsatile components of the IR signal due to increased blood in peripheral vascular
bed [66].

Respiratory Rate and Venous Pulsations

Respiration significantly impacts the non-pulsatile (DC) component of the PPG signal,
introducing variations that can affect heart rate measurements [23]. An increase in
respiration rate is closely linked to changes in heart rate variability. The PPG signal
reflects this by combining cardiac cycle signals with lower-frequency waveforms related

to respiration, which primarily originate from the venous system [67].

The venous system’s contributions to the PPG signal are often seen as interference
but represent a distinct waveform influenced by cardiac, respiratory, and autonomic
functions [23]. To reduce venous influences, pressure is sometimes applied at the
measurement site, though this can alter the PPG waveform itself [23].

Studies have identified three key types of respiratory-induced PPG variations: intensity,
amplitude, and frequency [23, 67]. These variations can modulate the baseline, alter
peak amplitudes, and induce phase shifts in the PPG signal. Higher respiration rates
tend to reduce these fluctuations [23, 67].
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Techniques such as filtering and advanced algorithms are being developed to separate
respiratory influences from the PPG signal [23,67]. Although venous contributions are
often considered noise, they can still provide valuable physiological information, but
require careful management to avoid distorting the PPG waveform [23].

2.1.4 PPG Hardware Design and Considerations

Over the past decade, there have been significant advancements in multi-wavelength
PPG sensing hardware in research settings. The early stages of this technology heavily
depended on fibre optics [45,68]. This then progressed into Optical Electronic Patch
Sensor (OEPS) development [60,69] due to its low cost and simple form factor, with
researchers also exploring ear-worn, finger-worn, forehead-worn and wrist-worn PPG
sensors [62,70-72]. The most recent innovation in multi-wavelength PPG sensing
hardware is the integration of an on-chip spectrometer, utilising plasmonic filters [73].
This approach has been refined to produce an all-wavelength PPG sensing device [74].

The measurement site of PPG sensing is key due to variations in tissue thickness,
skin melanin concentrations, vascular network blood flow, and potential movement
at the site [75-80]. Researchers evaluated 52 different measurement locations across
the body in a comprehensive study. They determined that the fingers, palms, face,
and ears yielded higher amplitude readings for the pulsatile component of the signal
in comparison to other sites [77], aligning with further research [75,80]. However,
when examining the effects of motion at various measurement sites, it was found that
motion significantly affected the blood distribution in the vascular bed at peripheral

measurement sites such as fingers and wrist [75,78].

Due to the preexisting widespread adoption of wrist-worn devices [18] and their unob-
trusive nature, the wrist is the most common measurement site for consumer-grade PPG
sensing devices. However, studies indicate that the wrist is not optimal for capturing
HR, pulse oximetry, and respiration rate during rest and activity [80], highlighting the
need for a more robust methodology. Additionally, researchers have challenged the
typical measurement site for wrist-worn PPG sensing devices, suggesting the radial
zone, side of the wrist with the thumb, may produce improved signal quality dependent
on light wavelengths selected when compared to the central zone of the dorsal surface
of the wrist [81,82].

In the commercial setting, Polar Unite, Grit X and Vantage V2 are the only devices that
currently use four wavelengths [83] whilst the other commercial devices have at most
three, typically using green light for heart rate measurements and red and IR light for
pulse oximetry measurements. While ‘research-grade” wrist-worn PPG devices like
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Empatica E4 and Biovotion Everion (now under Biofourmis Biovitals) offer raw data
streams, their heart rate accuracy is reportedly lower than consumer-grade devices.
Specifically, Empatica E4 has a mean absolute error of 11.3 BPM at rest and 12.8 BPM
during activity. Biovotion Everion’s mean absolute error is 16.5 BPM at rest and 19.8
BPM during activity, whereas the Apple Watch has a mean absolute error of 4.4 BPM
at rest and 4.6 BPM during activity [59]. This aligns with the findings of Rukasha et
al., which reported Empatica E4’s heart rate estimate mean absolute percentage errors
(MAPE) ranging from 7.2% to 29.2% on a treadmill and 5.3% to 13.5% during 12-hour
continuous monitoring [84]. The significant difference in heart rate accuracy between
these devices may be attributed to both hardware and software factors. While hardware
limitations such as sensor quality and the number of wavelengths likely impact accuracy,
it is hypothesised that the methods for processing PPG signals play a key role. It is
plausible that Apple’s larger user base provides extensive data, allowing for more
refined and accurate algorithmic models. Therefore, it is theorised that the superior
heart rate accuracy of the Apple Watch is largely due to its advanced data-driven
algorithmic processing.

Designing multi-wavelength PPG devices involves multiple considerations, including
the number and positioning of LEDs and photo-detectors (PD), LED light intensity,
sample rate, contact force, and measures to counter ambient light and electrical noise.
Table 2.1 summarises various integrated multi-wavelength PPG sensors that have
been developed to bypass these design choices. However, these sensors often lack the
flexibility needed for specific research scenarios. Analog Front Ends offers a solution by
allowing the creation of a custom sensor module tailored to particular requirements.
A summary of these multi-wavelength PPG Analog Front Ends (AFE) can be found in
Table 2.2.

In PPG sensing with an AFE, the placement of LEDs and PDs is key for optimal signal
strength. For the highest AC/DC ratio, green LEDs should be 1.85 mm from the PD,
while red and IR LEDs should be 2.35 mm and 2.75 mm away, respectively [85]. Ata 9.75
mm separation, no pulsatile waveform is detected at any wavelength [46], and it was
found that nearly double the driving current was needed to obtain a signal at similar
distances apart for both red and IR LEDs [76]. While augmenting current and LED count
boosts radiation power [46], a small PD active area might not capture this, resulting
in no amplitude increase [86]. Expanding the PD’s active area or count enhances the
signal, with amplitude boosts of 42% for wrist-worn red PPG and 73% for IR. Increasing
PD count over LED count is advantageous due to reduced power and heat [76, 86].
Wavelengths should be collected starting with the longest, as pulsations first appear
in deeper vessels [46]. An optimal sample rate between 21-64 Hz is recommended to
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. Wavelength of LEDs
Device Features
Blue | Green | Red | IR
2 Photodiodes
Analog I2C & SPI Communication
Devices 2 2 external sensor inputs
ADPD188GG 3 LED drivers
Ambient Light Rejection
Analog I?’C Communication
Devices 1 1 External LED emitters
ADPD144RI Ambient Light Rejection
Maxi
I ?let d 1 1 1 I2C Communication
ntegrate
MA)g(30101 Ambient Light Rejection
Maxim I?’C Communication
Integrated 1 1 | Ambient Light Rejection
MAX86150 Electrocardiogram
Maxi
I ?let q 1 1 1 1 I?’C Communication
ntegrate
MA)g(86916 Ambient Light Rejection
Light Barrier to block
OSRAM SFH
07 2 1 1 optical cross-talk
Requires AFE
Light Barrier to block
OSRAM SFH
7050 1 1 1 optical cross-talk
Requires AFE

TABLE 2.1: Summary of Multi-wavelength Photoplethysmography Integ-
rated Sensing Units. Search carried out in 2022. The table lists various PPG
sensing units from different manufacturers, highlighting the wavelength of
LEDs (Blue, Green, Red, IR), key features, and communication protocols.

compress data and minimise storage efficiently [87].

Contact force is pivotal in PPG sensing [76,77,82,88]. As sensor contact force rises,
the pulsatile signal component’s amplitude increases until the transmural pressure
(difference between external and intra-arterial pressures) becomes zero. Beyond this
point, the pulsatile amplitude diminishes with increasing external pressure until arterial
walls flatten, halting circulation [77,82,88]. For the wrist in reflectance mode, an optimal
contact pressure of 80mmHg is suggested for red light [82]. On the upper arm, a
30mmHg pressure yields the highest amplitude for green and IR light in reflectance
mode [77]. Minimal contact pressure is required for the forehead in reflectance mode
[76].
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Device Drivers Features
Analog Devices 8 LED drivers I2C & SPI
ADPD4000/4001 | 8 Inputs for PPG, ECG, EDA, | Communication
ADPDA4100/4101 | impedance and temperature | Ambient Light Rejection
Maxim Integrated | 2 LED SPI Communication
MAX30110 1 Photodiode Ambient Light Rejection
Maxim Integrated | 3 LED SP1 C.ommgmcatu.)n .
. Ambient Light Rejection
MAXMS86146 2 Integrated Photodiode

Integrated Micro Controller

Texas Instruments

1/2/3 Lead ECG (AFE4950)

8 LED 5 ..
AFE4950 . I“C & SPI Communication
4 Photodiode . . .
AFE44530 Ambient Light Rejection
1 Lead ECG
Texas Instruments | 4 LED 2C & SPIC icati
mmunication
AFEA4900 3 Photodiode 0T -omimumicato
Ambient Light Rejection
Texas Instruments | 3 LED I2C Communication

AFE4404

1 Photodiode

Ambient Light Rejection

TABLE 2.2: Summary of Multi-wavelength Photoplethysmography Analog

Front Ends. Search carried out in 2022. The table provides a comparison

of various PPG analog front-end devices, detailing the number of LED

drivers and photodiodes, as well as key features such as communication

protocols, ambient light rejection, and additional capabilities like ECG and
impedance measurements.

2.1.5 Motion Artefact Reduction

Motion artefacts significantly impact the accuracy of PPG sensing. Motion artefacts dis-
tortions in the PPG signal arise from body movement and the varying light penetration
depths depending on sensor placement. These artefacts can be periodic or non-periodic
and often have larger amplitudes than the signal’s pulsatile component [72,89]. Blanos
et al. showed that green (525 nm) and orange (590 nm) light were less affected by
motion artefacts than red light (650 nm) [69]. Matsumura et al. concurred, noting a
higher SNR ratio for green (530 nm) and blue (470 nm) light compared to red (640 nm)
during motion [90]. Shorter wavelengths, like green and blue, offer better SNRs due
to their penetration depths and in-vivo optical path lengths making them less prone
to motion noise [72]. They also experience less attenuation from optical processes and
capture less noise from deeper tissues, like bone movement [69]. However, some shorter
wavelengths due to shallow penetration depths do not reveal much cardiac activity [72].

The typical frequency range of a PPG signal is 0-4 Hz, whilst motion artefacts fall
within 0-10 Hz, making the removal of motion artefacts challenging. Many methods
use a motion reference signal, often collected from accelerometers or gyroscopes [89].
Conversely, researchers have utilised multi-wavelength PPG as a means for motion
artefact reduction. For example, Wang et al. utilised the isobestic wavelength (800
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nm) as a motion reference and applied a noise-cancelling algorithm to refine the PPG
signal [91]. Similarly, Zhang et al. used an IR (940 nm) PPG signal for motion reference,
leveraging its deep penetration and motion sensitivity. They used a wavelet transform
for signal cleaning and reconstruction, reducing heart rate estimation errors to less than
2 BPM for all motion types [89].

Yao et al. developed a method to separate motion artefacts from PPG signals using
an algorithm based on the Beer-Lambert law, which utilised red (660 nm) and two IR
(850 and 940 nm) wavelengths [42]. Chang et al. applied a maximal-ratio combined
algorithm to 15 PPG signals, achieving a 50% reduction in variations relative to a
single-wavelength reference sensor [73]. Chen et al. implemented a similar algorithm
on an all-wavelength wrist-worn PPG device, revealing a superior SNR compared to
single-wavelength [74]. Lee et al. developed a motion artefact reduction algorithm
using 12-channel PPG signals with green (530 nm), red (660 nm) and IR (940 nm)
wavelengths. Using a two-step analysis method—first independent component analysis,
then principal component analysis with a truncated singular value decomposition
approach—the method showed impressive performance in high-motion scenarios.
It achieved 82.49% sensitivity (correctly identifying true positives), 99.83% positive
predictive value (accuracy of positive predictions), and a very low 0.17% false detection
rate (incorrect identifications) [72].

2.1.6 PPG Applications and Wavelength Selection

PPG offers diverse physiological measurements and clinical applications [31,67]. These
include vital signs such as heart rate [92-95], Blood Oxygen Saturation [96], Respir-
ation Rate [97], Blood Pressure [98] and Heart Rate Variability (HRV) [99] as well as
clinical insights to Hypertension [100], Atrial Fibrillation [29], Vascular Aging and
Atherosclerosis [16,101], Coronary Heart Disease [102] and Cardiovascular risk [67].

Beyond cardiovascular-related monitoring, PPG sensing has seen several developments,
including the detection and monitoring of epileptic seizures [103], diagnosis of respir-
ation diseases [104], monitoring of infectious diseases [66], mental stress and affect
recognition [105,106], monitoring of sleep conditions [107,108], estimation of blood
glucose [109], and medicinal drug delivery monitoring [110-112]. This highlights PPG
sensing as a cost-effective continuous monitoring tool to advance a more proactive
approach to healthcare and lifestyle choices and establish a technological approach to
improving healthcare equity.

The choice to utilise green light in many commercial single-wavelength PPG devices is
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due to its optimal light-tissue interactions. Green light is highly absorbent to haemo-
globin and penetrates deep enough to sense blood pulsations but not too deep to
collect additional physiological information and noise. Nevertheless, alternate light
wavelengths have exhibited enhanced signal quality in specific circumstances. This
underscores the potential of multi-wavelength approaches to improving the accuracy,
robustness and generalisability of PPG sensing [7,113].

The most common application for multi-wavelength PPG sensing is pulse oximetry,
which requires two wavelengths to calculate blood oxygen saturation levels. The
blood oxygen saturation level can be estimated from the ratio of pulsatile and non-
pulsatile components of each wavelength [96]. Typically, the wavelengths used are red
(622-780 nm) and IR (780-2400 nm) [73]; however, researchers have identified orange
and green light to perform better due to their robustness to motion artefacts [69,114].
For blood pressure estimation, multi-wavelength approaches consistently outperform
single-wavelength methods [73,115,116]. This superiority is especially evident when
harnessing the distinct interactions of various wavelengths with skin and blood [73].
In blood glucose estimation, multi-wavelength usage has been linked to reduced error
rates [117,118]. Additionally, multi-wavelength PPG introduces novel applications such
as medicinal drug delivery monitoring [110-112].

2.2 Photoplethysmography Heart Rate Monitoring

The effectiveness of heart rate monitoring through PPG hinges on both the methodology
employed for heart rate estimation and the quality of the signal acquired. This section
examines the datasets utilised for validating heart rate estimation algorithms, emphas-
ising the prerequisites for such data and the pivotal design considerations. Additionally,
various methodologies for assessing the quality of the signals collected. The section then
examines two distinct conventional approaches for heart rate estimations, clarifying
their strengths and weaknesses and the diverse ways they have been implemented in
existing literature. The section concludes with an exhaustive review of deep learning

methods for heart rate estimation from PPG signals.

2.2.1 Wrist-worn Heart Rate Monitoring Datasets

As of early 2024, more than 30 PPG research datasets are available, covering diverse ap-
plications such as blood pressure monitoring, cardiovascular disease detection, emotion
detection, heart rate monitoring, pulse oximetry, and respiratory monitoring [67]. The
largest dataset is the UK Biobank, with over 200,000 participants [119].
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Every dataset is characterised by three fundamental elements that determine its use

case:

1. Participants: This aspect encompasses the demographic and physical details of the
cohort from which the data was gathered. It includes attributes like age, biological
sex, weight, height, skin type, health condition, and, in specific scenarios, even
the species.

2. Protocol: This component outlines the environment and conditions under which
the data was collected. It specifies whether the setting was a hospital, laboratory,
or a more naturalistic environment. Additionally, it describes the tasks or activities
that participants were engaged in during the data collection process.

3. Devices: This facet provides insights into the kind of bio-signals recorded. It
details the measurement site of the device, the variety of distinct signals each
device captured, including channels, axes or wavelengths, and the resolution and
sample rate of each signal.

Wrist-worn heart rate monitoring datasets with the intended use of validating heart rate
estimation algorithms typically have a chest-worn electrocardiogram (ECG) and a wrist-
worn PPG. The ECG serves as the reference device, providing “ground truth” heart rate
values extracted over designated time intervals; without validation against an ECG, the
method would measure pulse rate instead of heart rate. A motion reference is typically
included from a triaxial accelerometer or gyroscope. The protocol typically involves
a series of activities with varying levels of intensity collected in either a laboratory or
naturalistic setting. Summarised in Table 2.3 are the datasets that fulfil these criteria.

Notably, some heart rate estimation algorithms validate their methodology using emo-
tion detection datasets such as WESAD [120] and CLAS [121], respiratory monitoring
datasets such as BIDMC [122] and CapnoBase [123], as well as hospital setting datasets
such as MIMIC PERform [124]. While these datasets provide the essential signals for
validation, their protocols are specifically designed for different applications. A key
feature of wrist-worn heart rate monitoring datasets is to encompass known sources of
interferences that evaluate the methodology’s robustness, such as diverse motion types,
varying motion intensities, a broad spectrum of heart rate values and a diverse cohort
in terms of age, biological sex, BMI and skin type [125].

Most wrist-worn heart rate monitoring datasets employ laboratory-based protocols,
typically on a treadmill with varying speeds [126—128]. This protocol strategy captures
varying motion intensities and a range of heart rate values from increasing and de-
creasing the workload. However, the protocol may only capture periodic motion types
due to the cyclical nature of running in a controlled environment. Whilst beneficial
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in exploring the ‘crossover effect’ of having a similar movement cadence to cardiac

activity [125], the protocol lacks diversity.

Treadmill-based protocols generally capture two primary scenarios: elevated heart rates
associated with high motion intensities (when running) and lower heart rates linked
with minimal motion (when walking or at rest). Capturing scenarios of elevated heart
rates with low motion intensities can be achieved using an ergometer [129] or getting
participants to hold onto the treadmill bar (BAMI-2) [127]. Lower heart rates linked
with high motion intensities and aperiodic motion types can be captured via arm and
wrist movements (IEEE Test) [126]. Interestingly, research suggests that the motion
type rather than the activity intensity has more impact on the signal quality. Changes
in activity and erratic wrist movements were found to cause more inaccuracies than

prolonged elevations in motion intensity from running and cycling [125].

An alternative approach to protocol design is to select activities that are performed
daily aimed at collecting realistic motion types and intensities. PPG DaLiA was the only
dataset to employ a naturalistic protocol incorporating activities with low (driving),
medium (walking), and high-intensity arm movements (table soccer), as well as a mix
of periodic (walking) and aperiodic motion (eating). Additionally, tasks with differing
physical demands (driving vs. ascending stairs) were chosen to induce varied heart
rates [130].

Regarding devices, wrist-worn triaxial accelerometers are standard across datasets
with BAMI and Casson et al., also including wrist-worn triaxial gyroscopes [127,129].
ECG choices varied across the datasets; IEEE Train/Test and Casson et al. elected a
single-lead ECG [126,129], PPG DaLiA used a three-lead ECG [130], and BAMI 1 and
2 used a 24-hour Holter Monitor [127]. The accuracy of the ECG device is paramount,
as any inaccuracies in the “ground truth” values can inadvertently be reflected in the
subsequent heart rate estimation algorithms. For PPG sensor configurations, Casson et
al. collect one green (510 nm) channel [129], IEEE Train and Test collects two green (515
nm) PPG channels [126], whilst BAMI 1 & 2 collects three green (525 nm) PPG channels
[127]. Both PPG DaLiA and DWL collect multi-wavelength PPG signals [128], [130];
however, PPG DaLiA uses an Empatica E4, which uses green and red LEDs to produce
a single PPG signal [130]. On the other hand, DWL used a single PPG channel for blue
(undefined), green (520 nm) and IR (940 nm) [128].

Examining the cohorts of wrist-worn heart rate monitoring datasets, there is a noticeable
inconsistency in reporting. While age and biological sex are generally reported, excep-
tions exist, such as in DWL and IEEE Train [126,129]. Only IEEE Test and PPG DaLiA
provided both height and weight, which are indicative of BMI [126,130]. Uniquely,
PPG DaLiA reported skin type using the Fitzpatrick scale [130]. It is key to report the
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demographic and physical details of the cohort consistently. This ensures a compre-
hensive evaluation of heart rate estimation algorithms, especially concerning potential
interferences like skin melanin content, obesity, and biological sex [7,23]. Equally key is
ensuring diversity in these details. For instance, while PPG DaLiA reported skin types,
it had no representation for types 1, 5, and 6 of the Fitzpatrick skin type scale [130]. Fol-
lowing the data collection and reporting guidelines outlined in [125] and best practices

outlined in [131] is recommended.

Dataset Participants Protocol Devices
IEEE 12 subjects Laboratory-Based Protocol | Accelerometer:
Train Biological Sex: on Treadmill Three-axis wrist-worn
2015 [126, | 12 Male Protocol 1: Electrocardiogram:
132,133] Age: Rest (0.5 min), 8 km/h (1 | One-channel using wet ECG sensors.
18 - 35 years min), 15 km/h (1 min), 8 | Photoplethysmogram:
Weight: km/h (1 min), 15 km/h (1 | Two channels. LED: Green - 515 nm
Unreported min), Rest (0.5 min) Data:
Height: Protocol 2: All signals (125 Hz).
Unreported Rest (0.5 min), 6 km/h (1
Skin Types: min), 12 km/h (1 min), 6
Unreported km/h (1 min), 12 km/h (1
min), Rest (0.5 min)
IEEE Test | 8 subjects Laboratory-based protocol | Accelerometer:
2015 [126, | Biological Sex: with wvarious arm move- | Three-axis wrist-worn
132,133] 7 Male, 1 Female ments. Electrocardiogram:
Age: Protocol 1: One-channel using wet ECG sensors.
259 + 13.4 years various forearm and | Photoplethysmogram:
Weight: upper arm exercises, | Two channels. LED: Green - 515 nm
669 +79kg running, jumping, and | Data:
Height: push-ups. All signals (125 Hz). Data was trans-
1729 + 104 cm Protocol 2: mitted via Bluetooth.
Skin Types: intensive forearm and
Unreported upper arm movements
(e.g. boxing).
Casson et | 8 subjects Laboratory-Based Protocol | Accelerometer:
al. 2016 | Biological Sex: on Treadmill and Ergometer | Wrist-worn Shimmer 3 GSR+ unit.
[129,134] | 3 Male, 5 Female Participants were asked to | Electrocardiogram:
Age: complete one or more of | Actiwave recorder - Electrodes are
22-32 years (mean: | four exercises for up to 10 | positioned on either side of the heart.
26.5) minutes, setting the pace | Photoplethysmography:
Weight: themselves. Single Channel. LED: Green - 510
Unreported Exercises Walk, Run, Low | nm.
Height: Resistance Ergometer | Gyroscope:
Unreported and High Resistance | Wrist-worn Shimmer 3 GSR+ unit.
Skin Types: Ergometer. Data:
Unreported All signals were sampled at 256 Hz.
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Table 2.3 continued from previous page

Dataset Participants Protocol Devices
BAMI- 25 subjects Laboratory-Based Protocol | Accelerometer & Gyroscope:
1 2020 | Biological Sex: on Treadmill 3-axis using a 6-axis inertial measure-
[127,135] | 10 Male, 14 Female | Rest (1 min), 2.5 km/h (2 | ment unit
Age: mins), 6 km/h (3 mins), 3 | Photoplethysmogram:
26.9 + 4.8 years km/h (2 mins), 7 km/h (3 | Three channel LED: Green (525 nm),
Weight: mins) 2.5 km/h (2 mins), | 1 LED on either side of each photodi-
Unreported Rest (1 min) ode. Three PPG sensors were placed
Height: 6 mm apart. Photodiodes: 3 photodi-
Unreported odes
Skin Types: Electrocardiogram:
Unreported 24-h Holter monitor
Data:
ECG (125 Hz), all other signals (50
Hz).
BAMI- 23 subjects Laboratory-Based Protocol | Accelerometer & Gyroscope:
2 2020 | Biological Sex: on Treadmill 3-axis using a 6-axis inertial measure-
[127,135] | 17 Male, 4 Female | Rest (1 min), 3.5 km/h (2 | ment unit
Age: mins), 7 km/h (2 mins), 7 | Photoplethysmogram:
22.0 + 1.7 years km/h Holding treadmill | Three channel LED: Green (525 nm),
Weight: bar (2 mins), 3.5 km/h | 1 LED on either side of each photodi-
Unreported (2 mins), 3.5 km/h Hold- | ode. Three PPG sensors were placed
Height: ing treadmill bar (2 mins), | 6 mm apart. Photodiodes: 3 photodi-
Unreported Rest (1 min) odes
Skin Types: Electrocardiogram:
Unreported 24-h Holter monitor
Data:
ECG (125 Hz), all other signals (50
Hz).
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Table 2.3 continued from previous page

Dataset Participants Protocol Devices
PPG 15 subjects Naturalistic Protocol Accelerometer:
DaLiA Biological Sex: Sitting Still (10 mins), | 3 axes Empatica E4 Device
2019 [130] | 7 Male, 8 Female Ascending/Descending | Photoplethysmogram:
Age: stairs (5 mins), Table | Empatica E4
30.6 + 9.6 years Soccer (5 mins), Cycling | LEDs: 2 Green, 2 Red.
Weight: (8 mins), Driving Car (15 | 2 Photodiodes with a total area of
69.0+ 124 kg mins), Lunch break (30 | 15.5 mm?.
Height: mins), Walking (10 mins), | Electrocardiogram:
175.3 £ 8.8 cm Working (20 mins) RespiBAN Professional Device.
Skin Types: Double tap accelerometer | Respiration:
1(0),2(1),3(11),4 | signal pattern used for | RespiBAN Professional Device
(3),5(0),6(0) signal synchronisation. Electrodermal Activity:
Empatica E4 Range (0.01 nS - 100 puS)
Temperature:
Empatica E4 Resolution of 0.02 °C
Data:
All RespiBAN Professional (700 Hz),
PPG (64 Hz), Accelerometer (32 Hz),
Electrodermal Activity and wrist
Temperature (4 Hz)
DWL 14 subjects Laboratory-Based Protocol | Accelerometer:
(Wrist) Biological Sex: on Treadmill 3 axes
2022 Unreported Rest (1 min), 6 km/h (1 | Photoplethysmogram:
[128,136] | Age: min), 12 km/h (1 min), 6 | 2x IR LED (940 nm) 2x Green LED
Unreported km/h (1 min), 12km/h (1 | (520 nm) Blue LED: Unreported 1 x
Weight: min), Rest (1 min) 12km /h | Photo-detector
Unreported was reduced if needed. Gyroscope:
Height: 3 axes
Unreported Data:
Skin Types: All signals sampled at 100 Hz
Unreported

TABLE 2.3: Available Wrist-worn PPG Heart Rate Monitoring Research
Datasets. This literature review, conducted in 2023, examines datasets
for wrist-worn PPG heart rate monitoring research. The features of each
dataset include cohort, devices, and protocol. Some of these datasets were
later used for the analysis and validation of the PPG heart rate estimation
methodology. Two datasets were excluded: DWL [128] due to its small
sample size and Casson et al. [129] because it employed different protocols
for each subject, lacking the consistency needed for proper evaluation

across subjects.
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2.2.2 Signal Quality Analysis

Assessing PPG signal quality is an essential step in any of its applications. Broadly, the
quality of a PPG signal is determined by the clarity of the physiological information
contained within the signal. As detailed in Section 2.1.3, the quality of PPG signals is
affected by several sources of interference, with studies showing up to 86% of the collec-
ted signals being of insufficient quality for wrist-worn PPG heart rate monitoring [113].
Signal quality analysis aims to identify segments of the signal that contain interferences,
determine the magnitude of the interference to gain insights into the potential source or
sources to ultimately establish the recoverability of the segment. Basic sanity checks
are generally the first quality checks performed, primarily focusing on identifying in-
terferences stemming from sensor configuration, placement, and communication [137].
These checks can include missing data detection, flat-line detection, and clipping or

over-saturation detection.

The approach to quality analysis varies depending on the specific application and
context [137]. The analysis generally involves extracting features known as Signal
Quality Indices (SQIs) from the signal. SQIs can focus on individual beats and waveform
morphology or segments of the signal. As detailed in Section 2.2.3, isolating individual
beats from wrist-worn PPG is challenging, especially in periods of motion, making beat

and waveform-specific features less applicable to wrist-worn applications.

Elgendi proposed using the agreement of two distinct beat detectors to estimate noise
within the PPG signal [138]. Elgendi examined this metric along with seven others and
found skewness to be the most optimal SQI for finger-worn PPG in clinical settings [138].
Still, the estimation of higher-order statistics requires a relatively long time window
[139]. A common SQI in the literature is the SNR, albeit with diverse definitions. Other
research used additional reference signals in their PPG signal quality assessment, such
as accelerometer [140,141] and ECG [142].

While some methods further this analysis by categorising the quality of segments
[138,140-144], this necessitates the use of human-annotated labels and introduces the
risk of error propagation as well as additional computational overhead [113]. It has been
recommended that to guarantee the optimal performance of the application, a more
nuanced consideration of PPG signal quality within a PPG signal processing pipeline is
essential [113].

2.2.3 Conventional Beat Detector Algorithms

heart rate estimation from PPG signals can be achieved by detecting individual heart-
beats, relying on PPG waveform features like systolic and diastolic peaks, the dicrotic



Chapter 2. Key Concepts and Related Works 30

notch and the diastolic trough [124] (Figure 2.1). This method enables the extraction of
detailed features from waveform morphology and inter-beat intervals, aiding in-depth
physiological and cardiovascular analysis [124]. However, this approach is susceptible
to inaccuracies. Misidentification or omission of heartbeats can lead to significant errors.

Motion artefacts and demographic variations further challenge its robustness.

Charlton et al. evaluated 15 PPG beat detectors against ECG-derived heartbeats using
data from eight datasets, including hospital and daily living settings, as summarised
in Table 2.3 [124]. Data was sourced from eight datasets encompassing hospital and
everyday living settings, including the PPG DaLiA dataset. Hospital data utilised
transmissive PPG sensing, while daily activity data used wrist-worn reflectance PPG
sensors. Evaluation metrics were the F1 score and the Mean Absolute Percentage Error
(MAPE), which assesses the accuracy of computed heart rate values. Heart rate is
computed from the detected beats using:

Numbero f Detected Beats

2.1
Elapsed Durationo f Detected Beats(Seconds) @1)

HR(BPM) = 60 -

where the fraction represents the mean inter-beat interval (IBI), notably The Association
for the Advancement of Medical Instrumentation (AAMI) standard prescribes accept-
able limits for heart rate monitoring within +£10%, as measured by MAPE [27,145,146].
Additionally, the F1 score is a metric, ranging from 0 to 1, that evaluates a model’s
accuracy by combining its ability to make correct predictions with its consistency in
identifying relevant instances.

In minimal movement conditions, beat detector performance varied. Median F1 scores
spanned 50.7% to 99.9%, and MAPE ranged from 0.2% to 59.7%. The top eight detectors
had F1 scores between 90% and 99% [124]. Intense physical activities reduced perform-
ance, with F1 scores dropping to 17.9%-90.6% and MAPE values rising to 7.0%-69.0%.
The eight top detectors had F1 scores between 55% and 91%, with the lowest accuracy
during table soccer and stair climbing [124].

For the beat detectors skin melanin differences had minimal impact in hospital settings
with minimal motion. Subjects with higher melanin had median F1 scores of 91.2%-
98.5% and MAPE values of 1.4%-9.9%, compared to 86.6%-97.5% and 2.1%-14.6% for
those with lower melanin in hospital settings. Additionally, high inter-subject variability

was observed in the wrist-worn datasets [124].

Overall, the most effective detectors were MSPTD [147] and QPPG [148], with high
accuracy in minimal movement conditions and reduced performance during intense
activities with median MAPE values ranging from 4.3% to 20.1% [124]. While the study
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was comprehensive in its scope, it had limitations due to the constraints of the available
datasets. Specifically, it did not investigate the combination of factors that could affect
PPG signal quality, such as skin melanin content, the type of motion involved and
biological sex [7]. Additionally, the study did not investigate the influence of individual
wavelengths on beat detection efficacy.

2.24 Conventional Heart Rate Estimation Algorithms

An alternative approach for PPG-based heart rate estimations focuses on calculating
the average heart rate over a designated interval rather than isolating individual heart-
beats. While PPG heart rate estimation algorithms offer a coarser-grained analysis, they
compensate by providing a more stable representation of heart rate due to enhanced
robustness against errors such as missed or misidentified heartbeats.

Regarding methodology, PPG heart rate estimation algorithms generally include four
main steps: prepossessing, motion artefact reduction, heart rate estimation and heart
rate tracking or post-processing [92-95]. The prepossessing step typically includes
tiltering, re-sampling, windowing, transformation and normalisation. A notable fea-
ture across all heart rate estimation algorithms is an 8-second sliding window with a
2-second shift. Each window undergoes analysis and has an assigned “ground truth”
value derived from a chest-worn ECG. Perhaps the most essential step is motion artefact
reduction, which may incorporate motion reference signals gathered from acceleromet-
ers, gyroscopes, and the PPG sensor itself [7,92-95]. Evaluation of the methodology
generally occurs in terms of mean absolute error (MAE) of the predicted values against
the “ground truth’ values.

Research into methods for wrist-worn PPG heart rate estimation began with the seminal
work of TROIKA. This three-step technique focuses on de-noising, high-resolution
spectral analysis, and spectral peak tracking. It employs independent component
analysis and adaptive filtering to mitigate motion artefacts in PPG signals without
requiring additional sensors or reference signals [126]. The validating dataset, referred
to as IEEE 2015 SPC, was later used in the 2015 IEEE Signal Processing Cup, which
popularised the topic in academia [133].

Many conventional computational techniques have been employed to enhance the
accuracy and robustness of PPG heart rate estimations. These methods range from basic
thresholding and filtering to more advanced techniques like spectral analysis and signal
decomposition, as extensively summarised in [92-95]. For instance, SpaMA employs
power spectral density analysis of PPG and accelerometer signals to identify and
eliminate motion artefacts and HR, using a thresholding heart rate tracker for further
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Pre Post
Name . Strategy .
Processing Processing
ABD Windowing Three-stage filtering identifies pulse peaks using ad- | Inter-beat
[120] justed Kaiser windows. interval
correction
AMPD Detrending The local Maxima Scalogram method identifies beats | None
[149] and Window- | by locating scale-dependent maxima, where these
ing. maxima are only considered within scales smaller
than the one containing the most maxima
ATM Filtering and | Peak detection uses an adaptive threshold propor- | Inter-beat
[150] Normalisa- tional to PPG amplitude, dynamically adjusting to | interval
tion signal variations. correction
CoPPG Windowing Percentile-based thresholds set for adaptive filtering. | Inter-beat
[151] Peaks exceeding the 90th percentile were identified. | interval
correction
ERMA Filtering, Rec- | Short and long-term averages identify interest blocks. | None
[152] tifying, and | Within valid blocks, beats are detected when the
Squaring short-term average exceeds the long-term plus
threshold.
HeartPy | Normalising | Rolling mean threshold approach, testing different | Inter-beat
[153] and Squaring | moving average percentage values to find the most | interval
stable heart rate estimate within a valid BPM range. | correction.
IMS [154] | None Positive gradient segmentation approach using dy- | None
namic thresholds based on amplitude and duration
to detect beats
MSPTD | Detrending Improves AMPD by calculating Local Maxima Scalo- | None
[147] and Window- | grams for both local maxima and minima.
ing
PDA None Upslope sequences tracking approach with dynamic | None
[155] thresholds based on sequence length and amplitude
for peak identification.
PWD Filtering Zero-crossing analysis of the PPG derivative with | None
[156] dynamic thresholds, artefact compensation, and peak
verification.
PPG None Peak detection using a differentiated PPG and an | None
Pulses adaptive filter. Filter threshold adjustment based on
[157] previous peak amplitude and inter-beat interval.
QPPG Scaling Detects peaks using a slope sum function and adapt- | None
[148] ive thresholding.
SPAR Windowing Time delay coordinates generate 7-dimensional | Inter-beat
[158] and Filtering | phase space for PPG windows. Symmetric Projection | interval
Attractor Reconstruction creates a 2-dimensional pro- | correction.
jection with beat detection at x-axis crossings.
SWT None Selected Stationary Wavelet Transform detail sub- | None
[159] bands used to emphasise upslopes. Beats are detec-
ted using an extracted envelope and Gaussian deriv-
ative filter.
WFD Filtering and | PPG is decomposed with wavelet transform. Beats | None
[160] Resampling are identified using signal thresholds and derivative
analysis.

TABLE 2.4: Overview of Open Source PPG Beat Detection Algorithms. This
table summaries the key characteristics of various open-source PPG beat

detection algorithms evaluated by Charlton et al [124].

refinement [130,161]. In contrast, Schack et al. developed a multi-channel technique

that utilises cross-correlation and auto-correlation between PPG signals to enhance
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signal periodicity. The spectra of the PPG signals are combined to amplify common
components and minimise noise. Motion artefacts are reduced through harmonic noise
damping using accelerometer spectra, and heart rate is recursively tracked using a

Gaussian window and linear least squares fitting. [130,162].

Researchers have also developed multi-wavelength approaches, for example, Warren et
al. developed a multi-channel, forehead-worn PPG sensor using red and IR wavelengths.
The advanced multi-channel template matching algorithm selects the least artefact-
affected channel for real-time heart rate estimation. The results show that the accuracy of
heart rate estimates increased by up to 2.7 BPM when using the multichannel-switching
algorithm compared to individual channels [71]. Similarly, Alkhoury et al. produced
a dual-wavelength method using green and IR wavelengths for heart rate estimation
during physical activity. Noise components were extracted from the IR signal and
removed from the green PPG signal using a cascading adaptive filter. The outcomes
indicate a notable enhancement in performance. Specifically, the Mean Absolute Error
(MAE) was recorded at 1.2 + 0.6 BPM for the wrist and 1.3 + 0.8 BPM for the palm. In
contrast, the single-wavelength TROIKA method yielded an MAE of 3.2 + 2.8 BPM on
the wrist and 1.8 + 0.9 BPM on the palm [128].

Conventional PPG heart rate estimation algorithms typically have adjustable paramet-
ers that can be tuned to improve performance. It is common practice in the literature
to adjust these parameters per subject to achieve the highest accuracy for each subject.
However, this approach is limited when transitioning from a controlled experimental
setting to real-world applications. The absence of “ground truth” values or compre-
hensive signal data in real-world scenarios to retrospectively tune the parameters limits

the practical relevance of the reported results.

In real-world applications, an effective PPG heart rate estimation algorithm is anticip-
ated to function accurately on data from individuals it has not previously encountered.
To rigorously assess this generalisability, a ‘Leave-One-Subject-Out’ (LOSO) cross-
validation (CV) scheme is recommended [26,130]. Within this validation scheme, the
data from one session or subject is left out of the parameter tuning and is used to
evaluate the performance of unseen data. This is repeated for all subjects in the dataset.
Riess et al. employed the LOSO CV scheme to assess the above-mentioned methods.
Their findings revealed a significant increase in MAE results, escalating from 1.33 + 1.4
BPM to 13.1 + 20.7 BPM on the IEEE Train dataset and from 2.53 + 2 BPM t0 9.2 + 11.4
BPM on the IEEE Test dataset for the SpaMA method. Similarly, the method proposed
by Schack et al. exhibited comparable increases in MAE, rising from 1.3 + 1.3 BPM to
2.91 + 4.6 BPM on the IEEE Train dataset and from 6.5 + 8.3 BPM to 24.7 + 24.0 BPM on
the IEEE Test dataset [130].
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Furthermore, the validation datasets present limitations that preclude insights into the
robustness of the methods concerning varying skin melanin content. As elaborated
in Section 2.1.3, a burgeoning body of evidence indicates that skin melanin negatively
impacts PPG sensing performance. While PPG-DaLiA provides Fitzpatrick skin type
information, it does not include subjects at the extreme ends of the scale, precisely skin
types 1, 5, and 6 [130]. This highlights a gap in the diversity of skin types in current
PPG heart rate estimation research data.

2.2.5 Deep Learning PPG Heart Rate Estimations

Supervised deep learning involves learning patterns and rules from data within a
defined hypothesis space guided by feedback [163]. This space is formed by network
layers that transform inputs using weights and biases, with non-linear activation func-
tions expanding the range of transformations [163]. Unlike traditional machine learning
methods that require manual feature engineering, deep learning models learn relevant

features directly from raw data, removing the need for explicit feature extraction [163].

Training involves passing batches of data through a ‘network” to produce predictions,
comparing these against target values using a loss function, and adjusting network
parameters via backpropagation and gradient descent [163]. A network’s ‘architec-
ture” encompasses the selected layers, configurations, and connections. These choices
delineate the network’s hypothesis space, the potential functions that gradient des-
cent explores, determined by the model’s parameters [163]. A good hypothesis space
incorporates prior knowledge about the data.

Supervised deep learning aims for generalisation, the ability to perform well on unseen
data. The balance influences this capability struck between over-fitting and under-
titting [163]. Over-fitting occurs when a model captures noise and anomalies in the
training data, making it perform poorly on new data. Conversely, under-fitting is when
the model cannot capture the underlying patterns in the data [163]. Regularisation
techniques, such as dropout, where random network connections are ‘dropped” during
training to prevent co-adaptation, and batch normalisation, which standardises inputs,

are employed to combat over-fitting [163].

Deep neural networks (DNNs) are distinguished from shallow neural networks by
their multiple hidden layers, and different types of DNNs are further distinguished by
their specific architectures. These architectures integrate prior knowledge of the data to
create a comprehensive hypothesis space [163]. For instance, CorNet was the first to
use the Long-term Recurrent Convolutional Network (LRCN) for time-domain signals,
leveraging convolutional layers to capture local patterns and Long Short-term Memory
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(LSTM) layers for long-term patterns [164]. This combination forms the basis of many
heart rate (HR) estimation methods [26,27,165-169]. Alternatively, Temporal Convolu-
tional Networks (TCNs) use causal dilated convolutional layers to hierarchically capture
both local and extended patterns [170-172], with the receptive field expanding across
the network to consider a larger portion of the signal for predictions [170-172]. Some
strategies adopt an AlexNet-like structure, employing convolutional and pooling layers
to reduce data dimensionality while preserving significant features [130, 173], while
others use inception blocks to extract multi-scale features [165]. Attention layers dynam-
ically allocate importance to specific time steps, enhancing performance, interpretability,
and flexibility [27,174,175]. Additionally, the U-Net architecture, with its symmet-
ric encoder-decoder structure and skip connections, provides precise localisation and

efficient feature extraction and reconstruction [27, 174].

Researchers have utilised network architecture search (NAS) as a data-driven approach
to architecture generation for heart rate estimations [168,170-172,176]. Ray et al., in
earlier research, investigated three distinct NAS techniques but found them too resource-
intensive due to a large search space [176]. To mitigate this, researchers employed seed
architectures to reduce the search space. Burrello et al. and subsequent works used a
temporal convolutional network as a seed network leveraging MorphNet and Pruning-
in-time NAS techniques to optimise the network [170-172]. Song et al. employed
an LRCN seed architecture using the Efficient Neural Architecture Search algorithm
and Tree-structured Parzen Estimator hyperparameter optimisation to find an optimal
solution [168].

Generally, pre-processing includes filtering the signals to be within the typical heart
rate frequency range of 0-4 Hz, resampling the signal, and standardising the signals,
subject-wise, to be zero mean unit variance and an 8-second sliding window with a
2-second shift. Most methods use the time domain representation of the signal as
input to the network [26,164-167,170-172,175,177] whilst other methods utilise the
Fourier Transform to attain better frequency resolution [127,130, 168, 174]. Bieri et
al. used both time and frequency domain representations, preserving the resolution
of both domains [27]. Ismail et al. extracted statistical, time and frequency domain
features alongside processing the time domain signals, seeing MAE improvements
from 5.4 + 6.3 BPM to 2.4 + 2.9 BPM on the IEEE Datasets [169]. Bieri et al. also
investigated augmenting the data to expand the number of samples in the training set
by employing techniques such as time stretching and jitter. They found that including
data augmentation caused the error rates to almost halve on some datasets [27].

Predominantly, methods formulate heart rate estimation as a regression task, whereby
the model predicts a continuous heart rate value [26,164-167,169-172,175,177,178].
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Conversely, an alternate approach is to formulate heart rate estimation as a classific-
ation task [27,127,168]. One such approach classified the heart rate value within a
predetermined set of bins, making it prone to quantisation errors. Researchers have also
formulated PPG beat detection as a classification task, using temporal convolutional
networks to classify systolic beats [179]. Another approach formulates heart rate estima-
tion as a generative one, producing models that generate de-noised PPG signals [173]
or ECG signals from PPG signals [174].

9
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FIGURE 2.6: Relationship Between Accuracy and Complexity in Deep
Learning PPG Heart Rate Estimation Algorithms. This figure shows how
model accuracy relates to complexity, with parameter counts ranging from
65 million [130] to 5,000 [172]. Some methods achieve high accuracy with
fewer parameters, while others perform poorly despite greater complex-
ity, highlighting that complexity does not guarantee better results. The
algorithms must also support real-time predictions and edge device com-
patibility, with generalisability evaluated via LOSO CV.

In real-world applications, heart rate algorithms must deliver real-time predictions
on individuals new to the system and maintain a model complexity suitable for edge
devices, often measured in the number of parameters. These complexities vary from
65 million [130] to 5,000 parameters [172]. Some strategies aim for edge compatibility
by using binarised [167] or quantised [170] networks, while others prioritise efficient
parameter counts [27]. As highlighted in Section 2.2.4, generalisability on new users is
gauged using LOSO CV. This balance of complexity and generalisability is pivotal in
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evaluating the efficacy of such methods, as illustrated in Figure 2.6. Notably, Bieri et al.
set a benchmark by deploying a 138K parameter network, showcasing the lowest error
rates across various datasets, including MAE of 1.5 + 0.6 BPM on IEEE Train and 1.5 +
0.3 BPM on the BAMI-2 datasets [27].

Ray et al., in earlier research, introduced uncertainty quantification to PPG heart rate
estimation deep learning methods. The approach employed the Monte Carlo dropout
method to quantify epistemic uncertainty and a distributional prediction strategy with a
negative log-likelihood (NLL) loss function to quantify aleatoric uncertainty. While they
applied practical methods to validate these uncertainty quantifications, they did not
use standardised calibration techniques [26]. Bieri et al. employed a belief propagation
method to quantify predictive uncertainty, both uncertainty types combined, using a
quantised probability distribution. This method demonstrated robust overall calibration,
though it was slightly overconfident at higher confidence levels [27].

In multi-wavelength deep learning PPG heart rate estimation methods, Ngoc-Thang et
al. developed an LRCN model for a finger-based transmissive mode PPG sensor using
red (660 nm) and IR (880 nm) wavelengths. This methodology yielded a correlation
coefficient 0.996 with heart rate values generated by a pulse oximeter. However, it
lacked CV and a data acquisition protocol encompassing motion [180]. Mehrgardt et al.
similarly developed a finger-based transmissive mode PPG sensor using IR (880 nm),
red (660 nm) and green (537 nm) wavelengths as well as accelerometer and gyroscope
data. Using a network of four fully connected layers, they analysed combinations
of the signal data. During stationary, the combination of green, red, and IR PPG and
accelerometer and gyroscope data produced the lowest MAE results of 2.63 + 30.05 BPM.
Conversely, whilst walking green, PPG combined with accelerometer and gyroscope
data exhibited the lowest MAE of 6.52 + 43.68 BPM. During running, the green, red,
and IR PPG ensemble, complemented by accelerometer and gyroscope data, showcased
the lowest MAE of 5.8 + 34.7 BPM [181].

One common limitation across all approaches is the lack of exploration of fairness.
It is essential to guarantee that these systems do not reflect discriminatory or unfair
behaviour toward specific individuals or populations. Mehrabi et al. describe fairness
in deep learning as “the absence of prejudice or favouritism toward an individual or

group based on their inherent or acquired characteristics” [182].

Regrettably, there have been many examples of such discriminatory behaviour within
machine learning systems. One of the most notable examples is COMPAS, a machine
learning system that measures a person’s risk of committing another crime. A study
found it to have a higher false positive rate for African Americans than Caucasians,
inaccurately predicting their risk of re-offending [183]. Similarly, in the healthcare sector,
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a machine learning algorithm used by more than 200 million patients in the USA was
less likely to refer equally sick black patients than white patients to programs aimed at
improving care for patients with complex needs [184].

Due to limitations in wrist-worn PPG heart rate monitoring validation datasets, no
method gives insights into the robustness to demographic variations and consequently
the fairness of the method. This raises concerns considering the substantial evidence
indicating that PPG sensing is influenced by certain demographic factors, including
higher skin melanin levels, being a biological female, and increased BMI.
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2.3 Summary

This chapter offers a thorough review of the advancements and challenges in the field
of multi-wavelength PPG, with a particular focus on wrist-worn devices used for heart
rate monitoring. It highlights several critical research gaps and limitations affecting the

effectiveness and fairness of current approaches.

A significant gap is the limited diversity in existing PPG datasets, which inadequately
represent various skin types, especially darker skin tones (Fitzpatrick types 5 and 6).
This lack of diversity hinders the evaluation of wrist-worn PPG heart rate estimation

methodology’s fairness and robustness.

Moreover, current datasets often focus on controlled, periodic motions, such as tread-
mill running, and fail to encompass the wide range of motion types and intensities
encountered in daily life. This narrow scope limits the applicability of wrist-worn PPG

heart rate estimation methodology in real-world scenarios.

Validation methods also pose a challenge. Many studies do not employ Leave-One-
Subject-Out (LOSO) cross-validation, a key technique for assessing the generalisability
of wrist-worn PPG heart rate estimation methodology. Without robust validation, the

reliability of these methods for new users remains unknown.

The chapter also addresses the scarcity of research on multi-wavelength approaches in
wrist-worn PPG heart rate estimation methodology. While using multiple wavelengths
has the potential to enhance accuracy and robustness, there is a notable lack of studies
exploring deep learning techniques that integrate this approach for wrist-worn devices.

Uncertainty quantification is another area needing attention. Few studies incorporate
uncertainty estimation into wrist-worn PPG heart rate estimation methods, which is
essential for building trust in healthcare applications of PPG technology.

Fairness considerations are similarly under-explored. There is a notable absence of
research examining how heart rate estimation methods perform across different demo-
graphic groups, particularly concerning skin tone, biological sex, and body mass index
(BMI).

Additionally, many existing algorithms are not optimised for real-time performance or
deployment on wearable devices, which limits their practical use. Enhancing real-time

capabilities is key for the effectiveness of these systems in everyday applications.

Lastly, the chapter highlights the need for a comprehensive analysis of how various
interference sources—such as skin melanin, motion artifacts, and biological differ-

ences—affect PPG signal quality. Addressing these issues could improve the robustness
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and reliability of heart rate monitoring systems.

Overall, the chapter underscores the need for more diverse and comprehensive datasets,
improved validation methodologies, and advanced estimation methodologies that
address fairness, uncertainty, and real-world applicability in wrist-worn PPG heart rate

monitoring.
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Chapter 3

Research Design and Methodology

3.1 Gaps in Existing Research

In the previous chapter, the literature review identified three primary gaps in current
research: Firstly, heart rate estimation datasets show a lack of diversity in terms of skin
melanin content and the variety of motion types and intensities. Secondly, there is an
absence of wrist-worn multi-wavelength deep-learning methods for heart rate estim-
ation. Thirdly, most existing heart rate estimation algorithms have not been robustly
analysed for demographic variations, such as biological sex and skin melanin content.
Additionally, the influence of skin temperature on heart rate estimation algorithms is

another gap, though not covered in this thesis.

3.2 Research Objectives and Questions

In this section, the primary research questions are systematically bridged with the
corresponding objectives, which are established to address the intricacies of wrist-worn
Photoplethysmography (PPG) heart rate estimation using multi-wavelength approaches.
This mapping is pivotal in providing a coherent and strategic alignment between the

core investigative queries and the structured objectives that underpin the thesis:

1. To what extent does the robustness and generalisability of wrist-worn PPG heart
rate estimations vary across different wavelengths or combinations of wavelengths,

compared to the green light conventionally used in consumer wrist-worn devices?

* Objective 5: Influence of Wavelength Selection on PPG Heart Rate Estimation.
Related Chapter: 6.

2. What is the impact on performance based on variations in skin melanin content

and biological sex in wrist-worn PPG heart rate estimation?



Chapter 3. Research Design and Methodology 44

* Objective 6: Impact of Skin Melanin and Biological Sex on PPG Heart Rate
Estimation. Related Chapter: 6.

3. In PPG heart rate estimation, does deep learning demonstrate superior perform-

ance compared to conventional signal processing and statistical methods?

* Objective 9: Comparative Evaluation of PPG Heart Rate Estimation Methods.
Related Chapters: 6 and 8.

4. How can uncertainty be most reliably estimated in the context of PPG heart rate
estimations?

* Objective 7: Evaluation of Uncertainty Methods in Deep Learning. Related
Chapter: 7.

5. To what extent does the inclusion of uncertainty metrics in post-processing en-

hance the reliability of wrist-worn PPG heart rate estimations?

* Objective 8: Development of Post-Processing Methods for PPG Heart Rate
Estimations. Related Chapter: 7.

3.3 Definitions

Throughout the thesis, several key terms are consistently used and defined here for
clarity. The first term, "Accuracy", describes the precision of predictions. It is quantified
using metrics such as Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), and the standard set by AAMI, which is a MAPE of 10%.

1 .
MAE = = Y lvi — 9l 3.1)
i=1
n . 1.
MAPE = 1 y yi =il (3.2)
ni5 Y

where, y; is the truth value of the i** sample, 7; is the predicted value of the i** sample
and 7 is the number of samples. "Generalisability" is the second term and refers to
the ability of a model or method to maintain its accuracy when applied to new data
not previously used in its training or validation. This aspect is key in determining
the model’s applicability in real-world scenarios beyond the controlled settings of
training and testing. The third term, "Robustness”, addresses the model’s accuracy
under challenging or adverse conditions, such as during intense physical motion. This
trait is essential for models used in environments where conditions can significantly

vary. Lastly, "Fair" pertains to the uniformity of the model’s accuracy across different
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demographic groups, such as biological males and females. Ensuring fairness is critical

in developing models that perform equitably across diverse populations.

In addition to these metrics, the Bland-Altman plot will be used in this research, serving
as an analytical tool for assessing the agreement between two different measurement
methods, as shown in Figure 3.1. It is particularly valuable for comparing new tech-
niques with established standards. The plot effectively visualises the difference between
two measurements against their mean.
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FIGURE 3.1: Bland-Altman and Correlation Plots for Heart Rate Predictions.

The Bland-Altman Plot (left) shows the agreement between predicted and

true heart rate (HR) values, with the difference between them plotted on

the y-axis and their mean on the x-axis. This plot highlights any systematic

bias or trends in prediction accuracy. The Correlation Plot (right) illustrates

the linear relationship between predicted and true HR values, indicating
the strength and direction of their correlation.

For uncertainty estimates in a regression setting, average calibration is used to evaluate
the reliability of a model’s predictions. This assessment is known as "average calibra-
tion," and it evaluates how well the uncertainties predicted by a model align with the
actual errors observed in the predictions [178].

To conduct this evaluation, the model’s predictions are grouped into several "bins"
based on their predicted uncertainty levels. For each bin, the average actual error of
the predictions is then calculated. The purpose of this process is to determine whether
the predictions in each bin are as uncertain as the model predicts [178]. In other words,
the model’s confidence in its predictions should match the actual outcomes: if the

model predicts a high uncertainty, the errors should indeed be larger; if it predicts low
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uncertainty, the errors should be smaller. This concept is expressed as:

pore(p) := Exur [Fypr (Qp(x))], Vp € (0,1) (3.3)

X and Y are random variables, with x and y being specific values of X and Y. [ rep-
resents the true cumulative distribution function (CDF) of a random variable. E,
denotes the expected value (average) over the distribution of X, meaning we are av-
eraging over all possible values of X. Qy(x) is an estimate of the quantile function at
percentile p, which is essentially the inverse of the CDF, evaluated at x. For perfect
calibration, the relationship pgsg( p) = p must hold true for all p values between 0
and 1. This means that the model’s predicted uncertainty should ideally equal the
actual proportion of times the model’s prediction is correct [178]. Points above this
line indicate under-confidence (where predicted probabilities are too low), while points
below the line indicate overconfidence (where predicted probabilities are too high).

Average calibration is often depicted graphically, as shown in Figure 3.2, to compare
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FIGURE 3.2: Calibration Plot for Probability Estimates. This figure shows
the calibration of predicted probabilities by plotting the observed propor-
tion of outcomes against the predicted proportion across various prob-
ability intervals. The orange line represents perfect calibration, where
predictions match observed frequencies. Points above this line indicate
under-confidence (where predicted probabilities are too low), while points
below the line indicate overconfidence (where predicted probabilities are
too high). The miscalibration area is also displayed to highlight deviations
from perfect calibration.

perfect calibration (a straight line) with the model’s actual calibration (which might be a
curve) [178]. The difference between these two lines can be measured by calculating the
"miscalibration area," which is the area between the perfect and actual calibration lines.
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This measurement is key for models where the reliability of predictions is important.
The smaller the miscalibration area, the better the model’s calibration, meaning its
uncertainty predictions are more reliable.

In conclusion, the methodologies outlined in this thesis, including the use of Mean
Absolute Error, Mean Absolute Percentage Error, Bland-Altman and correlation plots,
and calibration plots and metrics, provide a comprehensive framework for evaluating
the accuracy, generalisability, robustness, and fairness of the models developed. These
methodologies not only ensure the scientific rigour of the research but also enhance
the applicability and relevance of the models in real-world scenarios. By meticulously
examining the accuracy and reliability of predictions across different conditions and
populations, this thesis contributes valuable insights into the field, fostering advance-

ments in predictive modelling and its practical applications.

3.4 Research Timeline

The chronological progression of this research did not align with the thesis’s order.
Initially, the research explored various avenues in deep learning for heart rate estimation,
including network architecture search [176], but some paths were abandoned after
preliminary investigations with existing datasets. A literature review was conducted [7],
leading to the identification of multi-wavelength approaches in wrist-worn PPG heart
rate estimation [186] and the potential of incorporating uncertainty quantification,
both showing promise in preliminary data [26]. Subsequently, a dataset was designed
and collected to address identified gaps, which then informed the refinement of the
uncertainty-aware deep learning method for this new dataset, both of which are detailed
in this thesis.

It should be noted that the global COVID-19 pandemic had an impact on the research
timeline, necessitating adjustments to the original research plan and data collection
procedures. Despite these challenges, the core objectives of the research were maintained
and successfully pursued.

3.5 Software Ecosystem

The software ecosystem of this thesis includes a range of tools for data analysis, signal
processing, and deep learning. Python 3.11 is the primary language used throughout,
with Pandas 2.1.4 for data manipulation. SciPy 1.11.2 and NumPy 1.24.4 support

scientific computing and numerical operations, respectively.
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Tkinter 8.6 is used for GUI development, and the study-watch-sdk 4.4.0 integrates with
study-watch devices. ECG signals are processed with py-ecg-detectors 1.3.3. For PPG
beat detection, PPG-beats 1.01 (August 2022) and Matlab R2022b are utilised.

Machine learning tasks are carried out with scikit-learn 1.3.2, and deep learning is
handled by TensorFlow 2.15, with TensorFlow Probability 0.20.0 applied for uncer-
tainty quantification in Section 7. Statistical modelling is performed using statsmodel
0.14.1, while Uncertainty_Toolbox 0.1.1 supports further uncertainty analysis. Data
visualisation is achieved with matplotlib 3.8.2 and Seaborn 0.13.1.

Computational tasks not involving deep learning were executed on an Intel i7-1355U
CPU with 1.70 GHz and 16.0 GB of RAM. In contrast, deep learning tasks were per-
formed using NVIDIA T4 GPUs with 16 GB of GDDR6 memory and a memory band-
width of 320 GB/s, hosted on the Google Cloud Platform.
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Chapter 4

Specification and Processing of A
Wrist-worn Multi-wavelength
Photoplethysmography Heart Rate

Monitoring Dataset

The preceding chapter detailed the research design and methodology, framing the
approach undertaken in this study and thesis. This chapter addresses Objective 2,
beginning with an explanation of the design and implementation of key elements in
a photoplethysmography (PPG) heart rate monitoring dataset: protocol, cohort, and
devices. The chapter then expands on the data processing steps, including signal
alignment for PPG and electrocardiogram (ECG) signals and heart rate extraction from
ECG signals. The chapter concludes with details on skin tone classification along with

the rationale of other computed metrics.

4,1 Protocol

In designing the study protocol, careful attention was given to the insights and lim-
itations discovered during the review of existing PPG heart rate estimation datasets
(Section 2.2.1). The aim was to develop a protocol encompassing a variety of activ-
ities to mirror diverse real-world scenarios and physical conditions, addressing the
limitations related to the diversity of motion and activity intensities found in previous
laboratory-based studies [126-129].

The protocol was structured into four main phases: Active Rest, Running, Rest, and
Cycling, summarised in Table 4.1. The Active Rest phase involved activities focused
on wrist movements designed to capture erratic aperiodic movement and periodic

contractions of the posterior forearm muscles. The Running phase included different
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Duration Fitness Expected
Phase Activity . Level Motion Additional Comments
(Minutes)
(PAR) Type
Active Rest Stress Ball 2 1-7 Periodic . )
Active Rest | Hand Gripper 2 1-7 Periodic COI;Z?Z;O; I(z/ii(;sl:nor
Active Rest | Finger Stretcher 2 1-7 Periodic
Act%ve Rest ert.mg 2 1-7 Aper%od%c Erratic Wrist Movements
Active Rest Typing 2 1-7 Aperiodic
Running 3km/h 3 1-7 Periodic
Running 5km/h 3 1-7 Periodic Potential capture of the
Running 7km/h 3 3-7 Periodic crossover effect’
Running 11 km/h 3 4-7 Periodic
Running 15km/h 3 5-7 Periodic
Rest Hands on Table 2 1-7 No Movement
Participants could move
Rest Free Movement 2 1-7 Aperiodic freely around the
laboratory
Rest Hands on Table 2 1-7 No Movement
Participants could move
Rest Free Movement 2 1-7 Aperiodic freely around the
laboratory
Rest Hands on Table 2 1-7 No Movement
Cycling 0.5 kg 3 1-7 Periodic Participants were asked to
Cycling 1kg 3 1-7 Periodic }l:e?ﬁ}c;lte}‘:)e; &angtsei{cli;}llle
Cycling 2kg 3 37 Periodic capture elev};ted hearty
Cycling 3kg 3 4-7 Periodic rates associated with low
Cycling 5kg 3 5-7 Periodic upper-body movements

TABLE 4.1: Data Collection Protocol Overview. This table details the phases,
activities, and conditions used in the data collection protocol, including
the duration, fitness level (Physical Activity Rating, PAR), expected motion
type, and additional comments. Activity duration is variable and adjus-
ted based on the participant’s PAR, ranging from active rest tasks, such
as using a stress ball or typing, to more intense exercises like running at
different speeds and cycling with varying resistance levels. The protocol ac-
commodates both periodic and aperiodic motions, with notes on potential
outcomes, such as the ‘crossover effect’ during running or elevated heart
rates during low upper-body movement in cycling.

intensities ranging from 3 km/h to 15 km/h. This was followed by a Rest phase, during
which participants placed their hands on a table, allowing for the observation of reduc-
tions in heart rate and absence of movement. The concluding Cycling phase employed
an ergometer at different resistances, ranging from 0.5 kg to 5 kg, aimed at observing
increases in heart rates with minimal movement, as participants were instructed to keep
their hands on the handlebars. The total duration of the protocol ranged between 32 and
50 minutes, depending on the participants’ fitness levels. The implemented equipment
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comprised an h/p/cosmos Pulsar 3p treadmill and a Monark 874E weight ergometer.
The laboratory’s temperature was unmonitored and unregulated, and a single operator
conducted data collection for all participants.

Running and cycling intensities were determined based on each participant’s self-
reported physical activity level, preventing overexertion or risk of injury. Participants
were free to stop any activity or the entire protocol at any time, ensuring their comfort
and safety throughout the study. Three minutes were allocated for running and cycling
activities to allow the stabilisation of heart rate before a change in intensity, and two
minutes were assigned for the other activities to capture a representative portion of the
activity adequately. This approach to protocol design was anticipated to yield a rich and
reliable dataset, facilitating the improvement and validation of heart rate estimation
methods and their adaptability to various real-life applications and conditions, albeit
with the inherent limitations of laboratory-based protocols.

4.2 Cohort

The recruitment of participants strictly followed Manchester Metropolitan University’s
ethical guidelines (EthOS ID: 40624). Interested individuals who could register their
interest online were reached through flyers and posters. After registration, they received
an information sheet and a scheduling form. To be included, participants had to be
healthy adults over 18 years old with no known cardiovascular diseases. Those taking
medications that alter heart function, such as asthma medicines, decongestants, illegal
drugs, and certain prescription medications, were excluded. Individuals who did not

meet these criteria were informed of their ineligibility and thanked for their interest.

Upon arrival, participants received a briefing on health and safety along with detailed
information about the study. After providing consent and receiving a copy of the signed
consent form, basic measurements were recorded, and the designated devices were
attached. Participants were instructed to wear the wrist-worn device on the wrist of
their dominant hand, adjusted to a fit similar to how they typically wear watches, as
shown in Figure 4.4 B. The chest-worn strap was applied following the guidelines

provided in the device documentation [187].

To capture skin tone accurately and ensure precise colour calibration, a colour checker
card featuring the Fitzpatrick scale was placed under the subjects” arms during image
capture, illustrated in Figure 4.1. Photographs were taken using a Samsung Galaxy
S8+ smartphone, employing a 12 MP, /1.7, 26 mm (wide) camera with Dual Pixel
Phase Detection Auto Focus and Optical Image Stabilisation. This method ensured the
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FIGURE 4.1: Example of Participants’” Arm on the Colour Checker and

—

Fitzpatrick Scale Card.

accurate capturing of skin tones and white balance for post-processing. Participants

were thanked and gifted for their valuable involvement and contribution to the study.

Measurement

Scale

Age

The International System of Units scale for
time, specified in years

Biological Sex

The World Health Organisation and the
European Institute for Gender Equality
define sex as ‘Biological and physiological
characteristics that define humans as female
or male.” [188]

Dominant Hand

Left or Right

Fitness Level

Self-administered Physical Activity Rating
[190]

Height The International System of Units scale for
length, specified in centimetres
Skin Type Self-administered Fitzpatrick Scale [189]
Weight The International System of Units scale for

mass, specified in kilograms

Wrist Circumference

The International System of Units scale for
length, specified in centimetres

TABLE 4.2: Overview of Basic Physiological and Demographic Measure-
ments. This table outlines the key physiological and demographic meas-
urements collected from participants, including their corresponding scales.
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While determining the appropriate study size, power analysis is often utilised to as-
certain the number of subjects needed to confirm or reject a hypothesis. Based on the
works of Bent et al. and Fallow et al., a study size of > 48 participants is considered
necessary to achieve 80% power to reject the null hypothesis concerning differences
in PPG accuracy between Fitzpatrick skin types, with an ANOVA power calculation
suggesting 8 participants for each of the 6 skin types [52,59]. However, Colvonen et al.
contend that conclusions drawn from such analyses might be misleading due to factors
affecting PPG sensing accuracy, within-group variance of skin tone types, and potential
administrative errors in classification. Consequently, Colvonen et al. advocate for larger
sample sizes, especially including more individuals with darker skin tones, to limit false
negatives and account for possible interactions with skin tone [191]. Given the budget
constraints of this research, a cohort of the recommended size was not feasible. There-
fore, the aim was to maintain a proportional representation across different skin types
within an attainable sample size of n = 20, acknowledging the inherent limitations and

potential biases in the findings due to the restricted cohort size.

4.3 Devices

This section outlines the devices employed for gathering signals, encompassing both
chest-worn and wrist-worn devices. Insight into the electrical components and op-
eration of each device, as well as the various types of data they capture, is provided.
Particular attention is paid to the PPG sensor geometry, which is key for the signal
quality. The section concludes with a discussion on data transmission and storage, em-
phasising the assurance of accuracy and precision through the strategic use of graphical
user interfaces.

4.3.1 Electrocardiogram

In this study, the QardioCore chest strap was utilised to acquire ECG signals from a
single channel, with an input dynamic range of 50 mV peak-to-peak and a DC dynamic
span of +300 mV. The device maintained a gain accuracy of 5% and a differential range
of £5 mV. The amplitude resolution of the ECG was 0.8 4V, and the signal bandwidth
ranged from 0.05 to 40 Hz. The device employed an A/D sampling rate of 600 Hz, with
the internal sampling rate ensuring precise signal acquisition. The sampling resolution
was 16-bit, and the common mode rejection was 60 dB, with an input impedance
of over 100 M(Q). Additionally, the device featured automatic calibration to maintain
the accuracy of the measurements [187]. The QardioCore chest strap was previously

validated against medical-grade Holter monitors in two separate instances, with sample
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sizes of 50 and 31, yielding correlation scores of 0.92 and 0.95, respectively [192,193].
The placement of the chest strap was meticulously performed as per the specifications
delineated in the accompanying documentation, illustrated in Figure 4.2.

\ (€6 ~ o ]I /
QardioCore
Device

Strap

FIGURE 4.2: The QardioCore Chest Strap Placement, adapted from [187].

ECG signal acquisition was facilitated through the Android QardioDirect application
(version: 2.8.8), specifically utilising a Samsung S8+ smartphone via Bluetooth con-
nectivity. Subsequently, the gathered ECG signals were securely stored within the
QardioMD web application, where they were anonymised and retrieved in HL7 aECG

format. The detailed versions of the software used are outlined in Section 3.5

4.3.2 Wrist-worn Device

This study utilised the EVAL-HCRWATCHA4Z (firmware version: 5.14), a wrist-
worn device developed by Analog Devices. The research-grade bio-sensing device
is equipped to acquire synchronised multi-wavelength PPG, triaxial accelerometer
data, skin temperature, electrodermal activity, and ECG [194]. Notably, only multi-
wavelength PPG, triaxial accelerometer and skin temperature were employed in the

research.

A comprehensive overview of the electrical components embedded within the device
is provided in Figure 4.3. The ADXL362 accelerometer facilitated motion detection
with a +8 g digital output range and SPI digital interface, sampled at 100 Hz [194, 195].
Skin temperature was collected using the NTCG104EF104FTDSX sensor from TDK
Corporation, thermally coupled to the device’s underside, with performance intricacies
linked to its mechanical connection to the body, operating within a temperature range
of -30°C to +50°C [194,196].
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FIGURE 4.3: Overview of the electrical components of the wrist-worn

device, adapted from [194]. The figure illustrates the PPG sensor (com-

prising the AFE, PDs, and LEDs), temperature sensor, bio-impedance AFE,

ECG AFE, accelerometer, micro-controller, display and power management
components.
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FIGURE 4.4: Illustration of the experimental setup for PPG measurement:

A) Geometry and configuration of the PPG sensor. B) Wrist-worn device,

including the PPG sensor, attached to the wrist of the participant’s domin-
ant hand, adjusted to the typical tightness of a watch.
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The ADPD4100 [197], functioning as a multimodal AFE, incorporated inputs from the
VEMDS8080 Photodiodes [198] and the aforementioned temperature sensor, among
others not utilised in this study. The ADPD4100 also controls the PPG sensors’ blue
(470 nm), green (530 nm), red (660 nm) and IR (850 nm) LEDs [199,200]. Two channels
were collected for each wavelength from a photodiode with a reactive area of 4.5 mm?,
positioned 3.5 mm from the LEDs on each side, illustrated in Figure 4.4 A. The LEDs
operate at 7.5 mA and are gathered using a flexible input multiplexer in the sequence of
green, IR, red, and blue. The device features a programmable timing controller capable
at managing LED pulses, with a specified AFE width of 3 us, pulse width of 2 us, and a
pulse offset of 16 pus. This precise control of pulse characteristics is key for capturing
accurate PPG signals, ensuring the reliability of the data collected during the study. The
configuration facilitates effective navigation through synchronised multi-wavelength
PPG data acquisition complexities. Each channel maintained Transimpedance Amplifier
gains of 200 kQ and was sampled at 100 Hz, utilising an I>C serial communication
interface with a 100 kHz clock frequency. Through the employment of synchronous
demodulation and other techniques, the ADPD4100 mitigates ambient light interference

[194].

4.3.3 Collection Graphical User Interface

To facilitate accurate data collection from the wrist-worn device and synchronise it with
activity timings, a custom graphical user interface (GUI) was developed. The connection
between the device and the GUI was established using Bluetooth Low Energy (BLE) via
a Nordic BLE nRF52840 USB dongle [201], which also served to minimise power line
interference (50Hz/60Hz) and enhance the quality of the output signal [194].

7 tehe G - x 7 tetar9a 1o - x
Subject Details Running
05 Oct 2023 13:20 PM Time Elapsed
1P KM Start Stop PAR 00.00/00.00
SKmM Stop PAR 00000000

BKmM Start Stop PAR 00.0000 00

11KmH Start Stop PAR 00000000

FIGURE 4.5: Data Collection Graphical User Interface for Subject Basic
Measurements (Left) and Running Phase (Right)

Upon connection, the GUI provided an input form to record participant measurements,
as detailed in Section 4.2, and additional forms to log the start and stop timings of

each activity phase within the protocol, ensuring precise alignment with the collected
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data. The resulting watch data, participant measurements, and activity timings were
subsequently stored in CSV files for further processing. The detailed versions of the

software used are outlined in Section 3.5

4.4 Signal Processing and Data Extraction

This section details the processes of signal processing and data extraction of the collected
signals, which are pivotal for subsequent analysis and PPG heart rate modelling. Details
encompass the alignment of ECG and PPG signals and the methodology for heart rate
extraction from ECG, with comparisons and validations against alternative techniques.
Additionally, the methods employed for skin tone classification and the computation
of BMI and exercise effort are defined, laying a foundational framework for ensuing

analyses and modelling endeavours.

4.41 Electrocardiogram and Photoplethysmogram Alignment

As elaborated in Section 4.3, the chest-worn ECG device and the wrist-worn bio-signal
device recorded data via either a smartphone or a laptop. Each device has an internal
clock that may not be perfectly synchronised, causing the timestamps recorded by each
device to be misaligned. To correct these inter-device time delays, several computa-
tional strategies have been applied, including cross-correlation [202,203], dynamic time
warping [204], and region-of-interest matching methods like peak alignment [124] or
the double tap method [130]. The double tap method creates a unique marker at the
start and end of the protocol by having the participant tap all devices twice at the same

time.

Dynamic time warping can adjust for non-linear distortions and shifts in time but is
computationally expensive. Peak alignment depends heavily on the accuracy of the
peak detection method employed. In this study, cross-correlation was chosen as a
simple and effective method to align the signals. It’s also important to note that since
PPG devices are worn on the wrist, there’s a natural delay between the ECG and PPG
heartbeat due to the pulse transition time (PTT), causing a delay that can be between
100 - 250 ms depending on blood pressure [205].

To achieve an accurate lag estimate from cross-correlation, there needs to be sufficient
variation in frequency, meaning there should be fluctuations in heart rate exceeding 10
BPM. The transition from a state of running to a state of rest provides this necessary

variation in BPM, making it an ideal scenario to align the signals effectively. To calculate
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the lag, three segments from each subject were utilised: a short, a medium, and a long

segment, each centred around the transition from running to rest.

To align with the PPGs sample rate and optimise lag calculations, the ECG was down-
sampled to 100 Hz. All eight PPG signals were averaged to produce a single PPG
signal to simplify and streamline the cross-correlation process. Segments were selected
during the transition between running and resting phases, characterised by a sufficient
variation in heart rate. This allowed analysis of the lag between ECG and PPG signals
during this physiologically significant change. Three segment lengths were chosen to
provide a comprehensive understanding of the temporal ECG-PPG relationship: a short
1-minute segment, a medium 2-minute segment, and a long 3-minute segment. For each
segment—short, medium, and long—three distinct ranges of lags were systematically
examined, as shown in Figure 4.6. Initially, a comprehensive full cross-correlation was
conducted to scrutinise every possible lag. Subsequently, a method was applied that
focused on the discrepancies between the total lengths of the PPG and ECG signals,
addressing both additive and subtractive variances. Finally, a heuristic approach in-
volving a visual examination of the spectrograms was applied to select a suitable range
for lag comparison. This produced nine lag estimates, each visually examined to discard

outliers, with the median value of the remaining selected as the optimal lag.
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FIGURE 4.6: Cross-correlation analysis of ECG and Processed PPG sig-
nals for Subject 1, with systematic examination of three segment durations
(short 1-minute, medium 2-minute, long 3-minute) and three lag estima-
tion methods (full cross-correlation, signal differences, region of interest).
This multimodal approach provides a comprehensive assessment of the
temporal relationship between these cardiovascular signals during the
physiologically significant transition from running to resting.

The sign of the optimal lag determined whether the ECG or the PPG was trimmed at the
recording’s start to synchronise the signals, and any remaining misalignment at the end
was also rectified. This nuanced methodology ensured a thorough understanding of the
alignment intricacies between the ECG and PPG signals, accommodating the inherent
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variability in the recorded physiological data. The detailed versions of the software

used are outlined in Section 3.5

4.4.2 Electrocardiogram Heart Rate Extraction

Heart rate ‘ground truth’ values from a chest-worn ECG play an integral role in Pho-
toplethysmography heart rate datasets. These values serve to validate PPG heart rate
estimation methods, necessitating their reliability and accuracy. Hence, the extraction

of heart rate from the ECG is a key step in the construction of such a dataset.
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FIGURE 4.7: Typical Electrocardiogram Waveform Highlighting the QRS
Complex and R Peak. This figure shows a standard ECG waveform, em-
phasising the QRS complex and the R peak. The QRS complex represents
ventricular depolarisation and appears as a series of sharp, high-amplitude
deflections. The R peak, the highest point within the QRS complex, marks
the peak of ventricular depolarisation and is key for assessing heart rate
and rhythm. The R-R interval, the time between successive R peaks, is used
to calculate heart rate and monitor cardiac health.

Similar to PPG heart rate estimation, there exists a myriad of methods to extract heart
rate from ECG signals. A prominent approach is to detect key features of the ECG
waveform, such as the QRS complex (Figure 4.7). Hamilton and Tompkins designed
a method that efficiently detects QRS complexes by analysing slope, amplitude, and
width [206]. Hamilton refined this approach, enhancing its efficiency [207]. Conversely,
Christov proposed an adaptive thresholding method [208], Elgendi et al. developed
a moving average method [209], and Kalidas et al. utilised the Stationary Wavelet
Transform [210]. However, similar to PPG beat detectors, this approach is susceptible to
inaccuracies such as misidentifying or omitting QRS complexes, leading to significant

errors.

Choosing frequency domain methods provides an alternative to time-domain QRS
complex detection. The R peaks, serving as pivotal indicators of a heartbeat within an
ECG, predominantly reside within the frequency range of 15-35 Hz [209]. Employing
a Butterworth bandpass filter specifically tuned to this frequency range and squaring
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FIGURE 4.8: Samples of Pre-Processed ECG Signals from IEEE Train and
PPG DaLiA Datasets with Extracted Heart Rate Truth Values. This figure
presents pre-processed ECG signals from the IEEE Train [126] and PPG
DaLiA [130] datasets, emphasising the extraction of heart rate truth values.
The application of a Butterworth bandpass filter, tuned to the 15-35 Hz
range where R peaks are most prominent, followed by signal squaring,
effectively isolates these R peaks. The resulting spectrogram clearly reveals
a heart rate trace that aligns with the ground truth heart rate values (shown
in red).

the signal reveals a discernible heart rate trace within the spectrogram, as illustrated
in Figure 4.8. This heart rate trace is corroborated by alignment with the ground truth
heart rate values of the datasets, underlining the precise isolation of R peaks within the
signal and attesting to the validity and efficacy of the frequency domain approach in
isolating accurate heart rate information from ECG signals.

In light of the aforementioned analysis, a frequency domain methodology was proposed,
as depicted in Figure 4.9. The ECG signal is first subject to a bandpass Butterworth
filter to accentuate the essential R peaks and minimise noise interference. Subsequently,
the filtered signals were squared, and a spectrogram was calculated and normalised,
focusing on enhancing the visibility of R peak frequencies within the signal. Each point
in the spectrogram undergoes rigorous analysis to identify the frequency that corres-
ponds to the HR, factoring in amplitude range thresholds and frequency range. The
methodology entails dynamic recalibration of the frequency range at each spectrogram
point based on the previously identified frequencies while filtering out sub-threshold
values or those that fall outside the accepted range.

To validate the efficacy of the described methodologies, multiple PPG heart rate estima-
tion datasets were employed, each with ground truth heart rate values and ECG signals,
acquired through varied devices and adhering to diverse protocols. This multifaceted
approach facilitated a thorough examination of the methodologies’ efficacy under di-
verse conditions, framing the evaluation as a supervised task. ECG signals from each
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FIGURE 4.9: Block Diagram of the Proposed ECG Heart Rate Extraction

Method. This diagram outlines the proposed frequency domain approach

for heart rate extraction. It starts with a Butterworth bandpass filter (15-

35 Hz) to isolate R peaks, followed by squaring the signal. A normalised

spectrogram is then used to highlight R peak frequencies. Each spectrogram

point is analysed to determine the heart rate, with dynamic recalibration to
filter out irrelevant frequencies and ensure accuracy.

subject were segmented into 8-second windows with a 2-second slide, accompanied by
a corresponding heart rate value from the dataset. The detailed versions of the software

used are outlined in Section 3.5.

Method IEEE Train [126] | PPG DaLiA [130]
Christov [208] 31+4.1 27+13
Elgendi et 11+1.6 1.4+05
al. [209]

Kalidas et 25+1.2 29+0.6
al. [210]

Hamilton [207] 1.3+0.8 47+15
Hamilton and 22+0.6 3.2+0.8
Tompkins [206]

Proposed 0.4+0.2 1.2+ 0.6
Method

All Values are MAE in BPM.

TABLE 4.3: Results of ECG Heart Rate extraction validation experiment on
IEEE Train [126] and PPG DaLiA [130] datasets. Bold values indicate the
lowest MAE distribution.

Table 4.3 shows that the proposed method demonstrated superior performance on
the IEEE Train dataset with the lowest MAE of 0.4 + 0.2 BPM, whilst maintaining
competitive results on the PPG DaLiA dataset. This consistent performance across both
datasets, coupled with low standard deviations, indicates a robust and reliable approach

for heart rate estimation tasks. A visual inspection of the performance of the proposed
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method on the collected ECG data substantiated its effectiveness, as depicted in Figure
4.10. The empirical observations and analytical outcomes collectively underscore the
reliability and accuracy of the proposed method in extracting accurate heart rate data
from diverse ECG signals.
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FIGURE 4.10: Analysis of ECG Heart Rate Extraction Method for Subject 1.
This figure demonstrates the proposed ECG heart rate extraction method
(red line) applied to the spectrogram of processed ECG signals. For this
subject, the amplitude range threshold (bottom left) was not exceeded,
resulting in the inclusion of all HR values (bottom right). The spectrogram
shows an increase in heart rate during the running and cycling phases
of the protocol, indicating a well-distributed range of heart rate values
(bottom middle).

During the experiment, instances were identified where sub-optimal adherence of the
ECG device to the subject compromised the integrity of the signal. Figure 4.11 depicts
intervals where the heart rate trace in the spectrogram is obscured, rendering it non-
distinct (see mid-section of spectogram). Examining the amplitude range during these
obscured intervals uncovered considerable discrepancies attributed to noise. To rectify
and mitigate the perturbations induced by such discrepancies, a threshold was applied
to each subject’s ECG signal, leading to the exclusion of windows that lacked a coherent
and distinguishable ECG signal. This refinement led to the omission of 1643 windows,
representing 5.1% of the entire dataset, reinforcing the reliability and accuracy of the
data processed in subsequent analytical stages of the research.
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FIGURE 4.11: Analysis of ECG Heart Rate Extraction Method for Subject 21.
This figure demonstrates the proposed ECG heart rate extraction method
(red line) applied to the spectrogram of processed ECG signals. For this
subject, the amplitude range threshold (bottom left) was exceeded in three
instances, resulting in the exclusion of 203 heart rate values (bottom right).

4.4.3 Skin Type Classification

In PPG settings, the Fitzpatrick Skin Type Scale and Von Luschan’s Chromatic Scale
are commonly used to classify skin tones. These methodologies, however, are funda-
mentally subjective and can vary significantly depending on the assessor. They have
also been criticised in dermatology research for focusing too much on lighter skin tones,
which can lead to mistakes in evaluating risks and reactions in different skin types [212].
To overcome these limitations, a spectrophotometer has been recommended as the ‘gold
standard’ for objective skin tone assessment [213]. Nonetheless, studies indicate that
the results obtained from spectrophotometer assessments are in alignment with visual
evaluations of skin colour, highlighting that inaccuracies can permeate both objective

and subjective measurement methods due to improper application of techniques [214].

In this research, a robust approach was applied to impartially classify skin tones. As
referenced in Section 4.2, a photograph was taken of each participant’s arm alongside
a colour checker and a Fitzpatrick scale card. Participants were also asked to self-
administer the Fitzpatrick scale. To correct any colour variations across the photographs,
a systematic white balancing method was utilised. This method focused on each of the
three colour channels—Red, Green, and Blue—in the images. For each channel, the
following steps were performed:
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1. Histogram Calculation: A histogram was created to represent the distribution of
pixel intensities in the channel. This histogram counts the number of pixels at
each intensity level from 0 to 255.

2. Identifying Primary Range: The histogram was analysed to determine the primary
range of pixel intensities. This was done by discarding the pixel colours at each
end of the histogram that are used by only 0.05% of the pixels in the image, which
helps in ignoring outliers that might be caused by artefacts such as bits of dust.

3. Clipping and Normalisation: The minimum (by,in) and maximum (bmayx) intensity
values within the primary range were identified. The pixel values in the original
image were then clipped to this range and subsequently normalised. Specifically,
any pixel values below bpi, were set to byin and any pixel values above bmax
were set to bmax. This clipped range was then stretched to the full 0-255 range of

possible intensity values using the formula:

(4.1)

clipped. __|...,i| — bm;
balancedimg|..., 1] = ( Ppb lmg[_ 2 ] mm) x 255
max min

where i represents the colour channel index (0 for Blue, 1 for Green, and 2 for
Red).

This process ensures that the pixel values are adjusted and balanced, resulting in
uniform colour distributions and improved image contrast within each refined image.
The outcome is a white balanced image that more accurately represents the true colours
of the scene, which is key for the accurate classification of skin tones.

After the image processing, a panel of three individuals, self-identifying as Fitzpatrick
skin types 1, 3, and 5, independently assessed the participant’s images using the
Fitzpatrick scale. Figure 4.12 illustrates the observed variability in skin type categorisa-
tion across the study cohort, reinforcing the prevailing concerns regarding the reliability
of this methodology. A weighted average classification was then calculated, giving
self-administered classifications 1.5 times more weight than those from panel members.
This approach aimed to achieve a more balanced and objective assessment of skin tones
using the Fitzpatrick scale.

4.4.4 Additional Computed Metrics

As elucidated in Section 2.1.3, BMI has been reported to affect PPG signal quality.
The BMI is typically calculated using the Quetelet Index, which is mathematically
defined as an individual’s weight in kilograms divided by the square of their height in
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FIGURE 4.12: Classification of Cohort Skin Type Using the Fitzpatrick Skin
Type Scale. This stacked bar chart shows the skin type classification of the
study cohort using the Fitzpatrick Skin Type Scale. The first three bars
represent classifications by independent reviewers, self-identifying as skin
types 1, 3, and 5. The fourth bar reflects self-administered classifications by
the participants. The fifth bar displays a weighted average, giving more
weight to self-administered classifications. The variability in skin type
classification by different reviewers is evident, highlighting the importance
of using pragmatic methods when using the Fitzpatrick scale.

meters (kg/m?) [215]. The resultant metric is generally categorised for interpretative
convenience: a BMI below 18.5 is classified as underweight, between 18.5 and 24.9 as
healthy, between 25 and 29.9 as overweight, and 30 or above as obese [216]. Notably, the
National Health Service (NHS) has adjusted these categorisation boundaries for Black,
Asian, and some other minority ethnic groups to account for the differential health risks
associated with BMI in these populations [216]. Additionally, while the Quetelet Index
serves as a globally recognised metric, it is subject to criticism for its failure to account
for muscle mass, potentially providing a misrepresentative portrayal of an individual’s
percentage of body fat and, consequently, their overall health and fitness status [215].

In the context of physical exercise, heart rate serves as a pivotal indicator of the level
of effort being exerted by an individual, as it exhibits a proportionate increase with
intensifying physical activity. Consequently, using raw heart rate values as a consistent
and reliable measure of exercise intensity becomes challenging across different age
groups due to the inherent variations in the heart rate range caused by the ageing pro-
cess. The concept of effort, when represented in terms of HR, is typically described as a
percentage of the individual’s maximal heart rate (MHR) [217]. Various methodologies
have been proposed to estimate MHR; while the gold standard involves conducting a

Maximal Aerobic Test, which pushes an individual to their absolute physical limits, this
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is not always feasible in all research or practical contexts. Consequently, several equa-
tions have been derived to estimate MHR, including the widely adopted Fox equation
(220 — Age), despite its recognised variability. Alternative formulations include the
Tanaka equation (208 — 0.7 x Age) and the Fairbarn equation, which is gender-specific
(208 — 0.8 x Age for males and 201 — 0.63 x Age for females), amongst others [217].
In this study, the Fox equation was employed to estimate MHR and, subsequently,
effort, primarily due to its widespread adoption and ease of application across diverse

populations.

4.5 Summary

The chapter meticulously details the protocol design, aimed at overcoming limitations
in existing dataset protocols. It highlights the inclusion of active rest and cycling phases
to capture low- and high-heart-rate scenarios with varying movement patterns. The
cohort section elaborates on participant measurements and methodologies. Device
selection is also discussed, focusing on the use of ECG and wrist-worn devices, along

with software for activity timings.

The chapter proceeds to examine signal alignment techniques, selecting cross-correlation
for its simplicity and efficacy and detailing a comprehensive approach to ensure accurate
signal alignment. Heart rate extraction from ECG is given special attention, essential for
evaluating PPG heart rate estimation algorithms. A novel frequency domain method
was developed for more accurate heart rate extraction, outperforming existing methods
in comparative analysis. The chapter also addresses skin tone classification, which is
key in this research. Despite debates on the Fitzpatrick scale’s accuracy, a pragmatic
approach was adopted, using a diverse panel for skin tone classification, revealing
the subjectivity in the process. Other computed metrics like BMI and MHR-derived

physical effort are also discussed.

The collected dataset comprises data from 20 participants selected from an initial pool of
30 due to data collection and signal integrity issues. The cohort has an age distribution
of 25.9 + 8.2 years and includes 13 female and 7 male participants. Skin types are
evenly split with 10 participants having Fitzpatrick skin types I-III and 10 having
Fitzpatrick skin types IV-VI. The dataset includes close to 15 hours of data, resulting
in a total of 26,442 samples of 8-second windows with 2-second slides. Notably, the
dataset features the largest representation of heart rates in the 160-180 BPM range
across available datasets, with close to 6,000 samples indicating physical effort rates
of 60% or higher. Furthermore, it includes the most comprehensive collection of PPG
wavelengths, with two channels each for blue, green, red, and IR. The data collection
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protocol incorporates erratic wrist movements, cross-over effects, motion-free periods,
and periods of increased heart rates with minimal motion. These attributes provide a

robust foundation for evaluating wrist-worn PPG heart rate estimation methods.
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Chapter 5

Analysis of A Wrist-worn
Multi-wavelength
Photoplethysmography Heart Rate

Monitoring Dataset

The preceding chapter gave details of the design, collection and processing of the
wrist-worn multi-wavelength Photoplethysmography (PPG) heart rate monitoring
dataset. This chapter evaluates the collected dataset, primarily focusing on its efficacy
in reflecting the diversity and robustness intended in its design. The dataset, designed
for validating heart rate estimation methods, captures wrist-worn PPG signals across
a diverse cohort—accounting for variations in biological sex, skin melanin content,
age, and BMI—under different motion types and physical effort levels. It utilises a
chest-worn electrocardiogram (ECG) and a wrist-worn multi-wavelength PPG device,
which collects two channels of PPG signals from the two photodiodes, using blue, green,
red, and IR LEDs. Additionally, the wrist-worn device is equipped with sensors such as

an accelerometer.

The assessment begins with a comparative analysis of existing single-wavelength wrist-
worn PPG heart rate estimation datasets (see Table 2.3), focusing on how well the
dataset represents heart rate and physical effort levels within the cohort. This is fol-
lowed by a thorough evaluation of the accelerometer’s effectiveness as a reference for
PPG motion artifacts across different types of movement. The analysis further includes
an examination of various SQIs to evaluate the dataset’s reliability under diverse condi-
tions. The final phase involves using a range of beat detectors to determine the optimal
wavelength for wrist-worn heart rate estimation and to test the compatibility of con-
ventional algorithms with this multifaceted dataset. The outcomes of this investigation
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aim to affirm whether the dataset successfully meets its intended objectives, thereby

contributing to wrist-worn PPG heart rate monitoring research.

5.1 Comparative Dataset Analysis

This section evaluates the dataset based on cohort demographics, heart rate measure-
ments, motion, and skin temperature. It involves a comparison with several single-
wavelength PPG heart rate estimation datasets, including IEEE Train [126], IEEE
Test [126], BAMI 1 [127], BAMI 2 [127], and PPG DaLiA [130]. As outlined in Sec-
tion 2.2.1, two additional datasets of this type were considered but excluded from this
analysis due to their limited sample size and inconsistent protocols across subjects,
which did not meet the standards required for a robust evaluation.

5.1.1 Cohort

A primary objective of this dataset is to facilitate a comprehensive assessment of the im-
pact of demographic variables on the accuracy of PPG heart rate estimation algorithms
and evaluate the signal quality of the PPG signals obtained. A critical aspect of this
endeavour is ensuring a diverse cohort representation. As delineated in Table 5.1, it is
observed that a substantial number of datasets do not provide detailed cohort demo-
graphics, thereby constraining the scope for analytical exploration. Only datasets such
as IEEE Test [126] and PPG DaLiA [130] offer such demographic information.

In examining age diversity, the PPG DaLiA dataset stands out with its broad age range,
with an mean age of 31 years and a standard deviation of 10 years. This contrasts
with the dataset collected explicitly for this study, which tends to comprise younger
participants, evidenced by a mean age of 26 years and a standard deviation of 8 years.
Regarding biological sex distribution, the dataset collected for this study demonstrates a
balanced representation of both sexes, albeit with a marginal inclination towards female
participants. This starkly contrasts the IEEE Test dataset, which exhibits a pronounced
male bias.

The diversity of the Fitzpatrick skin types in the collected dataset is particularly note-
worthy. It encompasses all categories on the Fitzpatrick scale, albeit with a caveat:
three of the six skin types are represented by merely two participants each. To address
within-group variance and to better understand factors affecting PPG sensing accuracy,
skin melanin content was categorised into two groups: low (Fitzpatrick types 1, 2, and
3) and high (types 4, 5, and 6), with each group comprising ten participants. From
now on in this thesis, skin melanin content will be utilised as a primary variable for
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IEEE Train .
(incl. 13) IEEE Test | BAMI1 | BAMI 2 | PPG DaLiA | MW PPG HR
incl.
[126] [127] [127] [130] (This Work)
[126]
Age — 25+12 — — 31+10 26+ 8
. ) Female: 1 Female: 8 Female: 13
Biological Sex — — —
Male: 9 Male: 7 Male: 7
I: 2
II: 6
Fitzoatrick I: 1 s
slkz°PaTrlC - - - - HEAL IV:5
in Type V3 :
V:3
VI: 2
BMI — 224+29 — — 223+1.8 228+ 3.0

TABLE 5.1: Comparison of Cohorts Across All Utilised Datasets. The table

compares cohorts in terms of age, biological sex, Fitzpatrick skin type,

and BMI. The MW PPG HR dataset (this work) has the most diversity in

Fitzpatrick skin type, with representation of all six types. Additionally,

the table highlights the amount of non-reported demographics for each
dataset.

analysis due to these considerations. Finally, the BMI parameter exhibits ample diversity
within the collected dataset, with a slightly higher average BMI but a more significant
standard deviation than the other datasets, highlighting the range of body compositions
encompassed in the study.

5.1.2 Heart Rate

The dataset was designed to encompass a broad spectrum of heart rate values, essential
for analysing PPG heart rate estimation algorithms across different heart rate intervals.
Table 5.2 presents a detailed breakdown of the sample distribution across various
heart rate intervals for each dataset. The PPG DaLiA dataset peaks in the 60-80 BPM
range, typical for adult resting heart rates, while the collected dataset shows highest
representation in 80-100 BPM and extends to 180-200 BPM. This broader range facilitates

rigorous evaluation of the methods’ robustness across diverse physiological states.

In contrast, treadmill-based protocol datasets, such as IEEE Train, BAMI 1, and BAMI
2, show their most significant occurrence of samples in the 120-160 BPM range, cor-
responding to moderate to intense physical activity. The collected dataset particularly
stands out for its substantial inclusion of the 160-200 BPM range (2,358 samples), high-
lighting heart rates associated with vigorous activity and demonstrating the dataset’s
coverage of various physiological conditions. The PPG DaLiA dataset is the largest,
with about 65,000 samples, while the collected dataset, with around 26,000 samples,
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Heart Rates | \LLE il | 4 Test | BAMI1 | BAMI2 | PPG DaLiA | MW PPG HR
(BPM) (11;12'613) [126] [1271 | [127] [130] (This Work)
0-40 0 0 0 2 0 0
40- 60 0 6 0 4 3,746 5
60 - 80 76 235 252 95 21,585 3,298
80 - 100 193 240 1188 | 836 22,374 9,087
100 - 120 263 153 2475 | 2325 9,884 5,859
120 - 140 391 348 2607 | 2480 4,878 3,302
140 - 160 696 247 2097 | 1813 1,679 2,533
160 - 180 256 99 574 670 512 1,936
180 - 200 0 0 21 78 39 422
Total 1875 1328 | 9214 | 8303 64,697 26,442

TABLE 5.2: Comparison of Heart Rate Samples Across Utilised Datasets.

This table shows the number of heart rate samples across various BPM

ranges. The MW PPG HR dataset is particularly notable for its extensive

coverage, especially in the 60-180 BPM range, which is proportionality

underrepresented in other datasets. This broad sample range aims to

enhance the validation and verification of heart rate estimation methods
across both extreme and normal heart rate ranges

is the second-largest. This extensive data across various heart rate ranges is key for a
thorough and precise PPG heart rate estimation research evaluation.

Analysing physical effort as a percentage of MHR across datasets like IEEE Test, PPG
DaLiA, and MW PPG HR (This Work) reveals critical trends in exertion levels. It’s
important to consider age’s impact on MHR, as heart rate values alone can be misleading.
Detailed in Table 5.3, the IEEE Test dataset predominantly features samples in the higher
exertion ranges, with the majority (45.9%) in the 60-80% MHR range, followed by 30.4%
in the 40-60% MHR range. This indicates a focus on moderate to high exertion levels.
The PPG DaLiA dataset, in contrast, is concentrated in the low to moderate exertion
range, with 57.3% of samples in the 40-60% MHR range and a significant 29.0% in the
20-40% MHR range, showing a preference for moderate physical effort.

The MW PPG HR dataset (this work) displays a broader distribution but leans towards
moderate exertion, with the 40-60% MHR range accounting for 57.4% of its samples. It
also includes a notable representation in the high exertion range (10.7% in the 80-100%
MHR range). These trends highlight the varied focus of each dataset, with IEEE Test
and MW PPG HR (This Work) covering a more comprehensive range of exertion levels
and PPG DaLiA focusing more on moderate exertion. This diversity in physical effort
levels is key for comprehensively evaluating PPG heart rate estimation algorithms.
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Physical Effort | IEEE Test | PPG DaLiA | MW PPG HR
(% of MHR) [126] [130] (This Work)
0-20 0 0 0
20 - 40 226 18,776 2,473
40 - 60 404 37,074 15,132
60 - 80 609 7,956 5,949
80 -100 89 891 2,831

TABLE 5.3: Comparison of Sample Counts per Physical Effort Level Across

Utilised Datasets Reporting Age. Physical effort is defined as the percentage

of heart rate over MHR, derived from the Fox Equation. Notably, the MW

PPG HR dataset demonstrates a proportionally higher number of samples

at elevated effort levels (> 60% MHR) compared to the other datasets
analysed.

5.1.3 Motion

In PPG signal analysis, accelerometers serve as a critical tool for motion reference and
artefact reduction, yet their efficacy in capturing diverse motion types and intensities
merits investigation. Under the premise that heart rate escalates with increased physical
workload, particularly in treadmill-based protocols, it is hypothesised that higher heart
rates correspond to intensified motion. However, this correlation may not hold for

cycling or wrist/arm movements, where high motion can coexist with lower heart rates.

To evaluate how well the accelerometer captures different motion the Euclidean norm
of the three accelerometer axes is calculated for each segmented window (8-second
duration with a 2-second shift) to quantify motion intensity. The mean value of these
windowed segments is then taken as the indicator of accelerometer intensity. Sub-
sequently, min-max normalisation is applied to these values, facilitating comparison

across different datasets.

As illustrated in Figure 5.1, the accelerometer effectively captured the escalation in mo-
tion intensity concurrent with increased activity intensity for treadmill-based protocols.
This finding is further supported by a positive correlation (0.52) between accelerometer
intensity and true HR, notably with an expanded spread of accelerometer intensities
observed beyond 100 BPM.

The collected dataset, particularly during its treadmill-based running phase, also demon-
strated a range of accelerometer intensities, as shown in Figure 5.2. However, a weaker
correlation (0.36) was observed between true heart rate and accelerometer intensity, with
a noticeably broader spread past 100 BPM. Contrarily, the accelerometer’s effectiveness

in capturing motion types diminished in wrist-based movements and cycling scenarios,
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FIGURE 5.1: Relationship between Normalised Accelerometer Intensity,
Activity, and True Heart Rate for BAMI 1 Dataset [127]. The figure presents
box plots of normalised accelerometer intensity—derived by calculating
the Euclidean norm of the 3D acceleration signal and applying min-max
normalisation across datasets. The box plots show the median, IQR, and
1.5 IQR whiskers. Notably, a broader distribution is observed at running
speeds of 6 km/h and above. Additionally, there is a greater spread of
normalised accelerometer intensity at True Heart Rates (ECG-derived)
exceeding 100 BPM.
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FIGURE 5.2: Relationship between Normalised Accelerometer Intensity,
Activity, and True Heart Rate for MW PPG HR Dataset (This Work). The
figure presents box plots of normalised accelerometer intensity, calculated
using the Euclidean norm of the 3D acceleration signal and applying min-
max normalisation across datasets. The box plots show the median, IQR,
and 1.5 IQR whiskers. Running shows the widest spread of accelerometer
intensity, while active rest has a distribution similar to rest and cycling,
indicating potential limitations in capturing all movement types. A similar
trend of greater spread is observed at True Heart Rates (ECG-derived)
above 100 BPM, primarily from running, whereas minimal motion is recor-
ded during cycling, as expected.
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with notable differences in distribution observed between rest, cycling, and active rest

conditions.

These observations underscore that while accelerometers are useful for tracking certain
motion types, they may not comprehensively represent all motion-induced noise within
PPG signals. This highlights the need for cautious interpretation of accelerometer data,
especially in activities where motion patterns, such as erratic wrist-movements, differ

significantly from treadmill-based protocols.

5.1.4 Local Skin Temperature

As highlighted in Section 2.1.3, skin temperature is a factor that can significantly impact
the quality of PPG signals. However, upon examining the range of skin temperature
values recorded during the study, it was observed that there was minimal variation in
these temperatures across different activities. Notably, the active rest phase exhibited
the broadest range of skin temperature values. This variation can be attributed to the
fact that active rest was the initial phase of the protocol, during which subjects were
exposed to the colder conditions prevalent during the winter season. This exposure
potentially led to a greater spread of skin temperature than in other phases.
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FIGURE 5.3: Distribution of Local Skin Temperature across Different Activ-

ities. The box plots show the median, IQR, and 1.5 IQR whiskers. Activities

are ordered as: active rest, running, rest, and cycling. Winter data collection
led to lower temperatures, especially during the first phase.

Given the overall lack of significant variation in skin temperature throughout the
various phases of the study, it has been determined that an in-depth exploration of
skin temperature as a variable affecting PPG signal quality will not be included in this
thesis. The minimal variability observed suggests that skin temperature, under the
conditions of this study, does not markedly influence the PPG signal quality to a degree
that necessitates further investigation within the scope of this research.
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5.2 Multi-wavelength Photoplethysmography Signal
Quality Analysis

This section will evaluate various Signal Quality Indices (SQIs) to determine their effic-
acy in assessing the quality of collected PPG signals, thus addressing objective 3. This
analysis is based on the premise that PPG signal quality will likely vary with physical
activity intensity. For instance, signal quality is anticipated to degrade during high-
intensity activities like running on a treadmill compared to lower-intensity activities
such as walking or resting. The aim is to establish whether these SQIs accurately reflect
changes in signal quality under different physical conditions.

The effectiveness of SQIs will be analysed in two key areas: firstly, assessing how PPG
signal quality varies across different light wavelengths, as wavelength significantly
impacts signal accuracy due to differences in light penetration and absorption by
skin and blood. Secondly, exploring how these SQIs perform under different motion
types, which is key for understanding their reliability amidst motion-induced noise.
Additionally, the impact of participants” demographic characteristics on PPG signal
quality, as measured by the SQIs, will be examined. The detailed versions of the software

used are outlined in Section 3.5

5.2.1 PPG and Accelerometer Correlation

The relationship between the accelerometer and PPG signals is a critical aspect of
this study, focusing on the premise that the motion detected by the accelerometer
should correspond to the motion artefacts present in the PPG signal. To evaluate this,
a specific SQI was developed involving the calculation of the Euclidean norm of the
accelerometer axes for each windowed segment. This accelerometer intensity signal

was then correlated with the corresponding windows of the PPG signal to establish the

SQL

However, the findings, as illustrated in Figure 5.4, reveal an unexpected pattern in
the correlation between accelerometer and PPG signals across different activities. Con-
trary to initial assumptions, cycling exhibited the highest spread of correlation values,
suggesting that it contains the most motion-induced artifacts within its PPG signal. In-
terestingly, the motion correlation for running was similar to that of rest, which deviates
from the expected trend of increased motion in more intense activities. This unexpected
similarity could potentially be attributed to a ‘cross-over effect” in running.

Comparing true heart rates with this SQI showed a weak correlation, lacking a discern-
ible trend. This outcome indicates that this particular SQI may not effectively quantify
the quality of the collected PPG signals. Specifically, it is anticipated that running,



Chapter 5. Heart Rate Monitoring Dataset: Analysis 76

Pearsonr: 0.12

o
=)

o
o

PPG Wavelength
and Channel

PPG B CH1
PPG B CH2
PPG G CH1
PPG G CH2
PPG R CH1
PPG R CH2
PPG IR CH1
PPG IR CH2

Accelerometer Intensity Correlation
o o
N IS

(I

o
o

®) A

- S % o
& N N »
\)ﬂ‘

Q~

~ ~
True HR (BPM)

&
Q¥ & R
§ C
v

Activity

FIGURE 5.4: Relationship Between Accelerometer Intensity and PPG Cor-
relation, Activity, and True Heart Rate for MW PPG HR Dataset (This Work).
This figure shows box-plots of the correlation between accelerometer in-
tensity (calculated as the Euclidean norm of the three axes) and the PPG
signal. The box plots show the median, IQR, and 1.5 IQR whiskers. PPG
signals are analysed by LED wavelength and photodiode channel. The
correlation’s relationship with ECG-derived heart rate is shown. Lab-based
protocols often find motion increases with heart rate.

typically associated with significant motion, would exhibit the highest motion artefacts
in the PPG signal. However, the results show the opposite, suggesting this SQI may
not accurately reflect the expected motion impact. This discrepancy also implies that
the accelerometer data used as a motion reference in this SQI might not appropriately
represent the motion artifacts in the PPG signal. Furthermore, the observation that the
quality of longer wavelengths during motion is not significantly worse than that of
shorter wavelengths challenges common assumptions about wavelength-dependent
signal deterioration due to motion.

5.2.2 Signal-to-Noise Ratio

Signal-to-noise ratio (SNR) is a widely employed signal quality index (SQI) across
various domains, including PPG signal analysis, for assessing the proportion of the
desired “signal” to background “noise” [138]. Elgendi’s research examined several
SQIs, with SNR being one, although in this study skewness was determined the optimal
SQI [138]. In Elgendi’s approach, the “signal” component is defined as the standard
deviation of the absolute values of a filtered PPG signal, whereas the “noise” component
is the standard deviation of the filtered PPG signal itself. [138].
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However, this definition reveals counter-intuitive results, as shown in Figure 5.5. For
example, activities with significant aperiodic motion, like table soccer, exhibit higher
SNR, whereas more static conditions, like sitting, show lower SNR. Additionally, a
minimal correlation (0.1) is observed between SNR and the true HR, challenging the
effectiveness of this SNR definition in accurately reflecting noise levels.
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FIGURE 5.5: Relationship between Elgendi Signal-to-Noise Ratio, Activity

and True Heart Rate for PPG DaLiA Dataset [130]. This figure shows box-

plots of the correlation between Elgendi Signal-to-Noise Ratio and the PPG

signal. The box plots show the median, IQR, and 1.5 IQR whiskers. PPG

signals are analysed by LED wavelength and photodiode channel. The

correlation’s relationship with ECG-derived heart rate is shown. Lab-based
protocols often find motion increases with heart rate.

Another approach to defining SNR utilises ECG-derived heart rate values as a means
to separate signal from noise [128]. Our implementation of this method begins by
segmenting the PPG signal into windows using the Tukey window function to mitigate
transient effects. It then applies a bandpass Butterworth filter within a specific frequency
range (0.5 - 4 Hz). Subsequently, harmonics based on the ECG-derived heart rate are
identified and eliminated using a band-stop Butterworth filter, carefully removing
harmonics beyond a certain threshold, as dictated by the Nyquist criterion. This process
aims to isolate the noise component within the signal, which is then subtracted from
the original signal to obtain a ‘clean’ signal. The SNR is subsequently computed by
comparing the power of the ‘clean’ signal and the noise components, expressed in
decibels on a logarithmic scale.

This refined SNR calculation method exhibits more consistent and expected trends, as
illustrated in Fig 5.6. Lower-intensity activities like sitting display higher SNR values,
while more motion based activities such as table soccer and stair climbing show lower
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SNR values. Significantly, a stronger negative correlation between true heart rate and
SNR is observed, indicating a more accurate and meaningful representation of the
relationship between SNR and activity intensity in PPG signal analysis.
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FIGURE 5.6: Relationship Between The Proposed ECG-derived Signal-to-
Noise Ratio, Activity and True Heart Rate for PPG DaLiA [130]. This figure
shows box-plots of the correlation between the proposed ECG-derived
Signal-to-Noise Ratio and the PPG signal. The box plots show the median,
IQR, and 1.5 IQR whiskers. PPG signals are analysed by LED wavelength
and photodiode channel. The correlation’s relationship with ECG-derived
heart rate is shown. Lab-based protocols often find motion increases with
heart rate.

The analysis of the ECG-derived SNR on the collected dataset across various activity
phases suggests that longer wavelengths exhibit poorer SNR than shorter wavelengths,
as illustrated in Figure 5.7. This pattern is particularly pronounced during the cycling
and resting phases, where the disc