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Abstract

Wrist-worn photoplethysmography (PPG) has become a popular method for continuous
and remote heart rate monitoring, but single-wavelength PPG faces limitations in
accuracy, robustness, and generalisability. This study explores multi-wavelength PPG
sensing to enhance heart rate estimation accuracy, robustness, and fairness across
diverse populations, particularly for healthcare applications.

A novel dataset comprising 26,442 samples from 20 participants with diverse skin
types (Fitzpatrick I-VI) and varying heart rates and motion types was introduced,
including blue, green, red, and infrared PPG wavelengths. Additionally, an uncertainty-
aware deep learning method was developed for wrist-worn PPG heart rate estimation,
optimised for single- and multi-wavelength PPG, using sensor fusion and LOSO cross-
validation.

The pilot study analysed the impact of skin melanin, biological sex, and wavelength on
PPG heart rate estimation. The blue-green-red-IR combination proved most effective.
Significant differences in error distributions across wavelengths were observed for skin
melanin and biological sex. High melanin content was associated with higher MAE
(8.4 ± 2.1 BPM) compared to low melanin (6.1 ± 2.2 BPM). An uncertainty-aware post-
processing method demonstrated competitive performance, mitigating the effects of
skin melanin content by equalising the MAE to 3.3 ± 0.9 BPM for high melanin and 3.3
± 1.3 BPM for low melanin. The method recorded lowest MAE values on three existing
single-wavelength datasets—1.3 ± 0.6 BPM on IEEE Train, 1.2 ± 0.4 BPM on BAMI 2,
and 2.5 ± 0.9 BPM on PPG DaLiA-compared to existing deep learning methods. For
the newly collected multi-wavelength dataset, the method achieved a MAE of 3.3 ± 1.1
BPM.

The pilot study improved reliability through selective rejection of uncertain samples,
despite lower retention rates. By investigating multi-wavelength PPG and introducing
reliability indicators, this research aims to enhance accuracy and reliability of wrist-
worn PPG heart rate monitoring across diverse populations, addressing disparities and
improving healthcare applicability. These findings lay groundwork for further research
advancing more inclusive and reliable wrist-worn PPG heart rate estimation methods.
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Chapter 1

Introduction

1.1 Monitoring the Cardiovascular System

The cardiovascular system, part of the broader circulatory system, consists of the heart,
blood vessels, and blood. Its primary functions are to deliver oxygen, nutrients, and
hormones to cells throughout the body while simultaneously removing metabolic
waste products, as illustrated in Figure 1.1. The heart, a muscular organ comprised
of chambers and valves, pumps blood through various circuits of blood vessels in
cycles [1]. Each cycle called a cardiac cycle, consists of two main phases: systole and
diastole. During systole, blood is ejected into the arteries from the heart. Conversely,
diastole is when blood is returned to the heart in preparation for the next systolic
period [2].

The cardiovascular system’s function can be assessed through various metrics. Heart
rate measures cardiac cycles per minute, while pulse rate, though similar, assesses blood
pulses in vessels. Both are counted in beats per minute (BPM). Blood pressure is another
key metric, reflecting the force blood exerts on arterial walls during systole and diastole.
Oxygen saturation denotes the percentage of oxygen-filled haemoglobin relative to its
total capacity. Additional metrics such as stroke volume and cardiac output are critical
in assessing cardiovascular functionality [1].

Cardiovascular diseases (CVDs), are a group of disorders affecting the heart and blood
vessels. These include conditions like coronary heart disease and stroke, which impair
the functionality of the cardiovascular system. Cardiovascular diseases (CVDs) remain
the leading cause of death worldwide, accounting for nearly one-third of all deaths
in 2021 [3]. In England and Wales in 2020, CVDs were responsible for approximately
20% of preventable deaths and half of all treatable deaths. Notably, research suggests
that up to 80% of premature CVD-related deaths could be prevented. Furthermore,
the economic burden of CVDs is substantial, with an estimated annual cost of £15.8
billion [4].
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FIGURE 1.1: Block Diagram of Basic Cardiovascular System Functional-
ity. The diagram illustrates the flow of blood through the cardiovascular
system, with blue representing de-oxygenated blood and red indicating
oxygenated blood. It includes the systemic and pulmonary circuits, depict-
ing the heart, lungs, and body. Blood flows from the body to the heart, then
to the lungs for oxygenation, and back to the heart before being pumped

throughout the body.

CVDs manifest variably across different populations, influenced significantly by health
disparities from behavioural, socioeconomic, psychological, and biological factors [4–6].
In England, South Asian and Black individuals are more vulnerable to CVDs than white
individuals [4]. In the USA, racial and ethnic minorities, especially black individuals,
confront heightened CVD challenges [5, 6]. They typically face delays in diagnosis
and receive inferior care, leading to worse health outcomes than white individuals.
Notably, while stroke rates have dropped for white individuals, black individuals are
about twice as likely to experience a first stroke, as well as have increased heart failure
hospitalisation rates [6].

1.2 Remote, Continuous and Non-invasive Heart Rate

Monitoring

The current paradigm of passive treatments at a late stage is advancing towards pro-
active preventative measures, such as cost-effective, non-invasive and continuous
monitoring tools aimed at enabling early and reliable diagnosis and treatment of CVDs
and improving patients’ quality of life [7–9]. Heart rate monitoring is well-established
as an indicator of fitness levels and a training aid for various sports [10]. In healthcare,
elevated resting heart rates are an independent marker for mortality and morbidity in



Chapter 1. Introduction 3

individuals with and without CVDs [11–14], as well as low resting heart rates being
associated with CVDs [15].

Electrocardiography (ECG) is considered the ‘gold standard’ for continuous, non-
invasive cardiovascular monitoring. While the single-lead ECG configuration is com-
monly used for heart rate monitoring, 12-lead ECG remains the cornerstone for com-
prehensive cardiac assessment, including arrhythmia detection and structural heart
disease evaluation. ECG records the depolarisation of the heart’s conductive pathway
and the related cardiac muscle tissues during each cardiac cycle. Despite its accur-
acy, conventional multi-lead ECG is not ideal for continuous monitoring due to its
lack of portability and convenience. The bio-electrodes used are obtrusive, can’t be
exposed to water, and require precise placement on the body, connecting to a recording
device [7, 16]. Additionally, studies indicate that only 50% of nurses and less than 20%
of cardiologists correctly place leads V1 and V2, which can result in false diagnoses of
myocardial infarction [17].

Various techniques are available for continuous, non-invasive remote heart rate monit-
oring. In the UK’s health care system, it’s common to equip at-risk CVD patients with
a 3-lead ECG Holter monitor. Though it’s more portable than its 12-lead counterpart,
it still lacks convenience. While single-lead ECG chest straps used in sports science
are more convenient, eliminating the need to administer electrodes, they remain too
obtrusive for continuous everyday use. Wearable phonocardiogram (PCG) sensors
capture the heart’s acoustics and are usually patches worn on the chest. They tackle the
issues of convenience and obtrusiveness associated with ECG. However, the PCG signal
is often weak and prone to noise interference. Additionally, sensors worn as patches
need frequent reapplication [8].

Wrist-worn photoplethysmography (PPG) has emerged as a popular method for continu-
ous, non-invasive heart rate monitoring, driven by the proliferation of smart watches
and fitness trackers over the past decade [9,18,19]. PPG is an optical technique that meas-
ures blood volume changes in the measurement site’s micro-vascular bed [7]. Despite
its susceptibility to noise and interference [7], PPG’s simplicity and cost-effectiveness
— requiring only an LED and photodiode [7] — contribute to its popularity. Addition-
ally, the convenience and unobtrusiveness of wrist-worn sensors, combined with their
historical use in timekeeping devices, further enhance their appeal and widespread
adoption [18].
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1.3 Wrist-worn Photoplethysmography

Commercial smartwatches and wrist-worn fitness trackers, often equipped with PPG
sensors, have gained popularity in recent years, with 21% of Americans using commer-
cial smart watches [9, 19] and a projected market value of $96.31 billion by 2027 [19].
Their influence isn’t limited to the fitness sector; healthcare has utilised them, too. In
fact, over 600 clinical trials involving Fitbit fitness trackers alone are registered on clin-
icaltrials.gov [20]. Furthermore, evidence suggests that CVD patients who use fitness
trackers increase their physical activity [21], and nearly two-thirds more of them meet
their desired blood pressure targets [22].

However, known sources of interference and noise affect the accuracy of PPG sensing.
Alarmingly, a large body of research reveals that PPG sensing tends to be less accurate
for individuals with specific demographic attributes, such as higher concentrations
of skin melanin, being biologically female, and having a higher body mass index
(BMI) [7, 9, 19, 23, 24]. Additionally, these validation studies often lack a representative
sample of individuals with these attributes [7, 9, 25]. Furthermore, the algorithms
employed for estimating physiological parameters do not possess the functionality
to indicate their failure in providing reliable estimates, nor do they clarify how these
parameters are calculated [26, 27]. This lack of transparency and reliability undermines
the credibility of these methods in medical settings.

Paradoxically, those most susceptible to CVDs and lacking adequate health care – who
would benefit most from such technology – are the ones for whom wrist-worn PPG
sensing might be least accurate. Furthermore, wearable fitness trackers and other digital
health solutions are under-utilised in low-income and minority communities, with
cost and lack of education being significant barriers [9]. This raises concerns about the
fairness and reliability of wrist-worn PPG sensing in serving those most in need.

1.4 Aim and Objectives

This thesis aims to develop an accurate, robust and reliable heart rate estimation deep
learning method from wrist-worn PPG sensing for a diverse cohort. Therefore, to
achieve this aim, the objectives of this thesis are set as follows:

1. Comprehensive Literature Review on PPG Sensing and PPG heart rate Monit-
oring: Conduct a comprehensive literature review on PPG sensing principles and
applications, focusing on wearable multi-wavelength PPG sensing and wrist-worn
PPG heart rate estimation methods.
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2. Design and Data Collection of Multi-wavelength PPG Dataset: Based on the
findings from Objective 1; develop and acquire a comprehensive multi-wavelength
wrist-worn PPG heart rate monitoring dataset. This novel dataset should encom-
pass a diverse participant cohort, considering age, biological sex, BMI, and skin
melanin content. It should capture various motion types and intensities as well as
include variable heart rate profiles.

3. Quality Assessment of PPG Signals: Based on the findings from Objective 1,
develop and compare various methods for quantifying and subsequently assessing
the quality of the collected PPG signals across various activities and wavelengths.

4. Development of CNN for PPG Heart Rate Estimation: Develop a convolutional
neural network method for wrist-worn PPG heart rate estimation assessing the
performance of existing and collected datasets in generalisability and robustness.

5. Influence of Wavelength Selection on PPG heart rate Estimation: Following
objective 4, investigate the influence of wavelength selection on the accuracy and
robustness of the proposed methodology compared to the conventional green
PPG sensing.

6. Impact of Skin Melanin and Biological Sex on PPG Heart Rate Estimation: Fol-
lowing objective 4; investigate the influence of skin melanin content and biological
sex on the performance of the proposed heart rate estimation method.

7. Evaluation of Uncertainty Methods in Deep Learning: Compare and evaluate
aleatoric and epistemic uncertainty methods in deep learning, focusing on calibra-
tion, their distinctness or entanglement, and their relation to error rates and signal
quality.

8. Development of Post-processing Methods for PPG Heart Rate Estimations: Fol-
lowing objective 7; develop threshold-based post-processing methods, comparing
uncertainty-aware and assumption-based approaches, evaluating the effect on
accuracy, robustness, and mitigating the influence of skin melanin content and
biological sex.

9. Comparative Evaluation of PPG Heart Rate Estimation Methods: Following
objectives 4, 7, and 8; compare and evaluate the accuracy and robustness of the
proposed methodologies against existing conventional and deep learning PPG
heart rate estimation methods.

Building upon the outlined objectives, this thesis will further examine a series of research
questions to deepen the understanding and exploration of wrist-worn PPG heart rate
estimation techniques:
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1. How does the robustness and generalisability of the proposed wrist-worn PPG
heart rate estimation method differ across various wavelengths and wavelength
combinations, compared to the conventional green light used in consumer wrist-
worn smart watches?

2. What is the impact on heart rate estimation performance based on skin melanin
content and biological sex in deep learning methods for wrist-worn PPG heart
rate estimation?

3. In wrist-worn PPG heart rate estimation, does deep learning demonstrate superior
performance compared to conventional methods?

4. What are the most effective methods for estimating uncertainty in deep learning
methods for wrist-worn PPG heart rate estimation?

5. How does incorporating uncertainty in post-processing improve the reliability of
the proposed wrist-worn PPG heart rate estimation methodology?

1.5 Contributions

The main contributions of this thesis are summarised as follows:

1. A comprehensive literature review on multi-wavelength wearable PPG sensing,
encompassing theoretical foundations of PPG principles and skin optics, sources
of interference, hardware design considerations, and motion artefact reduction
techniques. The review explores various PPG applications and wavelength se-
lection criteria, followed by an in-depth examination of wrist-worn PPG heart
rate estimation methods. This includes an analysis of available datasets, signal
quality assessment methods, conventional beat detector and heart rate estimation
algorithms, and emerging deep learning approaches for wrist-worn PPG heart
rate monitoring.

2. A multi-wavelength wrist-worn PPG heart rate monitoring dataset that is com-
prised of data from 20 participants (13 female, 7 male), aged 26 ± 8 years, with
proportionate representation of Fitzpatrick skin types I-VI. It contains 26,442
samples of 8-second windows with 2-second slides, representing nearly 15 hours
of data. The dataset features the largest representation of high heart rates (160-180
BPM) among similar available datasets, with a fifth of the dataset indicating phys-
ical effort rates of 60% or higher. It includes the most comprehensive collection
of PPG wavelengths, with two channels each for blue, green, red, and IR. The
data collection protocol incorporates erratic wrist movements, cross-over effects,
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motion-free periods, and increased heart rates with minimal motion, providing a
robust foundation for evaluating wrist-worn PPG heart rate estimation methods.

3. An uncertainty-aware convolutional neural network for wrist-worn PPG heart rate
estimation, optimised for both single- and multi-wavelength PPG sensing, using
a sensor fusion architecture with LOSO cross-validation. Aleatoric uncertainty,
quantified through distributional predictions strategy, captured data-related un-
certainty but remained intertwined with epistemic uncertainty. Three epistemic
uncertainty quantification methods were also evaluated, finding Concrete dropout
to be the most effective, improving MAE and providing well-calibrated uncer-
tainty estimates across all utilised datasets. Concrete dropout also showed a strong
correlation with absolute error and ECG-derived signal-to-noise ratio (SNR) across
utilised datasets, enhancing the method’s reliability in variable conditions.

4. A comprehensive analysis of the impact of skin melanin content, biological sex,
and wavelength selection on wrist-worn PPG heart rate estimation. It identified
the blue-green-red-IR wavelength combination as the most effective, reducing
MAE by 0.4 BPM compared to green light and improving accuracy by 1.3 BPM
during motion-based activities like running. The study revealed significant differ-
ences in absolute error distributions across most wavelengths and combinations
for both skin melanin content and biological sex. For the most accurate, blue-
green-red-IR, wavelength combination high skin melanin content was associated
with a MAE of 8.4 ± 2.1 BPM, compared to a MAE of 6.1 ± 2.2 BPM for low skin
melanin content— a statistically significant difference.

5. An uncertainty-aware post-processing method demonstrated superior perform-
ance, achieving the lowest MAE on three existing single-wavelength wrist-worn
PPG heart rate estimation datasets compared to other deep learning methods. It
also mitigated the effects of skin melanin content and biological sex, equalising
the MAE to 3.3 ± 0.9 BPM for high melanin and 3.3 ± 1.3 BPM for low melanin.
The method recorded low MAE values on the existing datasets—1.3 ± 0.6 BPM on
IEEE Train, 1.2 ± 0.4 BPM on BAMI 2, and 2.5 ± 0.9 BPM on PPG DaLiA. However,
it was less effective on IEEE Test and BAMI 2, with MAE values of 6.6 ± 8.3 BPM
and 2.3 ± 1.1 BPM, compared to other deep learning approaches. For the newly
collected multi-wavelength dataset, the method achieved a MAE of 3.3 ± 1.1 BPM.
By selectively rejecting uncertain samples during post-processing, the method
improved reliability but at the cost of lower heart rate estimation retention rates.

Collectively, these contributions represent a meaningful step in the right direction,
addressing key challenges and introducing novel methodologies that enhance accuracy,
reliability, and fairness in wrist-worn PPG heart rate estimation methodologies.
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1.6 Thesis Outline

The thesis is structured as follows: Chapter 2 reviews PPG heart rate estimation, focus-
ing on multi-wavelength and deep learning. Chapter 3 outlines research design and
methodology. Chapter 4 discusses the design and collection of the multi-wavelength
wrist-worn PPG heart rate estimation dataset. Chapter 5 analyses this dataset for its
efficacy and critical insights. Chapter 6 details a convolutional neural network’s design,
implementation, and heart rate estimation performance analysis. Chapter 7 covers
uncertainty quantification and post-processing methods. Chapter 8 concludes the thesis,
summarising key findings, limitations, and future research directions.
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Chapter 2

Key Concepts and Related Works

This chapter includes a modified version of ‘Ray, D., Collins, T., Woolley, S., & Ponnapalli, P.
(2023). A Review of Wearable Multi-Wavelength Photoplethysmography. IEEE Reviews in Bio-
medical Engineering, 16, 136–151. https: // doi. org/ 10. 1109/ RBME. 2021. 3121476 ’

The preceding chapter established the necessity and methodologies for remote, con-
tinuous, non-invasive heart rate monitoring, positioning wrist-worn photoplethysmo-
graphy (PPG) sensing as a promising technique while acknowledging its limitations.
This chapter addresses objective 1 of the thesis by offering an exhaustive review of
PPG sensing, with an emphasis on multi-wavelength PPG and wrist-worn PPG heart
rate monitoring. It begins by detailing the theoretical underpinnings of PPG sensing,
including optical interactions and principles. The chapter then details interference
sources affecting signal quality and discusses key hardware considerations like sensor
geometry, measurement site, and contact force. The section culminates with explor-
ing motion artefacts, mitigation strategies, and diverse applications of PPG sensing,
including wavelength selection.

The latter section covers computational methods for wrist-worn PPG heart rate monit-
oring, examining various conventional approaches. It highlights the need for diverse
datasets regarding cohort characteristics and motion types/intensities for method valid-
ation. The chapter also discusses the key aspect of signal quality indicators, underlining
their importance in assessing the robustness of the developed downstream methods.
The chapter concludes with a comprehensive review of various deep learning ap-
proaches to PPG heart rate estimation, identifying research gaps and potential areas for
investigation, thereby setting the stage for this research.

2.1 Wearable Multi-wavelength Photoplethysmography

Wearable PPG sensing has increased in popularity over recent years as a simple and
unobtrusive method to monitor various physiological parameters remotely. However,

https://doi.org/10.1109/RBME.2021.3121476
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showing promise as a tool to advance a proactive approach to healthcare and lifestyle
choices, various intricacies and considerations need to be addressed. This section details
the principles of PPG sensing, the complex interactions of skin and light, the numerous
sources of interferences and the various aspects of signal acquisition for wearable PPG
sensing. The section then covers motion artefacts reduction techniques, the selection of
the wavelength and the multitude of applications PPG sensing offers.

2.1.1 The Principles and Origin of Photoplethysmography Sensing

PPG is a low-cost, simple and unobtrusive method consisting of a light source and
photo-detector. Light is emitted into the skin, and the intensity of light transmitted into
the photo-detector will vary depending on the volume of blood in the vascular bed of
the measurement site, taking advantage of blood’s absorbent qualities to visible and
infrared (IR) light.

FIGURE 2.1: A typical PPG waveform adapted from Lemay et al. [29,
Chapter 2.3]. The PPG waveform is divided into systolic and diastolic
phases, showing blood volume changes within vessels. Key waveform fea-
tures such as the systolic peak, the diastolic peak and the dicrotic notch are
shown. The diagram distinguishes between the AC component (pulsatile
arterial blood) and the DC component (venous blood and other tissue). Ab-
sorbed and transmitted light reflects blood volume changes, with emitted

light being a combination of LED and ambient light.

During the contraction of the left ventricle, blood is ejected out of the heart. It propagates
along the circulatory system, corresponding to the initial positive slope of a PPG pulse
(Figure 2.1). The systolic peak marks the maximum amount of blood in the vascular bed
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at the measurement site. The pulse waveform then decreases in amplitude until a local
minimum where it transitions into the diastolic phase. The local minimum or dicrotic
notch has been traditionally attributed to the closure of the aortic valves [28]. However,
an alternative theory suggests it may be related to reflected wave [28]. The mechanism
underlying the dicrotic notch remains an active area of research [28]. The end of the
diastolic phase marks the closure of the mitral valve and the completion of a cardiac
cycle [29]. As well as the AC (Alternating Current) or pulsatile component of the signal,
PPG sensing also collects the DC (Direct Current) or non-pulsatile component, which is
shaped by respiration, sympathetic nervous system activity, blood pressure control and
thermoregulation [16, 28].

There are two modes of PPG sensing with different measurement sites (Figure 2.2).
Transmission PPG sensors are usually sited on the fingertip or earlobe, where the light
source and detector are separated by tissue. Reflectance PPG sensors, which have
both components positioned alongside each other on the same side of the tissue, are
commonly sited on the wrist, forehead or torso [16].

FIGURE 2.2: The two modes of PPG sensing. The diagram illustrates the
reflectance (top) and transmission (bottom) modes of PPG sensing. The left
column shows minimal blood in the vessel, while the right column shows
maximal blood in the vessel. In reflectance mode, the LED emits light that
is reflected back to the photodetector (PD) through the skin and blood
vessels. In transmission mode, the LED emits light that passes through
the skin and blood vessels and is detected by the PD on the opposite side.
When there is maximal blood in the vessel, less light is transmitted back
to the PD in both modes, compared to when there is minimal blood in the

vessel.

A sensing method similar to PPG sensing was first devised in 1936 by two American
research groups [31], but Alrick Hertzman established PPG sensing in 1937 [32]. Since
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then, with the advancement of semiconductor technologies, transmission mode PPG
sensing has been widely adopted in clinical settings for pulse oximetry measurements
[24]. Reflectance mode PPG and PPG sensing for other physiological measurements
have been gaining popularity in recent years in both commercial and research settings
but have not been widely adopted in clinical practice.

2.1.2 Photoplethysmography Skin Optics

Human skin is a complex heterogeneous medium consisting of three main layers:
epidermis, dermis and hypodermis (or subcutaneous tissue). The thickness of these
layers varies based on the specific body location, adhering to a general pattern [33, 34].
The outermost layer, the epidermis, is composed of multiple sub-layers of both living
and non-living cells, with minimal to no blood circulation. The stratum corneum, the
nonliving part of the epidermis, is usually about 20 µm in thickness and is made up
solely of dead squamous cells [34]. Directly below, the living epidermis has an average
thickness of 100 µm and contains the majority of skin pigment compounds, including
pheomelanin and eumelanin, collectively known as melanin [33–36].

Located beneath the epidermis is the dermis, which is divided into two primary layers:
the papillary dermis, usually about 150 µm thick, and the reticular dermis, with a
thickness that typically varies between 1-4 mm based on the region of the body [34].
The papillary dermis is composed of loose connective tissue, which is vascularised by
a network of capillaries and small blood vessels typically ranging from 1 to 8 µm in
diameter [37]. These vessels exchange materials, such as oxygen and carbon dioxide,
between blood and tissue. The reticular dermis is made up of dense connective tissue
housing structures such as nerves, glands and hair follicles. Additionally, the reticular
dermis contains arterioles and venules, which are slightly larger blood vessels, typically
ranging from 2-30 µm in diameter [37], that connect the capillaries to the arteries and
veins [33].

The deepest layer of the skin is the hypodermis, which connects the skin to the under-
lying bones and muscles. Its thickness generally varies from 1-6 mm, contingent on
the specific body location [34]. The hypodermis contains larger blood vessels, arteries
and veins, typically ranging from 500-5000 µm in diameter [37], which transport blood
around the body. The hypodermis is mainly used to store fat and primarily consists of
loose connective tissue [33].

Due to the inhomogeneous distribution of blood, cells and pigments in the skin, meas-
uring the optical properties is challenging. Usually, the main optical properties of skin
are described as absorption, scattering and penetration depth along with reflection,
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transmission and fluorescence [30, 31, 34, 35, 38–41]. Researchers have employed several
methods to model these properties, such as the radiative transport equation, the Beer-
Lambert law, stochastic models like Monte Carlo simulation and random walk, and the
adding-doubling method, all with varying results [40, 42].
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FIGURE 2.3: The light absorption coefficients of biological compounds
present in the epidermis-hypodermis layers of skin adapted from Lemay et
al. [30, Chapter 2.3]. (Hb - haemoglobin, HbO2 - oxygenated haemoglobin).

The main light-absorbing components within the skin are water, haemoglobin and
melanin; however, each absorbs light differently depending on the wavelength of light
and chemical bonding (Figure 2.3). Water, the main component of skin, strongly absorbs
IR light (900-1100 nm) but exhibits minimal absorption in the visible light spectrum (390-
780 nm) [30,31,34,41,43]. Melanin protects the skin against the sun’s harmful ultraviolet
(UV) radiation [35]. Its absorption capacity intensifies with decreasing light wavelengths,
making it particularly effective at absorbing shorter wavelengths ranging from UV to
yellow light (200-600 nm) [16, 30, 31, 34–36, 38, 39]. Similarly, haemoglobin’s absorbing
qualities decrease as the wavelength of light increases. However, when chemically
bonded with oxygen, its absorbing qualities dramatically reduce when exposed to light
in the range of 570-700 nm and is more absorbent to longer wavelengths such as IR
when compared to non-oxygenated haemoglobin [30, 31, 34, 35, 38, 39, 41, 43].

Scattering in the skin can manifest in two primary ways: as a surface phenomenon
like reflection and refraction or as an interaction with skin components that have
distinct optical properties. The skin’s surface is estimated to reflect about 4-7% of light,
regardless of its wavelength [38]. Generally, as the light’s wavelength increases, the
scattering coefficients within the skin decrease [34, 38–41]. Large melanosomes exhibit
mainly forward scattering in the epidermis, whilst small “melanin dust” has an isotropic
scattering profile. In the dermis, the scattering profile is primarily determined by the
fibrous structures of collagen. Meanwhile, in the hypodermis, the primary scatterers



Chapter 2. Key Concepts and Related Works 14

are spherical lipid droplets [34]. Research also indicates that scattering effects are more
pronounced in areas like the breast, abdomen, and forehead compared to the arm [41].
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FIGURE 2.4: Approximate maximum penetration depth of each wavelength
of light in the skin using reflectance mode sensing. The figure shows the
approximate maximum penetration depths of different wavelengths of
light in human skin using reflectance mode sensing. The light spectrum
ranges from ultraviolet (UV) to infrared (IR). UV light penetrates the shal-
lowest, mainly within the epidermis, while IR light penetrates the deepest,
reaching the subcutaneous tissue. The depth scale on the right indicates the
penetration in millimetres, illustrating how each wavelength interacts with

the skin’s layers, from the stratum corneum to the subcutaneous tissue.

In reflectance mode PPG sensing, the trajectory of light within the skin is theorised
to follow a “banana-like” shape [44]. The penetration depth, governed by the light’s
absorption and scattering coefficients in the tissue, is defined as the depth at which the
light intensity diminishes to 1/e (approximately 37%) of its original surface intensity [40].
Conversely, in transmission mode PPG sensing, the light’s path moves directly through
the skin, from the Light Emitting Diode (LED) source to the photodiode. Generally, the
penetration depth for reflectance mode sensing increases as the wavelength of light
increases in the range of visible and near-IR light (Figure 2.4) [16,30,31,34,39,41,43,45–47]
with the maximal penetration depth being 3-4mm for IR light (800-1100 nm) [34,41,46,48].
However, when the light’s wavelength extends beyond 1250-1400 nm, penetration depth
shows a notable decline [34, 41, 48]. The penetration depth in reflectance mode sensing
can also vary based on the measurement location. For instance, the breast and abdomen
tend to have deeper penetration compared to regions like the arm and forehead [41].

2.1.3 Sources of Interference

Several factors can affect the collected PPG signal’s intensity, morphology and noise
level, consequently interfering with the measurement of physiological data. These
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sources can be categorised as biological, physiological and external, as summarised in
Figure 2.5. Beyond these sources of interference, sensor design and configuration can
affect the quality of the collected PPG signal. These intricacies and implications are
comprehensively discussed in this section and subsequent sections.

Sources 
of  

Interference

Biological

Physiological

Skin 
Melanin 

Biological 
Sex

Motion

Ambient 
Light

Contact
Force

Respiratory
 Rate

Venous 
Pulsations

Skin 
Temperature

Measurement 
Site

Age

Obesity

External

FIGURE 2.5: Sources of Interference in PPG Sensing and Their Impact on
the Signal [23]. This figure categories the factors that interfere with PPG
sensing into external, biological, and physiological sources, highlighting
their specific effects: green indicates changes in signal intensity, blue de-
notes alterations in signal morphology, and red represents increased noise
levels. Note that hardware-related factors, which can also affect PPG sens-

ing, are discussed in Section 2.1.4.

Age, Biological Sex and Obesity

Ageing causes anatomical and physiological shifts, especially in vascular structures,
such as arterial thickening and increased stiffness, and non-cardiovascular changes, such
as reduced skin thickness. These factors can modify the PPG waveform morphology,
reducing the clarity of the cardiac information within the signal [23].

Biological sex has been theorised to contribute to changes in the morphology of the PPG
waveform [23]. Differences in heart mass, arterial diameters and stiffness between sexes
can alter the amount and pressure of blood flowing through the vascular bed. Beyond
cardiovascular distinctions, studies indicate variations in skin thickness between sexes,
which may impact the amount of cardiac information in the signal [23]. Shcherbina et al.
found that biological male subjects have significantly higher error rates than biological
female subjects using several commercial wrist-worn reflectance mode PPG sensing [49].
The impact of biological sex on PPG sensing remains unclear due to limited research.

Obesity, linked to a higher BMI, brings about physiological changes that influence the
PPG signal’s intensity and quality. Factors such as increased skin thickness, variations
in blood flow, oxygen saturation, and capillary density all contribute to the alterations
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in the PPG signal. These changes, combined with the individual’s metabolic state, body
location, gender, skin tone and age, can lead to significant reductions in the quality of
the collected PPG signals [23].

Skin Tone

The accuracy and reliability of PPG sensing have been observed to vary across different
ethnic groups, with initial studies focusing on the influence of skin tone [7,23,24,49–55].
Pulse oximetry studies first highlighted potential inaccuracies for people with darker
skin tones [53]. Patients darker skin tones and low blood oxygen showed up to 10%
variation in oximetry readings [56]. In hypoxia, their oxygen saturation was often
overestimated [54]. A study of 1609 subjects found black patients had nearly triple the
rate of occult hypoxemia compared to white patients [55]. A comprehensive review
confirmed this trend, finding that most studies showed decreased oximetry accuracy in
patients with darker skin tones [24]. Yet, some studies found no impact on oximetry
performance from skin tone [57, 58].

Preejith et al. found skin tone significantly impacts green light reflectance mode wrist-
worn PPG sensing in non-clinical active settings. Analysing 256 subjects, they found
a mean absolute error of 1.04 BPM for subjects with lighter skin tones compared to
10.90 BPM for subjects with darker skin tones when computing heart rate estimations
[51]. Shcherbina et al. discovered factors such as darker skin tone, greater wrist size,
and elevated BMI were associated with higher heart rate error rates in commercially
available reflectance mode wrist-worn PPG devices [49]. However, Bent et al. found no
statistically significant differences in heart rate estimation accuracy across skin tones for
commercially available wrist-worn reflectance mode PPG devices [59].

The use of green light in many non-clinical PPG systems is motivated by haemoglobin’s
high absorption spectrum in this range [23]. Fallow et al. examined blue (470 nm), green
(520 nm), red (630 nm), and IR (880 nm) reflectance mode wrist-worn PPG sensing,
finding green light produces the highest mean modulation at rest for all skin tones
but saw a trend towards decreasing mean modulation when increasing skin melanin
content. During exercise, they found blue and green wavelengths had higher signal-to-
noise (SNR) ratios compared to red or IR [52]. Yen et al. found similar results of green
light producing the highest mean modulation across all skin tones using a palm-worn
reflectance mode PPG sensor [60]. Contrastingly, Mohapatra et al. found orange (590
nm) PPG to produce increased perfusion index, pulsatile strength, and SNR across all
skin tones compared to green (520 nm) wrist-worn reflectance mode PPG sensing. The
improved performance was especially noticeable for subjects with darker skin tones,
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suggesting that specific wavelengths might be more effective for certain skin tones,
especially during physical activity [50].

Skin Temperature

Reduced skin temperature is associated with lower perfusion rates in the vascular bed,
a response linked to the Autonomic Nervous System constricting blood vessels in the
dermis to conserve body heat [61, 62]. Reductions in skin temperature typically affect
the peripheral circulation more than the central areas of the body; for example, when
the body is exposed to 10°C ambient temperature, the blood flow in the hand decreases
to less than 1 ml/min [62]. All studies exploring temperature and PPG sensing agree
that temperature influences the signal [43, 61–66] but to differing degrees.

Ralston et al. posited that skin temperature variations might not cause clinically signific-
ant errors in transmission mode PPG sensing [63]. Conversely, Budidha et al. observed
that cold exposure significantly reduced the amplitude of the PPG signal in some volun-
teers, rendering it ineffective for ear-worn reflectance mode PPG sensing [62]. Maeda et
al. determined that at temperatures below 15°C, green light (525 nm) PPG heart rate
estimates correlated better with ECG heart rate estimates than IR light (880 nm) [65]. In
another study, Maeda et al. found that cold exposure reduced the pulsatile component
of both green and IR signals. In contrast, hot exposure increased both the pulsatile and
non-pulsatile components of the IR signal due to increased blood in peripheral vascular
bed [66].

Respiratory Rate and Venous Pulsations

Respiration significantly impacts the non-pulsatile (DC) component of the PPG signal,
introducing variations that can affect heart rate measurements [23]. An increase in
respiration rate is closely linked to changes in heart rate variability. The PPG signal
reflects this by combining cardiac cycle signals with lower-frequency waveforms related
to respiration, which primarily originate from the venous system [67].

The venous system’s contributions to the PPG signal are often seen as interference
but represent a distinct waveform influenced by cardiac, respiratory, and autonomic
functions [23]. To reduce venous influences, pressure is sometimes applied at the
measurement site, though this can alter the PPG waveform itself [23].

Studies have identified three key types of respiratory-induced PPG variations: intensity,
amplitude, and frequency [23, 67]. These variations can modulate the baseline, alter
peak amplitudes, and induce phase shifts in the PPG signal. Higher respiration rates
tend to reduce these fluctuations [23, 67].
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Techniques such as filtering and advanced algorithms are being developed to separate
respiratory influences from the PPG signal [23, 67]. Although venous contributions are
often considered noise, they can still provide valuable physiological information, but
require careful management to avoid distorting the PPG waveform [23].

2.1.4 PPG Hardware Design and Considerations

Over the past decade, there have been significant advancements in multi-wavelength
PPG sensing hardware in research settings. The early stages of this technology heavily
depended on fibre optics [45, 68]. This then progressed into Optical Electronic Patch
Sensor (OEPS) development [60, 69] due to its low cost and simple form factor, with
researchers also exploring ear-worn, finger-worn, forehead-worn and wrist-worn PPG
sensors [62, 70–72]. The most recent innovation in multi-wavelength PPG sensing
hardware is the integration of an on-chip spectrometer, utilising plasmonic filters [73].
This approach has been refined to produce an all-wavelength PPG sensing device [74].

The measurement site of PPG sensing is key due to variations in tissue thickness,
skin melanin concentrations, vascular network blood flow, and potential movement
at the site [75–80]. Researchers evaluated 52 different measurement locations across
the body in a comprehensive study. They determined that the fingers, palms, face,
and ears yielded higher amplitude readings for the pulsatile component of the signal
in comparison to other sites [77], aligning with further research [75, 80]. However,
when examining the effects of motion at various measurement sites, it was found that
motion significantly affected the blood distribution in the vascular bed at peripheral
measurement sites such as fingers and wrist [75, 78].

Due to the preexisting widespread adoption of wrist-worn devices [18] and their unob-
trusive nature, the wrist is the most common measurement site for consumer-grade PPG
sensing devices. However, studies indicate that the wrist is not optimal for capturing
HR, pulse oximetry, and respiration rate during rest and activity [80], highlighting the
need for a more robust methodology. Additionally, researchers have challenged the
typical measurement site for wrist-worn PPG sensing devices, suggesting the radial
zone, side of the wrist with the thumb, may produce improved signal quality dependent
on light wavelengths selected when compared to the central zone of the dorsal surface
of the wrist [81, 82].

In the commercial setting, Polar Unite, Grit X and Vantage V2 are the only devices that
currently use four wavelengths [83] whilst the other commercial devices have at most
three, typically using green light for heart rate measurements and red and IR light for
pulse oximetry measurements. While ‘research-grade’ wrist-worn PPG devices like
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Empatica E4 and Biovotion Everion (now under Biofourmis Biovitals) offer raw data
streams, their heart rate accuracy is reportedly lower than consumer-grade devices.
Specifically, Empatica E4 has a mean absolute error of 11.3 BPM at rest and 12.8 BPM
during activity. Biovotion Everion’s mean absolute error is 16.5 BPM at rest and 19.8
BPM during activity, whereas the Apple Watch has a mean absolute error of 4.4 BPM
at rest and 4.6 BPM during activity [59]. This aligns with the findings of Rukasha et
al., which reported Empatica E4’s heart rate estimate mean absolute percentage errors
(MAPE) ranging from 7.2% to 29.2% on a treadmill and 5.3% to 13.5% during 12-hour
continuous monitoring [84]. The significant difference in heart rate accuracy between
these devices may be attributed to both hardware and software factors. While hardware
limitations such as sensor quality and the number of wavelengths likely impact accuracy,
it is hypothesised that the methods for processing PPG signals play a key role. It is
plausible that Apple’s larger user base provides extensive data, allowing for more
refined and accurate algorithmic models. Therefore, it is theorised that the superior
heart rate accuracy of the Apple Watch is largely due to its advanced data-driven
algorithmic processing.

Designing multi-wavelength PPG devices involves multiple considerations, including
the number and positioning of LEDs and photo-detectors (PD), LED light intensity,
sample rate, contact force, and measures to counter ambient light and electrical noise.
Table 2.1 summarises various integrated multi-wavelength PPG sensors that have
been developed to bypass these design choices. However, these sensors often lack the
flexibility needed for specific research scenarios. Analog Front Ends offers a solution by
allowing the creation of a custom sensor module tailored to particular requirements.
A summary of these multi-wavelength PPG Analog Front Ends (AFE) can be found in
Table 2.2.

In PPG sensing with an AFE, the placement of LEDs and PDs is key for optimal signal
strength. For the highest AC/DC ratio, green LEDs should be 1.85 mm from the PD,
while red and IR LEDs should be 2.35 mm and 2.75 mm away, respectively [85]. At a 9.75
mm separation, no pulsatile waveform is detected at any wavelength [46], and it was
found that nearly double the driving current was needed to obtain a signal at similar
distances apart for both red and IR LEDs [76]. While augmenting current and LED count
boosts radiation power [46], a small PD active area might not capture this, resulting
in no amplitude increase [86]. Expanding the PD’s active area or count enhances the
signal, with amplitude boosts of 42% for wrist-worn red PPG and 73% for IR. Increasing
PD count over LED count is advantageous due to reduced power and heat [76, 86].
Wavelengths should be collected starting with the longest, as pulsations first appear
in deeper vessels [46]. An optimal sample rate between 21–64 Hz is recommended to
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Device
Wavelength of LEDs

Features
Blue Green Red IR

Analog
Devices
ADPD188GG

2

2 Photodiodes
I2C & SPI Communication
2 external sensor inputs
3 LED drivers
Ambient Light Rejection

Analog
Devices
ADPD144RI

1 1
I2C Communication
External LED emitters
Ambient Light Rejection

Maxim
Integrated
MAX30101

1 1 1
I2C Communication
Ambient Light Rejection

Maxim
Integrated
MAX86150

1 1
I2C Communication
Ambient Light Rejection
Electrocardiogram

Maxim
Integrated
MAX86916

1 1 1 1
I2C Communication
Ambient Light Rejection

OSRAM SFH
7072

2 1 1
Light Barrier to block
optical cross-talk
Requires AFE

OSRAM SFH
7050

1 1 1
Light Barrier to block
optical cross-talk
Requires AFE

TABLE 2.1: Summary of Multi-wavelength Photoplethysmography Integ-
rated Sensing Units. Search carried out in 2022. The table lists various PPG
sensing units from different manufacturers, highlighting the wavelength of
LEDs (Blue, Green, Red, IR), key features, and communication protocols.

compress data and minimise storage efficiently [87].

Contact force is pivotal in PPG sensing [76, 77, 82, 88]. As sensor contact force rises,
the pulsatile signal component’s amplitude increases until the transmural pressure
(difference between external and intra-arterial pressures) becomes zero. Beyond this
point, the pulsatile amplitude diminishes with increasing external pressure until arterial
walls flatten, halting circulation [77,82,88]. For the wrist in reflectance mode, an optimal
contact pressure of 80mmHg is suggested for red light [82]. On the upper arm, a
30mmHg pressure yields the highest amplitude for green and IR light in reflectance
mode [77]. Minimal contact pressure is required for the forehead in reflectance mode
[76].
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Device Drivers Features
Analog Devices
ADPD4000/4001
ADPD4100/4101

8 LED drivers
8 Inputs for PPG, ECG, EDA,
impedance and temperature

I2C & SPI
Communication
Ambient Light Rejection

Maxim Integrated
MAX30110

2 LED
1 Photodiode

SPI Communication
Ambient Light Rejection

Maxim Integrated
MAXM86146

3 LED
2 Integrated Photodiode

SPI Communication
Ambient Light Rejection
Integrated Micro Controller

Texas Instruments
AFE4950
AFE44S30

8 LED
4 Photodiode

1/2/3 Lead ECG (AFE4950)
I2C & SPI Communication
Ambient Light Rejection

Texas Instruments
AFE4900

4 LED
3 Photodiode

1 Lead ECG
I2C & SPI Communication
Ambient Light Rejection

Texas Instruments
AFE4404

3 LED
1 Photodiode

I2C Communication
Ambient Light Rejection

TABLE 2.2: Summary of Multi-wavelength Photoplethysmography Analog
Front Ends. Search carried out in 2022. The table provides a comparison
of various PPG analog front-end devices, detailing the number of LED
drivers and photodiodes, as well as key features such as communication
protocols, ambient light rejection, and additional capabilities like ECG and

impedance measurements.

2.1.5 Motion Artefact Reduction

Motion artefacts significantly impact the accuracy of PPG sensing. Motion artefacts dis-
tortions in the PPG signal arise from body movement and the varying light penetration
depths depending on sensor placement. These artefacts can be periodic or non-periodic
and often have larger amplitudes than the signal’s pulsatile component [72, 89]. Blanos
et al. showed that green (525 nm) and orange (590 nm) light were less affected by
motion artefacts than red light (650 nm) [69]. Matsumura et al. concurred, noting a
higher SNR ratio for green (530 nm) and blue (470 nm) light compared to red (640 nm)
during motion [90]. Shorter wavelengths, like green and blue, offer better SNRs due
to their penetration depths and in-vivo optical path lengths making them less prone
to motion noise [72]. They also experience less attenuation from optical processes and
capture less noise from deeper tissues, like bone movement [69]. However, some shorter
wavelengths due to shallow penetration depths do not reveal much cardiac activity [72].

The typical frequency range of a PPG signal is 0-4 Hz, whilst motion artefacts fall
within 0-10 Hz, making the removal of motion artefacts challenging. Many methods
use a motion reference signal, often collected from accelerometers or gyroscopes [89].
Conversely, researchers have utilised multi-wavelength PPG as a means for motion
artefact reduction. For example, Wang et al. utilised the isobestic wavelength (800
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nm) as a motion reference and applied a noise-cancelling algorithm to refine the PPG
signal [91]. Similarly, Zhang et al. used an IR (940 nm) PPG signal for motion reference,
leveraging its deep penetration and motion sensitivity. They used a wavelet transform
for signal cleaning and reconstruction, reducing heart rate estimation errors to less than
2 BPM for all motion types [89].

Yao et al. developed a method to separate motion artefacts from PPG signals using
an algorithm based on the Beer-Lambert law, which utilised red (660 nm) and two IR
(850 and 940 nm) wavelengths [42]. Chang et al. applied a maximal-ratio combined
algorithm to 15 PPG signals, achieving a 50% reduction in variations relative to a
single-wavelength reference sensor [73]. Chen et al. implemented a similar algorithm
on an all-wavelength wrist-worn PPG device, revealing a superior SNR compared to
single-wavelength [74]. Lee et al. developed a motion artefact reduction algorithm
using 12-channel PPG signals with green (530 nm), red (660 nm) and IR (940 nm)
wavelengths. Using a two-step analysis method—first independent component analysis,
then principal component analysis with a truncated singular value decomposition
approach—the method showed impressive performance in high-motion scenarios.
It achieved 82.49% sensitivity (correctly identifying true positives), 99.83% positive
predictive value (accuracy of positive predictions), and a very low 0.17% false detection
rate (incorrect identifications) [72].

2.1.6 PPG Applications and Wavelength Selection

PPG offers diverse physiological measurements and clinical applications [31, 67]. These
include vital signs such as heart rate [92–95], Blood Oxygen Saturation [96], Respir-
ation Rate [97], Blood Pressure [98] and Heart Rate Variability (HRV) [99] as well as
clinical insights to Hypertension [100], Atrial Fibrillation [29], Vascular Aging and
Atherosclerosis [16, 101], Coronary Heart Disease [102] and Cardiovascular risk [67].

Beyond cardiovascular-related monitoring, PPG sensing has seen several developments,
including the detection and monitoring of epileptic seizures [103], diagnosis of respir-
ation diseases [104], monitoring of infectious diseases [66], mental stress and affect
recognition [105, 106], monitoring of sleep conditions [107, 108], estimation of blood
glucose [109], and medicinal drug delivery monitoring [110–112]. This highlights PPG
sensing as a cost-effective continuous monitoring tool to advance a more proactive
approach to healthcare and lifestyle choices and establish a technological approach to
improving healthcare equity.

The choice to utilise green light in many commercial single-wavelength PPG devices is
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due to its optimal light-tissue interactions. Green light is highly absorbent to haemo-
globin and penetrates deep enough to sense blood pulsations but not too deep to
collect additional physiological information and noise. Nevertheless, alternate light
wavelengths have exhibited enhanced signal quality in specific circumstances. This
underscores the potential of multi-wavelength approaches to improving the accuracy,
robustness and generalisability of PPG sensing [7, 113].

The most common application for multi-wavelength PPG sensing is pulse oximetry,
which requires two wavelengths to calculate blood oxygen saturation levels. The
blood oxygen saturation level can be estimated from the ratio of pulsatile and non-
pulsatile components of each wavelength [96]. Typically, the wavelengths used are red
(622–780 nm) and IR (780-2400 nm) [73]; however, researchers have identified orange
and green light to perform better due to their robustness to motion artefacts [69, 114].
For blood pressure estimation, multi-wavelength approaches consistently outperform
single-wavelength methods [73, 115, 116]. This superiority is especially evident when
harnessing the distinct interactions of various wavelengths with skin and blood [73].
In blood glucose estimation, multi-wavelength usage has been linked to reduced error
rates [117,118]. Additionally, multi-wavelength PPG introduces novel applications such
as medicinal drug delivery monitoring [110–112].

2.2 Photoplethysmography Heart Rate Monitoring

The effectiveness of heart rate monitoring through PPG hinges on both the methodology
employed for heart rate estimation and the quality of the signal acquired. This section
examines the datasets utilised for validating heart rate estimation algorithms, emphas-
ising the prerequisites for such data and the pivotal design considerations. Additionally,
various methodologies for assessing the quality of the signals collected. The section then
examines two distinct conventional approaches for heart rate estimations, clarifying
their strengths and weaknesses and the diverse ways they have been implemented in
existing literature. The section concludes with an exhaustive review of deep learning
methods for heart rate estimation from PPG signals.

2.2.1 Wrist-worn Heart Rate Monitoring Datasets

As of early 2024, more than 30 PPG research datasets are available, covering diverse ap-
plications such as blood pressure monitoring, cardiovascular disease detection, emotion
detection, heart rate monitoring, pulse oximetry, and respiratory monitoring [67]. The
largest dataset is the UK Biobank, with over 200,000 participants [119].
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Every dataset is characterised by three fundamental elements that determine its use
case:

1. Participants: This aspect encompasses the demographic and physical details of the
cohort from which the data was gathered. It includes attributes like age, biological
sex, weight, height, skin type, health condition, and, in specific scenarios, even
the species.

2. Protocol: This component outlines the environment and conditions under which
the data was collected. It specifies whether the setting was a hospital, laboratory,
or a more naturalistic environment. Additionally, it describes the tasks or activities
that participants were engaged in during the data collection process.

3. Devices: This facet provides insights into the kind of bio-signals recorded. It
details the measurement site of the device, the variety of distinct signals each
device captured, including channels, axes or wavelengths, and the resolution and
sample rate of each signal.

Wrist-worn heart rate monitoring datasets with the intended use of validating heart rate
estimation algorithms typically have a chest-worn electrocardiogram (ECG) and a wrist-
worn PPG. The ECG serves as the reference device, providing “ground truth” heart rate
values extracted over designated time intervals; without validation against an ECG, the
method would measure pulse rate instead of heart rate. A motion reference is typically
included from a triaxial accelerometer or gyroscope. The protocol typically involves
a series of activities with varying levels of intensity collected in either a laboratory or
naturalistic setting. Summarised in Table 2.3 are the datasets that fulfil these criteria.

Notably, some heart rate estimation algorithms validate their methodology using emo-
tion detection datasets such as WESAD [120] and CLAS [121], respiratory monitoring
datasets such as BIDMC [122] and CapnoBase [123], as well as hospital setting datasets
such as MIMIC PERform [124]. While these datasets provide the essential signals for
validation, their protocols are specifically designed for different applications. A key
feature of wrist-worn heart rate monitoring datasets is to encompass known sources of
interferences that evaluate the methodology’s robustness, such as diverse motion types,
varying motion intensities, a broad spectrum of heart rate values and a diverse cohort
in terms of age, biological sex, BMI and skin type [125].

Most wrist-worn heart rate monitoring datasets employ laboratory-based protocols,
typically on a treadmill with varying speeds [126–128]. This protocol strategy captures
varying motion intensities and a range of heart rate values from increasing and de-
creasing the workload. However, the protocol may only capture periodic motion types
due to the cyclical nature of running in a controlled environment. Whilst beneficial
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in exploring the ‘crossover effect’ of having a similar movement cadence to cardiac
activity [125], the protocol lacks diversity.

Treadmill-based protocols generally capture two primary scenarios: elevated heart rates
associated with high motion intensities (when running) and lower heart rates linked
with minimal motion (when walking or at rest). Capturing scenarios of elevated heart
rates with low motion intensities can be achieved using an ergometer [129] or getting
participants to hold onto the treadmill bar (BAMI-2) [127]. Lower heart rates linked
with high motion intensities and aperiodic motion types can be captured via arm and
wrist movements (IEEE Test) [126]. Interestingly, research suggests that the motion
type rather than the activity intensity has more impact on the signal quality. Changes
in activity and erratic wrist movements were found to cause more inaccuracies than
prolonged elevations in motion intensity from running and cycling [125].

An alternative approach to protocol design is to select activities that are performed
daily aimed at collecting realistic motion types and intensities. PPG DaLiA was the only
dataset to employ a naturalistic protocol incorporating activities with low (driving),
medium (walking), and high-intensity arm movements (table soccer), as well as a mix
of periodic (walking) and aperiodic motion (eating). Additionally, tasks with differing
physical demands (driving vs. ascending stairs) were chosen to induce varied heart
rates [130].

Regarding devices, wrist-worn triaxial accelerometers are standard across datasets
with BAMI and Casson et al., also including wrist-worn triaxial gyroscopes [127, 129].
ECG choices varied across the datasets; IEEE Train/Test and Casson et al. elected a
single-lead ECG [126, 129], PPG DaLiA used a three-lead ECG [130], and BAMI 1 and
2 used a 24-hour Holter Monitor [127]. The accuracy of the ECG device is paramount,
as any inaccuracies in the “ground truth” values can inadvertently be reflected in the
subsequent heart rate estimation algorithms. For PPG sensor configurations, Casson et
al. collect one green (510 nm) channel [129], IEEE Train and Test collects two green (515
nm) PPG channels [126], whilst BAMI 1 & 2 collects three green (525 nm) PPG channels
[127]. Both PPG DaLiA and DWL collect multi-wavelength PPG signals [128], [130];
however, PPG DaLiA uses an Empatica E4, which uses green and red LEDs to produce
a single PPG signal [130]. On the other hand, DWL used a single PPG channel for blue
(undefined), green (520 nm) and IR (940 nm) [128].

Examining the cohorts of wrist-worn heart rate monitoring datasets, there is a noticeable
inconsistency in reporting. While age and biological sex are generally reported, excep-
tions exist, such as in DWL and IEEE Train [126, 129]. Only IEEE Test and PPG DaLiA
provided both height and weight, which are indicative of BMI [126, 130]. Uniquely,
PPG DaLiA reported skin type using the Fitzpatrick scale [130]. It is key to report the
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demographic and physical details of the cohort consistently. This ensures a compre-
hensive evaluation of heart rate estimation algorithms, especially concerning potential
interferences like skin melanin content, obesity, and biological sex [7, 23]. Equally key is
ensuring diversity in these details. For instance, while PPG DaLiA reported skin types,
it had no representation for types 1, 5, and 6 of the Fitzpatrick skin type scale [130]. Fol-
lowing the data collection and reporting guidelines outlined in [125] and best practices
outlined in [131] is recommended.

Dataset Participants Protocol Devices
IEEE
Train
2015 [126,
132, 133]

12 subjects
Biological Sex:
12 Male
Age:
18 - 35 years
Weight:
Unreported
Height:
Unreported
Skin Types:
Unreported

Laboratory-Based Protocol
on Treadmill
Protocol 1:
Rest (0.5 min), 8 km/h (1
min), 15 km/h (1 min), 8
km/h (1 min), 15 km/h (1
min), Rest (0.5 min)
Protocol 2:
Rest (0.5 min), 6 km/h (1
min), 12 km/h (1 min), 6
km/h (1 min), 12 km/h (1
min), Rest (0.5 min)

Accelerometer:
Three-axis wrist-worn
Electrocardiogram:
One-channel using wet ECG sensors.
Photoplethysmogram:
Two channels. LED: Green - 515 nm
Data:
All signals (125 Hz).

IEEE Test
2015 [126,
132, 133]

8 subjects
Biological Sex:
7 Male, 1 Female
Age:
25.9 ± 13.4 years
Weight:
66.9 ± 7.9 kg
Height:
172.9 ± 10.4 cm
Skin Types:
Unreported

Laboratory-based protocol
with various arm move-
ments.
Protocol 1:
various forearm and
upper arm exercises,
running, jumping, and
push-ups.
Protocol 2:
intensive forearm and
upper arm movements
(e.g. boxing).

Accelerometer:
Three-axis wrist-worn
Electrocardiogram:
One-channel using wet ECG sensors.
Photoplethysmogram:
Two channels. LED: Green - 515 nm
Data:
All signals (125 Hz). Data was trans-
mitted via Bluetooth.

Casson et
al. 2016
[129, 134]

8 subjects
Biological Sex:
3 Male, 5 Female
Age:
22-32 years (mean:
26.5)
Weight:
Unreported
Height:
Unreported
Skin Types:
Unreported

Laboratory-Based Protocol
on Treadmill and Ergometer
Participants were asked to
complete one or more of
four exercises for up to 10
minutes, setting the pace
themselves.
Exercises Walk, Run, Low
Resistance Ergometer
and High Resistance
Ergometer.

Accelerometer:
Wrist-worn Shimmer 3 GSR+ unit.
Electrocardiogram:
Actiwave recorder - Electrodes are
positioned on either side of the heart.
Photoplethysmography:
Single Channel. LED: Green - 510
nm.
Gyroscope:
Wrist-worn Shimmer 3 GSR+ unit.
Data:
All signals were sampled at 256 Hz.
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Table 2.3 continued from previous page
Dataset Participants Protocol Devices

BAMI-
1 2020
[127, 135]

25 subjects
Biological Sex:
10 Male, 14 Female
Age:
26.9 ± 4.8 years
Weight:
Unreported
Height:
Unreported
Skin Types:
Unreported

Laboratory-Based Protocol
on Treadmill
Rest (1 min), 2.5 km/h (2
mins), 6 km/h (3 mins), 3
km/h (2 mins), 7 km/h (3
mins) 2.5 km/h (2 mins),
Rest (1 min)

Accelerometer & Gyroscope:
3-axis using a 6-axis inertial measure-
ment unit
Photoplethysmogram:
Three channel LED: Green (525 nm),
1 LED on either side of each photodi-
ode. Three PPG sensors were placed
6 mm apart. Photodiodes: 3 photodi-
odes
Electrocardiogram:
24-h Holter monitor
Data:
ECG (125 Hz), all other signals (50
Hz).

BAMI-
2 2020
[127, 135]

23 subjects
Biological Sex:
17 Male, 4 Female
Age:
22.0 ± 1.7 years
Weight:
Unreported
Height:
Unreported
Skin Types:
Unreported

Laboratory-Based Protocol
on Treadmill
Rest (1 min), 3.5 km/h (2
mins), 7 km/h (2 mins), 7
km/h Holding treadmill
bar (2 mins), 3.5 km/h
(2 mins), 3.5 km/h Hold-
ing treadmill bar (2 mins),
Rest (1 min)

Accelerometer & Gyroscope:
3-axis using a 6-axis inertial measure-
ment unit
Photoplethysmogram:
Three channel LED: Green (525 nm),
1 LED on either side of each photodi-
ode. Three PPG sensors were placed
6 mm apart. Photodiodes: 3 photodi-
odes
Electrocardiogram:
24-h Holter monitor
Data:
ECG (125 Hz), all other signals (50
Hz).
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Table 2.3 continued from previous page
Dataset Participants Protocol Devices

PPG
DaLiA
2019 [130]

15 subjects
Biological Sex:
7 Male, 8 Female
Age:
30.6 ± 9.6 years
Weight:
69.0 ± 12.4 kg
Height:
175.3 ± 8.8 cm
Skin Types:
1 (0), 2 (1), 3 (11), 4
(3), 5 (0), 6 (0)

Naturalistic Protocol
Sitting Still (10 mins),
Ascending/Descending
stairs (5 mins), Table
Soccer (5 mins), Cycling
(8 mins), Driving Car (15
mins), Lunch break (30
mins), Walking (10 mins),
Working (20 mins)
Double tap accelerometer
signal pattern used for
signal synchronisation.

Accelerometer:
3 axes Empatica E4 Device
Photoplethysmogram:
Empatica E4
LEDs: 2 Green, 2 Red.
2 Photodiodes with a total area of
15.5 mm2.
Electrocardiogram:
RespiBAN Professional Device.
Respiration:
RespiBAN Professional Device
Electrodermal Activity:
Empatica E4 Range (0.01 µS – 100 µS)
Temperature:
Empatica E4 Resolution of 0.02 °C
Data:
All RespiBAN Professional (700 Hz),
PPG (64 Hz), Accelerometer (32 Hz),
Electrodermal Activity and wrist
Temperature (4 Hz)

DWL
(Wrist)
2022
[128, 136]

14 subjects
Biological Sex:
Unreported
Age:
Unreported
Weight:
Unreported
Height:
Unreported
Skin Types:
Unreported

Laboratory-Based Protocol
on Treadmill
Rest (1 min), 6 km/h (1
min), 12 km/h (1 min), 6
km/h (1 min), 12 km/h (1
min), Rest (1 min) 12km/h
was reduced if needed.

Accelerometer:
3 axes
Photoplethysmogram:
2x IR LED (940 nm) 2x Green LED
(520 nm) Blue LED: Unreported 1 x
Photo-detector
Gyroscope:
3 axes
Data:
All signals sampled at 100 Hz

TABLE 2.3: Available Wrist-worn PPG Heart Rate Monitoring Research
Datasets. This literature review, conducted in 2023, examines datasets
for wrist-worn PPG heart rate monitoring research. The features of each
dataset include cohort, devices, and protocol. Some of these datasets were
later used for the analysis and validation of the PPG heart rate estimation
methodology. Two datasets were excluded: DWL [128] due to its small
sample size and Casson et al. [129] because it employed different protocols
for each subject, lacking the consistency needed for proper evaluation

across subjects.
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2.2.2 Signal Quality Analysis

Assessing PPG signal quality is an essential step in any of its applications. Broadly, the
quality of a PPG signal is determined by the clarity of the physiological information
contained within the signal. As detailed in Section 2.1.3, the quality of PPG signals is
affected by several sources of interference, with studies showing up to 86% of the collec-
ted signals being of insufficient quality for wrist-worn PPG heart rate monitoring [113].
Signal quality analysis aims to identify segments of the signal that contain interferences,
determine the magnitude of the interference to gain insights into the potential source or
sources to ultimately establish the recoverability of the segment. Basic sanity checks
are generally the first quality checks performed, primarily focusing on identifying in-
terferences stemming from sensor configuration, placement, and communication [137].
These checks can include missing data detection, flat-line detection, and clipping or
over-saturation detection.

The approach to quality analysis varies depending on the specific application and
context [137]. The analysis generally involves extracting features known as Signal
Quality Indices (SQIs) from the signal. SQIs can focus on individual beats and waveform
morphology or segments of the signal. As detailed in Section 2.2.3, isolating individual
beats from wrist-worn PPG is challenging, especially in periods of motion, making beat
and waveform-specific features less applicable to wrist-worn applications.

Elgendi proposed using the agreement of two distinct beat detectors to estimate noise
within the PPG signal [138]. Elgendi examined this metric along with seven others and
found skewness to be the most optimal SQI for finger-worn PPG in clinical settings [138].
Still, the estimation of higher-order statistics requires a relatively long time window
[139]. A common SQI in the literature is the SNR, albeit with diverse definitions. Other
research used additional reference signals in their PPG signal quality assessment, such
as accelerometer [140, 141] and ECG [142].

While some methods further this analysis by categorising the quality of segments
[138, 140–144], this necessitates the use of human-annotated labels and introduces the
risk of error propagation as well as additional computational overhead [113]. It has been
recommended that to guarantee the optimal performance of the application, a more
nuanced consideration of PPG signal quality within a PPG signal processing pipeline is
essential [113].

2.2.3 Conventional Beat Detector Algorithms

heart rate estimation from PPG signals can be achieved by detecting individual heart-
beats, relying on PPG waveform features like systolic and diastolic peaks, the dicrotic
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notch and the diastolic trough [124] (Figure 2.1). This method enables the extraction of
detailed features from waveform morphology and inter-beat intervals, aiding in-depth
physiological and cardiovascular analysis [124]. However, this approach is susceptible
to inaccuracies. Misidentification or omission of heartbeats can lead to significant errors.
Motion artefacts and demographic variations further challenge its robustness.

Charlton et al. evaluated 15 PPG beat detectors against ECG-derived heartbeats using
data from eight datasets, including hospital and daily living settings, as summarised
in Table 2.3 [124]. Data was sourced from eight datasets encompassing hospital and
everyday living settings, including the PPG DaLiA dataset. Hospital data utilised
transmissive PPG sensing, while daily activity data used wrist-worn reflectance PPG
sensors. Evaluation metrics were the F1 score and the Mean Absolute Percentage Error
(MAPE), which assesses the accuracy of computed heart rate values. Heart rate is
computed from the detected beats using:

HR(BPM) = 60 · Numbero f DetectedBeats
ElapsedDurationo f DetectedBeats(Seconds)

(2.1)

where the fraction represents the mean inter-beat interval (IBI), notably The Association
for the Advancement of Medical Instrumentation (AAMI) standard prescribes accept-
able limits for heart rate monitoring within ±10%, as measured by MAPE [27, 145, 146].
Additionally, the F1 score is a metric, ranging from 0 to 1, that evaluates a model’s
accuracy by combining its ability to make correct predictions with its consistency in
identifying relevant instances.

In minimal movement conditions, beat detector performance varied. Median F1 scores
spanned 50.7% to 99.9%, and MAPE ranged from 0.2% to 59.7%. The top eight detectors
had F1 scores between 90% and 99% [124]. Intense physical activities reduced perform-
ance, with F1 scores dropping to 17.9%-90.6% and MAPE values rising to 7.0%-69.0%.
The eight top detectors had F1 scores between 55% and 91%, with the lowest accuracy
during table soccer and stair climbing [124].

For the beat detectors skin melanin differences had minimal impact in hospital settings
with minimal motion. Subjects with higher melanin had median F1 scores of 91.2%-
98.5% and MAPE values of 1.4%-9.9%, compared to 86.6%-97.5% and 2.1%-14.6% for
those with lower melanin in hospital settings. Additionally, high inter-subject variability
was observed in the wrist-worn datasets [124].

Overall, the most effective detectors were MSPTD [147] and QPPG [148], with high
accuracy in minimal movement conditions and reduced performance during intense
activities with median MAPE values ranging from 4.3% to 20.1% [124]. While the study
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was comprehensive in its scope, it had limitations due to the constraints of the available
datasets. Specifically, it did not investigate the combination of factors that could affect
PPG signal quality, such as skin melanin content, the type of motion involved and
biological sex [7]. Additionally, the study did not investigate the influence of individual
wavelengths on beat detection efficacy.

2.2.4 Conventional Heart Rate Estimation Algorithms

An alternative approach for PPG-based heart rate estimations focuses on calculating
the average heart rate over a designated interval rather than isolating individual heart-
beats. While PPG heart rate estimation algorithms offer a coarser-grained analysis, they
compensate by providing a more stable representation of heart rate due to enhanced
robustness against errors such as missed or misidentified heartbeats.

Regarding methodology, PPG heart rate estimation algorithms generally include four
main steps: prepossessing, motion artefact reduction, heart rate estimation and heart
rate tracking or post-processing [92–95]. The prepossessing step typically includes
filtering, re-sampling, windowing, transformation and normalisation. A notable fea-
ture across all heart rate estimation algorithms is an 8-second sliding window with a
2-second shift. Each window undergoes analysis and has an assigned “ground truth”
value derived from a chest-worn ECG. Perhaps the most essential step is motion artefact
reduction, which may incorporate motion reference signals gathered from acceleromet-
ers, gyroscopes, and the PPG sensor itself [7, 92–95]. Evaluation of the methodology
generally occurs in terms of mean absolute error (MAE) of the predicted values against
the ‘ground truth’ values.

Research into methods for wrist-worn PPG heart rate estimation began with the seminal
work of TROIKA. This three-step technique focuses on de-noising, high-resolution
spectral analysis, and spectral peak tracking. It employs independent component
analysis and adaptive filtering to mitigate motion artefacts in PPG signals without
requiring additional sensors or reference signals [126]. The validating dataset, referred
to as IEEE 2015 SPC, was later used in the 2015 IEEE Signal Processing Cup, which
popularised the topic in academia [133].

Many conventional computational techniques have been employed to enhance the
accuracy and robustness of PPG heart rate estimations. These methods range from basic
thresholding and filtering to more advanced techniques like spectral analysis and signal
decomposition, as extensively summarised in [92–95]. For instance, SpaMA employs
power spectral density analysis of PPG and accelerometer signals to identify and
eliminate motion artefacts and HR, using a thresholding heart rate tracker for further
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Name
Pre
Processing

Strategy
Post
Processing

ABD
[120]

Windowing Three-stage filtering identifies pulse peaks using ad-
justed Kaiser windows.

Inter-beat
interval
correction

AMPD
[149]

Detrending
and Window-
ing.

The local Maxima Scalogram method identifies beats
by locating scale-dependent maxima, where these
maxima are only considered within scales smaller
than the one containing the most maxima

None

ATM
[150]

Filtering and
Normalisa-
tion

Peak detection uses an adaptive threshold propor-
tional to PPG amplitude, dynamically adjusting to
signal variations.

Inter-beat
interval
correction

CoPPG
[151]

Windowing Percentile-based thresholds set for adaptive filtering.
Peaks exceeding the 90th percentile were identified.

Inter-beat
interval
correction

ERMA
[152]

Filtering, Rec-
tifying, and
Squaring

Short and long-term averages identify interest blocks.
Within valid blocks, beats are detected when the
short-term average exceeds the long-term plus
threshold.

None

HeartPy
[153]

Normalising
and Squaring

Rolling mean threshold approach, testing different
moving average percentage values to find the most
stable heart rate estimate within a valid BPM range.

Inter-beat
interval
correction.

IMS [154] None Positive gradient segmentation approach using dy-
namic thresholds based on amplitude and duration
to detect beats

None

MSPTD
[147]

Detrending
and Window-
ing

Improves AMPD by calculating Local Maxima Scalo-
grams for both local maxima and minima.

None

PDA
[155]

None Upslope sequences tracking approach with dynamic
thresholds based on sequence length and amplitude
for peak identification.

None

PWD
[156]

Filtering Zero-crossing analysis of the PPG derivative with
dynamic thresholds, artefact compensation, and peak
verification.

None

PPG
Pulses
[157]

None Peak detection using a differentiated PPG and an
adaptive filter. Filter threshold adjustment based on
previous peak amplitude and inter-beat interval.

None

QPPG
[148]

Scaling Detects peaks using a slope sum function and adapt-
ive thresholding.

None

SPAR
[158]

Windowing
and Filtering

Time delay coordinates generate 7-dimensional
phase space for PPG windows. Symmetric Projection
Attractor Reconstruction creates a 2-dimensional pro-
jection with beat detection at x-axis crossings.

Inter-beat
interval
correction.

SWT
[159]

None Selected Stationary Wavelet Transform detail sub-
bands used to emphasise upslopes. Beats are detec-
ted using an extracted envelope and Gaussian deriv-
ative filter.

None

WFD
[160]

Filtering and
Resampling

PPG is decomposed with wavelet transform. Beats
are identified using signal thresholds and derivative
analysis.

None

TABLE 2.4: Overview of Open Source PPG Beat Detection Algorithms. This
table summaries the key characteristics of various open-source PPG beat

detection algorithms evaluated by Charlton et al [124].

refinement [130, 161]. In contrast, Schack et al. developed a multi-channel technique
that utilises cross-correlation and auto-correlation between PPG signals to enhance
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signal periodicity. The spectra of the PPG signals are combined to amplify common
components and minimise noise. Motion artefacts are reduced through harmonic noise
damping using accelerometer spectra, and heart rate is recursively tracked using a
Gaussian window and linear least squares fitting. [130, 162].

Researchers have also developed multi-wavelength approaches, for example, Warren et
al. developed a multi-channel, forehead-worn PPG sensor using red and IR wavelengths.
The advanced multi-channel template matching algorithm selects the least artefact-
affected channel for real-time heart rate estimation. The results show that the accuracy of
heart rate estimates increased by up to 2.7 BPM when using the multichannel-switching
algorithm compared to individual channels [71]. Similarly, Alkhoury et al. produced
a dual-wavelength method using green and IR wavelengths for heart rate estimation
during physical activity. Noise components were extracted from the IR signal and
removed from the green PPG signal using a cascading adaptive filter. The outcomes
indicate a notable enhancement in performance. Specifically, the Mean Absolute Error
(MAE) was recorded at 1.2 ± 0.6 BPM for the wrist and 1.3 ± 0.8 BPM for the palm. In
contrast, the single-wavelength TROIKA method yielded an MAE of 3.2 ± 2.8 BPM on
the wrist and 1.8 ± 0.9 BPM on the palm [128].

Conventional PPG heart rate estimation algorithms typically have adjustable paramet-
ers that can be tuned to improve performance. It is common practice in the literature
to adjust these parameters per subject to achieve the highest accuracy for each subject.
However, this approach is limited when transitioning from a controlled experimental
setting to real-world applications. The absence of “ground truth” values or compre-
hensive signal data in real-world scenarios to retrospectively tune the parameters limits
the practical relevance of the reported results.

In real-world applications, an effective PPG heart rate estimation algorithm is anticip-
ated to function accurately on data from individuals it has not previously encountered.
To rigorously assess this generalisability, a ‘Leave-One-Subject-Out’ (LOSO) cross-
validation (CV) scheme is recommended [26, 130]. Within this validation scheme, the
data from one session or subject is left out of the parameter tuning and is used to
evaluate the performance of unseen data. This is repeated for all subjects in the dataset.
Riess et al. employed the LOSO CV scheme to assess the above-mentioned methods.
Their findings revealed a significant increase in MAE results, escalating from 1.33 ± 1.4
BPM to 13.1 ± 20.7 BPM on the IEEE Train dataset and from 2.53 ± 2 BPM to 9.2 ± 11.4
BPM on the IEEE Test dataset for the SpaMA method. Similarly, the method proposed
by Schack et al. exhibited comparable increases in MAE, rising from 1.3 ± 1.3 BPM to
2.91 ± 4.6 BPM on the IEEE Train dataset and from 6.5 ± 8.3 BPM to 24.7 ± 24.0 BPM on
the IEEE Test dataset [130].
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Furthermore, the validation datasets present limitations that preclude insights into the
robustness of the methods concerning varying skin melanin content. As elaborated
in Section 2.1.3, a burgeoning body of evidence indicates that skin melanin negatively
impacts PPG sensing performance. While PPG-DaLiA provides Fitzpatrick skin type
information, it does not include subjects at the extreme ends of the scale, precisely skin
types 1, 5, and 6 [130]. This highlights a gap in the diversity of skin types in current
PPG heart rate estimation research data.

2.2.5 Deep Learning PPG Heart Rate Estimations

Supervised deep learning involves learning patterns and rules from data within a
defined hypothesis space guided by feedback [163]. This space is formed by network
layers that transform inputs using weights and biases, with non-linear activation func-
tions expanding the range of transformations [163]. Unlike traditional machine learning
methods that require manual feature engineering, deep learning models learn relevant
features directly from raw data, removing the need for explicit feature extraction [163].

Training involves passing batches of data through a ‘network’ to produce predictions,
comparing these against target values using a loss function, and adjusting network
parameters via backpropagation and gradient descent [163]. A network’s ‘architec-
ture’ encompasses the selected layers, configurations, and connections. These choices
delineate the network’s hypothesis space, the potential functions that gradient des-
cent explores, determined by the model’s parameters [163]. A good hypothesis space
incorporates prior knowledge about the data.

Supervised deep learning aims for generalisation, the ability to perform well on unseen
data. The balance influences this capability struck between over-fitting and under-
fitting [163]. Over-fitting occurs when a model captures noise and anomalies in the
training data, making it perform poorly on new data. Conversely, under-fitting is when
the model cannot capture the underlying patterns in the data [163]. Regularisation
techniques, such as dropout, where random network connections are ‘dropped’ during
training to prevent co-adaptation, and batch normalisation, which standardises inputs,
are employed to combat over-fitting [163].

Deep neural networks (DNNs) are distinguished from shallow neural networks by
their multiple hidden layers, and different types of DNNs are further distinguished by
their specific architectures. These architectures integrate prior knowledge of the data to
create a comprehensive hypothesis space [163]. For instance, CorNet was the first to
use the Long-term Recurrent Convolutional Network (LRCN) for time-domain signals,
leveraging convolutional layers to capture local patterns and Long Short-term Memory
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(LSTM) layers for long-term patterns [164]. This combination forms the basis of many
heart rate (HR) estimation methods [26, 27, 165–169]. Alternatively, Temporal Convolu-
tional Networks (TCNs) use causal dilated convolutional layers to hierarchically capture
both local and extended patterns [170–172], with the receptive field expanding across
the network to consider a larger portion of the signal for predictions [170–172]. Some
strategies adopt an AlexNet-like structure, employing convolutional and pooling layers
to reduce data dimensionality while preserving significant features [130, 173], while
others use inception blocks to extract multi-scale features [165]. Attention layers dynam-
ically allocate importance to specific time steps, enhancing performance, interpretability,
and flexibility [27, 174, 175]. Additionally, the U-Net architecture, with its symmet-
ric encoder-decoder structure and skip connections, provides precise localisation and
efficient feature extraction and reconstruction [27, 174].

Researchers have utilised network architecture search (NAS) as a data-driven approach
to architecture generation for heart rate estimations [168, 170–172, 176]. Ray et al., in
earlier research, investigated three distinct NAS techniques but found them too resource-
intensive due to a large search space [176]. To mitigate this, researchers employed seed
architectures to reduce the search space. Burrello et al. and subsequent works used a
temporal convolutional network as a seed network leveraging MorphNet and Pruning-
in-time NAS techniques to optimise the network [170–172]. Song et al. employed
an LRCN seed architecture using the Efficient Neural Architecture Search algorithm
and Tree-structured Parzen Estimator hyperparameter optimisation to find an optimal
solution [168].

Generally, pre-processing includes filtering the signals to be within the typical heart
rate frequency range of 0-4 Hz, resampling the signal, and standardising the signals,
subject-wise, to be zero mean unit variance and an 8-second sliding window with a
2-second shift. Most methods use the time domain representation of the signal as
input to the network [26, 164–167, 170–172, 175, 177] whilst other methods utilise the
Fourier Transform to attain better frequency resolution [127, 130, 168, 174]. Bieri et
al. used both time and frequency domain representations, preserving the resolution
of both domains [27]. Ismail et al. extracted statistical, time and frequency domain
features alongside processing the time domain signals, seeing MAE improvements
from 5.4 ± 6.3 BPM to 2.4 ± 2.9 BPM on the IEEE Datasets [169]. Bieri et al. also
investigated augmenting the data to expand the number of samples in the training set
by employing techniques such as time stretching and jitter. They found that including
data augmentation caused the error rates to almost halve on some datasets [27].

Predominantly, methods formulate heart rate estimation as a regression task, whereby
the model predicts a continuous heart rate value [26, 164–167, 169–172, 175, 177, 178].
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Conversely, an alternate approach is to formulate heart rate estimation as a classific-
ation task [27, 127, 168]. One such approach classified the heart rate value within a
predetermined set of bins, making it prone to quantisation errors. Researchers have also
formulated PPG beat detection as a classification task, using temporal convolutional
networks to classify systolic beats [179]. Another approach formulates heart rate estima-
tion as a generative one, producing models that generate de-noised PPG signals [173]
or ECG signals from PPG signals [174].

SOTA

FIGURE 2.6: Relationship Between Accuracy and Complexity in Deep
Learning PPG Heart Rate Estimation Algorithms. This figure shows how
model accuracy relates to complexity, with parameter counts ranging from
65 million [130] to 5,000 [172]. Some methods achieve high accuracy with
fewer parameters, while others perform poorly despite greater complex-
ity, highlighting that complexity does not guarantee better results. The
algorithms must also support real-time predictions and edge device com-

patibility, with generalisability evaluated via LOSO CV.

In real-world applications, heart rate algorithms must deliver real-time predictions
on individuals new to the system and maintain a model complexity suitable for edge
devices, often measured in the number of parameters. These complexities vary from
65 million [130] to 5,000 parameters [172]. Some strategies aim for edge compatibility
by using binarised [167] or quantised [170] networks, while others prioritise efficient
parameter counts [27]. As highlighted in Section 2.2.4, generalisability on new users is
gauged using LOSO CV. This balance of complexity and generalisability is pivotal in
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evaluating the efficacy of such methods, as illustrated in Figure 2.6. Notably, Bieri et al.
set a benchmark by deploying a 138K parameter network, showcasing the lowest error
rates across various datasets, including MAE of 1.5 ± 0.6 BPM on IEEE Train and 1.5 ±
0.3 BPM on the BAMI-2 datasets [27].

Ray et al., in earlier research, introduced uncertainty quantification to PPG heart rate
estimation deep learning methods. The approach employed the Monte Carlo dropout
method to quantify epistemic uncertainty and a distributional prediction strategy with a
negative log-likelihood (NLL) loss function to quantify aleatoric uncertainty. While they
applied practical methods to validate these uncertainty quantifications, they did not
use standardised calibration techniques [26]. Bieri et al. employed a belief propagation
method to quantify predictive uncertainty, both uncertainty types combined, using a
quantised probability distribution. This method demonstrated robust overall calibration,
though it was slightly overconfident at higher confidence levels [27].

In multi-wavelength deep learning PPG heart rate estimation methods, Ngoc-Thang et
al. developed an LRCN model for a finger-based transmissive mode PPG sensor using
red (660 nm) and IR (880 nm) wavelengths. This methodology yielded a correlation
coefficient 0.996 with heart rate values generated by a pulse oximeter. However, it
lacked CV and a data acquisition protocol encompassing motion [180]. Mehrgardt et al.
similarly developed a finger-based transmissive mode PPG sensor using IR (880 nm),
red (660 nm) and green (537 nm) wavelengths as well as accelerometer and gyroscope
data. Using a network of four fully connected layers, they analysed combinations
of the signal data. During stationary, the combination of green, red, and IR PPG and
accelerometer and gyroscope data produced the lowest MAE results of 2.63 ± 30.05 BPM.
Conversely, whilst walking green, PPG combined with accelerometer and gyroscope
data exhibited the lowest MAE of 6.52 ± 43.68 BPM. During running, the green, red,
and IR PPG ensemble, complemented by accelerometer and gyroscope data, showcased
the lowest MAE of 5.8 ± 34.7 BPM [181].

One common limitation across all approaches is the lack of exploration of fairness.
It is essential to guarantee that these systems do not reflect discriminatory or unfair
behaviour toward specific individuals or populations. Mehrabi et al. describe fairness
in deep learning as “the absence of prejudice or favouritism toward an individual or
group based on their inherent or acquired characteristics” [182].

Regrettably, there have been many examples of such discriminatory behaviour within
machine learning systems. One of the most notable examples is COMPAS, a machine
learning system that measures a person’s risk of committing another crime. A study
found it to have a higher false positive rate for African Americans than Caucasians,
inaccurately predicting their risk of re-offending [183]. Similarly, in the healthcare sector,
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a machine learning algorithm used by more than 200 million patients in the USA was
less likely to refer equally sick black patients than white patients to programs aimed at
improving care for patients with complex needs [184].

Due to limitations in wrist-worn PPG heart rate monitoring validation datasets, no
method gives insights into the robustness to demographic variations and consequently
the fairness of the method. This raises concerns considering the substantial evidence
indicating that PPG sensing is influenced by certain demographic factors, including
higher skin melanin levels, being a biological female, and increased BMI.
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2.3 Summary

This chapter offers a thorough review of the advancements and challenges in the field
of multi-wavelength PPG, with a particular focus on wrist-worn devices used for heart
rate monitoring. It highlights several critical research gaps and limitations affecting the
effectiveness and fairness of current approaches.

A significant gap is the limited diversity in existing PPG datasets, which inadequately
represent various skin types, especially darker skin tones (Fitzpatrick types 5 and 6).
This lack of diversity hinders the evaluation of wrist-worn PPG heart rate estimation
methodology’s fairness and robustness.

Moreover, current datasets often focus on controlled, periodic motions, such as tread-
mill running, and fail to encompass the wide range of motion types and intensities
encountered in daily life. This narrow scope limits the applicability of wrist-worn PPG
heart rate estimation methodology in real-world scenarios.

Validation methods also pose a challenge. Many studies do not employ Leave-One-
Subject-Out (LOSO) cross-validation, a key technique for assessing the generalisability
of wrist-worn PPG heart rate estimation methodology. Without robust validation, the
reliability of these methods for new users remains unknown.

The chapter also addresses the scarcity of research on multi-wavelength approaches in
wrist-worn PPG heart rate estimation methodology. While using multiple wavelengths
has the potential to enhance accuracy and robustness, there is a notable lack of studies
exploring deep learning techniques that integrate this approach for wrist-worn devices.

Uncertainty quantification is another area needing attention. Few studies incorporate
uncertainty estimation into wrist-worn PPG heart rate estimation methods, which is
essential for building trust in healthcare applications of PPG technology.

Fairness considerations are similarly under-explored. There is a notable absence of
research examining how heart rate estimation methods perform across different demo-
graphic groups, particularly concerning skin tone, biological sex, and body mass index
(BMI).

Additionally, many existing algorithms are not optimised for real-time performance or
deployment on wearable devices, which limits their practical use. Enhancing real-time
capabilities is key for the effectiveness of these systems in everyday applications.

Lastly, the chapter highlights the need for a comprehensive analysis of how various
interference sources—such as skin melanin, motion artifacts, and biological differ-
ences—affect PPG signal quality. Addressing these issues could improve the robustness
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and reliability of heart rate monitoring systems.

Overall, the chapter underscores the need for more diverse and comprehensive datasets,
improved validation methodologies, and advanced estimation methodologies that
address fairness, uncertainty, and real-world applicability in wrist-worn PPG heart rate
monitoring.
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Chapter 3

Research Design and Methodology

3.1 Gaps in Existing Research

In the previous chapter, the literature review identified three primary gaps in current
research: Firstly, heart rate estimation datasets show a lack of diversity in terms of skin
melanin content and the variety of motion types and intensities. Secondly, there is an
absence of wrist-worn multi-wavelength deep-learning methods for heart rate estim-
ation. Thirdly, most existing heart rate estimation algorithms have not been robustly
analysed for demographic variations, such as biological sex and skin melanin content.
Additionally, the influence of skin temperature on heart rate estimation algorithms is
another gap, though not covered in this thesis.

3.2 Research Objectives and Questions

In this section, the primary research questions are systematically bridged with the
corresponding objectives, which are established to address the intricacies of wrist-worn
Photoplethysmography (PPG) heart rate estimation using multi-wavelength approaches.
This mapping is pivotal in providing a coherent and strategic alignment between the
core investigative queries and the structured objectives that underpin the thesis:

1. To what extent does the robustness and generalisability of wrist-worn PPG heart
rate estimations vary across different wavelengths or combinations of wavelengths,
compared to the green light conventionally used in consumer wrist-worn devices?

• Objective 5: Influence of Wavelength Selection on PPG Heart Rate Estimation.
Related Chapter: 6.

2. What is the impact on performance based on variations in skin melanin content
and biological sex in wrist-worn PPG heart rate estimation?
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• Objective 6: Impact of Skin Melanin and Biological Sex on PPG Heart Rate
Estimation. Related Chapter: 6.

3. In PPG heart rate estimation, does deep learning demonstrate superior perform-
ance compared to conventional signal processing and statistical methods?

• Objective 9: Comparative Evaluation of PPG Heart Rate Estimation Methods.
Related Chapters: 6 and 8.

4. How can uncertainty be most reliably estimated in the context of PPG heart rate
estimations?

• Objective 7: Evaluation of Uncertainty Methods in Deep Learning. Related
Chapter: 7.

5. To what extent does the inclusion of uncertainty metrics in post-processing en-
hance the reliability of wrist-worn PPG heart rate estimations?

• Objective 8: Development of Post-Processing Methods for PPG Heart Rate
Estimations. Related Chapter: 7.

3.3 Definitions

Throughout the thesis, several key terms are consistently used and defined here for
clarity. The first term, "Accuracy", describes the precision of predictions. It is quantified
using metrics such as Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), and the standard set by AAMI, which is a MAPE of 10%.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (3.1)

MAPE =
1
n

n

∑
i=1

|yi − ŷi|
yi

(3.2)

where, yi is the truth value of the ith sample, ŷi is the predicted value of the ith sample
and n is the number of samples. "Generalisability" is the second term and refers to
the ability of a model or method to maintain its accuracy when applied to new data
not previously used in its training or validation. This aspect is key in determining
the model’s applicability in real-world scenarios beyond the controlled settings of
training and testing. The third term, "Robustness", addresses the model’s accuracy
under challenging or adverse conditions, such as during intense physical motion. This
trait is essential for models used in environments where conditions can significantly
vary. Lastly, "Fair" pertains to the uniformity of the model’s accuracy across different
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demographic groups, such as biological males and females. Ensuring fairness is critical
in developing models that perform equitably across diverse populations.

In addition to these metrics, the Bland-Altman plot will be used in this research, serving
as an analytical tool for assessing the agreement between two different measurement
methods, as shown in Figure 3.1. It is particularly valuable for comparing new tech-
niques with established standards. The plot effectively visualises the difference between
two measurements against their mean.

FIGURE 3.1: Bland-Altman and Correlation Plots for Heart Rate Predictions.
The Bland-Altman Plot (left) shows the agreement between predicted and
true heart rate (HR) values, with the difference between them plotted on
the y-axis and their mean on the x-axis. This plot highlights any systematic
bias or trends in prediction accuracy. The Correlation Plot (right) illustrates
the linear relationship between predicted and true HR values, indicating

the strength and direction of their correlation.

For uncertainty estimates in a regression setting, average calibration is used to evaluate
the reliability of a model’s predictions. This assessment is known as "average calibra-
tion," and it evaluates how well the uncertainties predicted by a model align with the
actual errors observed in the predictions [178].

To conduct this evaluation, the model’s predictions are grouped into several "bins"
based on their predicted uncertainty levels. For each bin, the average actual error of
the predictions is then calculated. The purpose of this process is to determine whether
the predictions in each bin are as uncertain as the model predicts [178]. In other words,
the model’s confidence in its predictions should match the actual outcomes: if the
model predicts a high uncertainty, the errors should indeed be larger; if it predicts low
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uncertainty, the errors should be smaller. This concept is expressed as:

pobs
avg(p) := Ex∼FX [FY|x(Qp(x))], ∀p ∈ (0, 1) (3.3)

X and Y are random variables, with x and y being specific values of X and Y. F rep-
resents the true cumulative distribution function (CDF) of a random variable. Ex∼FX

denotes the expected value (average) over the distribution of X, meaning we are av-
eraging over all possible values of X. Qp(x) is an estimate of the quantile function at
percentile p, which is essentially the inverse of the CDF, evaluated at x. For perfect
calibration, the relationship pobs

avg(p) = p must hold true for all p values between 0
and 1. This means that the model’s predicted uncertainty should ideally equal the
actual proportion of times the model’s prediction is correct [178]. Points above this
line indicate under-confidence (where predicted probabilities are too low), while points
below the line indicate overconfidence (where predicted probabilities are too high).
Average calibration is often depicted graphically, as shown in Figure 3.2, to compare

FIGURE 3.2: Calibration Plot for Probability Estimates. This figure shows
the calibration of predicted probabilities by plotting the observed propor-
tion of outcomes against the predicted proportion across various prob-
ability intervals. The orange line represents perfect calibration, where
predictions match observed frequencies. Points above this line indicate
under-confidence (where predicted probabilities are too low), while points
below the line indicate overconfidence (where predicted probabilities are
too high). The miscalibration area is also displayed to highlight deviations

from perfect calibration.

perfect calibration (a straight line) with the model’s actual calibration (which might be a
curve) [178]. The difference between these two lines can be measured by calculating the
"miscalibration area," which is the area between the perfect and actual calibration lines.
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This measurement is key for models where the reliability of predictions is important.
The smaller the miscalibration area, the better the model’s calibration, meaning its
uncertainty predictions are more reliable.

In conclusion, the methodologies outlined in this thesis, including the use of Mean
Absolute Error, Mean Absolute Percentage Error, Bland-Altman and correlation plots,
and calibration plots and metrics, provide a comprehensive framework for evaluating
the accuracy, generalisability, robustness, and fairness of the models developed. These
methodologies not only ensure the scientific rigour of the research but also enhance
the applicability and relevance of the models in real-world scenarios. By meticulously
examining the accuracy and reliability of predictions across different conditions and
populations, this thesis contributes valuable insights into the field, fostering advance-
ments in predictive modelling and its practical applications.

3.4 Research Timeline

The chronological progression of this research did not align with the thesis’s order.
Initially, the research explored various avenues in deep learning for heart rate estimation,
including network architecture search [176], but some paths were abandoned after
preliminary investigations with existing datasets. A literature review was conducted [7],
leading to the identification of multi-wavelength approaches in wrist-worn PPG heart
rate estimation [186] and the potential of incorporating uncertainty quantification,
both showing promise in preliminary data [26]. Subsequently, a dataset was designed
and collected to address identified gaps, which then informed the refinement of the
uncertainty-aware deep learning method for this new dataset, both of which are detailed
in this thesis.

It should be noted that the global COVID-19 pandemic had an impact on the research
timeline, necessitating adjustments to the original research plan and data collection
procedures. Despite these challenges, the core objectives of the research were maintained
and successfully pursued.

3.5 Software Ecosystem

The software ecosystem of this thesis includes a range of tools for data analysis, signal
processing, and deep learning. Python 3.11 is the primary language used throughout,
with Pandas 2.1.4 for data manipulation. SciPy 1.11.2 and NumPy 1.24.4 support
scientific computing and numerical operations, respectively.
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Tkinter 8.6 is used for GUI development, and the study-watch-sdk 4.4.0 integrates with
study-watch devices. ECG signals are processed with py-ecg-detectors 1.3.3. For PPG
beat detection, PPG-beats 1.01 (August 2022) and Matlab R2022b are utilised.

Machine learning tasks are carried out with scikit-learn 1.3.2, and deep learning is
handled by TensorFlow 2.15, with TensorFlow Probability 0.20.0 applied for uncer-
tainty quantification in Section 7. Statistical modelling is performed using statsmodel
0.14.1, while Uncertainty_Toolbox 0.1.1 supports further uncertainty analysis. Data
visualisation is achieved with matplotlib 3.8.2 and Seaborn 0.13.1.

Computational tasks not involving deep learning were executed on an Intel i7-1355U
CPU with 1.70 GHz and 16.0 GB of RAM. In contrast, deep learning tasks were per-
formed using NVIDIA T4 GPUs with 16 GB of GDDR6 memory and a memory band-
width of 320 GB/s, hosted on the Google Cloud Platform.
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Chapter 4

Specification and Processing of A
Wrist-worn Multi-wavelength
Photoplethysmography Heart Rate
Monitoring Dataset

The preceding chapter detailed the research design and methodology, framing the
approach undertaken in this study and thesis. This chapter addresses Objective 2,
beginning with an explanation of the design and implementation of key elements in
a photoplethysmography (PPG) heart rate monitoring dataset: protocol, cohort, and
devices. The chapter then expands on the data processing steps, including signal
alignment for PPG and electrocardiogram (ECG) signals and heart rate extraction from
ECG signals. The chapter concludes with details on skin tone classification along with
the rationale of other computed metrics.

4.1 Protocol

In designing the study protocol, careful attention was given to the insights and lim-
itations discovered during the review of existing PPG heart rate estimation datasets
(Section 2.2.1). The aim was to develop a protocol encompassing a variety of activ-
ities to mirror diverse real-world scenarios and physical conditions, addressing the
limitations related to the diversity of motion and activity intensities found in previous
laboratory-based studies [126–129].

The protocol was structured into four main phases: Active Rest, Running, Rest, and
Cycling, summarised in Table 4.1. The Active Rest phase involved activities focused
on wrist movements designed to capture erratic aperiodic movement and periodic
contractions of the posterior forearm muscles. The Running phase included different
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Phase Activity
Duration
(Minutes)

Fitness
Level
(PAR)

Expected
Motion

Type
Additional Comments

Active Rest Stress Ball 2 1-7 Periodic
Contraction of Posterior

Forearm MusclesActive Rest Hand Gripper 2 1-7 Periodic
Active Rest Finger Stretcher 2 1-7 Periodic
Active Rest Writing 2 1-7 Aperiodic

Erratic Wrist Movements
Active Rest Typing 2 1-7 Aperiodic

Running 3 km/h 3 1-7 Periodic

Potential capture of the
‘crossover effect’

Running 5 km/h 3 1-7 Periodic
Running 7 km/h 3 3-7 Periodic
Running 11 km/h 3 4-7 Periodic
Running 15 km/h 3 5-7 Periodic

Rest Hands on Table 2 1-7 No Movement

Rest Free Movement 2 1-7 Aperiodic
Participants could move

freely around the
laboratory

Rest Hands on Table 2 1-7 No Movement

Rest Free Movement 2 1-7 Aperiodic
Participants could move

freely around the
laboratory

Rest Hands on Table 2 1-7 No Movement
Cycling 0.5 kg 3 1-7 Periodic Participants were asked to

keep their hands on the
handlebar to potentially
capture elevated heart

rates associated with low
upper-body movements

Cycling 1 kg 3 1-7 Periodic
Cycling 2 kg 3 3-7 Periodic
Cycling 3 kg 3 4-7 Periodic
Cycling 5 kg 3 5-7 Periodic

TABLE 4.1: Data Collection Protocol Overview. This table details the phases,
activities, and conditions used in the data collection protocol, including
the duration, fitness level (Physical Activity Rating, PAR), expected motion
type, and additional comments. Activity duration is variable and adjus-
ted based on the participant’s PAR, ranging from active rest tasks, such
as using a stress ball or typing, to more intense exercises like running at
different speeds and cycling with varying resistance levels. The protocol ac-
commodates both periodic and aperiodic motions, with notes on potential
outcomes, such as the ‘crossover effect’ during running or elevated heart

rates during low upper-body movement in cycling.

intensities ranging from 3 km/h to 15 km/h. This was followed by a Rest phase, during
which participants placed their hands on a table, allowing for the observation of reduc-
tions in heart rate and absence of movement. The concluding Cycling phase employed
an ergometer at different resistances, ranging from 0.5 kg to 5 kg, aimed at observing
increases in heart rates with minimal movement, as participants were instructed to keep
their hands on the handlebars. The total duration of the protocol ranged between 32 and
50 minutes, depending on the participants’ fitness levels. The implemented equipment
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comprised an h/p/cosmos Pulsar 3p treadmill and a Monark 874E weight ergometer.
The laboratory’s temperature was unmonitored and unregulated, and a single operator
conducted data collection for all participants.

Running and cycling intensities were determined based on each participant’s self-
reported physical activity level, preventing overexertion or risk of injury. Participants
were free to stop any activity or the entire protocol at any time, ensuring their comfort
and safety throughout the study. Three minutes were allocated for running and cycling
activities to allow the stabilisation of heart rate before a change in intensity, and two
minutes were assigned for the other activities to capture a representative portion of the
activity adequately. This approach to protocol design was anticipated to yield a rich and
reliable dataset, facilitating the improvement and validation of heart rate estimation
methods and their adaptability to various real-life applications and conditions, albeit
with the inherent limitations of laboratory-based protocols.

4.2 Cohort

The recruitment of participants strictly followed Manchester Metropolitan University’s
ethical guidelines (EthOS ID: 40624). Interested individuals who could register their
interest online were reached through flyers and posters. After registration, they received
an information sheet and a scheduling form. To be included, participants had to be
healthy adults over 18 years old with no known cardiovascular diseases. Those taking
medications that alter heart function, such as asthma medicines, decongestants, illegal
drugs, and certain prescription medications, were excluded. Individuals who did not
meet these criteria were informed of their ineligibility and thanked for their interest.

Upon arrival, participants received a briefing on health and safety along with detailed
information about the study. After providing consent and receiving a copy of the signed
consent form, basic measurements were recorded, and the designated devices were
attached. Participants were instructed to wear the wrist-worn device on the wrist of
their dominant hand, adjusted to a fit similar to how they typically wear watches, as
shown in Figure 4.4 B. The chest-worn strap was applied following the guidelines
provided in the device documentation [187].

To capture skin tone accurately and ensure precise colour calibration, a colour checker
card featuring the Fitzpatrick scale was placed under the subjects’ arms during image
capture, illustrated in Figure 4.1. Photographs were taken using a Samsung Galaxy
S8+ smartphone, employing a 12 MP, f/1.7, 26 mm (wide) camera with Dual Pixel
Phase Detection Auto Focus and Optical Image Stabilisation. This method ensured the
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FIGURE 4.1: Example of Participants’ Arm on the Colour Checker and
Fitzpatrick Scale Card.

accurate capturing of skin tones and white balance for post-processing. Participants
were thanked and gifted for their valuable involvement and contribution to the study.

Measurement Scale
Age The International System of Units scale for

time, specified in years
Biological Sex The World Health Organisation and the

European Institute for Gender Equality
define sex as ‘Biological and physiological
characteristics that define humans as female
or male.’ [188]

Dominant Hand Left or Right
Fitness Level Self-administered Physical Activity Rating

[190]
Height The International System of Units scale for

length, specified in centimetres
Skin Type Self-administered Fitzpatrick Scale [189]

Weight The International System of Units scale for
mass, specified in kilograms

Wrist Circumference The International System of Units scale for
length, specified in centimetres

TABLE 4.2: Overview of Basic Physiological and Demographic Measure-
ments. This table outlines the key physiological and demographic meas-
urements collected from participants, including their corresponding scales.
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While determining the appropriate study size, power analysis is often utilised to as-
certain the number of subjects needed to confirm or reject a hypothesis. Based on the
works of Bent et al. and Fallow et al., a study size of ≥ 48 participants is considered
necessary to achieve 80% power to reject the null hypothesis concerning differences
in PPG accuracy between Fitzpatrick skin types, with an ANOVA power calculation
suggesting 8 participants for each of the 6 skin types [52, 59]. However, Colvonen et al.
contend that conclusions drawn from such analyses might be misleading due to factors
affecting PPG sensing accuracy, within-group variance of skin tone types, and potential
administrative errors in classification. Consequently, Colvonen et al. advocate for larger
sample sizes, especially including more individuals with darker skin tones, to limit false
negatives and account for possible interactions with skin tone [191]. Given the budget
constraints of this research, a cohort of the recommended size was not feasible. There-
fore, the aim was to maintain a proportional representation across different skin types
within an attainable sample size of n = 20, acknowledging the inherent limitations and
potential biases in the findings due to the restricted cohort size.

4.3 Devices

This section outlines the devices employed for gathering signals, encompassing both
chest-worn and wrist-worn devices. Insight into the electrical components and op-
eration of each device, as well as the various types of data they capture, is provided.
Particular attention is paid to the PPG sensor geometry, which is key for the signal
quality. The section concludes with a discussion on data transmission and storage, em-
phasising the assurance of accuracy and precision through the strategic use of graphical
user interfaces.

4.3.1 Electrocardiogram

In this study, the QardioCore chest strap was utilised to acquire ECG signals from a
single channel, with an input dynamic range of 50 mV peak-to-peak and a DC dynamic
span of ±300 mV. The device maintained a gain accuracy of 5% and a differential range
of ±5 mV. The amplitude resolution of the ECG was 0.8 µV, and the signal bandwidth
ranged from 0.05 to 40 Hz. The device employed an A/D sampling rate of 600 Hz, with
the internal sampling rate ensuring precise signal acquisition. The sampling resolution
was 16-bit, and the common mode rejection was 60 dB, with an input impedance
of over 100 MΩ. Additionally, the device featured automatic calibration to maintain
the accuracy of the measurements [187]. The QardioCore chest strap was previously
validated against medical-grade Holter monitors in two separate instances, with sample
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sizes of 50 and 31, yielding correlation scores of 0.92 and 0.95, respectively [192, 193].
The placement of the chest strap was meticulously performed as per the specifications
delineated in the accompanying documentation, illustrated in Figure 4.2.

Electrodes

QardioCore 
DeviceStrap

FIGURE 4.2: The QardioCore Chest Strap Placement, adapted from [187].

ECG signal acquisition was facilitated through the Android QardioDirect application
(version: 2.8.8), specifically utilising a Samsung S8+ smartphone via Bluetooth con-
nectivity. Subsequently, the gathered ECG signals were securely stored within the
QardioMD web application, where they were anonymised and retrieved in HL7 aECG
format. The detailed versions of the software used are outlined in Section 3.5

4.3.2 Wrist-worn Device

This study utilised the EVAL-HCRWATCH4Z (firmware version: 5.14), a wrist-
worn device developed by Analog Devices. The research-grade bio-sensing device
is equipped to acquire synchronised multi-wavelength PPG, triaxial accelerometer
data, skin temperature, electrodermal activity, and ECG [194]. Notably, only multi-
wavelength PPG, triaxial accelerometer and skin temperature were employed in the
research.

A comprehensive overview of the electrical components embedded within the device
is provided in Figure 4.3. The ADXL362 accelerometer facilitated motion detection
with a ±8 g digital output range and SPI digital interface, sampled at 100 Hz [194, 195].
Skin temperature was collected using the NTCG104EF104FTDSX sensor from TDK
Corporation, thermally coupled to the device’s underside, with performance intricacies
linked to its mechanical connection to the body, operating within a temperature range
of -30°C to +50°C [194, 196].
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FIGURE 4.3: Overview of the electrical components of the wrist-worn
device, adapted from [194]. The figure illustrates the PPG sensor (com-
prising the AFE, PDs, and LEDs), temperature sensor, bio-impedance AFE,
ECG AFE, accelerometer, micro-controller, display and power management

components.
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FIGURE 4.4: Illustration of the experimental setup for PPG measurement:
A) Geometry and configuration of the PPG sensor. B) Wrist-worn device,
including the PPG sensor, attached to the wrist of the participant’s domin-

ant hand, adjusted to the typical tightness of a watch.
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The ADPD4100 [197], functioning as a multimodal AFE, incorporated inputs from the
VEMD8080 Photodiodes [198] and the aforementioned temperature sensor, among
others not utilised in this study. The ADPD4100 also controls the PPG sensors’ blue
(470 nm), green (530 nm), red (660 nm) and IR (850 nm) LEDs [199, 200]. Two channels
were collected for each wavelength from a photodiode with a reactive area of 4.5 mm2,
positioned 3.5 mm from the LEDs on each side, illustrated in Figure 4.4 A. The LEDs
operate at 7.5 mA and are gathered using a flexible input multiplexer in the sequence of
green, IR, red, and blue. The device features a programmable timing controller capable
at managing LED pulses, with a specified AFE width of 3 µs, pulse width of 2 µs, and a
pulse offset of 16 µs. This precise control of pulse characteristics is key for capturing
accurate PPG signals, ensuring the reliability of the data collected during the study. The
configuration facilitates effective navigation through synchronised multi-wavelength
PPG data acquisition complexities. Each channel maintained Transimpedance Amplifier
gains of 200 kΩ and was sampled at 100 Hz, utilising an I2C serial communication
interface with a 100 kHz clock frequency. Through the employment of synchronous
demodulation and other techniques, the ADPD4100 mitigates ambient light interference
[194].

4.3.3 Collection Graphical User Interface

To facilitate accurate data collection from the wrist-worn device and synchronise it with
activity timings, a custom graphical user interface (GUI) was developed. The connection
between the device and the GUI was established using Bluetooth Low Energy (BLE) via
a Nordic BLE nRF52840 USB dongle [201], which also served to minimise power line
interference (50Hz/60Hz) and enhance the quality of the output signal [194].

FIGURE 4.5: Data Collection Graphical User Interface for Subject Basic
Measurements (Left) and Running Phase (Right)

Upon connection, the GUI provided an input form to record participant measurements,
as detailed in Section 4.2, and additional forms to log the start and stop timings of
each activity phase within the protocol, ensuring precise alignment with the collected
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data. The resulting watch data, participant measurements, and activity timings were
subsequently stored in CSV files for further processing. The detailed versions of the
software used are outlined in Section 3.5

4.4 Signal Processing and Data Extraction

This section details the processes of signal processing and data extraction of the collected
signals, which are pivotal for subsequent analysis and PPG heart rate modelling. Details
encompass the alignment of ECG and PPG signals and the methodology for heart rate
extraction from ECG, with comparisons and validations against alternative techniques.
Additionally, the methods employed for skin tone classification and the computation
of BMI and exercise effort are defined, laying a foundational framework for ensuing
analyses and modelling endeavours.

4.4.1 Electrocardiogram and Photoplethysmogram Alignment

As elaborated in Section 4.3, the chest-worn ECG device and the wrist-worn bio-signal
device recorded data via either a smartphone or a laptop. Each device has an internal
clock that may not be perfectly synchronised, causing the timestamps recorded by each
device to be misaligned. To correct these inter-device time delays, several computa-
tional strategies have been applied, including cross-correlation [202, 203], dynamic time
warping [204], and region-of-interest matching methods like peak alignment [124] or
the double tap method [130]. The double tap method creates a unique marker at the
start and end of the protocol by having the participant tap all devices twice at the same
time.

Dynamic time warping can adjust for non-linear distortions and shifts in time but is
computationally expensive. Peak alignment depends heavily on the accuracy of the
peak detection method employed. In this study, cross-correlation was chosen as a
simple and effective method to align the signals. It’s also important to note that since
PPG devices are worn on the wrist, there’s a natural delay between the ECG and PPG
heartbeat due to the pulse transition time (PTT), causing a delay that can be between
100 - 250 ms depending on blood pressure [205].

To achieve an accurate lag estimate from cross-correlation, there needs to be sufficient
variation in frequency, meaning there should be fluctuations in heart rate exceeding 10
BPM. The transition from a state of running to a state of rest provides this necessary
variation in BPM, making it an ideal scenario to align the signals effectively. To calculate
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the lag, three segments from each subject were utilised: a short, a medium, and a long
segment, each centred around the transition from running to rest.

To align with the PPGs sample rate and optimise lag calculations, the ECG was down-
sampled to 100 Hz. All eight PPG signals were averaged to produce a single PPG
signal to simplify and streamline the cross-correlation process. Segments were selected
during the transition between running and resting phases, characterised by a sufficient
variation in heart rate. This allowed analysis of the lag between ECG and PPG signals
during this physiologically significant change. Three segment lengths were chosen to
provide a comprehensive understanding of the temporal ECG-PPG relationship: a short
1-minute segment, a medium 2-minute segment, and a long 3-minute segment. For each
segment—short, medium, and long—three distinct ranges of lags were systematically
examined, as shown in Figure 4.6. Initially, a comprehensive full cross-correlation was
conducted to scrutinise every possible lag. Subsequently, a method was applied that
focused on the discrepancies between the total lengths of the PPG and ECG signals,
addressing both additive and subtractive variances. Finally, a heuristic approach in-
volving a visual examination of the spectrograms was applied to select a suitable range
for lag comparison. This produced nine lag estimates, each visually examined to discard
outliers, with the median value of the remaining selected as the optimal lag.

Long SegmentMedium Segment
Full - Max Lag: -562 

Am
pli

tu
de

Lags (Samples)

Short Segment

Signal Difference - Max Lag: -562 

Region of Interest - Max Lag: -562 Region of Interest - Max Lag: -559 

Signal Difference - Max Lag: -559 

Full - Max Lag: -559

Region of Interest - Max Lag: -565 

Signal Difference - Max Lag: -565 

Full - Max Lag: -565

FIGURE 4.6: Cross-correlation analysis of ECG and Processed PPG sig-
nals for Subject 1, with systematic examination of three segment durations
(short 1-minute, medium 2-minute, long 3-minute) and three lag estima-
tion methods (full cross-correlation, signal differences, region of interest).
This multimodal approach provides a comprehensive assessment of the
temporal relationship between these cardiovascular signals during the

physiologically significant transition from running to resting.

The sign of the optimal lag determined whether the ECG or the PPG was trimmed at the
recording’s start to synchronise the signals, and any remaining misalignment at the end
was also rectified. This nuanced methodology ensured a thorough understanding of the
alignment intricacies between the ECG and PPG signals, accommodating the inherent
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variability in the recorded physiological data. The detailed versions of the software
used are outlined in Section 3.5

4.4.2 Electrocardiogram Heart Rate Extraction

Heart rate ‘ground truth’ values from a chest-worn ECG play an integral role in Pho-
toplethysmography heart rate datasets. These values serve to validate PPG heart rate
estimation methods, necessitating their reliability and accuracy. Hence, the extraction
of heart rate from the ECG is a key step in the construction of such a dataset.

FIGURE 4.7: Typical Electrocardiogram Waveform Highlighting the QRS
Complex and R Peak. This figure shows a standard ECG waveform, em-
phasising the QRS complex and the R peak. The QRS complex represents
ventricular depolarisation and appears as a series of sharp, high-amplitude
deflections. The R peak, the highest point within the QRS complex, marks
the peak of ventricular depolarisation and is key for assessing heart rate
and rhythm. The R-R interval, the time between successive R peaks, is used

to calculate heart rate and monitor cardiac health.

Similar to PPG heart rate estimation, there exists a myriad of methods to extract heart
rate from ECG signals. A prominent approach is to detect key features of the ECG
waveform, such as the QRS complex (Figure 4.7). Hamilton and Tompkins designed
a method that efficiently detects QRS complexes by analysing slope, amplitude, and
width [206]. Hamilton refined this approach, enhancing its efficiency [207]. Conversely,
Christov proposed an adaptive thresholding method [208], Elgendi et al. developed
a moving average method [209], and Kalidas et al. utilised the Stationary Wavelet
Transform [210]. However, similar to PPG beat detectors, this approach is susceptible to
inaccuracies such as misidentifying or omitting QRS complexes, leading to significant
errors.

Choosing frequency domain methods provides an alternative to time-domain QRS
complex detection. The R peaks, serving as pivotal indicators of a heartbeat within an
ECG, predominantly reside within the frequency range of 15-35 Hz [209]. Employing
a Butterworth bandpass filter specifically tuned to this frequency range and squaring
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FIGURE 4.8: Samples of Pre-Processed ECG Signals from IEEE Train and
PPG DaLiA Datasets with Extracted Heart Rate Truth Values. This figure
presents pre-processed ECG signals from the IEEE Train [126] and PPG
DaLiA [130] datasets, emphasising the extraction of heart rate truth values.
The application of a Butterworth bandpass filter, tuned to the 15-35 Hz
range where R peaks are most prominent, followed by signal squaring,
effectively isolates these R peaks. The resulting spectrogram clearly reveals
a heart rate trace that aligns with the ground truth heart rate values (shown

in red).

the signal reveals a discernible heart rate trace within the spectrogram, as illustrated
in Figure 4.8. This heart rate trace is corroborated by alignment with the ground truth
heart rate values of the datasets, underlining the precise isolation of R peaks within the
signal and attesting to the validity and efficacy of the frequency domain approach in
isolating accurate heart rate information from ECG signals.

In light of the aforementioned analysis, a frequency domain methodology was proposed,
as depicted in Figure 4.9. The ECG signal is first subject to a bandpass Butterworth
filter to accentuate the essential R peaks and minimise noise interference. Subsequently,
the filtered signals were squared, and a spectrogram was calculated and normalised,
focusing on enhancing the visibility of R peak frequencies within the signal. Each point
in the spectrogram undergoes rigorous analysis to identify the frequency that corres-
ponds to the HR, factoring in amplitude range thresholds and frequency range. The
methodology entails dynamic recalibration of the frequency range at each spectrogram
point based on the previously identified frequencies while filtering out sub-threshold
values or those that fall outside the accepted range.

To validate the efficacy of the described methodologies, multiple PPG heart rate estima-
tion datasets were employed, each with ground truth heart rate values and ECG signals,
acquired through varied devices and adhering to diverse protocols. This multifaceted
approach facilitated a thorough examination of the methodologies’ efficacy under di-
verse conditions, framing the evaluation as a supervised task. ECG signals from each
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FIGURE 4.9: Block Diagram of the Proposed ECG Heart Rate Extraction
Method. This diagram outlines the proposed frequency domain approach
for heart rate extraction. It starts with a Butterworth bandpass filter (15-
35 Hz) to isolate R peaks, followed by squaring the signal. A normalised
spectrogram is then used to highlight R peak frequencies. Each spectrogram
point is analysed to determine the heart rate, with dynamic recalibration to

filter out irrelevant frequencies and ensure accuracy.

subject were segmented into 8-second windows with a 2-second slide, accompanied by
a corresponding heart rate value from the dataset. The detailed versions of the software
used are outlined in Section 3.5.

Method IEEE Train [126] PPG DaLiA [130]
Christov [208] 3.1 ± 4.1 2.7 ± 1.3
Elgendi et
al. [209]

1.1 ± 1.6 1.4 ± 0.5

Kalidas et
al. [210]

2.5 ± 1.2 2.9 ± 0.6

Hamilton [207] 1.3 ± 0.8 4.7 ± 1.5
Hamilton and
Tompkins [206]

2.2 ± 0.6 3.2 ± 0.8

Proposed
Method

0.4 ± 0.2 1.2 ± 0.6

All Values are MAE in BPM.

TABLE 4.3: Results of ECG Heart Rate extraction validation experiment on
IEEE Train [126] and PPG DaLiA [130] datasets. Bold values indicate the

lowest MAE distribution.

Table 4.3 shows that the proposed method demonstrated superior performance on
the IEEE Train dataset with the lowest MAE of 0.4 ± 0.2 BPM, whilst maintaining
competitive results on the PPG DaLiA dataset. This consistent performance across both
datasets, coupled with low standard deviations, indicates a robust and reliable approach
for heart rate estimation tasks. A visual inspection of the performance of the proposed
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method on the collected ECG data substantiated its effectiveness, as depicted in Figure
4.10. The empirical observations and analytical outcomes collectively underscore the
reliability and accuracy of the proposed method in extracting accurate heart rate data
from diverse ECG signals.

FIGURE 4.10: Analysis of ECG Heart Rate Extraction Method for Subject 1.
This figure demonstrates the proposed ECG heart rate extraction method
(red line) applied to the spectrogram of processed ECG signals. For this
subject, the amplitude range threshold (bottom left) was not exceeded,
resulting in the inclusion of all HR values (bottom right). The spectrogram
shows an increase in heart rate during the running and cycling phases
of the protocol, indicating a well-distributed range of heart rate values

(bottom middle).

During the experiment, instances were identified where sub-optimal adherence of the
ECG device to the subject compromised the integrity of the signal. Figure 4.11 depicts
intervals where the heart rate trace in the spectrogram is obscured, rendering it non-
distinct (see mid-section of spectogram). Examining the amplitude range during these
obscured intervals uncovered considerable discrepancies attributed to noise. To rectify
and mitigate the perturbations induced by such discrepancies, a threshold was applied
to each subject’s ECG signal, leading to the exclusion of windows that lacked a coherent
and distinguishable ECG signal. This refinement led to the omission of 1643 windows,
representing 5.1% of the entire dataset, reinforcing the reliability and accuracy of the
data processed in subsequent analytical stages of the research.
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FIGURE 4.11: Analysis of ECG Heart Rate Extraction Method for Subject 21.
This figure demonstrates the proposed ECG heart rate extraction method
(red line) applied to the spectrogram of processed ECG signals. For this
subject, the amplitude range threshold (bottom left) was exceeded in three
instances, resulting in the exclusion of 203 heart rate values (bottom right).

4.4.3 Skin Type Classification

In PPG settings, the Fitzpatrick Skin Type Scale and Von Luschan’s Chromatic Scale
are commonly used to classify skin tones. These methodologies, however, are funda-
mentally subjective and can vary significantly depending on the assessor. They have
also been criticised in dermatology research for focusing too much on lighter skin tones,
which can lead to mistakes in evaluating risks and reactions in different skin types [212].
To overcome these limitations, a spectrophotometer has been recommended as the ‘gold
standard’ for objective skin tone assessment [213]. Nonetheless, studies indicate that
the results obtained from spectrophotometer assessments are in alignment with visual
evaluations of skin colour, highlighting that inaccuracies can permeate both objective
and subjective measurement methods due to improper application of techniques [214].

In this research, a robust approach was applied to impartially classify skin tones. As
referenced in Section 4.2, a photograph was taken of each participant’s arm alongside
a colour checker and a Fitzpatrick scale card. Participants were also asked to self-
administer the Fitzpatrick scale. To correct any colour variations across the photographs,
a systematic white balancing method was utilised. This method focused on each of the
three colour channels—Red, Green, and Blue—in the images. For each channel, the
following steps were performed:
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1. Histogram Calculation: A histogram was created to represent the distribution of
pixel intensities in the channel. This histogram counts the number of pixels at
each intensity level from 0 to 255.

2. Identifying Primary Range: The histogram was analysed to determine the primary
range of pixel intensities. This was done by discarding the pixel colours at each
end of the histogram that are used by only 0.05% of the pixels in the image, which
helps in ignoring outliers that might be caused by artefacts such as bits of dust.

3. Clipping and Normalisation: The minimum (bmin) and maximum (bmax) intensity
values within the primary range were identified. The pixel values in the original
image were then clipped to this range and subsequently normalised. Specifically,
any pixel values below bmin were set to bmin and any pixel values above bmax

were set to bmax. This clipped range was then stretched to the full 0-255 range of
possible intensity values using the formula:

balancedimg[..., i] =

(
clippedimg[..., i]− bmin

bmax − bmin

)
× 255 (4.1)

where i represents the colour channel index (0 for Blue, 1 for Green, and 2 for
Red).

This process ensures that the pixel values are adjusted and balanced, resulting in
uniform colour distributions and improved image contrast within each refined image.
The outcome is a white balanced image that more accurately represents the true colours
of the scene, which is key for the accurate classification of skin tones.

After the image processing, a panel of three individuals, self-identifying as Fitzpatrick
skin types 1, 3, and 5, independently assessed the participant’s images using the
Fitzpatrick scale. Figure 4.12 illustrates the observed variability in skin type categorisa-
tion across the study cohort, reinforcing the prevailing concerns regarding the reliability
of this methodology. A weighted average classification was then calculated, giving
self-administered classifications 1.5 times more weight than those from panel members.
This approach aimed to achieve a more balanced and objective assessment of skin tones
using the Fitzpatrick scale.

4.4.4 Additional Computed Metrics

As elucidated in Section 2.1.3, BMI has been reported to affect PPG signal quality.
The BMI is typically calculated using the Quetelet Index, which is mathematically
defined as an individual’s weight in kilograms divided by the square of their height in
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FIGURE 4.12: Classification of Cohort Skin Type Using the Fitzpatrick Skin
Type Scale. This stacked bar chart shows the skin type classification of the
study cohort using the Fitzpatrick Skin Type Scale. The first three bars
represent classifications by independent reviewers, self-identifying as skin
types 1, 3, and 5. The fourth bar reflects self-administered classifications by
the participants. The fifth bar displays a weighted average, giving more
weight to self-administered classifications. The variability in skin type
classification by different reviewers is evident, highlighting the importance

of using pragmatic methods when using the Fitzpatrick scale.

meters (kg/m2) [215]. The resultant metric is generally categorised for interpretative
convenience: a BMI below 18.5 is classified as underweight, between 18.5 and 24.9 as
healthy, between 25 and 29.9 as overweight, and 30 or above as obese [216]. Notably, the
National Health Service (NHS) has adjusted these categorisation boundaries for Black,
Asian, and some other minority ethnic groups to account for the differential health risks
associated with BMI in these populations [216]. Additionally, while the Quetelet Index
serves as a globally recognised metric, it is subject to criticism for its failure to account
for muscle mass, potentially providing a misrepresentative portrayal of an individual’s
percentage of body fat and, consequently, their overall health and fitness status [215].

In the context of physical exercise, heart rate serves as a pivotal indicator of the level
of effort being exerted by an individual, as it exhibits a proportionate increase with
intensifying physical activity. Consequently, using raw heart rate values as a consistent
and reliable measure of exercise intensity becomes challenging across different age
groups due to the inherent variations in the heart rate range caused by the ageing pro-
cess. The concept of effort, when represented in terms of HR, is typically described as a
percentage of the individual’s maximal heart rate (MHR) [217]. Various methodologies
have been proposed to estimate MHR; while the gold standard involves conducting a
Maximal Aerobic Test, which pushes an individual to their absolute physical limits, this
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is not always feasible in all research or practical contexts. Consequently, several equa-
tions have been derived to estimate MHR, including the widely adopted Fox equation
(220 − Age), despite its recognised variability. Alternative formulations include the
Tanaka equation (208 − 0.7 × Age) and the Fairbarn equation, which is gender-specific
(208 − 0.8 × Age for males and 201 − 0.63 × Age for females), amongst others [217].
In this study, the Fox equation was employed to estimate MHR and, subsequently,
effort, primarily due to its widespread adoption and ease of application across diverse
populations.

4.5 Summary

The chapter meticulously details the protocol design, aimed at overcoming limitations
in existing dataset protocols. It highlights the inclusion of active rest and cycling phases
to capture low- and high-heart-rate scenarios with varying movement patterns. The
cohort section elaborates on participant measurements and methodologies. Device
selection is also discussed, focusing on the use of ECG and wrist-worn devices, along
with software for activity timings.

The chapter proceeds to examine signal alignment techniques, selecting cross-correlation
for its simplicity and efficacy and detailing a comprehensive approach to ensure accurate
signal alignment. Heart rate extraction from ECG is given special attention, essential for
evaluating PPG heart rate estimation algorithms. A novel frequency domain method
was developed for more accurate heart rate extraction, outperforming existing methods
in comparative analysis. The chapter also addresses skin tone classification, which is
key in this research. Despite debates on the Fitzpatrick scale’s accuracy, a pragmatic
approach was adopted, using a diverse panel for skin tone classification, revealing
the subjectivity in the process. Other computed metrics like BMI and MHR-derived
physical effort are also discussed.

The collected dataset comprises data from 20 participants selected from an initial pool of
30 due to data collection and signal integrity issues. The cohort has an age distribution
of 25.9 ± 8.2 years and includes 13 female and 7 male participants. Skin types are
evenly split with 10 participants having Fitzpatrick skin types I-III and 10 having
Fitzpatrick skin types IV-VI. The dataset includes close to 15 hours of data, resulting
in a total of 26,442 samples of 8-second windows with 2-second slides. Notably, the
dataset features the largest representation of heart rates in the 160-180 BPM range
across available datasets, with close to 6,000 samples indicating physical effort rates
of 60% or higher. Furthermore, it includes the most comprehensive collection of PPG
wavelengths, with two channels each for blue, green, red, and IR. The data collection
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protocol incorporates erratic wrist movements, cross-over effects, motion-free periods,
and periods of increased heart rates with minimal motion. These attributes provide a
robust foundation for evaluating wrist-worn PPG heart rate estimation methods.
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Chapter 5

Analysis of A Wrist-worn
Multi-wavelength
Photoplethysmography Heart Rate
Monitoring Dataset

The preceding chapter gave details of the design, collection and processing of the
wrist-worn multi-wavelength Photoplethysmography (PPG) heart rate monitoring
dataset. This chapter evaluates the collected dataset, primarily focusing on its efficacy
in reflecting the diversity and robustness intended in its design. The dataset, designed
for validating heart rate estimation methods, captures wrist-worn PPG signals across
a diverse cohort—accounting for variations in biological sex, skin melanin content,
age, and BMI—under different motion types and physical effort levels. It utilises a
chest-worn electrocardiogram (ECG) and a wrist-worn multi-wavelength PPG device,
which collects two channels of PPG signals from the two photodiodes, using blue, green,
red, and IR LEDs. Additionally, the wrist-worn device is equipped with sensors such as
an accelerometer.

The assessment begins with a comparative analysis of existing single-wavelength wrist-
worn PPG heart rate estimation datasets (see Table 2.3), focusing on how well the
dataset represents heart rate and physical effort levels within the cohort. This is fol-
lowed by a thorough evaluation of the accelerometer’s effectiveness as a reference for
PPG motion artifacts across different types of movement. The analysis further includes
an examination of various SQIs to evaluate the dataset’s reliability under diverse condi-
tions. The final phase involves using a range of beat detectors to determine the optimal
wavelength for wrist-worn heart rate estimation and to test the compatibility of con-
ventional algorithms with this multifaceted dataset. The outcomes of this investigation
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aim to affirm whether the dataset successfully meets its intended objectives, thereby
contributing to wrist-worn PPG heart rate monitoring research.

5.1 Comparative Dataset Analysis

This section evaluates the dataset based on cohort demographics, heart rate measure-
ments, motion, and skin temperature. It involves a comparison with several single-
wavelength PPG heart rate estimation datasets, including IEEE Train [126], IEEE
Test [126], BAMI 1 [127], BAMI 2 [127], and PPG DaLiA [130]. As outlined in Sec-
tion 2.2.1, two additional datasets of this type were considered but excluded from this
analysis due to their limited sample size and inconsistent protocols across subjects,
which did not meet the standards required for a robust evaluation.

5.1.1 Cohort

A primary objective of this dataset is to facilitate a comprehensive assessment of the im-
pact of demographic variables on the accuracy of PPG heart rate estimation algorithms
and evaluate the signal quality of the PPG signals obtained. A critical aspect of this
endeavour is ensuring a diverse cohort representation. As delineated in Table 5.1, it is
observed that a substantial number of datasets do not provide detailed cohort demo-
graphics, thereby constraining the scope for analytical exploration. Only datasets such
as IEEE Test [126] and PPG DaLiA [130] offer such demographic information.

In examining age diversity, the PPG DaLiA dataset stands out with its broad age range,
with an mean age of 31 years and a standard deviation of 10 years. This contrasts
with the dataset collected explicitly for this study, which tends to comprise younger
participants, evidenced by a mean age of 26 years and a standard deviation of 8 years.
Regarding biological sex distribution, the dataset collected for this study demonstrates a
balanced representation of both sexes, albeit with a marginal inclination towards female
participants. This starkly contrasts the IEEE Test dataset, which exhibits a pronounced
male bias.

The diversity of the Fitzpatrick skin types in the collected dataset is particularly note-
worthy. It encompasses all categories on the Fitzpatrick scale, albeit with a caveat:
three of the six skin types are represented by merely two participants each. To address
within-group variance and to better understand factors affecting PPG sensing accuracy,
skin melanin content was categorised into two groups: low (Fitzpatrick types 1, 2, and
3) and high (types 4, 5, and 6), with each group comprising ten participants. From
now on in this thesis, skin melanin content will be utilised as a primary variable for
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IEEE Train
(incl. 13)

[126]

IEEE Test
[126]

BAMI 1
[127]

BAMI 2
[127]

PPG DaLiA
[130]

MW PPG HR
(This Work)

Age — 25 ± 12 — — 31 ± 10 26 ± 8

Biological Sex —
Female: 1
Male: 9

— —
Female: 8
Male: 7

Female: 13
Male: 7

Fitzpatrick
Skin Type

— — — —
II: 1
III: 11
IV: 3

I: 2
II: 6
III: 2
IV: 5
V: 3
VI: 2

BMI — 22.4 ± 2.9 — — 22.3 ± 1.8 22.8 ± 3.0

TABLE 5.1: Comparison of Cohorts Across All Utilised Datasets. The table
compares cohorts in terms of age, biological sex, Fitzpatrick skin type,
and BMI. The MW PPG HR dataset (this work) has the most diversity in
Fitzpatrick skin type, with representation of all six types. Additionally,
the table highlights the amount of non-reported demographics for each

dataset.

analysis due to these considerations. Finally, the BMI parameter exhibits ample diversity
within the collected dataset, with a slightly higher average BMI but a more significant
standard deviation than the other datasets, highlighting the range of body compositions
encompassed in the study.

5.1.2 Heart Rate

The dataset was designed to encompass a broad spectrum of heart rate values, essential
for analysing PPG heart rate estimation algorithms across different heart rate intervals.
Table 5.2 presents a detailed breakdown of the sample distribution across various
heart rate intervals for each dataset. The PPG DaLiA dataset peaks in the 60-80 BPM
range, typical for adult resting heart rates, while the collected dataset shows highest
representation in 80-100 BPM and extends to 180-200 BPM. This broader range facilitates
rigorous evaluation of the methods’ robustness across diverse physiological states.

In contrast, treadmill-based protocol datasets, such as IEEE Train, BAMI 1, and BAMI
2, show their most significant occurrence of samples in the 120-160 BPM range, cor-
responding to moderate to intense physical activity. The collected dataset particularly
stands out for its substantial inclusion of the 160-200 BPM range (2,358 samples), high-
lighting heart rates associated with vigorous activity and demonstrating the dataset’s
coverage of various physiological conditions. The PPG DaLiA dataset is the largest,
with about 65,000 samples, while the collected dataset, with around 26,000 samples,
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Heart Rates
(BPM)

IEEE Train
(incl. 13)

[126]

IEEE Test
[126]

BAMI 1
[127]

BAMI 2
[127]

PPG DaLiA
[130]

MW PPG HR
(This Work)

0 - 40 0 0 0 2 0 0
40 - 60 0 6 0 4 3,746 5
60 - 80 76 235 252 95 21,585 3,298

80 - 100 193 240 1,188 836 22,374 9,087
100 - 120 263 153 2,475 2,325 9,884 5,859
120 - 140 391 348 2,607 2,480 4,878 3,302
140 - 160 696 247 2,097 1,813 1,679 2,533
160 - 180 256 99 574 670 512 1,936
180 - 200 0 0 21 78 39 422

Total 1,875 1,328 9,214 8,303 64,697 26,442

TABLE 5.2: Comparison of Heart Rate Samples Across Utilised Datasets.
This table shows the number of heart rate samples across various BPM
ranges. The MW PPG HR dataset is particularly notable for its extensive
coverage, especially in the 60-180 BPM range, which is proportionality
underrepresented in other datasets. This broad sample range aims to
enhance the validation and verification of heart rate estimation methods

across both extreme and normal heart rate ranges

is the second-largest. This extensive data across various heart rate ranges is key for a
thorough and precise PPG heart rate estimation research evaluation.

Analysing physical effort as a percentage of MHR across datasets like IEEE Test, PPG
DaLiA, and MW PPG HR (This Work) reveals critical trends in exertion levels. It’s
important to consider age’s impact on MHR, as heart rate values alone can be misleading.
Detailed in Table 5.3, the IEEE Test dataset predominantly features samples in the higher
exertion ranges, with the majority (45.9%) in the 60-80% MHR range, followed by 30.4%
in the 40-60% MHR range. This indicates a focus on moderate to high exertion levels.
The PPG DaLiA dataset, in contrast, is concentrated in the low to moderate exertion
range, with 57.3% of samples in the 40-60% MHR range and a significant 29.0% in the
20-40% MHR range, showing a preference for moderate physical effort.

The MW PPG HR dataset (this work) displays a broader distribution but leans towards
moderate exertion, with the 40-60% MHR range accounting for 57.4% of its samples. It
also includes a notable representation in the high exertion range (10.7% in the 80-100%
MHR range). These trends highlight the varied focus of each dataset, with IEEE Test
and MW PPG HR (This Work) covering a more comprehensive range of exertion levels
and PPG DaLiA focusing more on moderate exertion. This diversity in physical effort
levels is key for comprehensively evaluating PPG heart rate estimation algorithms.



Chapter 5. Heart Rate Monitoring Dataset: Analysis 72

Physical Effort
(% of MHR)

IEEE Test
[126]

PPG DaLiA
[130]

MW PPG HR
(This Work)

0 - 20 0 0 0
20 - 40 226 18,776 2,473
40 - 60 404 37,074 15,132
60 - 80 609 7,956 5,949

80 - 100 89 891 2,831

TABLE 5.3: Comparison of Sample Counts per Physical Effort Level Across
Utilised Datasets Reporting Age. Physical effort is defined as the percentage
of heart rate over MHR, derived from the Fox Equation. Notably, the MW
PPG HR dataset demonstrates a proportionally higher number of samples
at elevated effort levels (≥ 60% MHR) compared to the other datasets

analysed.

5.1.3 Motion

In PPG signal analysis, accelerometers serve as a critical tool for motion reference and
artefact reduction, yet their efficacy in capturing diverse motion types and intensities
merits investigation. Under the premise that heart rate escalates with increased physical
workload, particularly in treadmill-based protocols, it is hypothesised that higher heart
rates correspond to intensified motion. However, this correlation may not hold for
cycling or wrist/arm movements, where high motion can coexist with lower heart rates.

To evaluate how well the accelerometer captures different motion the Euclidean norm
of the three accelerometer axes is calculated for each segmented window (8-second
duration with a 2-second shift) to quantify motion intensity. The mean value of these
windowed segments is then taken as the indicator of accelerometer intensity. Sub-
sequently, min-max normalisation is applied to these values, facilitating comparison
across different datasets.

As illustrated in Figure 5.1, the accelerometer effectively captured the escalation in mo-
tion intensity concurrent with increased activity intensity for treadmill-based protocols.
This finding is further supported by a positive correlation (0.52) between accelerometer
intensity and true HR, notably with an expanded spread of accelerometer intensities
observed beyond 100 BPM.

The collected dataset, particularly during its treadmill-based running phase, also demon-
strated a range of accelerometer intensities, as shown in Figure 5.2. However, a weaker
correlation (0.36) was observed between true heart rate and accelerometer intensity, with
a noticeably broader spread past 100 BPM. Contrarily, the accelerometer’s effectiveness
in capturing motion types diminished in wrist-based movements and cycling scenarios,
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FIGURE 5.1: Relationship between Normalised Accelerometer Intensity,
Activity, and True Heart Rate for BAMI 1 Dataset [127]. The figure presents
box plots of normalised accelerometer intensity—derived by calculating
the Euclidean norm of the 3D acceleration signal and applying min-max
normalisation across datasets. The box plots show the median, IQR, and
1.5 IQR whiskers. Notably, a broader distribution is observed at running
speeds of 6 km/h and above. Additionally, there is a greater spread of
normalised accelerometer intensity at True Heart Rates (ECG-derived)

exceeding 100 BPM.

FIGURE 5.2: Relationship between Normalised Accelerometer Intensity,
Activity, and True Heart Rate for MW PPG HR Dataset (This Work). The
figure presents box plots of normalised accelerometer intensity, calculated
using the Euclidean norm of the 3D acceleration signal and applying min-
max normalisation across datasets. The box plots show the median, IQR,
and 1.5 IQR whiskers. Running shows the widest spread of accelerometer
intensity, while active rest has a distribution similar to rest and cycling,
indicating potential limitations in capturing all movement types. A similar
trend of greater spread is observed at True Heart Rates (ECG-derived)
above 100 BPM, primarily from running, whereas minimal motion is recor-

ded during cycling, as expected.
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with notable differences in distribution observed between rest, cycling, and active rest
conditions.

These observations underscore that while accelerometers are useful for tracking certain
motion types, they may not comprehensively represent all motion-induced noise within
PPG signals. This highlights the need for cautious interpretation of accelerometer data,
especially in activities where motion patterns, such as erratic wrist-movements, differ
significantly from treadmill-based protocols.

5.1.4 Local Skin Temperature

As highlighted in Section 2.1.3, skin temperature is a factor that can significantly impact
the quality of PPG signals. However, upon examining the range of skin temperature
values recorded during the study, it was observed that there was minimal variation in
these temperatures across different activities. Notably, the active rest phase exhibited
the broadest range of skin temperature values. This variation can be attributed to the
fact that active rest was the initial phase of the protocol, during which subjects were
exposed to the colder conditions prevalent during the winter season. This exposure
potentially led to a greater spread of skin temperature than in other phases.

FIGURE 5.3: Distribution of Local Skin Temperature across Different Activ-
ities. The box plots show the median, IQR, and 1.5 IQR whiskers. Activities
are ordered as: active rest, running, rest, and cycling. Winter data collection

led to lower temperatures, especially during the first phase.

Given the overall lack of significant variation in skin temperature throughout the
various phases of the study, it has been determined that an in-depth exploration of
skin temperature as a variable affecting PPG signal quality will not be included in this
thesis. The minimal variability observed suggests that skin temperature, under the
conditions of this study, does not markedly influence the PPG signal quality to a degree
that necessitates further investigation within the scope of this research.
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5.2 Multi-wavelength Photoplethysmography Signal

Quality Analysis

This section will evaluate various Signal Quality Indices (SQIs) to determine their effic-
acy in assessing the quality of collected PPG signals, thus addressing objective 3. This
analysis is based on the premise that PPG signal quality will likely vary with physical
activity intensity. For instance, signal quality is anticipated to degrade during high-
intensity activities like running on a treadmill compared to lower-intensity activities
such as walking or resting. The aim is to establish whether these SQIs accurately reflect
changes in signal quality under different physical conditions.

The effectiveness of SQIs will be analysed in two key areas: firstly, assessing how PPG
signal quality varies across different light wavelengths, as wavelength significantly
impacts signal accuracy due to differences in light penetration and absorption by
skin and blood. Secondly, exploring how these SQIs perform under different motion
types, which is key for understanding their reliability amidst motion-induced noise.
Additionally, the impact of participants’ demographic characteristics on PPG signal
quality, as measured by the SQIs, will be examined. The detailed versions of the software
used are outlined in Section 3.5

5.2.1 PPG and Accelerometer Correlation

The relationship between the accelerometer and PPG signals is a critical aspect of
this study, focusing on the premise that the motion detected by the accelerometer
should correspond to the motion artefacts present in the PPG signal. To evaluate this,
a specific SQI was developed involving the calculation of the Euclidean norm of the
accelerometer axes for each windowed segment. This accelerometer intensity signal
was then correlated with the corresponding windows of the PPG signal to establish the
SQI.

However, the findings, as illustrated in Figure 5.4, reveal an unexpected pattern in
the correlation between accelerometer and PPG signals across different activities. Con-
trary to initial assumptions, cycling exhibited the highest spread of correlation values,
suggesting that it contains the most motion-induced artifacts within its PPG signal. In-
terestingly, the motion correlation for running was similar to that of rest, which deviates
from the expected trend of increased motion in more intense activities. This unexpected
similarity could potentially be attributed to a ‘cross-over effect’ in running.

Comparing true heart rates with this SQI showed a weak correlation, lacking a discern-
ible trend. This outcome indicates that this particular SQI may not effectively quantify
the quality of the collected PPG signals. Specifically, it is anticipated that running,
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FIGURE 5.4: Relationship Between Accelerometer Intensity and PPG Cor-
relation, Activity, and True Heart Rate for MW PPG HR Dataset (This Work).
This figure shows box-plots of the correlation between accelerometer in-
tensity (calculated as the Euclidean norm of the three axes) and the PPG
signal. The box plots show the median, IQR, and 1.5 IQR whiskers. PPG
signals are analysed by LED wavelength and photodiode channel. The
correlation’s relationship with ECG-derived heart rate is shown. Lab-based

protocols often find motion increases with heart rate.

typically associated with significant motion, would exhibit the highest motion artefacts
in the PPG signal. However, the results show the opposite, suggesting this SQI may
not accurately reflect the expected motion impact. This discrepancy also implies that
the accelerometer data used as a motion reference in this SQI might not appropriately
represent the motion artifacts in the PPG signal. Furthermore, the observation that the
quality of longer wavelengths during motion is not significantly worse than that of
shorter wavelengths challenges common assumptions about wavelength-dependent
signal deterioration due to motion.

5.2.2 Signal-to-Noise Ratio

Signal-to-noise ratio (SNR) is a widely employed signal quality index (SQI) across
various domains, including PPG signal analysis, for assessing the proportion of the
desired “signal” to background “noise” [138]. Elgendi’s research examined several
SQIs, with SNR being one, although in this study skewness was determined the optimal
SQI [138]. In Elgendi’s approach, the “signal” component is defined as the standard
deviation of the absolute values of a filtered PPG signal, whereas the “noise” component
is the standard deviation of the filtered PPG signal itself. [138].
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However, this definition reveals counter-intuitive results, as shown in Figure 5.5. For
example, activities with significant aperiodic motion, like table soccer, exhibit higher
SNR, whereas more static conditions, like sitting, show lower SNR. Additionally, a
minimal correlation (0.1) is observed between SNR and the true HR, challenging the
effectiveness of this SNR definition in accurately reflecting noise levels.

FIGURE 5.5: Relationship between Elgendi Signal-to-Noise Ratio, Activity
and True Heart Rate for PPG DaLiA Dataset [130]. This figure shows box-
plots of the correlation between Elgendi Signal-to-Noise Ratio and the PPG
signal. The box plots show the median, IQR, and 1.5 IQR whiskers. PPG
signals are analysed by LED wavelength and photodiode channel. The
correlation’s relationship with ECG-derived heart rate is shown. Lab-based

protocols often find motion increases with heart rate.

Another approach to defining SNR utilises ECG-derived heart rate values as a means
to separate signal from noise [128]. Our implementation of this method begins by
segmenting the PPG signal into windows using the Tukey window function to mitigate
transient effects. It then applies a bandpass Butterworth filter within a specific frequency
range (0.5 - 4 Hz). Subsequently, harmonics based on the ECG-derived heart rate are
identified and eliminated using a band-stop Butterworth filter, carefully removing
harmonics beyond a certain threshold, as dictated by the Nyquist criterion. This process
aims to isolate the noise component within the signal, which is then subtracted from
the original signal to obtain a ‘clean’ signal. The SNR is subsequently computed by
comparing the power of the ‘clean’ signal and the noise components, expressed in
decibels on a logarithmic scale.

This refined SNR calculation method exhibits more consistent and expected trends, as
illustrated in Fig 5.6. Lower-intensity activities like sitting display higher SNR values,
while more motion based activities such as table soccer and stair climbing show lower
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SNR values. Significantly, a stronger negative correlation between true heart rate and
SNR is observed, indicating a more accurate and meaningful representation of the
relationship between SNR and activity intensity in PPG signal analysis.

FIGURE 5.6: Relationship Between The Proposed ECG-derived Signal-to-
Noise Ratio, Activity and True Heart Rate for PPG DaLiA [130]. This figure
shows box-plots of the correlation between the proposed ECG-derived
Signal-to-Noise Ratio and the PPG signal. The box plots show the median,
IQR, and 1.5 IQR whiskers. PPG signals are analysed by LED wavelength
and photodiode channel. The correlation’s relationship with ECG-derived
heart rate is shown. Lab-based protocols often find motion increases with

heart rate.

The analysis of the ECG-derived SNR on the collected dataset across various activity
phases suggests that longer wavelengths exhibit poorer SNR than shorter wavelengths,
as illustrated in Figure 5.7. This pattern is particularly pronounced during the cycling
and resting phases, where the discrepancy in SNR between the different wavelengths
is more marked. Conversely, during running and active rest, the differences in SNR
among various wavelengths are less substantial, indicating a potential interaction effect
between activity type and the impact of wavelength on SNR.

The trend within shorter wavelengths indicates a decline in SNR as the activity in-
tensity increases, with the cycling phase displaying the broadest distribution of SNR
values. This could be attributed to the nature of cycling, which may induce more
aperiodic motion or physiological changes that affect the PPG signal differently than
other activities. The moderate negative correlation between SNR and true heart rate
underscores the inverse relationship between physiological exertion—as evidenced by
increased HR—and signal quality. The correlation coefficient of -0.41 indicates that
as the heart rate rises, possibly due to increased physical activity, the SNR tends to



Chapter 5. Heart Rate Monitoring Dataset: Analysis 79

diminish, reflecting a degradation in signal quality amidst heightened physiological
activity.

Developing an effective SQI for wrist-worn PPG sensing presents challenges due to
the complex interplay of signal and noise. The chapter examines three SQIs, ultimately
determining the ECG-derived SNR as most effective in reflecting the expected data
trends and assumptions. Consequently, this SQI will be adopted in subsequent chapters
to assess proposed methodologies, providing a robust tool for evaluating the quality
and reliability of PPG-based physiological estimation methods in wrist-worn devices.

FIGURE 5.7: Relationship Between The Proposed ECG-derived Signal-to-
Noise Ratio, Activity and True Heart Rate for MW PPG HR (This Work).
This figure shows box-plots of the correlation between the proposed ECG-
derived Signal-to-Noise Ratio and the PPG signal. The box plots show the
median, IQR, and 1.5 IQR whiskers. PPG signals are analysed by LED
wavelength and photodiode channel. The correlation’s relationship with
ECG-derived heart rate is shown. Lab-based protocols often find motion

increases with heart rate..

5.3 Multi-wavelength Photoplethysmography Beat De-

tectors Analysis

In the domain of PPG-based heart rate monitoring, the prominence of the systolic
peak in the PPG waveform is of utmost importance. The sequential analysis of these
systolic peaks (beats) facilitates the derivation of vital physiological indicators such as
heart rate and heart rate variability, which are key for cardiovascular monitoring [124].
Consequently, the distinctness and clarity of the systolic peaks serve as a significant
measure of the quality of the PPG signal. This section aims to explore whether there is a
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trend between wavelength and PPG beat detection performance, assess the robustness of
beat detectors to different types and intensities of motion, and analyse how demographic
variations impact PPG beat detection accuracy. The framework developed by Charlton
et al. for evaluating fifteen open-source systolic peak detectors provides the foundation
for this investigation [124].

To align with the results of Charlton et al., the same evaluation parameters were ad-
opted [124]. The PPG signals were processed at a sampling rate of 100 Hz, filtered
through a bandpass filter from 0.67 to 8.0 Hz, and segmented into 20-second intervals
with a 5-second overlap. Only PPG windows that met predefined quality standards
were included, and the mid-amplitude points of the detected peaks were the focus
of the subsequent analysis. Reference ECG beats were delineated using the ’jqrs’ and
’rpeakdetect’ QRS detection algorithms based on well-established techniques [206, 207].
A consistency check for ECG beats was enforced, accepting only those detected by both
QRS methods within a 150 ms interval, thus excluding discordant ECG beats. Following
the detection of PPG beats, an alignment with the ECG beats was performed, ensuring
that both were within a 150 ms concordance range. Furthermore, as discussed in Section
4.4.2, compromised ECG signal segments were omitted from the analysis. The detailed
versions of the software used are outlined in Section 3.5. To assess the effectiveness of
the beat detection algorithms in estimating heart rate, the heart rate values calculated
from the detected beats in the PPG signal will be compared with the heart rate values
derived from the ECG measurements.

5.3.1 Activity and Wavelength

Figure 5.8 presents the MAPE analysis for each activity in the analysis. As expected,
the rest phase exhibited the most accurate results across all detectors. When comparing
short and long wavelengths, algorithms ATM, COppg, ERMA, and IMS demonstrated
similar MAPE values. Interestingly, PWD displayed marginally improved performance
with longer wavelengths compared to shorter ones. Conversely, the remaining detectors
performed better with shorter wavelengths.

During active rest and cycling activities, MAPE values remained consistent across vari-
ous wavelengths. QPPG, ERMA, MSPTD, and WFD consistently displayed the lowest
MAPE distributions in these phases. Running, characterised by the most significant
motion, produced the least accurate results for all beat detectors.

Table 5.4 provides a comprehensive overview of the median absolute errors (AE) for
various PPG wavelengths and activities. The data reveals that shorter wavelengths,
particularly blue and green, consistently resulted in lower median errors across different
activities.
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PPG Channel
Active Rest Cycling Rest Running

Detector
Median

AE (BPM)
Detector

Median
AE (BPM)

Detector
Median

AE (BPM)
Detector

Median
AE (BPM)

Blue CH 1 ERMA 15.1 QPPG 17.4 ERMA 11.5 QPPG 33.2
Blue CH 2 ERMA 13.6 QPPG 17.3 ERMA 11.8 QPPG 29.7

Green CH 1 ERMA 13.7 QPPG 17.2 ERMA 11.9 QPPG 34.5
Green CH 2 WFD 12.9 QPPG 19.2 SPAR 12.2 QPPG 29.8
Red CH 1 ERMA 14.4 WFD 17.4 ERMA 14.5 QPPG 38.4
Red CH 2 ERMA 14.5 WFD 20.8 ERMA 14.1 WFD 39.1
IR CH 1 ERMA 14.7 ERMA 19.1 ERMA 13.9 WFD 31.0
IR CH 2 ERMA 13.6 WFD 19.4 ERMA 15.0 QPPG 39.3

TABLE 5.4: Activity-Based Performance Analysis of PPG Beat Detectors
Heart Rate Estimation Across Various Wavelength for MW PPG HR dataset
(This Work). This table shows the median absolute error (AE) in BPM
for different PPG heart rate detectors across various activities and PPG
wavelengths. The analysis includes each PPG wavelength and channel,
where wavelength represents the light wavelength of the LED used and
channel indicates the photodiode collecting the signal. Each row represents
a specific PPG channel, and each column under the activity headings lists
the detector with the corresponding median AE. The code base for the PPG
beat detectors was from Charlton et al. [124]. Bold indicates lowest median

absolute error for that activity.

For active rest, the green wavelength (Channel 2) paired with the WFD detector achieved
the lowest AE at 12.9 BPM, indicating superior accuracy. In comparison, the blue
wavelength (Channel 2) with the ERMA detector was also effective, with a slightly
higher AE of 13.6 BPM.

During cycling, the green wavelength (Channel 1) combined with the QPPG detector
provided the best performance, showing the lowest AE at 17.2 BPM. Blue light (Channel
2) with the QPPG detector also performed well, with a marginally higher AE of 17.3
BPM.

In a resting state, the blue wavelength (Channel 1) and the ERMA detector were the
most accurate, achieving the lowest AE of 11.5 BPM. Green light (Channel 2) paired
with the SPAR detector showed a slightly higher AE of 12.2 BPM.

For more intense activities like running, the blue wavelength (Channel 2) coupled with
the QPPG detector resulted in the lowest AE of 29.7 BPM, indicating better accuracy
under these conditions. Green light (Channel 2) with the QPPG detector followed
closely, with an AE of 29.8 BPM.

Overall, the differences in accuracy between blue and green wavelengths across activit-
ies were generally within 1 BPM. The ERMA detector showed consistent performance
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across various wavelengths for active rest and rest. However, for more dynamic activit-
ies like cycling and running, the QPPG detector emerged as the most accurate, with blue
light performing slightly better for running and green light excelling in cycling. This
analysis underscores the importance of selecting appropriate PPG wavelengths and
detectors tailored to specific activities to achieve optimal heart rate estimation accuracy.

5.3.2 Biological Sex and Wavelength

Figure 5.9 presents the comparative analysis of PPG beat detector performance across
biological sexes. While most detectors exhibited generally uniform performance, some
notable exceptions emerged. Detectors like AMPD, ABD, and ATM displayed a signific-
antly tighter IQR for males compared to females. This indicates more consistent heart
rate estimation accuracy in males for these specific detectors.

Wavelength also appears to influence detector performance. Eight out of the fifteen
detectors analysed demonstrated a broader MAPE distribution when using longer
wavelengths (IR). This suggests that their accuracy is lower with IR light compared
to shorter blue and green wavelengths. Conversely, detectors like PWD and ATM
maintained consistent performance across the entire wavelength spectrum, highlighting
their robustness to wavelength variations.

Table 5.5 provides a detailed analysis of the median absolute error (AE) in beats per
minute (BPM) for different PPG wavelengths and biological sexes. The table highlights
that blue light (Channel 1) yielded the most accurate results for both females and males,
with QPPG as the best-performing beat detector. For females, QPPG achieved a median
AE of 23.3 BPM, while for males, it achieved a lower AE of 19.7 BPM, indicating a 3.6
BPM higher accuracy for males.

When examining other wavelengths, green light (Channel 1) showed a slightly higher
AE for females at 25.4 BPM, with QPPG as the detector, compared to 20.5 BPM for males.
Interestingly, for green light (Channel 2), MSPTD was the most accurate detector for
males, with an AE of 20.6 BPM, while QPPG was still the best for females with a similar
AE of 23.4 BPM.

For red and infrared wavelengths, the errors increased for both sexes. Red light (Channel
1) had an AE of 30.7 BPM for females and 25.6 BPM for males, with WFD as the most
accurate detector for both. Similarly, infrared light (Channel 1) resulted in an AE of 29.8
BPM for females using WFD and 26.6 BPM for males using ERMA.
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PPG Channel
Female Male

Detector
Median

AE (BPM)
Detector

Median
AE (BPM)

Blue CH 1 QPPG 23.3 QPPG 19.7
Blue CH 2 QPPG 23.3 WFD 20.1

Green CH 1 QPPG 25.4 QPPG 20.5
Green CH 1 QPPG 23.4 MSPTD 20.6
Red CH 1 WFD 30.7 WFD 25.6
Red CH 2 ERMA 30.3 ERMA 26.6
IR CH 1 WFD 29.8 ERMA 26.6
IR CH 2 ERMA 28.8 ERMA 25.2

TABLE 5.5: Biological Sex-Based Performance Analysis of PPG Beat Detect-
ors Heart Rate Estimation Across Various Wavelengths for MW PPG HR
dataset (This Work). This table shows the median absolute error (AE) in
BPM for different PPG heart rate detectors across biological sexes and PPG
wavelengths. The analysis includes each PPG wavelength and channel,
where wavelength represents the light wavelength of the LED used and
channel indicates the photodiode collecting the signal. Each row represents
a specific PPG channel, and each column under the activity headings lists
the detector with the corresponding median AE. The code base for the PPG
beat detectors was from Charlton et al. [124]. Bold indicates lowest median

absolute error for that biological sex.

In summary, across all wavelengths, males exhibited more accurate PPG measurements
than females. QPPG was consistently the most accurate detector for both sexes, espe-
cially when using blue light. However, for males, WFD and MSPTD detectors also
demonstrated competitive accuracy with blue and green lights, respectively.

5.3.3 Skin Melanin Content and Wavelength

Figure 5.10 depicts the relationship between skin melanin content and PPG beat detector
performance. The analysis reveals a trend where higher melanin content coincides with
larger IQRs in heart rate measurement accuracy. This suggests greater variability in
accuracy for individuals with darker skin tones compared to those with lighter skin
tones.

However, some detectors, such as ATM, PWD, and SPAR, exhibit minimal variation
across different wavelengths, indicating consistent performance regardless of melanin
content. Notably, for most detectors, shorter wavelengths (blue and green) appear to
yield more accurate measurements. ERMA, MSPTD, QPPG, WFD, ABD, and AMPD all
demonstrate comparable accuracy distributions at shorter wavelengths. It’s important
to note that none of these detectors meet the AAMI standard for medical device accuracy.
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Despite this, the consistency observed at shorter wavelengths across various detectors
highlights their potential for providing more reliable PPG heart rate estimations.

Table 5.6 presents the median absolute errors (MAE) for PPG heart rate detectors across
different skin melanin content levels and PPG wavelengths. The analysis reveals that
skin melanin content has a minimal impact on the accuracy of PPG beat detection, with
certain trends observed across the various wavelengths.

For individuals with lower melanin content, blue wavelengths showed slightly better
performance, with the QPPG detector achieving the lowest MAE of 22.0 BPM using
Blue Channel 1. As melanin content increases, the accuracy remains relatively stable,
with QPPG still performing well at 23.1 BPM for Blue Channel 2.

PPG Channel
Low High

Detector
Median

AE (BPM)
Detector

Median
AE (BPM)

Blue CH 1 QPPG 22.0 QPPG 23.2
Blue CH 2 QPPG 22.9 QPPG 23.1

Green CH 1 QPPG 24.0 QPPG 23.1
Green CH 1 QPPG 23.0 MSPTD 24.9
Red CH 1 ERMA 29.7 ERMA 29.4
Red CH 2 WFD 28.6 ERMA 30.0
IR CH 1 ERMA 27.8 ERMA 28.6
IR CH 2 ERMA 27.4 ERMA 27.7

TABLE 5.6: Skin Melanin Content-based Performance Analysis of PPG
Heart Rate Detectors Across Various Wavelengths for MW PPG HR dataset
(This Work). This table shows the median absolute error (AE) in BPM for
different PPG heart rate detectors across skin melanin content and PPG
wavelengths. The analysis includes each PPG wavelength and channel,
where wavelength represents the light wavelength of the LED used and
channel indicates the photodiode collecting the signal. The data is from
the MW PPG HR dataset (This Work). Each row represents a specific PPG
channel, and each column under the activity headings lists the detector with
the corresponding median AE. The code base for the PPG beat detectors
was from Charlton et al. [124]. Bold indicates lowest median absolute error

for that skin melanin content.

In contrast, green wavelengths exhibited consistent MAE values across different melanin
levels. QPPG was the most accurate detector for both low and high melanin content,
with MAE values of 24.0 BPM and 23.1 BPM, respectively, using Green Channel 1.

Longer wavelengths, such as red and infrared, also showed minimal variation in
accuracy between different melanin content levels. The ERMA detector consistently
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performed well across these wavelengths, with MAE values ranging from 27.4 BPM to
30.0 BPM.

Overall, QPPG demonstrated superior accuracy with shorter wavelengths, particularly
blue light, while ERMA excelled with longer wavelengths, such as red and infrared. This
suggests that while melanin content does not significantly impact PPG beat detection
accuracy, the choice of wavelength and detector is key for achieving the best results
across different skin types.

5.4 Summary

This chapter addresses Objective 3 of the thesis: Quality Assessment of PPG Signals, by
developing and comparing various methods for quantifying and assessing the quality
of the collected PPG signals across different activities and wavelengths. It provides an
in-depth analysis and comparison of the multi-wavelength PPG heart rate monitoring
dataset against existing datasets.

The cohort analysis underscores the dataset’s unique diversity, featuring balanced rep-
resentation in biological sex (13 females, 7 males) and encompassing all six Fitzpatrick
skin types. The dataset effectively captures a wide range of physiological states, with a
substantial number of samples (2,358) exceeding 160 BPM and 9,087 samples within the
80-100% maximal heart rate range.

In the motion analysis, detailed insights from the accelerometer data reveal that while
treadmill-based protocols show a correlation between increased speed and accelero-
meter intensity, wrist-based movements unexpectedly exhibit similar intensities to rest.
This finding highlights the limitations of accelerometers in fully capturing the motion
types that affect PPG sensing.

The chapter’s focus on quality assessment is evident in its evaluation of three SQIs:
Elgendi SNR, a proposed ECG-derived SNR, and the correlation between accelerometer
intensity and PPG signal. The ECG-derived SNR emerges as the most reliable SQI for
this use case, displaying consistent and expected trends, such as a stronger negative
correlation (-0.41) with true heart rate and distinct distributions for each activity. This
makes it the most suitable SQI for assessing the robustness of proposed heart rate
estimation methodology.

In the final section, the chapter evaluates PPG beat detectors across activities,
wavelengths, and demographics. QPPG and ERMA perform best, especially during
rest with blue light, achieving errors as low as 11.5 BPM. Detector accuracy varies by
activity, with WFD excelling in low-intensity activities and QPPG in more intense ones.
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Differences between blue and green wavelengths are minimal, often within 1 BPM.
Demographic factors influence PPG detector performance to varying degrees. Males
generally exhibit higher accuracy across all wavelengths, with QPPG showing a 3.6
BPM advantage for males over females when using blue light. Skin melanin content
has a minimal impact overall, but detectors like ERMA perform consistently well with
longer wavelengths, such as red and infrared, across different melanin levels.

Overall, this chapter provides insights that inform the development and evaluation
of wrist-worn PPG heart rate monitoring methodologies, particularly in addressing
motion artefacts, signal quality, and demographic variability.
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FIGURE 6.1: Overview of the Development Process of the Proposed CNN
Heart Rate Estimation Method. This figure illustrates the general meth-
odology for supervised deep learning, detailing the specific steps chosen
for this study. The process includes pre-processing, data augmentation,
data splitting, model initialisation, model training, model evaluation and

cross-validation [163].

Following the detailed analysis of the multi-wavelength wrist-worn photoplethysmo-
graphy (PPG) heart rate estimation dataset in the previous chapter, this chapter aims
to validate a convolutional neural network (CNN) method for heart rate estimation
using the collected data. This process, illustrated in Figure 6.1, encompasses several key
steps: pre-processing and augmentation, data splitting and CV, architectural design and
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training, and thorough evaluation. The chapter provides detailed justifications for each
decision in the method’s creation.

Furthermore, an in-depth performance analysis is conducted, including assessing the
impact of wavelength selection, demographic variations, and application of the method
on existing single-wavelength datasets. The chapter concludes with a comparative ana-
lysis, evaluating the proposed deep learning approach against conventional statistical
methods. The detailed versions of the software used are outlined in Section 3.5

6.1 Signal Pre-processing and Augmentation

6.1.1 Signal Pre-processing

As detailed in Section 2.2, both conventional and deep learning PPG heart rate estim-
ation methods employ a pre-processing stage to prepare and enhance the signal for
the estimation methodology. This stage typically includes techniques such as filtering,
re-sampling, windowing, transformation and normalisation. Figure 6.2 depicts an un-
processed PPG signal, showcasing the raw data with its inherent challenges for accurate
heart rate estimation. The signal exhibits baseline wander and motion artefact spikes,
both common issues in PPG analysis. However, an 8-second segment reveals discernible
PPG waveforms amidst the noise and interference. This emphasises the necessity of the
detailed pre-processing steps outlined in this section for extracting accurate heart rate
estimation.

FIGURE 6.2: Raw PPG signal displaying the full signal alongside an 8-
second zoomed-in window. The zoomed-in view highlights the character-
istic PPG waveform, with evident noise present in both the full signal and

the window.

The initial step in the pre-processing stage involves the application of a 4th-order But-
terworth bandpass filter with a pass-band of 0.5-4 Hz, corresponding to the typical
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heart rate band of 30-240 BPM. The Butterworth filter is selected for its maximally flat
frequency response in the pass-band, ensuring minimal amplitude distortion within
the range of interest. As evident in Figure 6.3, this filtering attenuates baseline wander,
significantly enhancing signal clarity. However, the figure also reveals residual mo-
tion artefact spikes, likely caused by overlapping frequency components that remain
unaddressed by the bandpass filter alone.

FIGURE 6.3: Band-Pass Filtered PPG Signal and Filter Responses. The
figure displays the frequency, phase, and impulse responses of a 4th-order
Butterworth band-pass filter with a pass-band of 0.5-4 Hz, corresponding
to the typical heart rate range of 30-240 BPM. It also shows an 8-second
window of the PPG signal where the effects of filtering are evident. The
Butterworth filter is chosen for its maximally flat frequency response in
the pass-band, ensuring minimal amplitude distortion within the range of

interest.

Before applying the bandpass filter, a 0.05% Tukey window is applied to the signal.
The Tukey window serves as a tapering function that helps reduce spectral leakage
by smoothly transitioning the signal to an amplitude of zero at the edges, as shown
in Figure 6.4. This step is key in minimising the introduction of artefacts during the
subsequent filtering process.



Chapter 6. A Convolutional Neural Network for Heart Rate Estimation 93

FIGURE 6.4: Tukey Windowed PPG Signal. The figure demonstrates the
application of a Tukey window to the PPG signal, which tapers the signal’s

edges to reduce spectral leakage.

Following filtering, the signal undergoes re-sampling to a standardised rate of 64 Hz
for consistency across datasets. A poly-phase filter bank achieves this re-sampling
efficiently by combining up-sampling and decimation. This process involves raising
the sample rate, applying a low-pass filter to eliminate unwanted high-frequency
components, and then reducing the sampling rate through decimation. This method
optimises computational efficiency and suppresses aliasing, ensuring the preservation
of the core PPG signal information. Next, the resampled signal is segmented into
overlapping windows of 8 seconds with a 2-second overlap. This windowing strategy
aligns with established practices in PPG heart rate estimation literature, facilitating
result comparability across studies.

FIGURE 6.5: Z-Normalised PPG Signal. The figure illustrates the z-
normalisation process applied to the PPG signal, which standardises the
signal by adjusting for mean and variance. This process transforms the data
to have a mean of zero and a standard deviation of one, as demonstrated

by the normalised PPG waveforms.

Finally, z-normalisation is applied to each individual windowed segment, as shown
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in Figure 6.5. This step transforms the data within each window to have a mean of
0 and a standard deviation of 1. By performing z-normalisation on a window-by-
window basis rather than on the entire pre-processed signal, the model tailors the
normalisation to the specific characteristics of the analysed segment. This approach is
particularly advantageous for PPG signals due to their non-stationary nature, where
physiological conditions can vary over time. Normalising the entire signal beforehand
could potentially mask these variations, hindering the model’s ability to detect subtle
changes within each window

6.1.2 Signal Augmentation

Data augmentation incorporates prior knowledge of data in-variance under specific
transformations. By artificially expanding the training data with these transformations,
data augmentation increases the diversity of the input space and discourages overfitting.
This, in turn, enhances the model’s ability to generalise to unseen data. The effectiveness
of this approach has been demonstrated in methods for estimating heart rate from PPG
signals [27] and monitoring systems for Parkinson’s Disease [218].

As an augmentation technique, jittering adds small random amplitude fluctuations
to the PPG signal, as shown in Figure 6.6. This is intended to increase the model’s
exposure to varied signal patterns, aiding it in learning to process signals with inherent
inconsistencies and ultimately enhancing its accuracy in heart rate estimation across
diverse conditions.

FIGURE 6.6: Signal Jittering of PPG Window. The figure shows the effect
of signal jittering on the PPG data, which introduces high-frequency noise

into the signal.

The scaling augmentation in the training data adjusts the PPG waveform’s amplitude
and diversifies the training dataset, as shown in Figure 6.7. By introducing a variety
of amplitude profiles, the model is trained to handle a broader spectrum of signal
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strengths, making it more versatile and robust in different operational contexts. By
training the model on signals with diverse amplitude profiles, the method becomes
more robust to the differences in signal magnitude that can occur across different users
or sensor positions.

FIGURE 6.7: Signal Scaling of PPG Window. The figure illustrates signal
scaling applied to the PPG data, which adjusts the amplitude uniformly

across the entire signal.

Magnitude warping is applied to the PPG signals to replicate the non-linear morpholo-
gical changes that can be introduced by shifts in physiological states or movement, as
shown in Figure 6.8. This technique warps the signal in a controlled manner, creating
realistic scenarios where the waveform is distorted, as it often happens in practical
applications due to motion or pressure changes on the sensor.

FIGURE 6.8: Magnitude Warping of PPG Window. The figure demonstrates
magnitude warping applied to the PPG signal, which alters the amplitude
differently across various sections. This effect is illustrated by the last three

PPG waveforms.

These augmentation techniques enrich the training dataset with a broad spectrum of
variations. These techniques, including jittering, scaling, and magnitude warping, are
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evenly distributed in the augmented dataset. Random data windows undergo one of
these augmentations, applied uniformly across all signals in a sample, encompassing
all PPG channels, wavelengths, and accelerometer data. The specific augmentation
parameters were set at 0.15 for jittering, 2.0 for scaling, and 0.5 for magnitude warping,
enhancing the dataset’s robustness and diversity.

6.2 Architecture

The architecture of a neural network essentially defines the space of possible solutions
that the training process can explore via gradient descent. This space is influenced
by the model’s parameters. A well-designed network architecture incorporates prior
knowledge about the data to guide the exploration towards optimal solutions that
effectively capture the underlying relationships within the data [163]. In this study,
certain assumptions are made about the nature of the data, which comprises one-
dimensional time series data owing to its temporal nature and is characterised as
multivariate due to its multi-wavelength and multi-channel composition.

Motion artefacts pose a significant challenge within wrist-worn PPG signal processing,
necessitating a substantial portion of the network’s computational efforts to discern
signal from noise. A sensor fusion strategy incorporating motion references is utilised
to aid with this. The network’s primary objective is to output a continuous value
representing the HR, framing the task as a regression task. Key features of PPG signals
for heart rate estimation can be broadly categorised into two types: local and global.
Local features focus on specific characteristics within a signal window, such as the
presence and location of systolic peaks. Global features, on the other hand, capture
overall signal properties within the window, such as the number of systolic peaks
detected. The architectural framework is outlined in the following section based on
these assumptions.

6.2.1 Sensor Fusion

Sensor fusion combines several sensing modalities to gain richer information about
the individual parts and their emergent behaviour [219]. Classical approaches to
the fusion of heterogeneous sensing modalities rely on feature engineering to extract
independent features from each sensing modality, which are fused. This approach
of extracting different features from individual sensors disregards features that use
multiple sensors’ data to capture information that neither has in isolation [220]. In many
applications, DNNs have been adopted instead due to their ability to learn features
during training [220–222], showing improved performance in applications such as gait
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recognition [220], human activity recognition [220–222], car tracking [221], dynamic gas
mixtures estimations and cuffless blood pressure monitoring [222].

For wrist-worn PPG sensing, motion artefacts have overlapping frequency bands with
the cardiac signal, making the removal of such artefacts challenging. Motion references
such as accelerometers, gyroscopes, and longer wavelength PPG have been commonly
used in effective motion artefact reduction methods [42, 72–74, 128]. There are several
strategies for data fusion, namely early, intermediate and late fusion [219]. In this re-
search, channel-wise fusion occurs early in the network for each sensing modality. Then,
intermediate fusion combines latent features from each sensing modality, enhancing the
overall informative representation of heterogeneous sensory data.

6.2.2 One-dimensional Convolutions

In deep learning, convolutional operations excel at extracting local features from non-
linear and multi-dimensional data. For bio-signals like PPG signals, which have a
single temporal dimension, 1D convolutions are employed. These convolutions involve
kernels that slide along the input sequence, generating an output where each value
represents a weighted sum of its neighbouring input values. When dealing with multi-
channel data (e.g., incorporating additional sensor data), each channel is processed
independently, and the resulting activations are summed to produce a single output
value.

The number of filters within a convolutional layer dictates the variety and complexity
of features the network can learn. Each filter acts as a feature detector, emphasising
specific patterns or aspects within the input data. Zero-padding is a common technique
used to preserve the input dimensionality after the convolution operation.

The convolution operation is typically followed by adding a bias term b and applying
an activation function σ. The mathematical expression for the forward pass of a 1D
convolution layer is given by:

Y[i] = σ(
k−1

∑
j=0

X[i + j] · W[j] + b) (6.1)

Here, Y[i] is the output at position i in the output sequence, X[i + j] is the input
value at position i + j, W[j] is the weight at position j, b is the bias term, and k is
the size of the filter. The activation function, σ, introduces non-linearity, allowing it to
learn intricate patterns. Common activation functions include Rectified Linear Unit
(ReLU), Exponential Linear Unit (ELU), and Leaky Rectified Linear Unit (Leaky ReLU).
Depending on the chosen activation function, distinct weight initialisation schemes
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are recommended. For instance, ReLU activation favours He Initialisation, while ELU
activation aligns well with LeCun initialisation. These initialisation strategies contribute
to the stable and efficient training of convolutional neural networks by providing
suitable starting points for optimisation.

Convolutional layers are often accompanied by pooling operations to achieve two
key goals: dimensionality reduction and enhanced translation in-variance. Pooling
works by summarising information within localised regions of the data. When applied
sequentially, pooling performs a hierarchical aggregation of information. This allows the
network to capture increasingly abstract representations of the input data. Essentially,
pooling enables the network to recognise patterns and features at different scales,
ranging from local details to global characteristics. In the context of PPG-based heart
rate estimation, this hierarchical processing is key. It facilitates the transition from
capturing localised features like individual systolic peaks to broader features like the
total number of peaks within a signal segment.

The proposed architecture primarily relies on convolutional pooling layers for feature
extraction, playing a vital role in processing the signals for accurate heart rate estimation.
However, the effectiveness of convolutional and pooling layers is not isolated. Their
success hinges on the integration of complementary techniques, such as normalisation,
which standardises the input data to ensure a consistent range for efficient processing,
and regularisation strategies that help prevent overfitting—a phenomenon where the
model memorises training data specifics and performs poorly on unseen data. Addi-
tionally, a continuous output mechanism is key, as the final layer of the network needs
to generate a continuous numerical value that accurately represents the heart rate.

6.2.3 Normalisation

Batch normalisation is pivotal for stabilising and improving the efficiency of neural
network training by normalising the input of each layer during the training process.
A "batch" refers to a subset of the training data processed through the neural network
simultaneously. During training, the neural network does not process the entire dataset
in one go but instead works on these smaller batches of data. Each batch goes through
the normalisation process separately.

The input to each layer is normalised by subtracting the mean and dividing by the
standard deviation, introducing a small constant (ϵ) to prevent division by zero. These
normalised inputs are scaled and shifted using learnable parameters, γ and β. This
affords the model the adaptability needed to fine-tune these inputs according to the
learning dynamics within each batch [223].
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6.2.4 Regularisation

Deep learning models are susceptible to overfitting, a phenomenon where the model
learns not only the underlying patterns in the training data but also the noise and
specific characteristics of that data. This leads to poor performance on unseen data.
Regularisation techniques play a key role in mitigating overfitting and enhancing the
model’s generalisability.

One such technique is dropout. During training, dropout randomly deactivates a subset
of neurons within the network. This forces the model to learn robust features that are
not overly reliant on any specific neuron or group of neurons. By introducing beneficial
noise, dropout discourages the model from simply memorising the training data and
instead compels it to learn generalisable representations that perform well on unseen
data [224].

In addition to dropout, weight regularisation techniques are employed to further pre-
vent overfitting. These techniques penalise the model for having overly complex
weights, encouraging simpler and more generalisable models. Two common weight
regularisers are L1 (Lasso) and L2 (Ridge). L1 regularisation promotes sparsity by driv-
ing some weights towards zero, effectively removing them from the model. This can
be particularly useful when dealing with high-dimensional data where many features
might be irrelevant [225].

In contrast, L2 regularisation penalises large weights, even if they remain non-zero.
This helps to improve the stability of the model and prevent it from becoming overly
reliant on specific features in the training data [225]. Elastic Net combines both L1 and
L2 regularisation, offering a balance between sparsity and weight value control [225].
This study utilises both dropout and Elastic Net regularisation to provide a robust
approach to overfitting prevention, ultimately enhancing the generalisability of the
neural network.

6.2.5 Global Pooling and Output

In a regression framework for heart rate estimation, the final layer uses a linear activa-
tion function, suitable for predicting the positive and continuous nature of heart rates.
Global pooling is applied after the final convolutional layer to reduce dimensionality
by summarising each feature map into a single value. This method establishes direct,
weighted connections between the output neuron and each feature map, offering com-
putational efficiency over flattening the temporal dimension, which would increase
model complexity.
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Global pooling also directs the model’s focus towards the most critical features within
each map, enhancing robustness and generalisability by mitigating overfitting. This
approach simplifies the model while prioritising essential features, leading to a more
effective heart rate estimation model. The final architecture, arrived at after hyperpara-
meter optimisation (see section 6.4) is shown in Figure 6.9.
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FIGURE 6.9: Schematic Representation of the Proposed Convolutional
Neural Network Architecture for PPG Heart Rate Estimation. The archi-
tecture incorporates early channel-wise fusion for each sensing modality,
followed by intermediate fusion of latent features from each sensing modal-
ity. It employs one-dimensional convolutional layers with zero-padding for
feature extraction, batch normalisation for input stabilisation, and dropout
for regularisation. The network uses global pooling to reduce dimensional-
ity and focus on critical features. The final layer utilises a linear activation
function for continuous heart rate output. This architecture, resulting from
hyperparameter optimisation, contains 730,000 parameters and consumes

2.78 megabytes.

6.3 Training and Validation

6.3.1 Loss Functions

A loss function serves to quantify the distance between the current prediction generated
by a neural network and the expected output. It functions as a mechanism for assessing
how effectively the network captures the underlying patterns in the data. Furthermore,
the loss function is pivotal in refining the network’s parameters during the training
process.

Common loss functions in cases with continuous predictions and ground truth include
Mean Squared Error (MSE), MAE, and Huber Loss, which blends MSE and MAE
characteristics. For this chapter, MSE is selected as the loss function due to its inherent
capacity to penalise substantial errors with a quadratic progression. MSE computes
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the average squared difference between the truth value and the predicted value and is
calculated using the following equation:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (6.2)

where yi is the truth value for the ith sample in the dataset and ŷi is the predicted value
for the ith sample.

6.3.2 Backpropagation and Optimiser

Adjusting network parameters to minimise the loss function relies on two pivotal al-
gorithms: backpropagation and an optimiser. Backpropagation is an iterative procedure
characterised by a forward pass, during which input data traverses the network to
generate predictions. Subsequently, a backward pass computes the gradients of the
loss function with respect to the network parameters [228]. These gradients provide
essential information for the optimiser, which utilises them to adjust the network para-
meters and minimise the loss function. Batch processing is typically employed for
several reasons, including the stochastic nature that aids in escaping local minima and
ultimately enhances model generalisability.

Leveraging the gradients computed by backpropagation, the optimiser iteratively ad-
justs the network parameters to minimise the loss function. This iterative refinement pro-
cess, repeated multiple times throughout training, progressively improves the model’s
ability to generate accurate predictions. Stochastic Gradient Descent (SGD) and Ad-
aptive Moment Estimation (ADAM) are common choices for optimisers in this context.
SGD is a foundational optimisation algorithm with simplicity and efficiency, making it
a widely used approach [229]. The SGD update rule is expressed as:

θt+1 = θt − η∇L(θt) (6.3)

Here, θt represents the current parameters, η is the learning rate, and ∇L(θt) signifies
the gradient of the loss function with respect to the parameters. However, SGD is
sensitive to the choice of the learning rate, potentially leading to slow convergence or
oscillations around the optimum.

The ADAM optimiser extends the principles of SGD by adapting the learning rate for
each weight of the neural network using estimations of the first and second moments
of the gradient. This adaptability facilitates convergence in scenarios with varying



Chapter 6. A Convolutional Neural Network for Heart Rate Estimation 102

gradient magnitudes [229]. The ADAM update rule is given by:

θt+1 = θt −
η√

νt + ϵ
· mt (6.4)

Here, η is the learning rate, mt is the first-moment estimate, νt is the second-moment
estimate, and ϵ is a small constant. Despite its popularity, ADAM may exhibit sensit-
ivity to hyperparameter choices, and its inherent complexity may result in increased
computational requirements.

NADAM, a hybrid of Nesterov accelerated gradient and ADAM, seeks to harness the
advantages of both adaptive learning rates and momentum [229]. The NADAM update
rule is a modification of ADAM, encompassing Nesterov momentum:

θt+1 = θt −
η√

νt + ϵ
· (mt + β · mt−1) (6.5)

In this expression, β is a decay factor for the past gradient. While NADAM often
demonstrates accelerated convergence, its performance can be contingent on the specific
characteristics of the optimisation landscape.

Two hyperparameters are key in the optimiser: learning rate and weight decay. The
learning rate, denoted as η, governs the magnitude of the network’s parameter updates
in each iteration. An inappropriate learning rate can hinder convergence or overshoot
the optimal solution. Weight decay, a regularisation technique, adds a penalty based
on the magnitude of model parameters. This discourages overly complex models and
contributes to improved generalisation. The weight decay term is typically expressed
as λ||θ||2, where λ is the weight decay coefficient and ||θ||2 is the L2 norm of the model
parameters.

6.3.3 Training Parameters and Callbacks

The performance of a neural network is not only influenced by the choice of optimisers
but also by various training parameters. Training is carried out in batches, introducing
stochasticity to the optimisation process. Each batch provides a different subset of
the data, leading to variations in the gradients computed during each iteration. This
stochasticity can help the optimiser escape local minima and explore a broader region
of the optimisation landscape, potentially leading to improved convergence and better
generalisation to unseen data. This research sets the batch size to 64 to balance the
training time and sensitivity to individual inputs.
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An epoch is complete when all batches undergo one full training iteration, and the
number of epochs is a key training parameter. Sufficient epochs ensure the model learns
the underlying pattern of the data without under-fitting, yet excessive epochs can lead
to overfitting on training data, resulting in poor generalisation. to ensure sufficient
training time. However, this upper limit is unlikely to be reached because the training
process is controlled by callbacks. Two training callbacks are employed to counter
overfitting. Model check-pointing saves weights from the lowest validation loss, a key
performance indicator on unseen data. Early stopping halts training if validation loss
does not improve over 25 epochs, assuming convergence and avoiding unnecessary
computational costs.

As discussed in Section 6.3.2, the learning rate is a key hyperparameter initially set at
0.001. Stagnation in ‘learning’ can occur, indicative of overshooting the global minima
due to large steps in the loss landscape. A ‘reduce learning rate on plateau’ training
callback is implemented to address this. The learning rate is reduced if validation loss
does not improve over five consecutive epochs. This adjustment reduces the magnitude
of the step in network parameter updates, aiding the search for the global minima and
promoting convergence.

6.3.4 Data Splitting and Cross Validation

During the training of a neural network, it is conventional to partition the dataset into
distinct subsets, namely the train, validation, and test sets. The train set is employed
for iteratively updating the network parameters through optimisation. Following each
training epoch, the validation set evaluates the network’s performance on data it has
not been explicitly trained on. Although the validation set does not contribute to the
parameter updates, it plays a pivotal role in assessing the training process. A separate
test set gauges the trained network’s performance on unseen data.

How data is divided can vary based on the chosen CV scheme, with common approaches
involving random splitting or by subject. In this process, subsets are iteratively drawn
from the dataset, and each subset is subsequently utilised for training, validation, and
testing of the model. This approach allows for evaluating test error across multiple
iterations, providing a more robust assessment of model performance.

In deep learning wrist-worn PPG heart rate estimation methods, two commonly used
cross-validation (CV) schemes are k-fold and Leave-One-Subject-Out (LOSO), as shown
in Figure 6.10. However, as discussed in Section 2.2.4, the practical application of these
methods requires generalisability to new individuals not included in the training set.
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FIGURE 6.10: Comparison of Cross Validation Schemes.

K-fold CV, which assesses generalizability on a sample basis, may fall short in this
regard, especially when data from all subjects are included in every data split.

Given that bio-signals can vary significantly between subjects and even across different
sessions for the same individual—due to factors like sensor placement and environ-
mental conditions—it is key to evaluate models on a subject basis. This makes LOSO
CV a more appropriate method for assessing generalisability in real-world scenarios,
ensuring that the model performs well across different individuals.

CV Scheme IEEE Train [126] IEEE Test [126] BAMI 1 [127] BAMI 2 [127] PPG DaLiA [130]
MW PPG HR
(This Work)

LOSO 5.8 ± 7.4 15.0 ± 11.8 3.6 ± 2.1 1.6 ± 0.6 4.9 ± 3.1 7.9 ± 2.6
5-Fold 1.4 ± 0.7 2.8 ± 1.2 1.9 ± 0.5 1.2 ± 0.3 2.0 ± 0.4 2.1 ± 0.6

p-value 0.004 0.001 <.00001 0.008 0.004 <.00001
All Values are MAE in BPM. Statistical Tests used the Mann-Whitney U test.

TABLE 6.1: Performance Comparison of Cross-Validation Schemes Across
All Utilised Datasets. The table examines the effect of different cross-
validation schemes on accuracy. While 5-fold cross-validation demonstrates
higher accuracy, it is not applicable in real-world scenarios, which is why
Leave-One-Subject-Out (LOSO) validation is utilised. Statistical testing
reveals significant differences between the schemes for all datasets. Bold

values indicate the lowest MAE distribution.

A comparative analysis was undertaken to validate the impact of distinct CV schemes
on generalisation error. Table 6.1 outlines notable and statistically significant differences
in MAE observed across all datasets. The conventional five-fold CV scheme yielded
optimistic generalisation errors, registering 2.8 ± 1.2 BPM on the IEEE Test dataset,
characterised by a predominantly arm movement-based protocol. In contrast, adopting
a more practical approach with LOSO CV revealed more realistic generalisation errors,
with a performance of 15.0 ± 11.8 BPM on the same IEEE Test dataset. This discrepancy
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underscores the necessity for CV methods that consider both the substantial variability
inherent in bio-signals across different subjects and the intended use case of the method.

6.4 Hyperparameter Optimisation and Ablation Study

6.4.1 Hyperparameter Optimisation

Each component in the network has configurable parameters that affect performance,
including learning rate, dropout rate, and convolutional layer kernel size—referred
to as hyperparameters. These hyperparameters interact in complex ways, making it
ineffective to assess the impact of a single hyperparameter in isolation. The set of all po-
tential hyperparameter combinations constitutes the search space, and hyperparameter
optimisation algorithms navigate this space to identify the configuration yielding the
smallest error.

Grid search exhaustively traverses the search space to find the optimal set of hyperpara-
meters. While practical for small search spaces, it becomes computationally demanding
as the space expands [226]. In this network, the search space encompasses nearly a
million potential hyperparameter configurations, rendering grid search impractical.

Bayesian optimisation is preferred over grid search due to its sequential model-based
approach, which efficiently identifies the global optimum with fewer trials. Bayesian
optimisation balances exploration and exploitation to avoid local optima. A Bayesian
probability surrogate model characterises the objective function, and an acquisition
function determines the next sampling point [226].

This study uses a Gaussian process (GP) as a probability surrogate model of objectives.
The GP models the method’s performance, and the Lower Confidence Bound is selected
as the acquisition function to guide the selection of the next hyperparameter configur-
ation [227]. The optimisation was performed for 50 iterations, each encompassing a
complete LOSO CV evaluation, with the test error serving as the optimisation metric.
The optimisation used the IEEE Train dataset [126] due to its size. Table 6.2 displays
the selected optimal hyperparameters. The optimised configuration results in an ar-
chitecture with 730,000 parameters, consuming 2.78 megabytes, as shown in Figure
6.9.

6.4.2 Ablation Study

Following hyperparameter optimisation, an ablation study was conducted to examine
the individual effects of various architectural components. This section reports on the
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Hyperparameter Search Space
Selected
Optimal

Convolutional Kernel Size [8,16,32] 16
Number of Convolutional Filters [16,32,64] 64
Sensor Layers [1,2,3] 2
Fusion Layers [3,4,5] 4
Activation [ReLU, Leaky ReLU, ELU] Leaky ReLU
Global Pooling [Max, Average] Average
Elastic Net (L1) 1e-5 - 1e-2 1e-5
Elastic Net (L2) 1e-5 - 1e-2 1e-4
Dropout Rate 0.1 - 0.4 0.1
Weight Decay 1e-2 - 0.1 0.01
Learning Rate 1e-4 - 0.01 1e-3
Optimiser [NADAM, ADAM, SGD] SGD
Batch Size [32,64,128] 64

TABLE 6.2: Overview of the Hyperparameter Optimisation Search Space.

impact of batch normalisation and optimiser choice.

Effect of Batch Normalisation

Batch Norm IEEE Train [126] p-value IEEE Test [126] p-value
Included 5.8 ± 7.4

0.010
15.0 ± 11.8

0.032
Excluded 9.9 ± 8.6 21.2 ± 10.5

All Values are MAE in BPM. Statistical Tests used the Mann-Whitney U test.

TABLE 6.3: Effect of Including Batch Normalisation in the Architecture
on Heart Rate Estimation Performance for IEEE Train and IEEE Test Data-
sets [126]. Bold values indicate the lowest MAE distribution. Ablation

experiment carried out after hyperparameter optimisation.

Analysis of batch normalisation’s impact on network performance, as shown in Table
6.3, reveals a statistically significant decrease in MAE values for both IEEE Train and
Test datasets [126] when including batch normalisation in the network architecture. This
demonstrates batch normalisation’s important role in stabilising gradient flow, reducing
internal covariate shift, and improving overall network performance.

Effect of Optimiser Choice

The hyperparameter optimisation process included the choice of optimiser in the search
space, with SGD emerging as the optimal selection. Further analysis of optimiser
performance reveals additional insights. As shown in Table 6.4, SGD achieved MAE
values approximately 2 BPM lower than alternative optimisers for both IEEE Train and
Test datasets [126]. Momentum-based optimisers accumulate updates by incorporating
previous gradients, which can smooth convergence but may also introduce inaccuracies
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Optimiser IEEE Train [126] p-value IEEE Test [126] p-value
SGD 5.8 ± 7.4 — 15.0 ± 11.8 —

ADAM 7.7 ± 6.7 0.100 16.5 ± 9.2 0.192
NADAM 7.7 ± 8.5 0.051 16.4 ± 9.6 0.174

All Values are MAE in BPM. Statistical Tests used the Mann-Whitney U test.

TABLE 6.4: Effect of Optimiser Choice in Model Training on Heart Rate
Estimation Performance for IEEE Train and IEEE Test Datasets [126]. Statist-
ical tests compare each optimiser individually to SGD. Bold values indicate
the lowest MAE distribution. Ablation experiment carried out after hyper-

parameter optimisation.

from less accurate gradients. However, in our analysis, the impact of these inaccuracies
was statistically insignificant, indicating minimal effect on overall performance.

6.5 Heart Rate Estimation Performance

6.5.1 Comparison of Wavelength Selection

This section addresses the primary research question 1: To what extent does the ro-
bustness and generalisability of wrist-worn PPG heart rate estimations vary across
different wavelengths or combinations of wavelengths, compared to the green light
conventionally used in consumer wrist-worn devices?

Analysis of the individual wavelengths indicates that longer wavelengths are associated
with higher absolute errors. Specifically, the use of red and IR wavelengths resulted in
MAE that were 7.7 BPM and 7.2 BPM higher, respectively, compared to the conventional
green light. These differences are statistically significant, with p-values of ≤ 1e − 5. In
contrast, blue light exhibited an MAE only 0.1 BPM greater than green light, and this
difference was not statistically significant (p = 0.19) (see Figure 6.11 and Table 6.5).

When examining multi-wavelength combinations relative to green light, statistically
significant differences were noted for the Blue-Green, Blue-Green-Red, and Blue-Green-
Red-IR combinations. Of these, only the Blue-Green-Red-IR combination showed a
notable improvement in MAE, reducing it by 0.4 BPM compared to green light (see
Table 6.5).

During periods of active rest, which include both aperiodic and periodic motion types,
the blue wavelength demonstrated a higher MAE compared to green light, with a
difference of 0.2 BPM. However, only the Blue-Green-Red-IR combination showed an
improvement, with a 0.2 BPM lower MAE and a statistically significant difference in
error distribution (p ≤ 0.01) (see Figure 6.12 and Table 6.5).
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FIGURE 6.11: Comparison of Distributions of Absolute Error by
Wavelength for MW PPG HR (This Work). The figure shows box plots
illustrating the distribution of absolute errors, with the median, IQR, and
1.5 IQR whiskers displayed. Statistical analysis was performed using Mann-

Whitney U tests.

FIGURE 6.12: Comparison of Distributions of Absolute Error by
Wavelength for Active Rest for MW PPG HR (This Work). The figure
shows box plots illustrating the distribution of absolute errors, with the
median, IQR, and 1.5 IQR whiskers displayed. Statistical analysis was

performed using Mann-Whitney U tests.

In running, characterised by periodic motion, blue light was the best-performing single
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FIGURE 6.13: Comparison of Distributions of Absolute Error by
Wavelength for Running for MW PPG HR (This Work). The figure shows
box plots illustrating the distribution of absolute errors, with the median,
IQR, and 1.5 IQR whiskers displayed. Statistical analysis was performed

using Mann-Whitney U tests.

wavelength, with a 0.1 BPM lower MAE compared to green light, which was statistically
significant (p ≤ 0.01). Among multi-wavelength combinations, Blue-Green-IR achieved
the lowest MAE, showing a reduction of 1.3 BPM compared to green light, which was
statistically significant (p ≤ 1e − 5). Both Blue-Green-IR and Blue-Green-Red-IR also
outperformed green light, demonstrating MAE reductions of 0.7 BPM and 0.9 BPM,
respectively (see Figure 6.13 and Table 6.5).

During rest, characterised by minimal movement, green light consistently showed the
lowest MAE across all tested wavelengths and combinations. The blue light exhibited a
similar performance with only a 0.1 BPM increase in MAE. Among multi-wavelength
combinations, Blue-Green-Red demonstrated an increase in MAE of 0.7 BPM compared
to green light (see Figure 6.14 and Table 6.5).

In cycling, where subjects maintain hand contact with handlebars and motion is minimal,
blue light was the best-performing single wavelength, with an MAE 0.1 BPM lower than
green light. Among multi-wavelength combinations, Blue-Green-Red-IR achieved the
lowest MAE, reducing it by 1.2 BPM compared to green light. However, this difference
was not statistically significant (see Figure 6.15 and Table 6.5).

This section evaluated the accuracy of wrist-worn PPG heart rate estimations across
various wavelengths and combinations, compared to the conventional green light.
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FIGURE 6.14: Comparison of Distributions of Absolute Error by
Wavelength for Rest for MW PPG HR (This Work). The figure shows
box plots illustrating the distribution of absolute errors, with the median,
IQR, and 1.5 IQR whiskers displayed. Statistical analysis was performed

using Mann-Whitney U tests.

FIGURE 6.15: Comparison of Distributions of Absolute Error by
Wavelength for Cycling for MW PPG HR (This Work). The figure shows
box plots illustrating the distribution of absolute errors, with the median,
IQR, and 1.5 IQR whiskers displayed. Statistical analysis was performed

using Mann-Whitney U tests.

Longer wavelengths, such as red and IR, were associated with significantly higher MAE,
whereas blue light showed comparable performance to green light. Multi-wavelength
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Green Blue Red IR Blue Green
Blue

Green Red
Blue

Green IR
Blue Green

Red IR
Overall 8.1 8.2 15.8 15.3 8.6 8.1 8.3 7.7

Active Rest 9.0 9.2 10.8 11.7 9.2 9.0 9.0 8.7
Running 13.0 12.9 17.4 18.4 13.2 12.3 11.8 12.1

Rest 3.4 3.5 9.7 7.4 4.5 4.0 4.8 4.1
Cycling 7.3 7.2 25.9 24.9 7.8 7.6 7.8 6.1

All Values are MAE in BPM.

TABLE 6.5: Comparison of the Mean Absolute Errors of Wavelength and
Wavelength Combinations over different Activities for MW PPG HR (This

Work). Bold values indicate the lowest MAE value

approaches displayed varied results, with the Blue-Green-Red-IR combination provid-
ing the only significant improvement in MAE. The robustness assessment revealed
that Blue-Green-Red-IR outperformed green light for activities involving motion, while
green light remained the most accurate during rest.

6.5.2 The Influence of Demographic Variations

This section addresses objective 6 and the primary research question 2: What is the
impact on performance based on variations in skin melanin content and biological sex
in wrist-worn PPG heart rate estimation?

Analysis shown in Figure 6.16 reveals that individuals with higher skin melanin con-
tent experience a significant increase in absolute error, regardless of whether single or
multi-wavelength methods are used. For single-wavelength methods, both blue and
green wavelengths show similar error rates, but green (median absolute error = 4.02
BPM) performs slightly better than blue (median absolute error = 4.03 BPM) for indi-
viduals with higher melanin content. In multi-wavelength methods, the blue-green-red
combination results in the lowest median absolute error for those with higher melanin
content (median absolute error = 3.6 BPM), while the blue-green-red-IR combination is
more effective for those with lower melanin content (median absolute error = 2.4 BPM).

When considering biological sex, the results are similar to those observed with skin
melanin content, though the differences are less pronounced, as shown in Figure 6.17.
For single-wavelength methods, the blue PPG sensor shows a lower median absolute
error (3.2 BPM) compared to green (3.5 BPM) for females, although both errors are
significantly higher than those for males, where blue (3.1 BPM) and green (2.9 BPM)
have lower median absolute errors. In multi-wavelength methods, the blue-green-IR
combination does not show a statistically significant difference between sexes. However,
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FIGURE 6.16: Comparison of Distributions of Absolute Error by
Wavelength and Skin Melanin Content for MW PPG HR (This Work). The
figure shows box plots illustrating the distribution of absolute errors, with
the median, IQR, and 1.5 IQR whiskers displayed. Statistical analysis was

performed using Mann-Whitney U tests.

FIGURE 6.17: Comparison of Absolute Error Distributions by Wavelength
and Biological Sex for MW PPG HR (This Work). The figure shows box
plots illustrating the distribution of absolute errors, with the median, IQR,
and 1.5 IQR whiskers displayed. Statistical analysis was performed using

Mann-Whitney U tests.

its median absolute values (females = 3.2 BPM, males = 3.1 BPM) are comparable to the
blue-green-red-IR combination (females = 3.2 BPM, males = 2.6 BPM), which provides
the lowest median error for males. Conversely, the blue-green-red combination is most
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effective for females (3.1 BPM).

Overall, the analysis confirms that both skin melanin content and biological sex impact
the performance of wrist-worn PPG heart rate estimation. Higher melanin content is con-
sistently associated with increased error rates across both single and multi-wavelength
methods. Biological sex also affects performance, with different wavelength combina-
tions showing varying effectiveness for males and females. These findings highlight the
importance of considering demographic factors in developing wrist-worn PPG heart
rate estimation methodologies. However, due to the limited sample size, these results
are preliminary and further research with a larger sample is needed to better understand
the effects of skin melanin content and biological sex.

6.5.3 Evaluation of Performance on Existing Single-wavelength Data-

sets

FIGURE 6.18: Bland-Altman and correlation analysis of estimated versus
true heart rate measurements for the BAMI 1 dataset [127]. Each color
represents a different subject. The Bland-Altman plot displays the bias and
standard deviation (SD) of the differences, while the correlation plot shows

Pearson’s correlation coefficient (r).

This section addresses the objective 4. As mentioned in section 6.3.4, a LOSO CV
scheme was used to assess the method’s performance on unseen subjects. To evaluate
the generalisability and robustness of the proposed method, the training process was
repeated on existing datasets commonly used in PPG heart rate estimation method
validation. Each dataset employed a different protocol and sensor configuration, as
Section 2.2.1 described.

The datasets examined — IEEE Train [126], IEEE Test [126], BAMI 1 [127], BAMI 2 [127],
and PPG DaLiA [130]—show a range of performance outcomes in heart rate estimation.
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FIGURE 6.19: Comparative analysis of heart rate estimation accuracy across
different sessions and activities, assessed against the true heart rate (HR)
and ECG derived signal-to-noise ratio in the IEEE test dataset [126]. The
left panel displays box-plot of subjects grouped by true HR, with the
upper panel showing the corresponding absolute error. The right panel
illustrates the ECG-derived SNR by activity, with the upper panel depicting
the absolute error in relation to ECG SNR. Each box-plot represents the

median, IQR, and 1.5 IQR whiskers.

The IEEE Train dataset achieved a moderate overall MAE of 5.8 ± 7.4 BPM with a
correlation of r = 0.89 and bias of 1.4 BPM. While this dataset generally met the AAMI
standard, variability was evident, particularly in subjects 4 (MAE = 10.2 BPM) and
11 (MAE = 29.7 BPM). In contrast, the IEEE Test dataset showed a marked drop in
performance, with an MAE of 15.0 ± 11.8 BPM, a correlation of r = 0.59, and a bias of 1.8
BPM, failing to meet the AAMI standard and exhibiting high subject-specific variability.
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The BAMI 1 dataset demonstrated promising performance, achieving an MAE of 3.6
± 2.1 BPM with a high correlation of r = 0.95 and a bias of -0.1 BPM. A Bland-Altman
plot for BAMI 1 illustrates the close agreement between estimated and true heart rates,
reflecting its accuracy (see Figure 6.18). BAMI 2 outperformed all others with an
exceptional MAE of 1.6 ± 0.6 BPM, a correlation of r = 0.99, and a bias of 0.2 BPM,
indicating remarkable model generalisation and robustness across various activities.
The PPG DaLiA dataset also performed well, meeting the AAMI standard with an MAE
of 4.9 ± 3.1 BPM, a correlation of r = 0.88, and a bias of -0.04 BPM. However, stair
climbing presented a challenge with an MAE of 14.1 BPM.

Across all datasets, two notable trends emerged. Firstly, a decrease in signal-to-noise
ratio (SNR) generally led to higher absolute errors, highlighting the critical importance
of signal clarity for accurate heart rate measurement. Secondly, larger datasets typically
showed better performance than smaller ones. Specifically, for the IEEE Test dataset,
Figure 6.19 illustrates that subjects with true heart rate values falling outside the IQR —
represented by the dotted lines — tended to exhibit higher errors compared to those
within the IQR.

6.5.4 Comparison with Conventional Heart Rate Estimation Methods

This sub-section addresses the primary research question 3: In PPG heart rate estimation,
does deep learning demonstrate superior performance in terms of generalisability and
robustness compared to conventional methods?

The comparison between the proposed method and conventional PPG beat detectors
highlights the clear advantage of the proposed method in motion scenarios. In the
PPG DaLiA dataset, the proposed method outperformed two leading conventional beat
detectors (as referenced in [124]). Specifically, during cycling, the proposed method
achieved a median absolute error of 4.2 BPM, compared to 13.0 BPM for MSPTD and 7.0
BPM for QPPG. In table soccer, the proposed method had a median absolute error of 6.7
BPM, whereas MSPTD and QPPG recorded 13.9 BPM and 19.1 BPM, respectively. How-
ever, during periods of minimal motion, MSPTD performed better than the proposed
method, reducing the mean absolute percentage error by 1.0%.

Table 6.7 further demonstrates the superior performance of the proposed method in
heart rate estimation across various activities in the MW PPG HR dataset. The proposed
method shows a significantly lower median absolute error compared to conventional
beat detection methods during low-motion activities. During periods of motion, it still
outperforms the beat detectors, achieving 6.0 BPM in Active Rest compared to 12.9
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Cycling Driving Lunch Sitting Stairs
Table
soccer

Walking Working

This Method 4.2 3.6 3.7 3.5 11.9 6.7 8.2 2.9
MSPTD 13.0 5.7 6.7 2.5 20.1 13.9 19.1 4.3

qppg 7.0 7.8 8.2 4.3 15.1 19.1 13.7 8.0
All Values are MAPE (%).

TABLE 6.6: Performance Comparison of Proposed Method Against Con-
ventional PPG Beat Detectors on PPG DaLiA [130] Activities. Results of
other methods obtained from [124]. Bold values indicate the lowest MAPE

value.

BPM with WFD using green light, and 8.5 BPM in Running compared to 29.7 BPM with
QPPG using blue light.

Active Rest Running Rest Cycling
Method Median AE Method Median AE Method Median AE Method Median AE

Beat Detector
Green
WFD

12.9
Blue

QPPG
29.7

Blue
ERMA

11.5
Green
QPPG

17.2

This Method — 6.0 — 8.5 — 0.8 — 0.9

TABLE 6.7: Performance Comparison of Proposed Method Against Conven-
tional PPG Beat Detectors on MW PPG HR (This Work) Activities. Results
of other methods obtained from Chapter 5. Bold values indicate the lowest

Median Absolute Error.

When comparing the proposed method to established heart rate estimation techniques
on the IEEE Train dataset, the conventional methods generally outperformed the pro-
posed method across most subjects (see Table 6.8). All conventional methods, except
for one case, demonstrated higher accuracy. Notably, the method by Schaeck 2017 was
the most effective, achieving a MAE of 2.9 BPM, nearly half the MAE of the proposed
method, which had a mean MAE of 5.8 BPM. Despite these results, the proposed method
did show some advantages. It outperformed the SpaMA method by an MAE margin of
8 BPM, indicating that while the proposed method may have limitations with smaller
datasets, it still offers certain benefits over specific conventional methods like SpaMA in
particular scenarios.

For the IEEE Test dataset, the proposed heart rate estimation method generally under-
performed compared to conventional methods, excelling in only one subject (see Table
6.9). Among the conventional methods, SpaMA was the most accurate, achieving a
MAE of 9.2 BPM, which is 5.8 BPM lower than the proposed method. Notably, the
proposed method did surpass the Schaeck (2017) method by 9.7 BPM, highlighting a
specific strength in this comparison.
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1 2 3 4 5 6 7 8 9 10 11 12 13
Mean
± STD

This
Method

7.8 4.4 2.0 10.2 1.3 1.3 2.6 2.1 3.4 0.6 29.7 4.7 5.3
5.8 ±
7.4

SpaMA [161] 51.1 19.2 1.7 1.9 5.1 3.1 3.8 2.1 2.0 60.8 2.3 3.9 /
13.1 ±
20.7

SpaMA
Plus [130]

3.2 10.0 1.6 2.7 1.5 2.8 1.0 2.2 0.4 21.3 1.8 2.4 /
4.3 ±
5.9

Schaeck
2017 [162]

16 2.6 0.6 1.4 0.9 1.2 0.9 0.7 0.9 7.6 0.9 1.2 /
2.9 ±
4.6

All Values are MAE in BPM.

TABLE 6.8: Performance Comparison of Proposed Method Against Con-
ventional PPG Heart Rate Estimators on IEEE Train Subjects [126]. Results
of other methods obtained from [130]. Bold values indicate the lowest

MAE for each subject.

1 2 3 4 5 6 7 8 9 10
Mean
± STD

This
Method

32.0 10.3 8.1 40.6 8.3 6.3 11.0 21.8 9.4 1.9
15.0 ±
11.8

SpaMA [161] 18.3 2.4 9.8 37.5 5.4 2.3 2.6 10.8 2.5 0.4
9.2 ±
11.4

SpaMA
Plus [130]

17.5 3.4 13.7 53.3 9.1 2.1 2.7 13.1 7.4 0.9
12.3 ±
15.5

Schaeck
2017 [162]

38.4 50.3 13.8 77.6 9.3 2.5 14.1 25.5 9.3 5.8
24.7
± 24

All Values are MAE in BPM.

TABLE 6.9: Performance Comparison of Proposed Method Against Con-
ventional PPG Heart Rate Estimators on IEEE Test Subjects [126]. Results of
other methods obtained from [130]. Bold values indicate the lowest MAE

for each subject.

The proposed heart rate estimation method demonstrated a significant improvement
over conventional methods when applied to the PPG DaLiA dataset (see Table 6.10).
It achieved an overall MAE of 4.9 ± 3.1 BPM, nearly halving the MAE of the closest
conventional method and outperforming the least accurate conventional method by
nearly fourfold. The proposed method delivered the most accurate results for 13 out of
15 subjects, showcasing its substantial advantage in handling the data and scenarios
typical of the PPG DaLiA dataset.

Analysis across different datasets reveals a clear trend: the proposed heart rate es-
timation method generally performs better with larger datasets. While conventional
methods excelled over the proposed method in most cases within the smaller IEEE Train
and Test datasets, the proposed method showed substantial improvements with the lar-
ger PPG DaLiA dataset. Here, it not only surpassed conventional methods significantly
but also achieved the lowest MAE in nearly all subjects. This pattern highlights the



Chapter 6. A Convolutional Neural Network for Heart Rate Estimation 118

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Mean
± STD

This
Method

4.1 2.6 4.5 5.8 1.7 2.5 3.0 3.2 2.1 5.4 10.9 4.2 2.0 12.8 8.5
4.9 ±
3.1

SpaMA [161] 11.9 14.8 9.5 17.2 39.3 16.8 15.9 15.2 17.2 9.1 21.6 12.6 9.5 10.7 12.2
15.6 ±

7.5
SpaMA

Plus [130]
8.9 9.7 6.4 14.1 24.1 11.3 6.3 11.3 16.0 6.2 15.2 12.0 8.5 7.8 8.3

11.1 ±
4.8

Schaeck
2017 [162]

33.1 27.8 18.5 28.8 12.6 8.7 20.7 21.8 22.3 12.6 21.1 22.7 27.7 12.1 16.4
20.5 ±

7.1
All Values are MAE in BPM.

TABLE 6.10: Performance Comparison of Proposed Method Against Con-
ventional PPG Heart Rate Estimators on PPG DaLiA Subjects [130]. Results
of other methods obtained from [130]. Bold values indicate the lowest

MAE for each subject.

method’s improved accuracy with larger datasets, suggesting that more extensive data
provides a more diverse and representative sample of heart rate information allowing
the method to generalise more effectively.

6.6 Summary

This chapter addresses Objective 4 by detailing a deep learning method for heart rate
estimation, from pre-processing to hyperparameter optimisation. It identifies the blue-
green-red-IR wavelength combination as the most effective, reducing MAE by 0.4 BPM
compared to conventional green light. In contrast, longer wavelengths such as red and
IR show higher MAE, increasing by 7.7 BPM and 7.2 BPM respectively. Blue light’s
performance is similar to green light, with a negligible 0.1 BPM difference.

The chapter also covers Objective 5 and Research Question 1 by evaluating performance
across different activities. The blue-green-red-IR combination outperforms green light
during motion-based activities, with the blue-green-IR combination showing a 1.3
BPM improvement over green light in running. Overall, blue-green-red-IR provides
significant benefits in motion-based conditions, while green light remains most accurate
during rest periods.

Analysis reveals that higher skin melanin content leads to increased error rates. Single-
wavelength methods show green (median AE = 4.02 BPM) performing slightly better
than blue (median AE = 4.03 BPM) for high melanin. Multi-wavelength methods are
more effective, with blue-green-red showing median AE = 3.6 BPM for high melanin,
and blue-green-red-IR showing median AE = 2.4 BPM for low melanin. Additionally,
demographic factors affect performance, with increased errors associated with higher
melanin content and biological females. These findings address Research Question 2
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and Objective 6, highlighting the need for further research due to the preliminary nature
of these results.

The performance on single-wavelength PPG heart rate estimation datasets — IEEE
Train [126], IEEE Test [126], BAMI 1 [127], BAMI 2 [127], and PPG DaLiA [130] — showed
varied performance. IEEE Train had a moderate MAE of 5.8 ± 7.4 BPM (r = 0.89), with
high variability in certain subjects. IEEE Test’s MAE was 15.0 ± 11.8 BPM (r = 0.59), not
meeting the AAMI standard. BAMI 1 and BAMI 2 showed strong performance, with
BAMI 2 achieving an exceptional MAE of 1.6 ± 0.6 BPM (r = 0.99). PPG DaLiA met
the AAMI standard with an MAE of 4.9 ± 3.1 BPM (r = 0.88) but struggled with stair
climbing. Notably, decreased SNR led to higher errors, and larger datasets performed
better.

This chapter highlights that the proposed method generally outperforms conventional
techniques on larger datasets, as demonstrated by a 5% reduction in MAPE and a
notable decrease in MAE on the PPG DaLiA dataset. Specifically, it achieved a MAE of
4.9 ± 3.1 BPM, which is nearly half that of the closest conventional method and nearly
fourfold better than the least accurate conventional method. This performance contrasts
with its relatively weaker results on the smaller IEEE Train and Test datasets, where
conventional methods, including Schaeck 2017 [162] and SpaMA [161], demonstrated
higher accuracy. For instance, the proposed method’s mean MAE of 5.8 BPM on the
IEEE Train dataset was higher than the 2.9 BPM achieved by Schaeck 2017, and its
MAE of 15.0 BPM on the IEEE Test dataset was 5 BPM higher than SpaMA’s 9.2 BPM.
This analysis meets Objective 9 and Research Question 3, illustrating the method’s
enhanced accuracy and robustness with larger datasets and its superior performance
across various activities and signal conditions.
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Chapter 7

Uncertainty Quantification Techniques
for Convolutional Neural Networks in
Heart Rate Estimation

The previous chapter detailed designing and implementing a convolutional neural
network for heart rate estimation from wrist-worn PPG signals, examining the influence
of wavelength, skin melanin, and biological sex. This chapter shifts focus to quanti-
fying uncertainty in Deep Neural Networks, analysing its role in enhancing accuracy,
robustness, and reliability in photoplethysmography (PPG) heart rate estimation. A
critical evaluation of various uncertainty quantification methodologies is presented,
emphasising their calibration and impact on heart rate estimation performance. The
chapter further investigates the complexity of uncertainty types and concludes by dis-
cussing the integration of uncertainty estimates in post-processing and contrasting
proposed methods with existing deep-learning approaches. The aim is to highlight the
importance of uncertainty quantification in DNNs for the robustness and reliability
of wrist-worn PPG heart rate estimation systems in practical scenarios. The detailed
versions of the software used are outlined in Section 3.5

7.1 Uncertainty Quantification in Deep Learning

A significant drawback to using Deep Neural Networks (DNN) is a lack of trust in the
predicted values due to the high complexity and un-interpretability of the generated
DNNs, mainly from deep and non-linear structures [222]. To increase the reliability,
usability, and interpretability of DNNs, researchers have investigated ways to repres-
ent uncertainty or quantify the confidence of a given prediction within DNNs [230].
According to Gawlikowski et al., uncertainty within DNNs is caused by five main
factors:
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1. Real-world Variability: Distribution shifts, arising from changes in real-world
scenarios compared to training data, can markedly impact DNN performance due
to its sensitivity to such shifts.

2. Measurement System Errors: These arise from limited data, measurement noise,
or label inaccuracies, affecting the ’truth values’ used in DNN training.

3. Architectural Errors: The DNN’s structure, encompassing its components and
hyperparameters, directly influences its performance and uncertainty.

4. Training Procedure Errors: Factors like batch size, optimiser, learning rate, and
stochastic decisions, including weight initialisation, shape the DNN’s training,
performance, and uncertainty.

5. Unknown Data Errors: Pertains to valid samples outside the trained DNN’s
domain or task.

To quantify the effects of these factors on the DNNs’ predicted values, two uncertainty
terms are widely used, namely ‘aleatoric’ and ‘epistemic’ uncertainty [222, 230, 231].
Aleatoric uncertainty captures the inherent data uncertainty (Factor 2), while epistemic
uncertainty pertains to model uncertainty, reducible by addressing Factors 1, 3, 4 &
5 [230]. Estimating these uncertainty terms in addition to the predicted value is highly
desirable in increasing the reliability, usability and interpretability of the DNN.

7.2 Aleatoric Uncertainty Quantification

Aleatoric uncertainty is a fundamental type of uncertainty in data, reflecting the inher-
ent ambiguity in the relationship between truth values and input data [230, 232]. This
uncertainty often emerges from irreducible noise in the data, such as sensor-specific
disturbances or motion-related variability. Aleatoric uncertainty is divided into two
categories: homoscedastic, which remains constant across various inputs, and het-
eroscedastic, which fluctuates with the input [230, 232]. To measure this uncertainty,
several techniques have been used, including non-linear quantile regression with pinball
loss [233], implicit generative models [234], and employing predictive interval quality
metrics as learning goals [235]. A commonly employed strategy involves learning the
conditional distribution of a target variable based on the input [236].

This study focuses on the method of learning the conditional distribution of a target
variable, selected for its widespread application, minimal alterations required in net-
work designs, and effectiveness in modelling heteroscedastic variance. This approach is
particularly relevant for PPG sensing, given the variability in noise levels within the
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PPG signals. Consequently, the network architecture and training process, as outlined
in Chapter 6, are modified in two key ways. First, the model is adapted to produce two
outputs: the mean µ(x) and variance σ2(x) of a distribution, which represents the heart
rate estimate (µ) and the corresponding aleatoric uncertainty (σ), illustrated in Figure
7.1 [236].
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FIGURE 7.1: Modified Network Architecture for Aleatoric Uncertainty
Quantification. This figure illustrates the adapted convolutional neural
network architecture designed to quantify aleatoric uncertainty. The modi-
fication includes an output layer with two units, representing the mean (µ)
and standard deviation (σ) of a predicted distribution. The loss function
has been updated to the negative log-likelihood, shifting the model’s ob-

jective from predicting a single value to predicting a distribution.

This adjustment in the network’s output necessitates a modification of the training
objective, as detailed in section 6.3.1. Instead of aiming to predict a single value that
minimises the distance from the actual truth value, the goal shifts to predicting a
distribution that maximises the likelihood of observing the truth value, given the input
data. This change leads to a corresponding alteration in the loss function to align
with the new objective. The Negative Log Likelihood (NLL) is chosen for its numerical
stability and compatibility with the minimisation focus of optimisation algorithms [236].

Given the inherent variability in noise associated with wrist-worn PPG heart rate
estimates, the choice of distribution for this model is critical. In this context, the logistic
distribution is preferred over the more commonly used normal distribution. The logistic
distribution is characterised by broader tails, which provides a higher tolerance for
outliers, making it more suitable for dealing with the highly variable noise in PPG
heart rate measurements. The NLL for the logistic distribution is derived from the log
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probability density function, aggregated across all data points. For a dataset with n
observations, the NLL is the negative sum of the log probability density function for
each observation:

NLL(µ, σ) = −
n

∑
i=1

[−log(σ)− xi − µ

σ
− 2 · log(1 + e

xi−µ
σ )] (7.1)

where xi is the truth value for the ith sample, µ is the predicted mean, σ is the predicted
standard deviation and n is the number of samples. As highlighted in section 7.3,
sampling techniques are employed to quantify epistemic uncertainty; therefore, aleatoric
uncertainty for input xi is defined as ua(xi) = 1

T ∑T
t=1 σ2

i,t, where T is the number of
samples.

7.3 Epistemic Uncertainty Quantification

Epistemic uncertainty stems from incomplete knowledge or information about the
system being modelled [230, 232]. This type of uncertainty is distinct from aleatoric
uncertainty, which is inherent and irreducible. In contrast, epistemic uncertainty can
be mitigated or reduced by gathering more data, refining models, or deepening the
understanding of the underlying processes [230, 232].

A common approach to epistemic uncertainty quantification is to apply Bayesian infer-
ence to derive a distribution over the network parameters using Bayes’ theorem:

p(W|X, Y) =
p(Y|X, W)p(W)

p(Y|X)
(7.2)

Where p(W|X, Y) is the posterior distribution, which signifies the updated understand-
ing or belief about the model parameters W after considering the observed data X and
Y, p(Y|X, W) is the likelihood indicating the probability of observing the data Y given
the inputs X and a specific set of parameters W, p(W) is the prior distribution that
reflects the initial assumptions or knowledge about the parameters W before observing
any data, p(Y|X) is the evidence or marginal likelihood, serves to normalise the equa-
tion, ensuring that the posterior is a valid probability distribution, W is the network
parameters and X, Y is the dataset. The posterior distribution represents the belief about
the parameters after the data is observed, and to predict the distribution of output y∗
corresponding to some new input x∗, marginalisation over the posterior is employed to
obtain the predictive posterior:
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p(y∗|x∗, X, Y) =
∫

p(y∗|x∗, W)p(W|X, Y)dW (7.3)

Where,p(y∗|x∗, X, Y) posterior predictive distribution which gives the probability of
a new data point y∗ given a new input x∗, and the observed data X (inputs) and Y
(outputs),p(y∗|x∗, W) the likelihood of the new data point y∗ given the new input x∗ and
a specific value of the parameters W and p(W|X, Y) is the posterior distribution of the
parameters W given the observed data X and Y. As this marginalisation is analytically
intractable for deep non-linear models, it is common to sample W from p(W|X, Y) to
approximate the posterior distribution [230, 232]. This section will examine three of
these sampling methods. Finally, to measure epistemic uncertainty in this study, the
standard deviation of the approximated posterior distribution is taken.

7.3.1 Monte Carlo Dropout

Dropout operates by randomly deactivating network parameters during the training
phase. This process prevents the network from becoming overly reliant on specific
features, thereby encouraging a more robust feature detection capability and the pre-
vention of overfitting [224]. Specifically, dropout layers multiply inputs element-wise
by a binary dropout mask, Z, where zi ∼ Bernoulli(p) and p is a fixed probability
of deactivating inputs in the previous layer [224]. During the prediction phase, the
dropout layers are typically disabled, allowing the network to achieve its full capacity.

Gal et al. proposed dropout variational inference as a posterior sampling method
to quantify epistemic uncertainty [237]. This method involves applying Dropout not
just during training but also during inference. This process, known as Monte Carlo
dropout, allows for the generation of different "versions" of the model on each forward
pass during inference, illustrated in Figure 7.2. These different versions are essentially
samples from the approximate posterior distribution of the model’s weights. From a
theoretical standpoint, this approach is akin to performing approximate variational
inference. The goal of variational inference is to find a simpler distribution (denoted as
q∗θ(W)) within a tractable family that minimises the Kullback-Leibler (KL) divergence
to the true posterior distribution p(W|X, Y) of the model weights given the data [236].

Monte Carlo Dropout acts as a variational Bayesian approximation. Each dropout
mask applied during the forward passes can be seen as drawing from this simpler
distribution q∗θ(W). This process approximates the true posterior by sampling from a
range of possible model configurations, thereby capturing uncertainty in the model’s
predictions. This approach has several advantages, particularly in providing a practical
and computationally efficient method to estimate uncertainty in deep learning models.



Chapter 7. Uncertainty Quantification Techniques for CNNs in HR Estimation 125

µ σ µ σ µ σ

...

Approximate 
Posterior 

Distrbution

Stochastic 
Forward 
Passes

1 2 N

Input X

FIGURE 7.2: Monte Carlo Dropout Sampling of Posterior Distribution.
This figure shows Monte Carlo dropout used to sample from the posterior
distribution of a DNN’s weights. Dropout masks randomly deactivate
network parameters during both training and testing, generating multiple
model ‘versions’ on each forward pass. These samples approximate the
true posterior distribution, capturing epistemic uncertainty in the model’s

predictions.

It allows models to express uncertainty in their predictions, which is key in many
applications like medical diagnosis or autonomous driving, where being confident in a
prediction is as important as the prediction itself.

7.3.2 Concrete Dropout

A notable limitation of Monte Carlo dropout lies in fine-tuning the dropout rate to
achieve well-calibrated uncertainty estimates. This tuning process requires a rigorous
grid search scheme to find the optimal dropout rate. Such a scheme is computationally
expensive and infeasible for larger models with multiple dropout layers due to the
magnitude of the search space [238].

To address this issue, Gal et al. proposed Concrete Dropout, a continuous relaxation
of the standard Dropout technique [238]. In the conventional dropout framework, the
dropout vector z is binary, rendering the network loss function non-differentiable with
respect to the dropout probability p. This binary nature of z prohibits the optimisation
of p via backpropagation. Concrete Dropout offers a solution by sampling the elements
of the dropout vector z from a continuous Concrete distribution [238]. This distribution
is defined as follows:

z̄i = sigmoid(
log(p)− log(1 − p) + log(u)− log(1 − u)

t
) (7.4)
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where u is drawn from a uniform distribution, u ∼ Uni f orm(0, 1). The smooth re-
lationship between z̄ and u is differentiable with respect to p, enabling the dropout
probabilities to be treated as optimisable parameters within the neural network, illus-
trated in Figure 7.3.
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FIGURE 7.3: Concrete Dropout Learning Curve and Optimised Dropout
Rates for Each Layer for Subject 13 of the PPG DaLiA Dataset [127]. This
figure illustrates the optimisation process of dropout probabilities for each
dropout layer in the network during training, with the optimised dropout
rates displayed on the right. It highlights how these rates are fine-tuned to

improve the model’s uncertainty quantification capabilities.

This modification brings a twofold advantage. First, it eliminates the need for a grid
search by allowing gradient-based optimisation methods to tune the dropout prob-
ability directly as part of the training process. Second, it ensures that the dropout
rate adapts dynamically, reflecting the amount and variability of the training data.
These improvements make Concrete Dropout particularly suited for large models and
continuous learning scenarios, where maintaining calibrated uncertainty estimates is
key [238]. Similarly to MC Dropout, during inference, the Dropout remains on and does
N forward passes to obtain the µ and σ of the approximate posterior distribution to
obtain the heart rate estimate and epistemic uncertainty estimate.

7.3.3 Deep Ensemble

Ensemble methods, which involve creating a committee of models with varying learned
parameters and loss trajectories, have proven effective in enhancing predictive perform-
ance across various domains. The strength of ensembles lies in their ability to foster a
diverse understanding of inputs. Ensembles generally yield more accurate results than
a single network by averaging or using bootstrap aggregating (bagging) techniques for
predictions. In PPG heart rate estimations, for instance, ensembles have demonstrated
superior performance compared to single-network models [130].

The diversity in these ensemble models typically does not stem from different network
architectures. Instead, it arises from the random initialisations of weights and the
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randomised order in which training data is presented to the models. This approach
ensures that each model in the ensemble develops a slightly different perspective on
the data, leading to a richer understanding of the inputs.

Lakshminarayanan et al. proposed deep ensembles to quantify epistemic uncertainty
by treating ensembles as a uniformly weighted mixture model, where predictions from
individual models are combined. In this formulation, the prediction is combined as
p(y∗|x∗) = 1

M ∑M
i=1 pWm(y∗|x∗, Wm) where Wm corresponds to the network parameters

of model m and M is the number of models in the ensemble [239].

In regression tasks, the prediction is often assumed to be a mixture of Gaussian distribu-
tions. For simplicity and ease of inference, the mean and variance of this mixture are
assumed to be the mean and variance of a single Gaussian distribution. The mean and
variance of the ensemble’s output are calculated by averaging the means and variances
of the predictions from each model [239].

Deep ensembles have been found to outperform MC dropout in quantifying uncertainty
across various datasets and tasks in both regression and classification settings. They
are particularly effective in out-of-distribution scenarios, such as data perturbations,
or when encountering new classes not seen during training [239]. For practical imple-
mentation, Lakshminarayanan et al. recommend using a sample size of 5 models in the
ensemble [239]. This recommendation balances the need for diversity in predictions
with computational efficiency, ensuring a robust ensemble without excessively taxing
computational resources.

7.4 Evaluation of Uncertainty Quantification Methods

This section addresses objective 7: ‘Compare and evaluate aleatoric and epistemic
uncertainty methods in deep learning, focusing on calibration, their distinctness or
entanglement, and their relation to error rates and signal quality.’ as well as primary
research question 4: Which method for quantifying epistemic uncertainty yields the
best calibrated metrics in the context of PPG heart rate estimations?

7.4.1 Aleatoric Uncertainty Quantification

This section provides an analysis of the aleatoric uncertainty quantification method
detailed in Section 7.2. The analysis is designed to illuminate the behaviour of aleatoric
uncertainty under various conditions and assess its impact on the predictive perform-
ance of the model (See Figure 7.4). A deeper understanding of how aleatoric uncertainty
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is quantified can significantly improve the accuracy and reliability of predictions, ensur-
ing the model’s utility in practical scenarios. The evaluation of this uncertainty type is
essential for models expected to function in the highly variable and often unpredictable
domain of biological data.

Across the datasets used—IEEE Train [126], IEEE Test [126], BAMI 1 [127], BAMI 2 [127],
and PPG DaLiA [130] and MW PPG HR (This Work) —the performance of aleatoric
uncertainty quantification varied. For the IEEE Train dataset, the aleatoric uncertainty
was under-confident, with a miscalibration area of 0.2, a correlation coefficient with
SNR of 0.0, and an absolute error of 0.21. In the IEEE Test dataset, it was over-confident,
showing a miscalibration area of 0.13, a correlation coefficient with SNR of -0.41, and
an absolute error of 0.04. The BAMI-1 dataset also exhibited under-confidence, with a
miscalibration area of 0.13, a correlation coefficient with SNR of -0.22, and an absolute
error of 0.29. Similarly, in the BAMI-2 dataset, aleatoric uncertainty was under-confident,
with a miscalibration area of 0.25, a correlation coefficient with SNR of -0.38, and an
absolute error of 0.31. The PPG DaLiA dataset showed under-confidence as well,
with a miscalibration area of 0.07, a correlation coefficient with SNR of -0.64, and an
absolute error of 0.59. Lastly, in the MW PPG HR dataset (as shown in Figure 7.4),
the aleatoric uncertainty was under-confidence in lower aleatoric uncertainty values
and overconfidence in higher ones, with a miscalibration area of 0.09, a correlation
coefficient with SNR of -0.32, and an absolute error of 0.44. Aleatoric uncertainty was
expected to have a strong negative correlation with ECG-derived signal-to-noise ratio
(SNR). However, the results did not fully meet these expectations, though some signs of
effectiveness were observed.

Figure 7.5 presents a comparison of aleatoric uncertainty across different demographic
groups for the MW PPG Dataset, specifically focusing on skin melanin content and bio-
logical sex, during various activities. For skin melanin content, a statistically significant
difference in aleatoric uncertainty distributions was observed only during running, with
a median aleatoric uncertainty of 6.1 BPM for individuals with low melanin content
and 6.4 BPM for those with high melanin content. In contrast, when examining biolo-
gical sex, statistically significant differences in aleatoric uncertainty distributions were
observed during active rest, rest, and cycling. During active rest, the median aleatoric
uncertainty was 5.4 BPM for females and 5.5 BPM for males. In the rest condition,
females had a median aleatoric uncertainty of 3.8 BPM compared to 4.1 BPM for males.
During cycling, females exhibited a median aleatoric uncertainty of 6.5 BPM, while
males had a median of 6.0 BPM.These findings suggest that biological sex consistently
affects aleatoric uncertainty across activities more than skin melanin content. However,
the results are not entirely as expected, implying that aleatoric uncertainty may not
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FIGURE 7.4: Aleatoric Uncertainty Calibration and Performance Analysis
for MW PPG HR Dataset (This Work). The figure includes a calibration plot
showing under-confidence in lower aleatoric uncertainty values and over-
confidence in higher ones (top left). This can be understood in the context
of regression calibration, where predictions are considered calibrated if, for
example, a 50% confidence level holds true in 50% of cases, represented by
the orange line. A weak positive correlation between electrocardiogram
(ECG) derived signal-to-noise ratio (SNR) and aleatoric uncertainty is ob-
served (top right). Interestingly, the distribution of aleatoric uncertainty
across activities does not match expected noise levels (bottom left). Al-
though rest shows low uncertainty as expected, cycling, which was also
anticipated to have low uncertainty, does not. The box plots display the
median, IQR, and 1.5 IQR whiskers. A moderately positive correlation
between absolute error and aleatoric uncertainty was also observed (bot-

tom right).
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FIGURE 7.5: Effect of Skin Melanin Content and Biological Sex on Aleatoric
Uncertainty Across Activities for the MW PPG Dataset (This Work). The
figure presents box plots of aleatoric uncertainty distributions (via Distri-
butional Estimation) across skin melanin content (top) and biological sex
(bottom). The plots show the median, IQR, and 1.5 IQR whiskers. "N="
denotes the number of 8-second window samples for each activity and
demographic variation. A weak trend in activity-related changes is ob-
served, with lower uncertainty for rest, but cycling shows distributions
similar to running and active rest, challenging initial assumptions of aleat-
oric uncertainty. Mann-Whitney U tests were used for statistical analysis.

solely reflect data uncertainty. The variations across demographic groups and activities
suggest other factors may be influencing the model’s predictions, highlighting a limita-
tion in using aleatoric uncertainty as the sole measure of data uncertainty in PPG-based
heart rate estimation methods.

Building on the previous analysis, Figure 7.6 explores the relationship between aleatoric
and epistemic uncertainty by introducing varying levels of random noise to the input
data. As anticipated, aleatoric uncertainty increases with added noise, consistent with its
role in capturing data-inherent randomness. However, epistemic uncertainty, quantified
through concrete dropout, exhibits a more pronounced increase in response to noise.
This suggests an interplay between the two types of uncertainty, where epistemic
uncertainty is particularly sensitive to external perturbations. The greater impact on
epistemic uncertainty highlights a challenge in accurately calibrating and interpreting
the model’s predictions when data noise is present, as these intertwined uncertainties
can complicate the distinction between data noise and model confidence.

In summary, this section thoroughly evaluated aleatoric uncertainty quantification
across various datasets, demographic groups, and activities. The findings indicate that
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FIGURE 7.6: Impact of Varied Random Noise Levels on Aleatoric Uncer-
tainty, Epistemic Uncertainty, and Absolute Error in the BAMI 2 Data-
set [127]. The figure shows the effect of adding random noise with varying
standard deviations - ‘Noise Levels’. The box-plots display the median,
IQR, and 1.5 IQR whiskers. The impact is more pronounced on epistemic
uncertainty and absolute error, challenging the assumption that aleatoric

uncertainty solely reflects data uncertainty.

while aleatoric uncertainty generally aligns with expectations, it does not consistently
correlate with data uncertainty alone, particularly across different demographic factors
and noise levels. The observed interplay between aleatoric and epistemic uncertainties
underscores the complexity of accurately quantifying and interpreting uncertainty in
wrist-worn PPG heart rate estimation methods, especially in diverse and noisy data
environments.

7.4.2 Epistemic Uncertainty Quantification

This section provides a comparative analysis of the three epistemic uncertainty quanti-
fication methods detailed in Section 7.3. A key aspect of this analysis is determining the
optimal number of samples for each method to ensure the most accurate measurement
of epistemic uncertainty. As detailed in section 7.3.3, the ensemble method recommends
5 samples, however, the samples for MC Dropout and Concrete Dropout need to be
determined. The IEEE Train dataset, chosen for its smaller size, serves as the basis for
this analysis. The objective is to assess the sample size’s influence on the miscalibration
area and MAE.

Figure 7.7 demonstrates that using 25 samples achieves an optimal balance between
MAE and the miscalibration area. At this point, the miscalibration area starts to increase
while the MAE continues to decrease. Furthermore, the time required for each prediction
with 25 samples is just under one second, offering a practical compromise between
computational efficiency and prediction accuracy. This is particularly important since
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FIGURE 7.7: Analysis of Epistemic Sample Size Impact on Miscalibration
Area, Mean Absolute Error, and Prediction Time for the IEEE Train Data-
set [126]. The figure highlights the trade-offs associated with the Concrete
Dropout sampling method for estimating epistemic uncertainty. It demon-
strates the challenge of completing n forward passes within the 2-second
window of the data slide, emphasising the balance between estimation

accuracy, uncertainty accuracy and prediction time.

any estimation time exceeding two seconds would be infeasible, given that the slide of
the windowing is two seconds.

Method
IEEE

Train [126]
IEEE

Test [126]
BAMI 1

[127]
BAMI 2

[127]
PPG DaLiA

[130]
MW PPG HR
(This Work)

MC
Dropout

0.20 0.35 0.28 0.14 0.26 0.23

Concrete
Dropout

0.05 0.20 0.17 0.08 0.22 0.12

Ensemble 0.22 0.31 0.31 0.28 0.32 0.24

TABLE 7.1: Comparison of Miscalibration Area by Epistemic Uncertainty
Method across All Utilised Datasets. The miscalibration area is computed
for all subjects within each dataset using a LOSO CV scheme. Bold values

indicate the lowest miscalibration area for each dataset.

The evaluation of epistemic uncertainty quantification methods, detailed in Table 7.1,
reveals Concrete Dropout as the most effective across all datasets. It consistently shows
the lowest miscalibration areas, with values of 0.05 for IEEE Train, 0.20 for IEEE Test,
0.17 for BAMI 1, 0.08 for BAMI 2, 0.22 for PPG DaLiA, and 0.12 for MW PPG HR.
This consistent performance underscores Concrete Dropout’s reliability and accuracy
in estimating uncertainty, making it particularly suitable for robust wrist-worn PPG
heart rate estimation models. In response to Research Question 4, the analysis will
now focus solely on Concrete Dropout to further explore its effectiveness in uncertainty
quantification.
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FIGURE 7.8: Epistemic Uncertainty Calibration and Performance Analysis
for MW PPG HR Dataset (This Work). The figure includes a calibration
plot revealing overconfidence in epistemic uncertainty values (top left).
This can be understood in the context of regression calibration, where
predictions are considered calibrated if, for example, a 50% confidence
level holds true in 50% of cases, represented by the orange line. A weak
negative correlation between ECG-derived SNR and epistemic uncertainty
is observed (top right). Notably, the distribution of epistemic uncertainty
across activities aligns with expected noise levels, with rest and cycling
showing lower uncertainty than active rest and running (bottom left). The
box-plots display the median, IQR, and 1.5 IQR whiskers. The was also
a moderately positive correlation observed between absolute error and

epistemic uncertainty (bottom right).
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Across the datasets used—IEEE Train [126], IEEE Test [126], BAMI 1 [127], BAMI
2 [127], PPG DaLiA [130], and MW PPG HR (This Work)—the performance of epistemic
uncertainty quantification (via concrete dropout) varied but was more consistent than
that of aleatoric uncertainty. For the IEEE Train dataset, epistemic uncertainty was
under-confident, with a miscalibration area of 0.05, a correlation coefficient with SNR
of -0.3, and an absolute error of 0.78. In the IEEE Test dataset, it was over-confident,
with a miscalibration area of 0.2, a correlation coefficient with SNR of -0.22, and an
absolute error of 0.45. The BAMI-1 dataset also exhibited over-confidence, showing a
miscalibration area of 0.17, a correlation coefficient with SNR of -0.3, and an absolute
error of 0.64. Similarly, in the BAMI-2 dataset, epistemic uncertainty was over-confident,
with a miscalibration area of 0.08, a correlation coefficient with SNR of -0.37, and an
absolute error of 0.65. The PPG DaLiA dataset also showed over-confidence, with a
miscalibration area of 0.22, a correlation coefficient with SNR of -0.43, and an absolute
error of 0.58. Lastly, in the MW PPG HR dataset (as shown in Figure 7.8), epistemic
uncertainty exhibited over-confidence, with a miscalibration area of 0.12, a correlation
coefficient with SNR of -0.12, and an absolute error of 0.64. While epistemic uncertainty
was expected to have no correlation with ECG-derived signal-to-noise ratio (SNR), a
correlation was observed. However, as anticipated, epistemic uncertainty showed a
strong correlation with absolute error.

Figure 7.9 compares epistemic uncertainty across different demographic groups, fo-
cusing on skin melanin content and biological sex during various activities. For skin
melanin content, significant differences in epistemic uncertainty were observed across
all activities. The largest difference occurred during running, where individuals with
low skin melanin had a median epistemic uncertainty of 4.2 BPM, while those with
high melanin had 5.7 BPM. Notably, despite similar sample sizes for low and high
melanin groups across activities, the uncertainty distributions differed. This suggests
that, contrary to expectations that more data should equalise distributions, epistemic
uncertainty varies with skin melanin content. In contrast, significant differences in
epistemic uncertainty were only found for running and cycling when considering bio-
logical sex. During running, females had a median epistemic uncertainty of 5.0 BPM
compared to 4.6 BPM for males. In cycling, females had a median of 2.7 BPM, whereas
males had 1.8 BPM. Additionally, although there were nearly three times more samples
for females in cycling, their uncertainty distribution remained higher.

This section evaluates epistemic uncertainty quantification methods, focusing on Con-
crete Dropout, MC Dropout, and the ensemble method, across various datasets. Con-
crete Dropout consistently outperforms other methods, demonstrating the lowest mis-
calibration areas and thus proving to be the most reliable for estimating uncertainty
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FIGURE 7.9: Effect of Skin Melanin Content and Biological Sex on Epi-
stemic Uncertainty Across Activities for MW PPG Dataset (This Work).
This figure shows box plots of epistemic uncertainty distributions (via
Concrete Dropout) across skin melanin content (top) and biological sex
(bottom). The plots display the median, IQR, and 1.5 IQR whiskers. ‘N=’
indicates the number of 8-second window samples for each activity and
demographic variation. While epistemic uncertainty is theoretically redu-
cible by adding data, the figure shows that more data does not necessarily
reduce uncertainty, and a trend of increased uncertainty with motion is

evident. Mann-Whitney U tests were used for statistical analysis.

in wrist-worn PPG heart rate estimation methods. Analysis of sample size reveals
that 25 samples strike a practical balance between mean absolute error (MAE) and
miscalibration area, while maintaining computational efficiency. Although epistemic
uncertainty showed variability across datasets, it was generally more consistent than
aleatoric uncertainty. Notably, Concrete Dropout exhibited robust performance, with
miscalibration areas ranging from 0.05 to 0.22 across different datasets. Furthermore,
epistemic uncertainty varied with demographic factors, showing higher values for
individuals with high skin melanin content and females, suggesting that factors beyond
sample size impact uncertainty. This analysis highlights Concrete Dropout’s effective-
ness and its strong correlation with absolute error, while also pointing to the interplay
between aleatoric and epistemic uncertainties in the evaluated methods.

7.4.3 Effect of Uncertainty Quantification Methods on Heart Rate

Estimation Performance

The assessment of epistemic uncertainty quantification methods—MC Dropout, Con-
crete Dropout, and the ensemble method—reveals their distinct impacts on heart rate
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estimation accuracy, as shown in Table 7.2.

UQ
Method

IEEE
Train [126]

P
Value

IEEE
Test [126]

P
Value

BAMI 1
[127]

P
Value

BAMI 2
[127]

P
Value

PPG
DaLiA [130]

P
Value

MW PPG HR
(This Work)

P
Value

None
5.8 ±
7.4

—
15.0 ±
11.8

—
3.6 ±
2.1

—
1.6 ±
0.6

—
4.9 ±
3.2

—
7.5 ±
3.2

—

MC
Dropout

7.8 ±
9.3

0.100
15.8 ±
11.0

0.312
3.9 ±
2.3

0.334
1.8 ±
1.0

0.448
5.1 ±
3.5

0.452
7.9 ±
2.8

0.245

Concrete
Dropout

5.7 ±
7.6

0.417
14.7 ±
10.6

0.484
3.5 ±
2.1

0.341
1.8 ±
1.2

0.413
4.9 ±
3.1

0.433
7.3 ±
2.5

0.496

Ensemble
6.1 ±
11.1

0.251
14.5 ±
11.8

0.364
3.3 ±
2.1

0.192
1.4 ±
0.9

0.041
4.8 ±
3.3

0.417
7.5 ±
2.7

0.409

All Values are MAE in BPM. Statistical Tests used the Mann-Whitney U test.

TABLE 7.2: Comparison of Heart Rate Estimation Performance by Epi-
stemic Uncertainty Method For All Utilised Datasets. Statistical tests com-
pare each method individually to the base method using no UQ method

(None). Bold values indicate the lowest MAE distribution.

MC Dropout consistently results in the highest mean absolute errors (MAE), with values
such as 7.8 ± 9.3 BPM on the IEEE Train dataset and 7.9 ± 2.8 BPM on the MW PPG HR
dataset. This indicates that, although MC Dropout is effective at quantifying uncertainty,
it does not improve heart rate estimation performance. In contrast, Concrete Dropout
generally shows better performance, achieving lower MAE values on most datasets,
including 5.7 ± 7.6 BPM on the IEEE Train dataset and 7.3 ± 2.5 BPM on the MW PPG
HR dataset. However, its performance in BAMI-2 did not show significant differences
compared to the base model without uncertainty quantification in Chapter 6. The
ensemble method, meanwhile, achieved the lowest MAE across several datasets: 14.5 ±
11.8 BPM on IEEE Test, 3.3 ± 2.1 BPM on BAMI 1, 1.4 ± 0.9 BPM on BAMI 2, and 4.8 ±
3.3 BPM on PPG DaLiA. Notably, it demonstrated statistically significant improvement
in MAE for the BAMI 2 dataset compared to the base model in Chapter 6.

Based on these findings and as discussed in section 7.4.2, Concrete Dropout emerges as
the most effective method for uncertainty quantification, offering a balance between
well-calibrated uncertainty estimates and enhanced predictive accuracy. This analysis
highlights the importance of method selection for accurate heart rate estimation, in-
fluenced by the characteristics of the dataset and the specific performance of each
method.

7.5 Uncertainty-Aware Post-processing

Post-processing is key in enhancing the accuracy of heart rate predictions made by
conventional and deep learning PPG techniques [95]. This process involves ensuring
that the predicted heart rate values are plausible based on the context provided by
preceding predictions. To achieve this, post-processing methods work by rejecting or
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modifying predictions deemed infeasible. In practical applications, it is important to
note that post-processing cannot be individually calibrated for each subject. Addition-
ally, this process is limited to considering only the predictions made before the current
one, without the ability to anticipate future values.

Various post-processing approaches have been utilised, ranging from history tracking
and thresholding as well as Viterbi decoding and Finite State Machines [95]. For instance,
the SpaMA algorithm utilises a threshold-based scheme. This approach operates under
the assumption that heart rate values are unlikely to vary more than 10 BPM within a
2-second interval, comparing the previous prediction to the current one [161].

This section presents a comparative analysis of two distinct thresholding techniques
for post-processing in heart rate prediction: prediction-based and uncertainty-based
methods. Both approaches aim to enhance the reliability of heart rate predictions by
employing a rejection-based scheme. This scheme is designed to eliminate predictions
deemed unfeasible or carry a high degree of uncertainty, yielding more reliable out-
comes. To assess the effectiveness of these post-processing techniques, several key
metrics will be utilised:

• Retention Rate: This metric represents the proportion of predictions that are
retained after post-processing.

• Longest Prediction Gap: This is defined as the maximum duration for no ‘valid’
prediction.

• Retained Predictions Above AAMI Standard: This measures the percentage of pre-
dictions, deemed ‘valid’ by post-processing, yet were above the AAMI Standard.

• Removed Predictions Below AAMI Standard: This measures the percentage of
predictions, deemed ‘invalid’ by post-processing, yet were below the AAMI
Standard.

The prediction-based method is similar in principle to the SpaMA algorithm [161]. It
operates on the premise that heart rate values are unlikely to experience fluctuations
greater than 10 BPM within a 2-second interval [161]. Under this method, if a prediction
deviates by more than 10 BPM from the preceding one, it is discarded. If the following
prediction shows a deviation greater than 20 BPM from the last valid prediction, it,
too, is rejected. This threshold incrementally increases by 10 BPM for each subsequent
prediction until a valid prediction is identified.

Table 7.3 highlights the impact of the prediction-based post-processing scheme in im-
proving accuracy across various datasets. For instance, the IEEE Test dataset showed
a reduction in mean absolute error from 15.0 ± 11.8 BPM to 12.0 ± 11.1 BPM, and the
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Dataset
Original

MAE (BPM)

Post
processed

MAE (BPM)

Retention
Rate (%)

Longest
Prediction

Gap
(Seconds)

Retained
Predictions

Above AAMI
Standard (%)

Removed
Predictions

Below AAMI
Standard (%)

IEEE
Train [126]

5.8 ± 7.4 5.1 ± 7.3
93.7 ±

8.6
6.0 ± 5.3 21.2 ± 22.8 75.6 ± 22.9

IEEE
Test [126]

15.0 ±
11.8

12.0 ±
11.1

76.0 ±
14.6

9.6 ± 3.6 45.8 ± 26.9 49.0 ± 25.8

BAMI 1 [127] 3.6 ± 2.1 3.1 ± 1.7
96.8 ±

3.5
5.3 ± 2.9 14.1 ± 10.0 84.2 ± 10.9

BAMI 2 [127] 1.6 ± 0.6 1.5 ± 0.6
99.0 ±

1.1
2.9 ± 2.5 4.5 ± 4.6 94.8 ± 4.6

PPG
DaLiA [130]

4.9 ± 3.2 3.9 ± 2.4
92.8 ±

5.0
9.5 ± 2.7 17.3 ± 10.6 79.7 ± 12.3

MW PPG
HR (This Work)

7.5 ± 3.2 6.1 ± 2.7
91.6 ±

4.0
11.2 ± 3.7 34.4 ± 11.6 62.4 ± 12.0

All Values are Averages over Subjects, using LOSO CV.

TABLE 7.3: Comparative Evaluation of Prediction-based Post-processing
Method across Datasets. This table shows the performance of the
prediction-based post-processing method when applied to various PPG
heart rate datasets. Key metrics include original/post-processed MAE,
retention rate, prediction gap, and AAMI standard compliance. The results
demonstrate the method’s effectiveness in improving accuracy and reliabil-

ity, with varying impact across diverse datasets.

MW PPG HR dataset saw a decrease from 7.5 ± 3.2 BPM to 6.1 ± 2.7 BPM. These im-
provements are reflected across other metrics, though the extent of the enhancement
varies by dataset. Notably, the IEEE Test dataset was the only one with an average
retention rate below 90%, indicating that a larger proportion of predictions were con-
sidered unfeasible or unreliable in this dataset. Additionally, the MW PPG HR dataset
had the longest average prediction gap of 11.2 seconds, signifying extended periods
without valid predictions. A concerning trend observed across all datasets is the high
percentage of discarded predictions falling below the AAMI standard, with at least
50% of removed predictions below this benchmark in every dataset. This suggests that
while the post-processing scheme enhances accuracy, it may also be overly conservative,
potentially excluding a substantial number of accurate predictions.

Table 7.4 provides an in-depth analysis of how a prediction-based post-processing
scheme affects the fairness of heart rate predictions across different demographic groups,
focusing on skin melanin content and biological sex. For skin melanin content, the MAE
before post-processing was 9.0 ± 3.1 BPM for individuals with high melanin and 6.0 ±
2.4 BPM for those with low melanin. After post-processing, these values improved to
7.3 ± 2.8 BPM for high melanin and 5.0 ± 2.1 BPM for low melanin. Regarding biological
sex, the MAE before post-processing was 8.1 ± 3.2 BPM for males and 6.4 ± 2.8 BPM for
females. After post-processing, the MAE decreased to 6.6 ± 2.8 BPM for males and 5.3 ±



Chapter 7. Uncertainty Quantification Techniques for CNNs in HR Estimation 139

Demographic
Original

MAE (BPM)
P

Value

Post
processed

MAE (BPM)

P
Value

Retention
Rate (%)

Longest
Prediction

Gap per
Subject

(Seconds)

Retained
Predictions

Above AAMI
Standard (%)

Removed
Predictions

Below AAMI
Standard (%)

Skin
Melanin:

High
9.0 ± 3.1

0.045
7.3 ± 2.8

0.064
89.6 ±

3.2
13.0 ±

3.5
37.9 ± 11.6 58.0 ± 11.2

Skin
Melanin:

Low
6.0 ± 2.4 5.0 ± 2.1

93.6 ±
3.7

9.4 ±
3.0

30.9 ± 10.6 66.8 ± 11.2

Biological
Sex:

Female
8.1 ± 3.2

0.351
6.6 ± 2.8

0.485
90.6 ±

3.7
11.1 ±

3.6
35.5 ± 11.3 60.9 ± 11.4

Biological
Sex:
Male

6.4 ± 2.8 5.3 ± 2.2
93.4 ±

3.9
11.4 ±

4.0
32.3 ± 12.0 65.2 ± 12.7

All Values are Averages over Subjects, using LOSO CV. Statistical Tests used the Mann-Whitney U test.

TABLE 7.4: Comparative Performance of Prediction-based Post-processing
Method across Demographic Groups using MW PPG HR Dataset (This
Work). This table evaluates the impact of the prediction-based post-
processing method on heart rate prediction accuracy and reliability across
different demographic characteristics, namely skin melanin content and bio-
logical sex. The analysis includes original/post-processed MAE, retention
rate, prediction gap, and AAMI standard compliance, along with statistical
significance testing. The results provide insights into the method’s per-

formance and potential biases across diverse user groups.

2.2 BPM for females. These results indicate that the post-processing scheme improves
prediction accuracy for both skin melanin content and biological sex, enhancing fairness
across these demographic groups.

The uncertainty-aware post-processing scheme uses a threshold-based approach, similar
to existing methods, and relies on Dropout’s well-calibrated uncertainty quantification,
as detailed in section 7.4.2. It focuses on predictions with high uncertainty, rejecting
those with an uncertainty estimate over 10 BPM. This threshold is chosen because
the SpaMA algorithm also uses a 10 BPM threshold, based on the idea that heart rate
changes are unlikely to exceed this amount within short periods [161]. By applying
this threshold, the scheme aims to filter out potentially unreliable predictions, while
considering both aleatoric and epistemic uncertainties, as well as their combined effect.

Table 7.5 provides a comprehensive analysis of how the incorporation of different
types of uncertainty into post-processing impacts the accuracy of heart rate predictions
across various datasets. It is observed that all types of uncertainty - aleatoric, epistemic
(via concrete dropout), and predictive (combining aleatoric and epistemic) - enhance
accuracy, but the degree of improvement varies. Aleatoric uncertainty, associated
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Dataset
Uncertainty

Type

Original
MAE

(BPM)

Post
processed

MAE (BPM)

Retention
Rate (%)

Longest
Prediction

Gap
per Subject
(Seconds)

Retained
Predictions

Above AAMI
Standard (%)

Removed
Predictions

Below AAMI
Standard (%)

IEEE
Train [126]

Aleatoric
5.7 ±
7.6

5.6 ±
8.0

91.3 ± 20.2
4.9 ±
10.6

22.0 ± 23.6 8.7 ± 19.3

Epistemic
3.9 ±
3.8

90.8 ± 17.8
8.5 ±
13.6

20.2 ± 20.0 16.4 ± 27.8

Predictive
1.3 ±
0.6

52.8 ± 27.7
39.4 ±
37.6

2.8 ± 4.1 61.6 ± 26.7

IEEE
Test [126]

Aleatoric
14.7 ±
10.6

14.5 ±
10.4

96.8 ± 5.3
3.8 ±
5.9

57.5 ± 27.1 8.9 ± 18.2

Epistemic
12.5 ±
10.3

81.0 ± 11.5
14.8 ±
12.3

52.3 ± 27.0 11.5 ± 13.2

Predictive
6.6 ±
8.3

22.4 ± 29.2
59.4 ±
61.6

24.8 ± 25.8 31.7 ± 21.0

BAMI 1 [127]
Aleatoric

3.5 ±
2.1

3.5 ±
2.1

100.0 ± 0.0
0.0 ±
0.0

15.9 ± 11.9 0.0 ± 0.0

Epistemic
2.9 ±
1.7

96.4 ± 4.4
7.1 ±
5.9

13.4 ± 10.3 13.9 ± 23.6

Predictive
2.3 ±
1.1

87.6 ± 11.5
26.6 ±
24.3

8.8 ± 7.3 37.5 ± 21.1

BAMI 2 [127]
Aleatoric

1.8 ±
1.2

1.8 ±
1.2

100.0 ± 0.0
0.0 ±
0.0

6.0 ± 6.4 0.0 ± 0.0

Epistemic
1.6 ±
0.9

99.1 ± 1.1
3.4 ±
3.7

5.3 ± 6.0 16.6 ± 31.1

Predictive
1.2 ±
0.4

95.6 ± 4.5
12.5 ±
16.8

3.2 ± 3.6 33.0 ± 26.4

PPG
DaLiA [130]

Aleatoric
4.9 ±
3.1

4.9 ±
3.0

99.9 ± 0.0
0.4 ±
1.5

22.5 ± 13.0 0.0 ± 0.0

Epistemic
4.4 ±
2.5

97.0 ± 3.1
9.6 ±
6.2

20.7 ± 12.2 19.3 ± 7.8

Predictive
2.5 ±
0.9

81.0 ± 12.9
80.1 ±
63.2

10.9 ± 6.3 29.1 ± 10.1

MW
PPG

HR (This Work)

Aleatoric
7.3 ±
2.5

7.2 ±
2.5

99.6 ± 1.6
4.3 ±
16.1

38.9 ± 11.6 6.9 ± 18.8

Epistemic
5.8 ±
2.0

91.5 ± 5.4
34.4 ±
27.8

34.7 ± 10.8 10.4 ± 7.2

Predictive
3.3 ±
1.1

60.9 ± 11.4
183.5 ±
116.5

19.1 ± 7.2 29.5 ± 11.4

All Values are Averages over Subjects, using LOSO CV.

TABLE 7.5: Evaluation of Uncertainty-Aware Post-processing Across Data-
sets and Uncertainty Types. This table provides a comprehensive assess-
ment of the uncertainty-aware post-processing method for heart rate es-
timation. It compares metrics including original and post-processed Mean
Absolute Error (MAE), retention rate, prediction gap, and AAMI standard
compliance across three uncertainty types: aleatoric, epistemic (via con-
crete dropout), and predictive (combining aleatoric and epistemic). The
results show consistent MAE reduction with post-processing, achieving the
lowest MAE under predictive uncertainty, though this is associated with

the lowest retention rate, highlighting an area for improvement.
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with the inherent variability in the data, results in the smallest reductions in MAE
across all datasets. In contrast, predictive uncertainty, which combines both aleatoric
and epistemic uncertainties, achieves the largest reductions in MAE. This suggests
that considering the complete spectrum of uncertainty yields more accurate heart rate
predictions.

Despite these improvements in accuracy, the retention rate for predictions processed
using the predictive uncertainty method shows a significant decrease. The average
retention rates vary considerably, ranging from as low as 22.4% for the IEEE Test dataset
to as high as 95.6% for the BAMI 2 dataset. This wide range indicates a notable trade-off
between accuracy and the frequency of valid predictions. Additionally, the duration of
the longest period without a valid prediction varies greatly across datasets, extending
from 12.5 seconds in BAMI 2 to 3 minutes in the MW PPG HR dataset (This work).
This variation highlights the trade-off between ensuring accuracy and maintaining a
consistent frequency of valid predictions. In healthcare, accuracy can justify occasional
prediction gaps, but further improvements are needed to reduce these gaps and enhance
retention rates.

A key insight from the analysis is the performance of the uncertainty method concerning
the AAMI standard. Both the percentage of retained predictions above the AAMI
standard and the percentage of removed predictions below this standard are lower
compared to the standard post-processing method. This indicates that the uncertainty-
based method is more effective in identifying and discarding inaccurate predictions,
further reinforcing its utility in enhancing the reliability of heart rate prediction systems.

The implementation of uncertainty-based post-processing marks a significant advance-
ment in equitable heart rate prediction, as illustrated by the findings in Table 7.6. This
approach successfully addresses and mitigates the biases evident in initial predictions
and those processed by standard prediction-based methods. Specifically, for skin
melanin content, initial model predictions exhibited a statistically significant differ-
ence in heart rate predictions (p=0.045), which the uncertainty-based post-processing
method effectively neutralised (p=0.910), eliminating the disparity. In terms of biolo-
gical sex, while the initial predictions showed no significant difference, the MAE before
post-processing was 7.8 ± 2.1 BPM for males and 6.3 ± 2.8 BPM for females. After
post-processing, the MAE decreased to 3.5 ± 1.1 BPM for males and 3.0 ± 1.0 BPM
for females. These outcomes demonstrate that uncertainty-based post-processing not
only consolidates the enhancements achieved by prediction-based methods but also
delivers a superior level of fairness in heart rate prediction, offering more consistency
and unbiased results across diverse demographic profiles.
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Demographic
Original

MAE (BPM)
P

value

Post
processed

MAE
(BPM)

P
value

Retention
Rate (%)

Longest
Prediction

Gap
(Seconds)

Retained
Predictions

Above AAMI
Standard (%)

Removed
Predictions

Below AAMI
Standard (%)

Skin
Melanin:

High
8.4 ± 2.1

0.045
3.3 ± 0.9

0.910
57.7 ±

9.1
214.8 ±
109.3

18.6 ± 5.9 24.6 ± 7.2

Skin
Melanin:

Low
6.1 ± 2.2 3.3 ± 1.3

64.2 ±
12.5

152.2 ±
115.1

19.5 ± 8.2 34.3 ± 12.8

Biological
Sex:

Female
7.8 ± 2.1

0.183
3.5 ± 1.1

0.536
59.7 ±
10.6

176.0 ±
114.1

20.0 ± 7.0 27.5 ± 8.2

Biological
Sex:
Male

6.3 ± 2.8 3.0 ± 1.0
63.4 ±
12.4

197.4 ±
119.7

17.4 ± 7.2 33.1 ± 15.1

All Values are Averages over Subjects, using LOSO CV. Statistical Tests used the Mann-Whitney U test.

TABLE 7.6: Comparative Performance of Uncertainty-aware Post-
processing Method across Demographic Groups using MW PPG HR Data-
set (This Work). This table evaluates the impact of the uncertainty-aware
post-processing method on heart rate prediction accuracy and reliability
across different demographic groups, focusing on skin melanin content
and biological sex. It compares original and post-processed MAE, reten-
tion rate, prediction gap, and AAMI standard compliance, with statistical
significance testing. The results reveal that post-processing eliminated
the statistically significant difference between high and low skin melanin
content, with lower MAE values observed across all demographic groups.

In summary, both prediction-based and uncertainty-aware post-processing methods
significantly enhance heart rate prediction accuracy and fairness. The prediction-based
method, inspired by the SpaMA algorithm, reduces MAE across various datasets,
though it can also discard many valid predictions. The uncertainty-aware approach;
integrating aleatoric, and epistemic, predictive uncertainty achieves the greatest accur-
acy improvements but at the cost of lower prediction retention rates. It also enhances
fairness by reducing biases related to skin melanin content and biological sex, offering
more consistent and unbiased results. Overall, these methods provide valuable ad-
vancements in both the reliability and fairness of wrist-worn PPG heart rate estimation
methods.

7.6 Comparison with Existing Deep Learning PPG Heart

Rate Estimation Methods

This section presents a comprehensive comparison of various heart rate prediction meth-
ods, including the proposed method in its various versions, against existing approaches.
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The comparison is based on performance metrics across different datasets, as shown
in Table 7.7. For comparable results, methods that did not employ a LOSO CV scheme
were excluded. BeliefPPG [27] emerges as a particularly notable method in this com-
parison. It achieves the highest accuracy across all datasets with the smallest number
of parameters. This efficiency makes BeliefPPG an ideal candidate for deployment on
edge devices, such as wrist-worn smartwatches, where computational resources are
limited.

Method Version # Params
IEEE Train

[126]
IEEE Test

[126]
BAMI 1

[127]
BAMI 2

[127]
PPG

DaLiA [130]
MW PPG HR
(This Work)

CorNET [164] Standard 250,000 4.7 ± 3.7 6.6 ± 5.4 — — — —
DeepPPG [130] Average 8,500,000 — — — — 8.8 ± 3.8 —
DeepPPG [130] Ensemble 60,000,000 4.0 ± 5.4 16.5 ± 16.1 — — 7.7 ± 4.2 —
DeepPPG [130] Constrained 26,000 — — — — 10.0 ± 5.9 —

Binary
CorNET [167]

Standard 250,000 6.2 ± 5.0 7.2 ± 6.1 — — — —

Binary
CorNET [167]

RTL 250,000 6.8 ± 5.3 8.0 ± 6.0 — — —

Wilkosz
et al. [177]

Standard 60,000,000 — — — — 6.3 ± 3.5 —

Kasnesis
et al. [175]

Standard 132,000 5.0 16.5 — — 4.4 —

Kasnesis
et al. [175]

Post
processing

132,000 4.4 13.5 — — 4.0 —

BeliefPPG 2023 [27] Standard 138,000 1.8 ± 0.8 3.8 ± 2.2 2.0 ± 1.0 1.5 ± 0.9 3.6 ± 1.4 —
BeliefPPG 2023 [27] Viterbi 138,000 1.5 ± 0.6 3.1 ± 1.9 2.1 ± 1.0 1.5 ± 0.3 3.2 ± 1.3 —

Proposed
Method

Standard 730,000 5.8 ± 7.4 15.0 ± 11.8 3.6 ± 2.1 1.6 ± 0.6 4.9 ± 3.2 7.5 ± 3.2

Proposed
Method

Standard +
Post

processing
730,000 5.1 ± 7.3 12.0 ± 11.1 3.1 ± 1.7 1.5 ± 0.6 3.9 ± 2.4 6.1 ± 2.7

Proposed
Method

Concrete
Dropout

730,000 5.7 ± 7.6
14.7 ±
10.6

3.5 ± 2.1 1.8 ± 1.2 4.9 ± 3.1 7.3 ± 2.5

Proposed
Method

Concrete
Dropout +

Uncertainty
Aware
Post

Processing

730,000 1.3 ± 0.6 6.6 ± 8.3 2.3 ± 1.1 1.2 ± 0.4 2.5 ± 0.9 3.3 ± 1.1

All Values are MAE in BPM.

TABLE 7.7: Comparison of Heart Rate Estimation Performance with Ex-
isting Deep Learning Methods that used LOSO Cross Validation on All

Utilised Dataset. Bold values indicate the lowest MAE distribution.

The proposed method, which integrates uncertainty-aware post-processing, demon-
strates outstanding accuracy across various datasets. It achieves the lowest MAE
compared to other deep learning methods using leave-one-subject-out cross-validation
(LOSO CV). Specifically, it records MAE values of 1.3 ± 0.6 BPM on the IEEE Train
dataset, 1.2 ± 0.4 BPM on BAMI 2, 2.5 ± 0.9 BPM on PPG DaLiA, and 3.3 ± 1.1 BPM
on MW PPG HR. However, the method performs less effectively on the IEEE Test and
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BAMI 2 datasets, with MAE values of 6.6 ± 8.3 BPM and 2.3 ± 1.1 BPM, respectively. In
comparison, BeliefPPG achieved slightly higher accuracy with MAE values of 3.1 ± 1.9
BPM and 2.0 ± 1.0 BPM on these datasets.

It is important to note that while existing methods report accuracies based on all
available samples, the proposed method selectively rejects uncertain samples during
post-processing. This selective approach means that not all predictions are evaluated,
as the method aims to enhance the reliability of the retained predictions. By discarding
predictions with high uncertainty, the method improves the overall accuracy of the
predictions that are kept, thus prioritising the reliability of heart rate estimates. In
summary, this comparative analysis highlights the strengths of the proposed method,
especially with its uncertainty-aware post-processing. It underscores the method’s
capability to deliver reliability, fairness and accuracy in heart rate predictions.

7.7 Summary

This chapter provides a comprehensive analysis of uncertainty quantification in wrist-
worn PPG heart rate estimation deep learning methods and post processing methods
answering both research questions 4: What are the most effective methods for estimating
uncertainty in deep learning methods for wrist-worn PPG heart rate estimation? and 5: How
does incorporating uncertainty in post-processing improve the reliability of wrist-worn PPG
heart rate estimation methodology?

Addressing objectives 6 and 7, the chapter evaluated aleatoric uncertainty quantification
across various datasets, demographic groups, and activities. The findings revealed
significant differences in aleatoric uncertainty distributions by biological sex during
active rest, rest, and cycling, as well as by skin melanin content during running. How-
ever, aleatoric uncertainty did not consistently correlate with signal quality alone, as
demonstrated by a weak correlation with SNR of -0.32 in the MW PPG HR dataset. This
inconsistency was particularly evident when random noise was added to the signals,
which resulted in a much larger increase in epistemic uncertainty compared to aleatoric
uncertainty. The observed interplay between these uncertainties highlights the com-
plexity of accurately quantifying and interpreting uncertainty in wrist-worn PPG heart
rate estimation methods, particularly in diverse populations and motion conditions.

Addressing objectives 6 and 7, the chapter also explored three epistemic uncertainty
quantification methods: Monte Carlo dropout, Concrete dropout, and Ensemble. The
analysis began by determining the optimal number of samples for both dropout tech-
niques, finding that 25 samples provided the best trade-off between miscalibration
area, MAE, and processing time, while the ensemble method was most effective with
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5 samples. Concrete dropout emerged as the most effective method for producing
well-calibrated uncertainty, achieving miscalibration areas of 0.05 on the IEEE Train
dataset, 0.08 on BAMI 1, and 0.12 on MW PPG HR. Additionally, both concrete dropout
and ensemble methods significantly improved estimation accuracy across all datasets.
For instance, the base model described in Chapter 6 achieved a MAE of 3.6 ± 2.1 BPM
on the BAMI 1 dataset, which was improved to 3.3 ± 2.1 BPM with concrete dropout;
similarly, on the MW PPG HR dataset, the MAE improved from 7.5 ± 3.2 BPM to 7.3
± 2.5 BPM. Concrete dropout showed a strong correlation with absolute error, with
correlation coefficients of 0.78 on IEEE Train and 0.64 on both BAMI 1 and MW PPG HR.
Contrary to expectations, a correlation between epistemic uncertainty and ECG-derived
SNR was observed. The study also revealed significant differences in epistemic un-
certainty distributions based on skin melanin content during active rest, running, rest,
and cycling, and differences based on biological sex during running and cycling. The
activity-based analysis of epistemic uncertainty showed unexpected trends, with rest
and cycling having similar distributions, and active rest and running showing similar
patterns, indicating that motion-based uncertainty was captured.

Addressing Objective 8, the chapter also examined two post-processing methods: a
prediction-based approach and an uncertainty-based approach. The prediction-based
method effectively reduced MAE across all datasets, such as improving MAE from 7.5 ±
3.2 BPM to 6.1 ± 2.7 BPM on the MW PPG HR dataset. However, the uncertainty-based
method outperformed the prediction-based approach, particularly in enhancing the
fairness of the model. For instance, before post-processing, the MAE for individuals
with high skin melanin content was 8.4 ± 2.1 BPM compared to 6.1 ± 2.2 BPM for those
with low melanin content—a statistically significant difference. After applying the
uncertainty-based post-processing, the MAE was equalised to 3.3 ± 0.9 BPM for high
melanin content and 3.3 ± 1.3 BPM for low melanin content, effectively eliminating the
significant difference. Similar improvements were observed for biological sex. However,
this approach led to lower prediction retention rates, highlighting a potential area for
future enhancement.

Addressing Objective 9, the proposed method, which integrates uncertainty-aware
post-processing, demonstrates competitive accuracy across various datasets. It achieves
the lowest MAE compared to other deep learning methods using LOSO CV. Specifically,
it records MAE values of 1.3 ± 0.6 BPM on the IEEE Train dataset, 1.2 ± 0.4 BPM on
BAMI 2, 2.5 ± 0.9 BPM on PPG DaLiA, and 3.3 ± 1.1 BPM on MW PPG HR. However,
the method performs less effectively on the IEEE Test and BAMI 2 datasets, with MAE
values of 6.6 ± 8.3 BPM and 2.3 ± 1.1 BPM, respectively. In comparison, BeliefPPG
achieved slightly higher accuracy with MAE values of 3.1 ± 1.9 BPM and 2.0 ± 1.0 BPM
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on these datasets [27].

In conclusion, this chapter thoroughly explores uncertainty quantification in deep learn-
ing for wrist-worn PPG heart rate estimation, addressing key research questions and
objectives. The analysis shows that aleatoric and epistemic uncertainties significantly
affect model performance across demographic groups and activities, interacting in
complex ways, especially with noise and signal quality variations. The post-processing
methods examined highlight the potential of uncertainty-aware approaches to improve
model fairness, particularly regarding skin melanin content and biological sex, though
challenges in prediction retention remain. Overall, the proposed method demonstrates
strong accuracy, laying a foundation for enhancing reliability and fairness in future
wrist-worn PPG heart rate estimation methods.
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Chapter 8

Conclusion

This chapter collates the key findings and contributions of the research carried out in this
thesis on wrist-worn photoplethysmography (PPG) heart rate estimation. The chapter
discusses the significance of the novel dataset, deep learning methods, and uncertainty
quantification techniques, critically examining their implications for the field. The
chapter analyses the limitations of the research and outlines promising directions for
future work. This chapter aims to provide a comprehensive overview of the research
outcomes and their potential impact on advancing wrist-worn PPG heart rate estimation
methodology.

8.1 Discussion

This thesis has contributed to the field of wrist-worn PPG heart rate estimation by
addressing several key challenges and advancing understanding of the method’s cap-
abilities and limitations. The thesis’s comprehensive approach, from protocol design
to deep learning implementation and uncertainty quantification, has yielded valuable
insights that have practical implications.

One of the primary contributions of this research is the development of a novel, diverse
dataset that addresses limitations in existing protocols. The inclusion of active rest
and cycling phases, along with a balanced representation of biological sex and skin
types, provides a robust foundation for evaluating PPG heart rate estimation methods.
This dataset, featuring the largest representation of physical effort rates of 60% or
higher, 26,442 samples with comprehensive multi-wavelength PPG data, fills a key gap
in the field and enables more thorough validation of estimation methodology across
various physiological states, demographics, and motion types. The dataset also includes
challenging conditions like erratic wrist movements, cross-over effects, and motion-free
periods, providing a robust basis for evaluating wrist-worn PPG heart rate estimation
methods.
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The analysis of signal quality indices (SQIs) revealed that the electrocardiogram (ECG)-
derived signal-to-noise ratio (SNR) is the most reliable metric for assessing PPG signal
quality in the context of wrist-worn PPG heart rate monitoring. This finding has im-
portant implications for future research and device development, as it provides a more
accurate means of evaluating signal integrity, particularly in motion-rich conditions.
The evaluation of PPG beat detectors across different activities, wavelengths, and demo-
graphics yielded valuable insights into the strengths and limitations of conventional
methods. The observed variations in detector accuracy across different scenarios under-
score the importance of considering contextual factors in PPG signal processing and
highlight areas for potential improvement in beat detection algorithms.

The deep learning method developed for heart rate estimation demonstrated the poten-
tial of multi-wavelength approaches, with the blue-green-red-IR combination showing
particular promise. This combination reduced MAE by 0.4 BPM compared to green light
alone and improved accuracy by 1.3 BPM during motion-based activities like running.
However, the thesis also revealed persistent challenges related to demographic factors,
particularly skin melanin content and biological sex. The observed increase in error rates
for individuals with higher melanin content (MAE of 8.4 ± 2.1 BPM) compared to those
with lower melanin content (MAE of 6.1 ± 2.2 BPM) and for females highlights the need
for more inclusive design and validation of PPG systems. These findings underscore the
importance of diversity in research cohorts and the need for both fairness quantification
and mitigation methods in algorithm development.

The exploration of uncertainty quantification in deep learning methods for wrist-worn
PPG heart rate estimation represents a significant advancement in the field. The com-
parison of aleatoric and epistemic uncertainty quantification methods provides valuable
insights into the sources and nature of estimation errors. The finding that Concrete
dropout produced the best-calibrated epistemic uncertainty estimates offers a prom-
ising direction for improving the reliability of wrist-worn PPG heart rate estimation
methodology. Concrete dropout was found to correlate strongly with absolute error
and ECG-derived SNR across datasets, enhancing the method’s reliability in variable
conditions.

The post-processing methods examined, particularly the uncertainty-based approach,
demonstrated potential for enhancing both the accuracy and fairness of heart rate
estimation models. The ability to equalise performance across different skin melanin
levels and biological sexes is a key step towards a more fair wrist-worn PPG heart rate
estimation methodology. The proposed uncertainty-aware post-processing method
achieved low MAE values across multiple datasets, including 3.3 ± 1.1 BPM on the
newly collected dataset. However, the trade-off with heart rate estimation retention
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rates highlights an area requiring further research and optimisation. When compared
to existing methods on various datasets, the proposed approach showed competitive
performance, particularly on larger datasets. This suggests that the method’s strength
lies in its ability to handle complex, real-world data with varying conditions and
demographics.

In conclusion, this thesis has not only addressed key challenges in wrist-worn PPG
heart rate estimation but has also paved the way for future advancements in this
area. By developing a novel, diverse dataset and integrating deep learning techniques
with uncertainty quantification, the thesis has provided both a robust framework for
evaluating existing methods and a foundation for future innovations. The insights
gained, particularly regarding the role of multi-wavelength approaches, demographic
factors, and post-processing methods, underscore the importance of inclusive and
context-aware designs in improving the reliability and fairness of wrist-worn PPG heart
rate monitoring systems. As the field continues to evolve, the contributions of this
thesis hope to serve as a valuable resource, guiding the development of more reliable,
inclusive, and effective wrist-worn PPG heart rate estimation methods

8.2 Limitations and Future Research

This section critically examines the limitations of the research and outlines potential
areas for future research. It acknowledges the constraints in the data, the limitations of
the predictive models used, and the challenges in uncertainty quantification. While high-
lighting these areas, the section also suggest directions for future research to enhance
data, refine model accuracy, and improve methods in uncertainty analysis, thereby
contributing to the advancement of the field.

8.2.1 Data

A significant limitation of the study stems from the size of the dataset, particularly in
terms of participant numbers. The recommended threshold of at least 60 participants,
as suggested by Colvonen et al. for accounting variations across Fitzpatrick skin types,
was not met [191]. This shortfall impacted the robustness of the conclusions, especially
regarding the effects of skin tone and biological sex. While the introduction of the skin
melanin content aspect partially mitigated this issue, a larger participant pool would
have undoubtedly lent more concrete validity to the findings. Additionally, the diversity
in the number and types of activities recorded was limited, potentially influencing the
generalisability of the results.
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Incorporating orange wavelengths (590-595 nm) could offer several advantages [50,114].
Orange light penetrates skin deeper than green light and is less affected by melanin
absorption than shorter wavelengths [50, 114]. This could potentially improve signal
quality for darker skin tones and provide more resilience to motion artefacts.

Exploring multi-site sensor arrays on the wrist could provide valuable insights into
optimal sensor configurations [80–82]. This approach, involving multiple PPG sensors
positioned around the wrist’s circumference, could help collect more accurate signals
by accounting for variations in blood flow, muscle tissue, and subcutaneous fat distri-
bution [80–82]. A multi-site array would adapt to individual anatomy and movement,
simultaneously explore multiple measurement sites, and compensate for activity-related
fluctuations in signal quality.

Additionally, investigating the impact of temperature variations on PPG signal quality
is key [62, 65, 66]. Skin temperature affects blood flow which can diminish PPG signal
quality [62, 65, 66]. Understanding how temperature changes affect wrist-worn PPG
heart rate estimations during different activities and demographically variations could
inform more robust methodology.

8.2.2 Deep Learning Heart Rate Estimation Method

The thesis’s deep learning heart rate estimation method, while demonstrating competit-
ive accuracy, has room for improvement. Future work could enhance the current archi-
tectural framework by introducing individual input branches for each PPG wavelength
or by grouping short and long wavelengths into separate branches. Advanced feature
extraction techniques, such as incorporating frequency domain features like FFT or
wavelet transforms, and adding attention mechanisms within branches, could also be
explored. Improved fusion strategies, such as weighted fusion of branch outputs or
using learnable fusion layers like 1x1 convolutions, may further refine performance.
Additionally, adapting the model to multi-task learning — such as predicting multiple
physiological parameters simultaneously or incorporating auxiliary tasks like signal
quality assessment and activity recognition — could broaden its capabilities.

Beyond refining the current architecture, exploring other architectures like WaveNet
[240], Inception Blocks [241], Transformers [242, 243], Informer [244], and ResNets
[245] could yield significant benefits. WaveNet’s dilated causal convolutions capture
long-range temporal dependencies [240], Inception Blocks facilitate multi-scale feature
extraction [241], Transformers/Informer manage global dependencies in sequences
with self-attention mechanisms [242, 244], and ResNets, with deep architecture and skip
connections, mitigate the vanishing gradient problem, enabling the training of very
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deep networks [245]. For example, Zerveas et al. evaluated some of these methods
on the IEEE datasets, achieving root mean square error of 23.9 BPM with an Inception
network, 33.2 BPM with ResNet, and 25.0 BPM with a time series transformer [242].
However, these networks were tested on diverse datasets without optimisation for PPG
signals and without using LOSO CV.

Additionally, combining time and frequency representations, such as continuous wave-
let transform, could enhance signal representation [27]. Addressing the model’s large
parameter count through model compression techniques, such as quantisation, know-
ledge distillation, and model binarisation, would improve its suitability for deployment
on edge devices, like wrist-worn wearables. Expanding data augmentation methods
and exploring advanced pre-processing techniques, including multi-wavelength noise
reduction, could further enhance heart rate estimation accuracy. Implementing a trans-
fer learning approach, similar to the works of Davies et al., Naeini et al., and Meng et
al. [243, 246, 247], where a model is pre-trained on all other wrist-worn PPG heart rate
datasets and then fine-tuned on a specific dataset (excluded from pre-training), could
also improve generalisability and performance.

8.2.3 Uncertainty Quantification

Future research should explore deterministic uncertainty quantification methods to
enhance efficiency in wearable devices, moving away from sampling-based approaches
that require multiple forward passes of the data. One promising method is ‘Evidential
Deep Regression’, which deterministically predicts a Normal-Inverse-Gamma distri-
bution, allowing for single-pass uncertainty estimation that captures both aleatoric
and epistemic uncertainties [248]. Additionally, methods like ‘Zig Zag’ could also be
considered for their ability to quantify these uncertainties deterministically [249].

An alternative approach could involve replacing aleatoric uncertainty quantification by
integrating signal quality assessment with downstream tasks as detailed in ‘The 2023
wearable photoplethysmography roadmap’ [113]. This could entail developing a supple-
mentary deep learning model to predict ECG-derived SNR (dB), which would then
serve as an input to the heart rate estimation model. By providing a direct measure of
signal quality, this method could enhance the overall method.

Further, advancing uncertainty-aware post-processing techniques, such as adaptive
or activity-aware thresholding, could improve the retention rate of valid heart rate
estimations while effectively filtering out inaccurate ones, thereby increasing the model’s
reliability and applicability in real-world scenarios.
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8.3 Summary

This chapter has collated the key contributions of the research on wrist-worn PPG heart
rate estimation, highlighting the development of a novel, diverse dataset as well as the
exploration of multi-wavelength deep learning methods and uncertainty quantification
techniques. The research addressed critical challenges, such as demographic disparities
and signal quality issues, providing a more comprehensive and inclusive approach to
heart rate estimation. Despite limitations in dataset size and model complexity, the
findings offer valuable insights for future work, emphasising the need for more diverse
participant pools, refined model architectures, and more efficient uncertainty quantifica-
tion methods. These contributions lay a solid foundation for further advancements in
the reliability, fairness, and accuracy of wrist-worn PPG heart rate estimation systems.
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A Review of Wearable Multi-wavelength
Photoplethysmography

Daniel Ray (Student Member, IEEE), Tim Collins (Senior Member, IEEE), Sandra I. Woolley (Senior
Member, IEEE), and Prasad V. S. Ponnapalli (Member, IEEE)

Abstract— Optical pulse detection ‘photoplethysmogra-
phy’ (PPG) provides a means of low cost and unobtrusive
physiological monitoring that is popular in many wearable
devices. However, the accuracy, robustness and generaliz-
ability of single-wavelength PPG sensing are sensitive to
biological characteristics as well as sensor configuration
and placement; this is significant given the increasing
adoption of single-wavelength wrist-worn PPG devices in
clinical studies and healthcare. Since different wavelengths
interact with the skin to varying degrees, researchers have
explored the use of multi-wavelength PPG to improve sens-
ing accuracy, robustness and generalizability. This paper
contributes a novel and comprehensive state-of-the-art re-
view of wearable multi-wavelength PPG sensing, encom-
passing motion artifact reduction and estimation of physio-
logical parameters. The paper also encompasses theoret-
ical details about multi-wavelength PPG sensing and the
effects of biological characteristics. The review findings
highlight the promising developments in motion artifact
reduction using multi-wavelength approaches, the effects
of skin temperature on PPG sensing, the need for improved
diversity in PPG sensing studies and the lack of studies that
investigate the combined effects of factors. Recommenda-
tions are made for the standardization and completeness of
reporting in terms of study design, sensing technology and
participant characteristics.

Index Terms— Multi-wavelength Photoplethysmography,
Skin Optics, Skin Melanin, Skin Temperature, Motion Arti-
fact Reduction, Physiological Monitoring.

I. INTRODUCTION

THE current passive paradigm of late-stage treatment of
chronic diseases is transitioning towards more proactive

and preventative measures, such as cost-effective continuous
monitoring tools to support early prediction, early prevention,
early diagnosis and early treatment [1]. The World Health
Organization (WHO) have recommended continuous monitor-
ing as an effective means to assess physiological conditions,

Manuscript received April 26, 2021; revised August 03, 2021; ac-
cepted September 22, 2021. This research received no external funding.

D. Ray is with the Department of Engineering, Manchester Metropoli-
tan University, Manchester, UK (e-mail: Daniel.Ray@stu.mmu.ac.uk ).

T. Collins is with the Department of Engineering,
Manchester Metropolitan University, Manchester, UK (e-mail:
T.Collins@mmu.ac.uk).

S. I. Woolley is with the School of Computing and Mathematics, Keele
University, Staffordshire, UK (e-mail: S.I.Woolley@keele.ac.uk).

P. V. S. Ponnapalli is with the Department of Engineer-
ing, Manchester Metropolitan University, Manchester, UK (e-mail:
P.Ponnapalli@mmu.ac.uk).

monitor the progression of diseases and support daily self-
management of health [2].

Clinically performed electrocardiography (ECG), such as
the conventional 12-lead ECG acquisition, is widely con-
sidered the ‘gold standard’ of non-invasive cardiovascular
monitoring. ECG can identify cardiovascular abnormalities
and detect irregularities in heart rhythms as well as performing
physiological assessments of Heart Rate (HR) and Heart
Rate Variability (HRV) by recording the depolarization of
the heart’s conductive pathway and the surrounding cardiac
muscle tissues during each cardiac cycle. Although accurate,
multi-lead clinical ECG is unsuited to continuous monitoring.
It lacks portability, and convenience, and the bio-electrodes
are obtrusive, cannot get wet and must be placed at specific
locations on the body and connected to a recording device [3].

Consumer health monitoring devices have underpinned
growth in the wearable devices market, a market expected to
reach $30 billion by the end of 2023 [4], and the maturation
of low cost, unobtrusive sensing devices incorporating optical
pulse detection ‘photoplethysmography’ (PPG) sensors [3],
[5]. A sensing method similar to PPG sensing was first devised
in 1936 by two American research groups [6], but it was
Alrick Hertzman who established PPG sensing in 1937 [7].
Consisting of a light source and photo-detector, light is emitted
into the skin and the intensity of light transmitted into the
photo-detector will vary depending on the volume of blood in
the vascular bed of the measurement site, taking advantage of
blood’s absorbent qualities to visible and infrared (IR) light.
During the contraction of the left ventricle, blood is ejected
out of the heart and propagates along the circulatory system,
corresponding to the initial positive slope of a PPG pulse
(Figure 1). The systolic peak marks the maximum amount
of blood present in the vascular bed at the measurement
site. The pulse waveform then decreases in amplitude until
a local minimum where it transitions into the diastolic phase.
The local minimum or dicrotic notch marks the closure of
the aortic valves. The end of the diastolic phase marks the
closure mitral valve [8]. As well as the AC or pulsatile
component of the signal, PPG sensing also collects the DC
or non-pulsatile component which is shaped by respiration,
sympathetic nervous system activity, and thermoregulation [3].

There are two modes of PPG sensing with different mea-
surement sites (Figure 2). Transmission PPG sensors are
usually sited on the fingertip or earlobe where the light source
and detector are separated by tissue. Reflectance PPG sensors,
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Fig. 1: A typical PPG waveform adapted from Lemay et al. [34].

which have both components positioned alongside each other
on the same side of tissue, are commonly sited on the wrist,
forehead or torso [3]. Both refl ectance and transmission PPG
sensing can provide physiological insights for HR [5], Blood
Oxygen Saturation (SpO2) [9], Respiration Rate [10], Vascular
Aging and Atherosclerosis [3], [11], Blood Pressure (BP)
[12] which is an indicator for Hypertension [13] and Atrial
Fibrillation as well as HRV which itself provides indications
about Coronary Heart Disease [14] and Autonomic Nervous
System functionality [15].

Although transmission mode PPG sensing is widely used in
clinical settings for pulse oximetry measurements, refl ectance
mode PPG and PPG sensing for other physiological mea-
surements has not been widely adopted in clinical practice.
One of the main factors affecting PPG sensing performance is
its susceptibility to interference, predominantly from motion
artifacts [16]. Other significant factors affecting the perfor-
mance include the amount of blood fl owing into the periph-
eral vascular bed, the varying optical properties of skin and
blood, ambient light, and the wavelength used to illuminate
the skin [5]. Addressing these factors would produce a low
cost, simple and unobtrusive method to accurately, robustly
and continuously measure the physiological status of patients
having the potential to reduce premature mortality and the
economic burden of disease and illness.

Beyond cardiovascular monitoring and general well-being,
PPG sensing has seen several developments including the de-
tection and monitoring of epileptic seizures [17], diagnosis of
respiration diseases [18], mental stress and affect recognition
[19], [20], monitoring of sleep conditions [21], [22], estimation
of blood glucose [23], and drug delivery monitoring [24]–[26]
showing its capacity to enhance healthcare systems around the
world.

This review explores multi-wavelength PPG approaches
for signal acquisition and improved resilience to motion
artifacts and variations in skin melanin content and skin
temperature with the aim of providing robust estimations of

Fig. 2: The two modes of PPG sensing.

physiological parameters. In terms of methodology, the papers
which constitute this review were retrieved from the following
search engines and digital libraries: Institute of Electrical and
Electronics Engineers (IEEE) Xplore Digital Library, Google
Scholar, Medline, ScienceDirect, and Wiley Online Library
using the keywords: “ Multi-wavelength” , “ Photoplethysmog-
raphy” , “ PPG” , “ Skin Tone” , “ Skin Temperature” , “ Skin Op-
tics” , “ Motion Artifacts” , “ Physiological Monitoring” , “ Blood
Oxygen Saturation” , “ Pulse Oximetry” , “ Blood Pressure” ,
“ Blood Glucose” and “ Drug Delivery Monitoring” .

II. SKIN OPTICS AND PPG SENSING

Human skin is a complex heterogeneous medium consisting
of three main layers: epidermis, dermis and hypodermis (or
subcutaneous tissue), each with varying thicknesses dependent
on body site that follow a general trend [27], [28]. The
epidermis is the top-most layer of skin comprising of several
sub-layers of living and non-living cells, all of which contain
little or no blood fl ow. The stratum corneum or non-living
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epidermis is typically 20µm thick and consists of only dead
squamous cells [28]. Beneath is the living epidermis which is
typically 100µm thick and contains most of the skin pigmenta-
tion compounds, such as pheomelanin and eumelanin, broadly
referred to as melanin [27]–[30].

The dermis is found below the epidermis and consists of two
main layers: the papillary dermis typically 150µm thick and the
reticular dermis which has a thickness generally ranging from
1-4mm dependent on body site [28]. The papillary dermis is
made up of loose connective tissue which is vascularized from
a network of capillaries, small blood vessels typically ranging
from 1-8µm in diameter [31] that exchange materials, such
as oxygen and carbon dioxide, between blood and tissue. The
reticular dermis is made up of dense connective tissue housing
structures such as nerves, glands and hair follicles. Addition-
ally, the reticular dermis contains arterioles and venules which
are slightly larger blood vessels, typically ranging from 2-
30µm in diameter [31], that connect the capillaries to the
arteries and veins [27].

The deepest layer of the skin is the hypodermis which
connects the skin to the bones and muscles and has a typical
thickness in the range of 1-6mm dependent on body site
[28]. The hypodermis contains larger blood vessels, arteries
and veins, typically ranging from 500-5000µm in diameter
[31], which transport blood around the body. The hypodermis
is mainly used to store fat and primarily consists of loose
connective tissue [27].

Due to the inhomogeneous distribution of blood, cells and
pigments in the skin; measuring the optical properties is
challenging. Usually, the main optical properties of skin are
described as absorption, scattering and penetration depth as
well as reflection, transmission and fluorescence [6], [28],
[29], [32]–[36]. Researchers have employed several methods
to model the optical properties of skin such as the radiative
transport equation, the Beer-Lambert law, stochastic models
such as the Monte Carlo and random walk as well as the
adding doubling method with varying results [35], [37]. Sum-
marized in Figure 3 are the wavelengths of light explored in
this section and subsequent sections.

A. Optical Properties of Skin and Blood

The main light-absorbing components within the skin are
water, hemoglobin and melanin; however, each absorb light
differently depending on the wavelength of light and chemical
bonding (Figure 4). Water, the main component of skin, is
highly absorbent to IR light (900-1100nm) whilst possessing
little to no absorbent qualities to visible light (390-780nm)
[6], [28], [34], [36], [38]. Melanin protects the skin against
the harmful ultraviolet (UV) radiation from the sun [29], its
absorbing qualities increase as the wavelength of light de-
creases, being highly absorbent to shorter wavelengths ranging
from UV to yellow light (200-600nm) [3], [6], [28]–[30], [32]–
[34]. Similarly, hemoglobin’s absorbing qualities decrease as
the wavelength of light increases. However, when chemically
bonded with oxygen, its absorbing qualities dramatically de-
crease when exposed to light in the range of 570-700nm and
is more absorbent to longer wavelengths such as IR when

compared to non-oxygenated hemoglobin [6], [28], [29], [32]–
[34], [36], [38].

Scattering occurs as either a surface effect such as reflection
and refraction or as an interaction with compounds in the skin
that possess different optical properties. It has been estimated
that 4-7% of light is reflected from the surface of the skin
independent of wavelength [32]. Generally, within the skin
the scattering coefficients decrease with an increase in the
wavelength of light [28], [32], [33], [35], [36]. In the epi-
dermis, large melanosomes exhibit mainly forward scattering
whilst small “melanin dust” has an isotropic scattering profile.
Collagen’s fibrous structures define the scattering profile of the
dermis whilst the main source of scattering in the hypodermis
are spherical droplets of lipids [28]. Additionally, research
suggests that the effects of scattering are greater on the breast,
abdomen and forehead compared to the arm [36].

The path of light in the skin for reflectance mode PPG
sensing is theorized to follow a “banana-like” shape [39] where
the maximum depth of the path of light in the skin is called
the penetration depth which is a function of its absorption
and scattering coefficients [35]. In transmission mode PPG
sensing, the path of light travels through the skin from the
LED to the photodiode. Generally, the penetration depth for
reflectance mode sensing increases as the wavelength of light
increases in the range of visible and near-IR light (Figure
5) [3], [6], [28], [33], [34], [36], [38], [40]–[42] with the
maximal penetration depth being 3-4mm for IR light (800-
1100nm) [28], [36], [42], [43]. When the wavelength of light
increases past 1250-1400nm the penetration depth significantly
decreases [28], [36], [43]. Additionally, the penetration depth
of light for reflectance mode sensing changes depending on the
measurement site with the breast and abdomen possessing the
largest penetration depths compared to the arm and forehead
[36].

B. Effects of Biological Characteristics on PPG Sensing

As described in Section II(A), wavelengths of light interact
with skin and blood to varying degrees due to their in-
homogeneous nature. Researchers have explored the effects
that different biological and skin characteristics have on PPG
sensing, which is summarized in this section.

1) Skin Melanin Content: The accuracy and reliability of
PPG sensing is sensitive to skin melanin content. First reports
of potential inaccuracies arose from pulse oximetry studies
which concluded that higher skin melanin content may in-
fluence the performance and accuracy [44]. Measurements of
pulse oximetry on patients with higher skin melanin content
and low blood oxygen saturation had up to 10% differences
in estimates from different pulse oximeters [45] and blood
oxygen saturation levels were over-estimated during hypoxia
for patients with higher skin melanin content [46]. A larger
scale study (1609 subjects: 1333 white patients and 276 black
patients) also found black patients to have nearly three times
the frequency of occult hypoxemia (an arterial oxygen satura-
tion estimate of <88% despite an oxygen saturation of 92% -
96%) as white patients [47]. However, several other studies
suggest that higher skin melanin content doesn’t influence



4 IEEE REVIEWS IN BIOMEDICAL ENGINEERING, VOL. 15, 2021
Sk

in
 O

pt
ics

100 390 455 492 577 590 622 780 2500

UV Violet Blue Green Yellow Orange RedPaper IR

Cui, Ostrander and Lee (1990) [50] 

Fallow, Tarumi and Tanaka (2013) [53] 

Wavelength (nm)

Maeda, Sekine and Tamura (2011) [60]

Linberg and Öberg (1991) 

Maeda et al. (2008) [59] 

880
Budidha and Kyriacou (2018) [57]

525

658 870

480 560 633 825

525 880

470 520 880
Yan et al. (2017) [51] 

420 940

630

525 590 650 870Sk
in

 M
el

an
in

 
Co

nt
en

t
M

ul
ti-

wa
ve

le
ng

th
 P

PG
M

ot
io

n 
Ar

tif
ac

t R
ed

uc
tio

n

Anderson and Parrish (1981) [33] 

Lister, Wright and Chappell (2012) [32] 

Vizbara et al. (2014) [40] 

200 2400

Bashkatov et al. (2005) [30]
400 2000

350 750

Simpson et al. (1998) [35]
600 1000

Taroni et al. (2003) [36]
600 1000

Zonios et al. (2001) [30]
460 820

465 520 940

Matsumura et al. (2014)  [110]

Yao and Warren (2004) [37] 
Wang and Tang (2011) [119] 

870
Blanos et al. (2018) [69]

530

650

660 850

Zhang et al. (2019) [116]
Chang et al. (2019) [73]

Lee et al. (2020) [72]
Chen et al. (2020) [74]

940

660
940

940

940660530
400 1000

800

810

525

470

505

590
990

Alzahrani et al. (2015) [2]
660525

640

560
525 620 930 950640

615

950

Liu et al. (2015) [111]

870650
Alharbi et al. (2019) [115]
Rachim et al. (2019) [117]

Chang et al. (2019) [73]

940

940

525

590

635

Liu et al. (2016) [112]
Warren et al. (2016) [71]

Blanos et al. (2018) [69]
Geng et al. (2017) [113]

Pasta et al. (2018) [114]

Liu et al. (2020) [118]
Gupta et al. (2020) [70]

470

470

870

870
850

940

940

650

650

630

595

595

590

591

590

525

525

525

460

515

530

575

570

570

940
Adhikari et al. (2016) [26]

355

660

660

660

800730
940

Sk
in

Te
m

pe
ra

tu
re

M
ul

ti-
wa

ve
le

ng
th

 P
PG

 
Ph

ys
io

lo
gi

ca
l M

on
ito

rin
g

350

355355

505

570

570570

575

590

590

591

590590

590590

595

595

590

630630

633

640

635

630

615

820

940940

940940

880

870870

825825

880880

880880

870

850850

800

810

870870

940940
930

940940

940940
940940

940940

870

870870

870

940940

940940

Fig. 3: A summary of the wavelengths of light explored for each multi-wavelength PPG study in each section of this review.

oximetry measurements [48], [49]. Most studies exploring
higher skin melanin content and PPG sensing agree that
melanin isn’t a significant factor when at rest [48], [50]–[52].
The pulsatile component of the PPG signal is collected from
the dermis and hypodermis. The epidermis, which contains
melanin, absorbs a constant fraction of the signal without
affecting the pulsatile component suggesting skin melanin
content can be compensated by stronger intensity of light [50],
[53]. During active states Bent et al. found no statistically
significant differences in HR estimation accuracy across skin
tones for commercially available wrist-worn refl ectance mode

PPG devices [52]. Fallow et al. found no significant interaction
between skin tone and motion type for wrist-worn refl ectance
mode PPG sensing but did find a trend towards skin type
having a significant effect yet no interaction was present at
rest [53]. Yan et al. found skin melanin content to not have
a significant factor on palm-worn refl ectance mode PPG HR
estimations as well as green light (525nm) producing the best
modulation for all skin tones [51]. This agrees with Fallow
et al. who found green light (520nm) to produce the best
modulation for all skin tones at rest although blue (470nm) and
green (520nm) light produced the best modulation for all skin
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Fig. 4: The light absorption coefficients of biological com-
pounds present in the epidermis-hypodermis layers of skin
adapted from Lemay et al. [34].

tones during active state [53]. In contrast, Shcherbina et al.
found co-variates such as higher skin melanin content, larger
wrist circumference, and higher BMI to positively correlate
with increased HR error rates across multiple wrist-worn
reflectance mode PPG devices [54]. Additionally, Preejith et
al. using a green light reflectance mode wrist-worn PPG sensor
on 256 subjects found an mean absolute error of 1.04BPM for
lighter skin tones compared to 10.90BPM for darker skin tones
when computing HR estimations [55].

2) Skin Temperature: When the temperature of skin reduces,
perfusion rates in the vascular bed dramatically decrease due
to the Autonomic Nervous System constricting blood vessels
in the dermis as a means to conserve body heat [56], [57].
Reductions in skin temperature typically affect the peripheral
circulation more than the central areas of the body; for exam-
ple, when the body is exposed to 10°C ambient temperature
the blood flow through the hand drops to less than 1 ml/min
[57].

All studies exploring temperature and PPG sensing agree
that temperature influences the signal [38], [56]–[61] but to
differing degrees. Ralston et al. suggested that errors resulting
from varying skin temperatures are unlikely to be clinically
significant for transmission mode PPG sensing [58]. However,
Budidha et al. found that in some volunteers exposed to cold
temperatures, the amplitude of the PPG signal significantly
diminished to the extent of being unusable for ear-worn
reflectance mode PPG sensing [57].

Maeda et al. found green light (525nm) reflectance mode
PPG HR estimations to have a higher correlation to the ECG
signal HR estimation than IR light (880nm) reflectance mode
PPG HR estimations at temperatures below 15°C. As shorter
wavelengths penetrate the skin to a lesser degree than longer
wavelength they aren’t subject to the optical processes that
occur in deeper tissue which produce more complex signals.
Green PPG signals include less information from various non-
pulsatile media therefore affected by noise to a lesser degree
than IR PPG signals [59]. In a subsequent study, Maeda et al.
found that with cold exposure, the pulsatile component of both
green and IR reflectance mode signals decreased significantly
whilst the non-pulsatile component remained similar. With

hot exposure, the pulsatile component of both green and IR
signals as well as the non-pulsatile component the IR signals
decreased. The decrease in amplitudes of both components of
the IR signal during hot exposure is due to a larger amount
of blood in the peripheral vascular bed [60].

3) Other Biological Factors: Although not examined with
multi-wavelength PPG devices, there are several other known
biological factors that affect PPG sensing. Higher body mass
index (BMI) and obesity has been shown to produce less
accurate HR estimations [54], [62], [63], which has been
speculated to be a co-variate with larger wrist circumferences
[64], however other studies reported BMI not to be an affecting
factor [65], [66]. Shcherbina et al. also found sex to be an
affecting factor with males getting higher error rates [54].
Additionally, Fine et al. explored several studies looking
into subject age. As aging leads to various anatomical and
physiological changes, the ability of PPG sensing to assess
cardiovascular health varies [63].

Other research has suggested that sweat and hair follicle
density may be adverse factors to PPG sensing [67] as
well as research showing that in underwater conditions skin
temperature significantly affects PPG sensing compared to
dry conditions [61]. Finally, pre-existing conditions such as
Raynaud’s syndrome and Anemia may be affecting factors to
the accuracy of PPG sensing.

III. HARDWARE AND DATA COLLECTION

In this section, an examination of the current state-of-the-
art research and commercial multi-wavelength PPG hardware
solutions is given as well as a summary of the various data
collection protocols that explored the use of multi-wavelength
PPG devices.

A. Multi-wavelength PPG Research Hardware
Developments into multi-wavelength PPG sensing hardware

has seen dramatic improvements of the past decade in research
settings. Initial hardware was reliant on fiber optics [41],
[68] which then progressed into Optical Electronic Patch
Sensor (OEPS) development [51], [69] due to its low cost
and simple form factor with researchers also exploring ear-
worn, finger-worn, forehead-worn and wrist-worn PPG sensors
[57], [70]–[72]. The latest development in hardware for multi-
wavelength PPG sensing is an on-chip spectrometer approach
based on plasmonic filters [73] which has been adapted for
an all-wavelength PPG sensing device [74]. Summarized in
Table I are various multi-wavelength PPG research hardware
solutions.

The measurement site of PPG sensing is a key factor due
to the varying qualities of tissue thickness, skin pigmentation,
blood distribution in vascular bed and amount of movement
present at the measurement site [76]–[81]. Researchers exam-
ined 52 measurement sites across the body finding fingers,
palm, face, and ears to produce larger amplitudes of the
pulsatile component of the signal when compared to other
measurement sites [78]. These findings are consistent with
other studies [76], [81]. However, when examining the effects
of measurement site on motion artifacts it was found that
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TABLE I: Multi-wavelength PPG Research Hardware Solutions

Paper Sensor
Type

Study Materials Wavelengths Comments

Spigulis et
al. (2007)
[41]

Finger-worn
Reflectance
Laser
Sensor

Input fiber: 600µm silica core Z-Light,
Ltd. Latvia
Round-to-line detection fiber bundle:
7x 200µm silica core fibers Z-Light,
Ltd. Latvia
Spectrometer: AvaSpec 2048-2
Avantes BV, The Netherlands

Violet: 405nm
Green: 532nm
Red: 645nm
IR: 807nm &
1064nm

Provides exact wavelengths of light making it suitable
for clinical applications however it is unsuitable for
continuous monitoring due to a lack of portability and
obtrusive nature.

Leier et al.
(2015) [75]

Wrist-worn
Reflectance
LED Sensor

Four independent groups:
comprising of green, red and two infra-
red LED emitters and a photodiode.

Green: 560nm
Red: 660nm
IR: 880nm &
940nm

All optical components are positioned on a flexible
circuit board to allow for movement on the wrist. Light
barriers are provided on the photodiodes to prevent light
crossover and skin back-scattering. LEDs and photodi-
odes are in a matrix formation. Sensor is strapped to
wrist to ensure sufficient contact force. It is unsuitable
for continuous monitoring due to a large form factor of
both the sensor and logic board as well as requiring a
wired connection to a computer.

Warren et
al. (2016)
[71]

Forehead-
worn
Reflectance
LED Sensor

Six photodiodes are positioned concen-
trically around two pairs of red and
IR LEDs at an equidistant separation
distance of 10 mm as well as a tri-axial
accelerometer.

Red: 660nm
IR: 940nm

Positioned on the forehead, signals collected are less
susceptible to motion but may become obtrusive and
inconvenient for daily monitoring. As there are 6 pho-
todiodes the total active area is 15.9mm2. An opaque
ring was incorporated to minimize light crossover from
LEDs and photodiodes.

Blanos et al.
(2018) [69]

Reflectance
LED OEPS

PPG Sensor: 4 channel board DISCO4,
Dialog Devices Ltd., Reading, Berk-
shire, UK

Green: 525nm
Orange:
590nm
Red: 650nm
IR: 870nm

Sensor has a small form factor with LEDs and photo-
diodes in a cross formation with the photodiode in the
center. A layer of clear epoxy medical adhesive was
used to protect the optical components. Patch sensors
can be placed anywhere on the body however due to
perspiration and general wear and tear it requires re-
application making it of a disposable nature.

Budidha et
al. (2018)
[57]

Ear-worn
Reflectance
LED Sensor

LED: CR 50 IRH and CR 50 1M,
Excelitas technologies, Massachusetts,
USA
Photodiode: SR 10 BP-BH, Excelitas
technologies, Massachusetts, USA

Red: 658nm
IR: 870nm

Ear-worn sensor has a small form factor with LEDs
and photodiodes positioned next to each other. Ear-
worn sensors are less susceptible to motion artifacts
and are well suited to remote monitoring during specific
activities. For 24 hour continuous monitoring ear worn
sensors may become obtrusive and inconvenient.

Han et al.
(2019) [42]

Reflectance
LED Sensor

PPG Sensor: 2x AFE4404s Texas In-
struments, Inc., Dallas, TX, USA

Blue: 460nm
Green: 530nm
Red: 660nm
IR: 940nm

Sensor is in a circular formation with 2 layers of LEDs
with the photodiode in the center. The sensor board was
treated with a black coating to prevent light reflection
as well as providing light barriers to prevent light
crossover and skin back-scattering.

Chang et al.
(2019) [73]

Finger-worn
Reflectance
LED Sensor

PPG Sensor: based on plasmonic filters
which can be integrated onto a regular
photo detector.

Green: 515nm
Red: 630nm
IR: 940nm

The sensor has a small form factor based on plasmonic
filters, nanoscale structures on metal films. Providing a
unique way to control polarization and wavelength of
light passing through the structures. Fabrication cost of
the plasmonic filters can be as low as a few dollars at
volume.

Lee et al.
(2020) [72]

Wrist-Worn
Reflectance
LED Sensor

PPG Sensor: 4X SFH7050 sensors OS-
RAM, Munich, Germany
Motion Sensor: MPU9250, InvenSense,
San Jose, CA, USA

Green: 530nm
Red: 660nm
IR: 940nm

The sensor consists of 4 integrated PPG sensing units
positioned in a cross formation. Data collected from
the sensor is streamed to a computer via Bluetooth,
allowing for remote continuous monitoring. The sensor
is attached to the wrist using a wrist sweatband which
may not provide optimal contact force.

Gupta et al.
(2020) [70]

Finger-worn
Reflectance
and Trans-
mission
mode LED
Sensor

Two LEDs and a photodiode. Device
allows for both transmission and re-
flectance type PPG signals. An Arduino
micro-controller unit is used to control
the whole system.

Green: 525nm
Red: 615nm

Device provides both transmission and reflectance type
PPG sensing. Transmission mode sensing typically re-
quires obtrusive and inconvenient solutions for contin-
uous monitoring due to positioning of device.

Chen et al.
(2020) [74]

Wrist-worn
Reflectance
LED Sensor

LEDs: two white LEDs, a green LED
(525nm), and a IR LED (940nm)
Photodiode: chip-scale spectrometer,
NSP32 (nanolambda, Daejeon, Korea)
as well as a micro-controller and a Blue-
tooth Low Energy transceiver.

All
Wavelength:
400-1000nm

The sensor has a small form factor based on plasmonic
filters, nanoscale structures on metal films. Providing a
unique way to control polarization and wavelength of
light passing through the structures with a broad band
of wavelengths that can be utilized. Fabrication cost of
the plasmonic filters can be as low as a few dollars at
volume.
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motion had a large effect on the distribution of blood in the
vascular bed at peripheral measurement sites such as fingers
and wrist [76], [79].

Due to the preexisting widespread adoption of wrist-worn
devices and their unobtrusive nature, the wrist is the most
common measurement site for consumer-grade PPG sensing
devices. Research shows that the wrist is the worst perform-
ing measurement site for extracting HR, pulse oximetry and
respiration rate in periods of both rest and movement [81]
highlighting the need for more robust methodology. Addi-
tionally, researchers have challenged the typical measurement
site for wrist-worn PPG sensing device, suggesting the radial
zone, side of wrist with the thumb, may produce better signals
dependent on light wavelengths selected when compared to the
central zone of the dorsal surface of the wrist [82], [83].

B. Multi-wavelength PPG Commercial Hardware
Polar Unite, Grit X and Vantage V2 are the only devices

that currently use four wavelengths [84] whilst the other
commercial devices have at most three; typically using green
light for HR measurements and red and IR light for pulse
oximetry measurements. “ Research-grade” multi-wavelength
wrist-worn PPG devices such as Empatica E4 and Biovotion
Everion (now Biofourmis Biovitals) have the advantage of
providing data-streamed raw signals, however, their HR esti-
mation accuracy has been reported to be lower than consumer-
grade wrist-worn PPG devices with Empatica E4 achieving a
mean absolute error of 11.3BPM at rest and 12.8BPM during
activity. Biovotion Everion achieved a mean absolute error
of 16.5BPM at rest and 19.8BPM during activity whilst the
Apple Watch achieved a mean absolute error of 4.4BPM at rest
and 4.6BPM during activity [52]. This is in agreement with
Rukasha et al. who found Empatica E4 heart rate estimate
mean absolute percentage errors (MAPEs) between 7.2% and
29.2% whilst collecting data on a treadmill and heart rate
estimate MAPEs between 5.3% and 13.5% during 12-hour
continuous monitoring [85].

Concerns have arisen due to both consumer and research-
grade devices being used in clinical trials, with Fitbit alone
having 476 published studies and 449 studies registered on

ClinicalTrials.gov [86] as well as Apple Watch having gained
FDA 510(k) class II clearance for the ECG feature and ability
to detect arrhythmias [64] and Empatica Embrace 2 gained
FDA 510(k) clearance for epilepsy detection [87]. Fitbit,
Garmin and Apple all state that their optical heart rate monitors
should not be used as medical devices with intent to diagnose,
treat, cure or prevent any disease [88]–[90].

C. Multi-wavelength PPG Sensing Units and
Configurations

When creating multi-wavelength PPG devices, there are
several design choices to be considered such as the number
of and placement of LEDs and photo-detectors (PD), intensity
of light from LEDs, sample rate, contact force and ambient
light and electrical noise cancellation. Summarized in Table II
are various multi-wavelength integrated PPG sensors that have
been developed and optimized to eliminate having to make the
design choices previously mentioned, however they lack the
customizability and adaptability required for specific research
cases. Analog Front Ends provide a means to develop a custom
sensor module adapted to specific needs; a brief summary of
multi-wavelength PPG Analog Front Ends is shown in Table
III.

In order to develop a sensing unit with an Analog Front
End that obtains a strong signal the correct placement of
LEDs and PDs is necessary. Research suggests, to obtain the
maximum AC/DC ratio, shorter wavelength LEDs such as
green should be positioned 1.85mm from the PD whilst red
and IR LEDs should be placed 2.35mm and 2.75mm from the
PD, respectively [98]. At 9.75mm between the LED and PD,
no pulsatile waveform was observed at any wavelength [42]
and it was found that nearly double the driving current was
needed to obtain a signal at similar distances apart for both red
and IR LEDs [77]. Increasing the applied current and number
of LEDs increases the radiation power [42] however much of
the radiation power is not captured if the PD active area is
small and may not produce any increase in signal amplitude
[99]. Increasing the active area of the PD or number of PDs,
however, produces a stronger signal with increases in average
amplitude of 42% for wrist-worn red PPG signals and 73%
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TABLE II: Multi-wavelength PPG Integrated Sensing Units

Device Wavelength of LEDs Features
Blue Green Red IR

Analog
Devices
ADPD188GG
[91]

2 2 Photodiodes
I2C & SPI
Communication
2 external sensor
inputs
3 LED drivers
Ambient Light
Rejection

Analog
Devices
ADPD144RI
[92]

1 1 I2C Communication
external LED
emitters
Ambient Light
Rejection

Maxim
Integrated
MAX30101
[93]

1 1 1 I2C Communication
Ambient Light
Rejection

Maxim
Integrated
MAX86150
[94]

1 1 I2C Communication
Ambient Light
Rejection
Electrocardiogram

Maxim
Integrated
MAX86916
[95]

1 1 1 1 I2C Communication
Ambient Light
Rejection

OSRAM SFH
7072 [96]

2 1 1 Light Barrier to
block optical
cross-talk
Requires Analog
Front End

OSRAM SFH
7050 [97]

1 1 1 Light Barrier to
block optical
cross-talk
Requires Analog
Front End

for IR. Additionally, increasing the number of PDs is more
beneficial than increasing the number of LEDs as it provides
reduced power consumption and heat generation [77], [99].
Finally, it is recommended that the wavelengths are collected
in order of size, with the longest first, as the pulsatile event
first occurs in the deeper blood vessels [42] as well as having
a sample rate in the optimal range of 21–64Hz as to compress
biomedical data and reduce storage needs [100].

A key factor in PPG sensing is contact force [77], [78],
[83], [109]. As the contacting force of the sensor increases the
amplitude of the pulsatile component of the signal increases
until the difference between the external pressure and the intra-
arterial pressure, called transmural pressure, reaches zero. At
this point the amplitude of the pulsatile component of the
signal starts to decrease as the external pressure increases
until circulation is cut off due to the flattening of the arterial
walls [78], [83], [109]. On the wrist, using reflectance mode,
it has been suggested that a contact pressure of 80mmHg
produces the highest amplitude for red light [83]. On the upper
arm, using reflectance mode, an average contact pressure of
30mmHg produces the highest amplitude for green and IR
light [78]. Finally, it was found that minimal contact pressure
was needed on the forehead using reflectance mode [77].

TABLE III: Multi-wavelength PPG Analog Front Ends

Device Drivers Features
Analog Devices
ADPD4000/4001
[101]
ADPD4100/4101
[102]

8 LED drivers
8 Inputs for PPG,
ECG, EDA,
impedance and
temperature

I2C & SPI
Communication
Ambient Light
Rejection

Maxim Integrated
MAX30110 [103]

2 LED
1 Photodiode

SPI Communication
Ambient Light
Rejection

Maxim Integrated
MAXM86146 [104]

3 LED
Two Integrated
Photodiode

SPI Communication
Ambient Light
Rejection
Integrated Micro
Controller

Texas Instruments
AFE4950 [105]
AFE44S30 [106]

8 LED
4 Photodiode

1/2/3 Lead ECG
(AFE4950)
I2C & SPI
Communication
Ambient Light
Rejection

Texas Instruments
AFE4900 [107]

4 LED
3 Photodiode

1 Lead ECG
I2C & SPI
Communication
Ambient Light
Rejection

Texas Instruments
AFE4404 [108]

3 LED
1 Photodiode

I2C Communication
Ambient Light
Rejection

D. Multi-wavelength PPG Data Collection
A summary of multi-wavelength PPG data collection pro-

tocols is given in Table IV. There are only three study
protocols which account for skin tone when exploring multi-
wavelength PPG sensing with larger numbers of lighter skin
tones. However, there are single-wavelength data collection
protocols that account for skin tone such as Bent et al. [52] and
Preejith et al. [55] but fall outside of the scope of this paper.
Additionally, there are only three protocols which explore
skin temperature and multi-wavelength PPG sensing [57], [59],
[60].

IV. MULTI-WAVELENGTH PPG MOTION ARTIFACT
REDUCTION

Motion artifacts are one of the main causes of inaccuracies
in PPG sensing. Due to the placement of sensors and the
varying penetration depths of light wavelengths, motion from
the body distorts the PPG signal. Motion artifacts can be
classified as either periodic or non-periodic and can possess
amplitudes much larger than the pulsatile component of the
signal [72], [116]. Blanos et al. showed that green (525nm) and
orange (590nm) light were affected by artifacts from motion
to a lesser degree than red light (650nm) [69]. Matsumura
et al. agreed stating that the signal to noise ratio (SNR) for
green (530nm) and blue (470nm) light was higher than red
(640nm) when being subject to various motion types [110].
Shorter wavelengths can result in improved SNRs because
their comparatively shorter path lengths and penetration depths
make them less susceptible to noise from motion [72]. Shorter
wavelengths also suffer from less attenuation from optical
processes, such as absorption and scattering, due to their
shorter path lengths. Additionally, the shallower penetration
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TABLE IV: Multi-wavelength PPG Data Collection Study Protocols

Paper Motivation Cohort Metrics Protocol Wavelengths
Maeda et al.
(2008) [59]

Skin
Temperature

Subjects: 22
EXP1:
Age: 22.4 ± 0.8
Gender: 8M 3F
EXP2:
Age: 23.6 ± 3.4
Gender: 8M 2F

EXP1:
room temperature of 25°C
Rest seated – 5 minutes
Measurement taken
EXP2:
peripheral skin temperature of 15°C
Rest seated – 5 minutes
Measurement taken

Green: 525nm
IR: 880nm

Maeda, Sekine
and Tamura
(2011) [60]

Skin
Temperature

Subjects: 12
Age: 23.6 ± 1.5

Seated
Cold exposure: Immersed the hand into the isothermal bath
at 10°C
Steady-state reached in 23.8±8.2 minutes
Measurements - 1 minute
Hot exposure: Immersed the hand into the isothermal bath
at 45°C
Steady-state reached in 20.7±7.3 minutes
Measurements - 1 minute

Green: 525nm
IR: 880nm

Fallow et al.
(2013) [53]

Skin Tone Subjects: 23
Age: 31 ± 12
Gender: 11M 12F
Height: 172 ± 8cm
Weight: 72 ± 14kg
Skin Type: I & II =
8, III = 5, IV = 4, V
= 6

Resting forearms
Bicep Curl Flexion - 10s
Grasping Dynamometer with force 5-10nm - 10s

Blue: 470nm
Green: 520nm
Red: 630nm
IR: 880nm

Matsumura
et al. (2014)
[110]

Motion
Artifacts

Subjects: 12
Age: 20.6 ± 0.76
Gender: 12M

Adaptation period - 5 minutes
Experimental period: Horizontal motion – 20s, Rest – 10s,
Vertical motion – 20s, Rest – 10s
Baseline – 20s, Horizontal motion – 20s, Rest – 10s, Vertical
motion – 20s, Rest – 10s, Baseline - 20s

Blue: 470nm
Green: 530nm
Red: 640nm
IR: 810nm

Liu et al.
(2015) [111]

Physiological
Monitoring

Subjects: 10
Age: 22 - 60
Gender: 6M 4F

Rest – 1 minutes
Eight levels of cuff pressure: 0 mmHg – 15s, 20mmHg –
15s, 40mmHg – 15s, Diastolic BP (DBP) – 15s, DBP+25%
– 15s, DBP+50% – 15s, DBP+75% – 15s, DBP+100% – 15s
Deflated in the reverse order
Rest – 1 minute

Blue: 470nm
Green: 570nm
Orange: 591nm
Red: 635nm

Alzahrani et al.
(2015) [2]

Motion
Artifacts

Subjects: 16
Age: 20 - 47
Gender: 15M 1F

Standing (30s), Sitting (30s), Walking - 3.0km/h (30s), Walk-
ing - 6.0km/h (30s), Cycling - 20.0km/h (60s), Cycling -
35.0km/h (60s), Running - 7.0km/h (30s), Running - 8.5km/h
(30s)

Green: 525nm
Red: 660nm
IR: 990nm

Liu et al.
(2016) [112]

Physiological
Monitoring

Subjects: 20 (10
Healthy/10 Patients
with Cardiovascular
diseases (CVD))
Average Healthy
Age: 26
Average CVD Age:
68

Subjects at rest in seated position
Reference BP was measured on the middle finger and left
upper arm. One-lead ECG electrodes on the left and right
arms of the subjects. A custom made four-wavelength PPG
device used to collect PPG signals

Blue: 470nm
Green: 570nm
Yellow: 590nm
IR: 940nm

Warren et al.
(2016) [71]

Motion
Artifacts &
Physiological
Monitoring

Subjects: 15
Age: 23 – 30

Alternate between 3 min of rest and 5 min of bouncing on a
exercise ball for a total of 19 min. Using a reference device
Masimo-57 Radical (Masimo SET®, Masimo Corporation,
CA, USA) finger type transmittance pulse oximeter that was
kept motionless by resting the left hand on a table.

Red: 660nm
IR: 940nm

Adhikari et al.
(2016) [26]

Physiological
Monitoring

Subjects: 5/3/3 Mice A delivered dose was 5 mg/kg, which is the typical clinical
dose. The PPG device is placed on the tail throughout the in-
jection phase, then for short periods throughout the clearance
phase. 6 samples for gold nanorods, 9 samples for quinine
and 7-8 samples for amphotericin B

UV: 355nm
IR: 805nm

Yan et al.
(2017) [51]

Skin Tone Subjects: 33
Age: 18 – 41
Gender: 33M
Skin Type: I & II =
11, III = 10, IV = 7,
V = 5

Room temperature: 23–26 °C, Humidity: 22–36%
Resting, Walking (3km/h), Jogging (6km/h), Running (9km/h)

Green: 525nm
Orange: 590nm
Red: 650nm
IR: 870nm

Geng et al.
(2017) [113]

Physiological
Monitoring

Subjects: 9 (6
Healthy/3 Diabetic)

3 lunch experiments & 2 supper experiments.
Lunch was standardized to 90g of standard tortilla, while the
supper was without specific requirements.
Healthy volunteers did lunch experiment without wearing
the dynamic glucometer. At 10min before the meal, finger
stick glucose monitoring (Roche glucometer, ACCU-CHEK®
Performa) was used for reference glucose then performed once
every 30 mins.

Red: 660nm
IR: 730nm,
800nm and
940nm.

continued on the next page
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TABLE IV: Multi-wavelength PPG Data Collection Study Protocols

Paper Motivation Cohort Metrics Protocol Wavelengths
Budidha and
Kyriacou
(2018) [57]

Skin
Temperature

Subjects: 15
Age: 28 ± 5
Gender: 9M 6F

Basline Temperature (24°C) – 2 minutes, Cold Exposure
(10±1°C) – 10 minutes, Baseline Temperature (24°C) – 10
minutes

Red: 658nm
IR: 870nm

Blanos et al.
(2018) [69]

Physiological
Monitoring

Subjects: 15
Age: 25 ± 5
Height: 178.9 ±
4.2cm
Weight: 70.9 ± 7.9kg

Settle - 30s, Rest - 180s, Settle - 30s, Cycling - 180s, Settle
- 30s, Run (3Km/h) - 180s, Settle - 30s, Run (6Km/h) - 180s

Green: 525nm
Orange: 595nm
Red: 650nm
IR: 870nm

Pasta et al.
(2018) [114]

Physiological
Monitoring

Subjects: 25
Age: 28 ± 7
Skin Tone: I = 1, II
= 9, III = 9, IV = 1,
V = 2
VI = 1

OEPS signal was measured at:
Fingertip, Rest - 2 minutes, Radial artery, Rest - 2 minutes,
Wrist, Rest - 2 minutes

Green: 525nm
Orange: 595nm
Red: 650nm
IR: 870nm

Alharbi et al.
(2019) [115]

Physiological
Monitoring

Subjects: 31
Age: 25±5
Gender: 31M
Height: 179 ± 4cm

Protocol 1: Sitting with hand movements
Protocol 2: Cycling and Walking

Green: 525nm
Orange: 595nm
Red: 650nm
IR: 870nm

Zhang et al.
(2019) [116]

Motion
Artifacts

Subjects: 6
Age: 25-35

Stationary – 5 minutes
Motion: Index finger tapping, Hand waving (horizontal),
Hand shaking (vertical),
Running arm swing, Fist opening and closing, Radial/ulnar
deviation,
Wrist extension/flexions

Green: 560nm
IR: 940nm

Rachim et al.
(2019) [117]

Physiological
Monitoring

Subjects: 12
Age: 22–30,
Gender: 2F 4M

Commercial ECG device AD8232 (Analog Devices Inc.,
USA) and PPG device RP520 (Laxtha Inc., Korea) were used
as reference devices. Each subject sat in a chair. Data points
are collected every 10 min, to find baseline value. After that,
the subject ate a carbohydrate rich meals, then collected data
every 20 min for a total 120 min

Green: 530nm
Red: 660nm
IR: 850 & 950nm

Chang et al.
(2019) [73]

Motion
Artifacts &
Physiological
Monitoring

Subjects: 10
Age: 20-60
Gender: 7M 3F
Height: 155-180cm

Index finger is placed on the sensing devices
A blood oximetry meter (TRUST, TD-8250A) and an upper
arm blood pressure monitor (Omron, HEM-7121) are used as
reference devices

Green: 505, 510,
515, 520 & 525nm
Red: 620, 625,
630, 635 & 640nm
IR: 930, 935, 940,
945 & 950nm

Lee et al.
(2020) [72]

Motion
Artifacts

Subjects: 7
Age: 27.1±5

Resting – 1 minute, Walking- 2 minutes (1m/s), Resting –
1 minute, Fast Walking – 2 minutes (1.8m/s), Resting – 1
minute, Running - 2 minutes (2.2m/s)

Green: 530nm
Red: 660nm
IR: 940nm

Liu et al.
(2020) [118]

Physiological
Monitoring

Subjects: 22
Age: 70.2 ± 5.4
Gender: 17M 5F

Rest – 5 minutes
Measurements taken
Rehabiliation Exercise – 2 hours
lower limb strengthening and balance exercises with mobility
and agility training.
Rest – 5 minutes
Measurements taken

Blue: 460nm
Green: 575nm
Orange: 590nm
IR: 940nm

Chen et al.
(2020) [74]

Motion
Artifacts

Subjects: 6 Used the developed device to record the MRC-AW-PPG
signals, and then used AFE4404EVM as a reference to record
the green, red, and NIR PPG signals separately, all in the three
different postures (hands down, hands forward & hands up)
whilst seated

All Wavelength:
400-1000nm

depths for shorter wavelengths result in less physiological
information from deeper tissue such as bone movement being
collected [69]. However, some shorter wavelengths due to shal-
lower penetration depths do not reveal much cardiac activity
[72]. The typical frequency range of a PPG signal is 0-5Hz
whilst motion artifacts fall within 0-10Hz making the removal
of motion artifacts challenging. Most approaches that tackle
motion artifacts involve the use of a motion reference signal,
typically collected from an accelerometer or gyroscope [116].
Wang et al. used the isobestic (800nm) wavelength as a motion
reference, implementing a normalized least mean squares
adaptive noise canceling algorithm to reconstruct the clean
PPG signal [119]. Zhang et al. proposed a similar method

using an infrared (940nm) PPG signal as a motion reference,
due to its comparatively deep penetration depths and suscepti-
bility to motion implementing a continuous wavelet transform
for signal cleaning and reconstruction reducing error in HR
estimations for all motion types to less than 2BPM [116]. Yao
et al. developed a method to separate motion artifacts from
PPG signals using an algorithm based on the Beer-Lambert law
which utilized red (660nm) and two infrared (850 and 940nm)
wavelengths [37]. The Beer-Lambert law suggests that the sum
of transmitted and absorbed or scattered light is equal to the
incident light through homogeneous layers however human
skin and blood are not homogeneous [34]. Chang et al. used
15 PPG signals and the maximal-ratio combined algorithm
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as a means for motion artifact reduction showing a 50%
variation reduction when compared with the single-wavelength
reference sensor [73]. Similarly, Chen et al. used a maximal-
ratio combined algorithm on an all-wavelength wrist-worn
PPG device. The results showed the all-wavelength approach
had an improved SNR when compared to the conventional
green, red and IR PPG sensing [74]. Lee et al. developed
a motion artifact reduction algorithm using 12-channel PPG
signals comprising of green (530nm), red (660nm) and IR
(940nm) wavelengths. An independent component analysis
was first carried out to extract the independent components of
the signals. The most pulsatile component of the signals were
then selected using principal component analysis implemented
with a truncated singular value decomposition showing a
sensitivity of 82.49%, a positive predictive value of 99.83%,
and a false detection rate of 0.17% in periods of high motion
[72].

V. MULTI-WAVELENGTH PPG PHYSIOLOGICAL
MONITORING

In this section, an examination of the current state-of-the art
research physiological measurement extraction methodologies
is given ranging from cardiovascular measurements such as
blood oxygen saturation, HR, blood pressure and blood glu-
cose as well as other physiological measurements.

A. Blood Oxygen Saturation & Heart Rate
Currently, the most common application for multi-

wavelength PPG sensing is pulse oximetry as it requires two
wavelengths to calculate blood oxygen saturation levels. The
blood oxygen saturation level can be estimated from the ratio
of pulsatile and non-pulsatile components of each wavelength
[9]. Typically, the wavelengths used are red (622–780nm) and
IR (780-2400nm) [73] however, researchers have identified
orange and green light to perform better due to their robustness
against motion artifacts [69], [115].

Alharbi et al. found that green-orange pulse oximetry
measurements from a reflectance mode OEPS device had a
r=0.98 correlation with commercial pulse oximeter in periods
of both rest and motion as well as a r=0.98 correlation with
pulse oximetry measurements from red-IR light using the
same OEPS device in periods of both rest and motion [115].
Additionally, Blanos et al. found no significant difference
between green-orange pulse oximetry measurements from a
reflectance mode OEPS device and a commercial pulse oxime-
ters in periods of both rest and motion [69]. Blanos et al.
also extracted HR estimations from a reflectance mode OEPS
device at four different wavelengths in both periods of rest
and motion. It was found that green light had a correlation
of r=0.992 with the recorded ECG values. Orange light had a
correlation of r=0.984, whilst red and IR light had a correlation
of r=0.952 and r=0.97, respectively [69].

Warren et al. developed a multi-channel, multi-wavelength
forehead-worn PPG reflectance sensor, using two red (660nm)
and two IR (940nm) wavelengths, with a tri-axial accelerome-
ter. They also developed an advanced multi-channel switching
algorithm that chooses the channel least affected by motion

artifacts to calculate HR estimates for each time instant. They
found that for a wide variety of random motion, channels
respond differently to motion artifacts. The multi-channel
switching algorithm estimates produced improved results com-
pared to the individual channel estimates because the multi-
channel switching algorithm enabled automatic selection of
the best signal fidelity channel at each time point among the
multi-channel PPG data [71].

Green-orange pulse oximetry has shown to be a promising
alternative due to their robustness against motion [69] and
should be explored further in daily activity settings. Utilizing
two wavelengths for HR estimations showed promising results
[71]. Further exploration of methods using multiple wave-
lengths for HR estimations may uncover improved results.

B. Blood Pressure

Blood Pressure (BP) can be extracted using an ECG and
peripheral PPG sensing to compute the Pulse Transit Time
(PTT) which has a high correlation with systolic blood
pressure (SBP) and diastolic blood pressure (DBP). Liu et
al. developed a reflectance mode multi-wavelength light-skin
interaction model based on the modified Beer-Lambert law.
The model was calibrated for BP extraction using a cuff-based
BP measuring device and ECG. Evaluating the dominance
of different pulsation patterns based on absorption weighting
factors showed a significantly improved BP tracking ability.
The mean absolute difference between the reference and the
estimated SBP varies from 5.7mmHg (for single-wavelength
PPG) to 4.0mmHg (for two-wavelength PPG) and 2.9mmHg
(for three-wavelength PPG) [112]. Blood pressure estimation
methods require a cuff-based BP measuring device for cali-
bration. When the cuff is inflated, pressure is exerted on the
vascular bed causing the arterial properties to potentially be
altered due to the smooth muscle relaxation, thereby increasing
the PTT. Liu et al. examined the effect of cuff induced
pressure and subsequent effects on the PTT at four different
wavelengths of light using reflectance mode: blue (470nm),
green (570nm), yellow (591nm) and red (635nm). The results
showed that red PTT, yellow PTT and green PTT had a trend
of increased PTTs after cuff pressurization while blue PTT
nearly had no change. Indicating that PTTs calculated from
cuff-based BP measuring devices and different wavelengths of
PPG are influenced by smooth muscle relaxation to different
degrees. Blue light has a relatively shallow penetration depth
so blue PTT stays nearly unchanged after cuff pressurization.
Yellow PTT had the most significant change which may be due
to yellow light having deeper penetration depths into the skin
compared to blue light therefore reaching muscle tissue that is
influenced by smooth muscle relaxation from the inflated cuff
to a greater degree. Additionally, yellow light has shallower
penetration depths than red light so is unable to reach the
larger blood vessels found in deeper tissue [111].

Efforts have been made to extract BP estimates without
ECG devices using the time difference between different
wavelengths of PPG signals, referred to as local PTT, due to
its strong relationship to PTT showing promising results. Pasta
et al. examined BP cuff-based measurements from reflectance
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mode multi-wavelength PPG sensing at 3 different locations
(fingertip, radial artery and dorsal surface of wrist) using
four different wavelengths (green 525nm, orange 595nm, red
650nm and IR 870nm) without an ECG device for calibra-
tion. When the cuff was pressurized, the blood vessels were
gradually blocked by the increasing pressure. As the systolic
pressure was reached, the PPG signals became too weak for the
sensor to pick it up. Upon the signal’s disappearance, the cuff
pressure was decompressed gradually. Then, the PPG pulse re-
appeared at a certain point. The algorithm was able to identify
all the peaks and provided information such as the time of
signal loss and re-acquisition, thus allowing for a correlation
with the pressure inside the cuff. The results showed that the
fingertip site provided the most accurate values amongst all
wavelengths with an error of 8.07%, compared to the radial
artery error of 13.17% and the wrist error of 17.44%. Green
light recorded the best performance for every site, followed
by the orange light with an error difference of 2%. Red light
obtained the best results on the fingertip, with an error of
6.33% whilst IR had an error of 7.27%. Additionally, it was
reported that smaller error rates were obtained from lighter
skin tones compared to darker skin tones [114].

Chang et al. produced a method without an ECG device
using 15 different reflectance mode wavelengths extracting
local PTT using a cross-correlation method. The average of
the 15 local PTTs was computed and used with regression
coefficients of the linear models for SBP and DBP to estimate
SBP and DBP values with correlations of r=0.79 and r=0.78,
respectively [73]. Liu et al. proposed a method, similarly with-
out an ECG device. Using shorter wavelengths, blue and green,
to measure the capillary pulsation and longer wavelengths,
red and IR, to measure the arterial pulsation using reflectance
mode sensing. Principle component analysis was employed to
extract the first principle component of the shorter wavelengths
as the capillary pulse and the second principle component as
the motion signal as well as the first principle component of the
longer wavelengths as the arterial pulse. From these principle
components, Fourier transforms are used to extract features
such as phase shift which indicates arteriolar PTT and HR with
heart period and pulse decay time being computed separately.
These features are used to compute mean blood pressure and
pulse pressure which are then transformed into SBP and DBP
estimates yielding errors of 1.44 ± 6.89mmHg for SBP and
-1.00 ± 6.71mmHg for DBP [118].

Utilizing multiple wavelengths for BP estimations showed
improved error rates compared to single-wavelength estima-
tions [73], [112], [118] especially when taking advantage of
the differing interactions of wavelengths with skin and blood
[118]. Methods that do not require an ECG device [73], [114],
[118] have the advantage of not requiring multiple devices.

C. Blood Glucose

As well as Blood Pressure sensing, another application of
wearable multi-wavelength PPG sensing is Blood Glucose
(BG) estimation. Gupta et al. analyzed the mode of PPG
sensing when extracting BG measurements. Two wavelengths
of light, green (525nm) and red (615nm), were collected from

the finger using both transmission and reflectance modes of
PPG sensing. All collected signals were subject to a 10th order
low pass Butterworth filter with a cutoff frequency of 8 Hz.
The filtered signals were then used to extract 22 features which
can be split into two parts: PPG based and general signal char-
acteristics. The PPG features included HR, SpO2 and breathing
rate whilst the signal characteristics included zero-crossing
rate, power spectral density, Teager–Kaiser energy and Qi-
Zheng energy. These features were then used in a random
forest regression algorithm. In transmission, the correlation
between the estimated BG measurements and the reference
device was r=0.72 pre-prandial (before food consumption) and
r=0.91 post-prandial (after food consumption). In reflectance
mode, the correlation pre-prandial was r=0.82 whilst the
correlation post-prandial was r=0.62 [70].

Geng et al. developed a multi-site and multi-sensor system
consisting of a wrist-worn device and an upper-arm worn
device. The wrist-worn device contained a temperature sensor,
a humidity sensor, a high frequency flexible electrode and
one pole of a low-frequency electrode as well as a multi-
wavelength reflectance PPG sensor (red - 660nm and IR
- 730nm, 800nm and 940nm). The upper arm device was
equipped with the other pole of the low-frequency elec-
trode to detect the low-frequency impedance of the arm. All
candidate features were calculated from the original signals
and were screened according to the similarity between the
feature and reference glucose profile. A single-feature model
was constructed based on the candidate features using time
series analysis. A weighted average method was used on
the single-feature model-based glucose profiles to produce
multi-feature fusion parameters. The glucose profile estimation
model is made up of both the single-feature model-based
glucose profiles and multi-feature fusion parameters. After
the estimated glucose profile was obtained, the peak time
of postprandial glucose can be obtained. The results show
a correlation between the reference device and the estimated
values of r=0.83 and a standard error of prediction (SEP) of
14.6mg/dL [113].

Rachim et al. analyzed four wavelengths of light (green,
red and two IR) in extracting BG measurements from the wrist
using reflectance mode sensing. A local maxima algorithm was
used to detect the peaks in the collected signals which were
then segmented into windows and averaged using an ensemble
average algorithm. From the averaged signals, 24 features
were extracted: 12 features from the difference of optical
density between the pulsatile components and the amplitude
of non-pulsatile component as well as 12 features from a
Teager–Kaiser energy operator. The features were then used
in a Partial Least Squares algorithm to find the relationship
between the reference device and extracted features. Using
only green (535nm) and red light (660nm) a SEP of 12.4mg/dL
was found and a correlation of r=0.55 with the reference
device. Using only IR light (850nm and 950nm) a SEP of
10.1mg/dL was found and a correlation of r=0.67 with the
reference device. Finally, using all four wavelengths a SEP
of 6.16mg/dL was found and a correlation of r=0.86 with the
reference device [117].

Similarly to BP estimation, using multiple wavelengths for
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BG estimations produced the lowest error rates [117]. Methods
that required several sensors at multiple sites showed similar
error rates [113] to methods with one device. Finally, deep
learning as a method for feature extraction may be advanta-
geous for BG estimation and should be explored further.

D. Drug Delivery Monitoring
Adhikari et al. developed a multi-wavelength transmission

mode PPG method for the monitoring of drug delivery. They
examined the use of Gold Nanorods, Quinine and Ampho-
tericin B in mice possessing absorption peaks of 805nm,
355nm and 355nm, respectively. Blood samples were collected
from the mice after each PPG reading. Estimates were cal-
culated using the pulsatile and non-pulsatile components of
the signal to determine the extinction change due to pulsation
at each wavelength using the Beer-Lambert law. The results
showed that Gold Nanorods had a correlation of r=0.94 with
the blood samples, Quinine had a correlation of r=0.96 and
Amphotericin B had a correlation of r=0.88. This methodology
could be used to monitor the circulation of molecular drugs
and therapeutic nanoparticles having variable circulation half-
lives and could be applicable to a wide range of optically
active drugs and nanoparticles [24]–[26].

VI. DISCUSSION AND RECOMMENDATIONS

Multi-wavelength PPG shows promising signs of becoming
a viable method for remote physiological monitoring as well
as an alternative to ECG for cardiovascular monitoring. The
selection of wavelengths used in PPG sensing is a compromise.
It appears that green light (492–577nm) produces the best gen-
eralized modulation, however, multi-wavelength approaches
for HR, blood pressure and blood glucose estimations have
been shown to out-perform single-wavelength approaches.
Multi-wavelength approaches in clinical applications are not
unique to PPG sensing. Narrow-band imaging for gastroin-
testinal endoscopy has seen improvements from white light
endoscopy using blue and green light due to their varying
interactions with blood and tissue. Blue light (400–430nm)
penetrates to the depth of the capillaries in the superficial
mucosa, while the green light (525–555nm) penetrates deeper
into the mucosa [120]. With the use of multiple wavelengths,
the accuracy, robustness and generalizability of PPG sensing
could be dramatically increased.

The findings, albeit limited, are conclusive that skin tem-
perature affects PPG sensing which is concerning since the
number of PPG studies that include skin temperature as a
factor is small. There has been no research to the best of
the authors’ knowledge exploring the combination of motion
artifacts, cold skin temperatures and higher skin melanin
content. Data and insights from studies with combined factors
could support the development of more robust solutions for
continuous PPG sensing.

With small study sizes, anecdotal evidence and conflicting
findings, understanding of the magnitude and scope of the
potential inaccuracies of current PPG sensing due to skin
melanin content is unclear. This is a concerning problem
given that 80% of the world population are individuals with

pigmented skin [121] and it has been projected that by 2035
half of the black population in USA will be affected by
CVDs [122]. In order to address this problem researchers and
industry professionals need to increase the diversity of subjects
in validation studies to have proportional representation.

Current studies exploring skin melanin content tend to
have smaller numbers of participants with darker skin tones
[51], [53], [114] raising concerns of misleading conclusions
[64], [86]. Bent et al. was the only study, to the best of
the authors’ knowledge, to have proportional distribution of
skin tones [52], [123]. In addition, the current practice of
classifying skin tone using the Fitzpatrick Skin Type Scale
or the Von Luschan’s chromatic scale, is a subjective process
that may vary based on the administrator. It has been suggested
that an objective approach to skin tone classification using a
spectrophotometer should be employed as the “gold standard”
to eliminate the shortcomings of the current practice [86], how-
ever spectrophotometers are expensive preventing wide-spread
adoption, and there is evidence that “skin color evaluation with
a spectrophotometer is correlated with visual skin tone assess-
ment” and that “in both objective and subjective measurement
methods, human error may be introduced through improper
measurement methodology” [123].

There have been cases of racial bias, due to lack of
proportional representation in validation studies, appearing in
the surrounding disciplines. In the medical field, students have
been petitioning to remove the “white skin bias” from medical
textbooks as an extensive list of skin conditions, such as
meningococcemia, appear different in patients with darker skin
tones which are not accounted for in the texts [124], [125].
More generally, there is an increased awareness of cases of al-
gorithmic bias against black individuals. Such cases include a
healthcare prediction algorithm, used by more than 200 million
patients in USA, that was less likely to refer equally sick black
patients than white patients to programs aimed to improve
care for patients with complex needs [126]. Additionally, in
the optical engineering field, there are anecdotal examples of
automatic taps and soap dispensers not working for individuals
with darker skin tones [127].

There have been promising developments in motion artifact
reduction using multi-wavelengths. Using IR light as a motion
reference [116] allows for a more efficient solution as motion
sensors such as accelerometers are not required as well as
algorithmic approaches using several wavelengths [72]. Re-
search in single-wavelength PPG sensing has explored the use
of machine learning and deep learning models, such as Con-
volutional Neural Networks and Long Short-Term Memory
networks, to accurately and robustly remove motion artifacts
and estimate heart rate [128]–[130] and blood pressure [131].
This methodology would be well suited to multi-wavelength
PPG sensing and should be explored further. Studies, however,
lacked the exploration of combined adverse features in their
experiments such as skin tone and skin temperature which
could identify weaknesses in the proposed methodology.

As research into the field grows, standardization of reporting
is of paramount importance in order to produce results that
can be replicated and compared. Nelson et al. have produced
a robust descriptive reporting protocol which if used would
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standardize the study design, technological factors, participant
characteristics as well as data analysis, data reporting and
data transparency [64]. It is also recommended that when
using consumer-grade PPG sensing devices or off-the-shelf
hardware components, accurate and complete information,
such as software and firmware versions, should be given in
order to allow the replication of experiments [132].

VII. CONCLUSION

In this paper, we have presented a comprehensive review
on multi-wavelength PPG sensors, encompassing state-of-the-
art research work and recommending potential directions for
future developments with an emphasis on data collection
protocols. In the first two sections theoretical details are
given regarding the workings of PPG sensing and the optical
properties of skin and blood. Additionally, biological factors
that affect PPG sensing, such as skin melanin content and
skin temperature, are explored showing conflicting findings
highlighting the importance for these topics to be explored in
greater detail. Multi-wavelength PPG solutions involve design
considerations such as measurement site, contact force and
sensor geometry as well as data collection protocols were ex-
plored to aid the decision process for future research. Finally,
state-of-the-art multi-wavelength motion artifact reduction and
physiological monitoring methods were summarized showing
promising results highlighting the breadth of applications that
multi-wavelength PPG sensing is capable of.
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DeepPulse: An Uncertainty-aware Deep Neural Network for Heart Rate
Estimations from Wrist-worn Photoplethysmography

Daniel Ray, Tim Collins, and Prasad V. S. Ponnapalli

Abstract— Wearable Photoplethysmography (PPG) has
gained prominence as a low cost, unobtrusive and continuous
method for physiological monitoring. The quality of the
collected PPG signals is affected by several sources of
interference, predominantly due to physical motion. Many
methods for estimating heart rate (HR) from PPG signals
have been proposed with Deep Neural Networks (DNNs)
gaining popularity in recent years. However, the “black-box”
and complex nature of DNNs has caused a lack of trust
in the predicted values. This paper contributes DeepPulse,
an uncertainty-aware DNN method for estimating HR from
PPG and accelerometer signals, with aims of increasing trust
of the predicted HR values. To the best of the authors’
knowledge no PPG HR estimation method has considered
aleatoric and epistemic uncertainty metrics. The results show
DeepPulse is the most accurate method for DNNs with smaller
network sizes. Finally, recommendations are given to reduce
epistemic uncertainty, validate uncertainty estimates, improve
the accuracy of DeepPulse as well as reduce the model size for
resource-constrained edge devices.

I. INTRODUCTION

Wrist-worn reflectance mode PPG sensing is popular in
many wearable devices as it provides a means of low cost,
unobtrusive and continuous physiological monitoring [1].
The performance of PPG sensing is affected by several
sources of interference including biological characteristics,
sensor configuration and placement as well as ambient light
[1]. However, the main source of interference is physical
motion which distorts the collected PPG signal. The removal
of motion artefacts from the signal is a challenge due to
overlapping frequency bands and amplitudes much larger
than the pulsatile component of the signal [1], [2].

Computational methods for estimating HR from PPG
signals consist of four main steps: prepossessing, de-noising,
heart rate estimation and heart rate tracking [2]. A common
approach used across existing methods for de-noising is to
incorporate a motion reference sensor, such as a triaxial ac-
celerometer or gyroscope, in order to capture motion data at
the measurement site and compensate for the interference the
motion causes [3], [4]. Many conventional signal processing
approaches to HR estimation rely on expert-tuned parameters
[3] leading to difficulties in generalizing the methods [4], [5].
In order to prevent this, researchers have explored the use
of deep neural networks (DNNs) for HR estimations [4]–
[9]. Although the performance improvements are significant,
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DNNs for edge devices have their own challenges including
data asymmetry, multi-modality sensing and resource con-
straints of edge devices [10].

Classical approaches to the fusion of heterogeneous sens-
ing modalities rely on feature engineering to extract in-
dependent features from each sensing modality which are
then fused together. This approach of extracting different
features from individual sensors disregards features that use
multiple sensors’ data to capture information that neither has
in isolation [11]. In many applications, DNNs have been
adopted instead due to their ability to learn to extract features
during training [11]–[13] showing improved performance in
applications such as gait recognition [11], human activity
recognition [11]–[13], car tracking [12], dynamic gas mix-
tures estimations [13] and cuffless blood pressure monitoring
[13].

One major drawback to the use of DNNs is a lack of
trust in the predicted values due to high complexity and
uninterpretability of the generated DNNs, mainly from deep
and non-linear structures [13]. In order to increase trust in the
predicted values of DNNs researchers have explored ways
to represent uncertainty within DNNs [13]–[16]. The two
main sources of uncertainty are “aleatoric” and “epistemic”.
Aleatoric uncertainty describes the irreducible uncertainty
in the input data due to an inherent property of the data
distribution such as randomness or noise [14]. Epistemic
uncertainty describes uncertainty in the model that occurs
due to inadequate data which may be reduced by increasing
the amount and ‘diversity’ of the training data [14].

Researchers have explored several methods to incorporate
and quantify uncertainty in DNNs such as Monte Carlo
Dropout (MCDropout), Variational Inference and Ensemble
methods [14], [16]. The uncertainty framework proposed
by [16] is advantageous as it requires little modification
to existing DNNs [14]. The framework uses MCDropout
with an aleatoric uncertainty term to simultaneously estimate
aleatoric and epistemic uncertainty, showing promising re-
sults in several applications [15], [16]. MCDropout has been
theorized to approximate Gaussian processes by activating
dropout layers during the prediction phase to provide an
ensemble of predictions [16]. The variability of the ensemble
predictions distribution quantifies epistemic uncertainty [15],
[16]. In order to incorporate aleatoric uncertainty, a second
output unit is added to the DNN with a specially-designed
loss function such as negative log likelihood (NLL). The two
output units of the DNN estimate µ and σ of a distribution,
where µ represents the mean value of the distribution and σ
represents the standard deviation of the distribution used to



quantify aleatoric uncertainty [15].

II. METHODOLOGY

A. Datasets

1) IEEE SPC 2015: consists of two datasets that em-
ployed different protocols, namely IEEE Train and IEEE
Test. Both datasets were collected using a green (515 nm)
re¯ ectance mode PPG sensor as well as a single lead
chest-worn ECG. IEEE Train collected 12 sessions whilst
IEEE Test collected 10 sessions. Both datasets employed
laboratory-based protocols with IEEE Train using a treadmill
and IEEE Test focusing on arm movements, with each
session duration being no longer than 15 minutes [3].

2) PPG-DaLiA: was collected using an Empatica E4
wrist-worn re¯ ectance mode PPG sensor used green (520
nm) and red (660 nm) LEDs and a 3-lead chest-worn ECG.
A total of 15 sessions were collected using a naturalistic
protocol of various daily activities with each session duration
being more than 1.5 hours long [4].

3) BAMI-II: was collected using a wrist-worn re¯ ectance
mode green (525 nm) PPG sensor and a medical-grade 3-
lead chest-worn ECG Holter monitor. A total of 24 sessions
were collected employing a laboratory-based protocol using
a treadmill with each session duration being 14 minutes [17].

B. Preprocessing and Learning Strategy

The PPG and accelerometer signals were ®rst subject to a
2nd order Butterworth band-pass ®lter with cutoff frequencies
of 0.5 Hz - 4.5 Hz to remove components of the signals
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Fig. 1. The Architecture of DeepPulse.

outside the range of cardiac activity. The signals were then
re-sampled to 64 Hz and normalized to zero mean and unit
variance. Finally, a sliding window was applied to the signals
with a window length of 8 seconds and a 2 second slide. To
reduce the effects of data asymmetry a leave-one-session-
out (LOSO) cross-validation scheme was employed [4], [6]
where each session was used as test data exactly once. A
more detailed explanation of the implemented LOSO cross-
validation scheme can be found in [4].

TABLE I
HYPERPARAMETERS OF DEEPPULSE ARCHITECTURE

Sensor-speci® c Module
Number of Conv. Filters 64

Global Module
Number of Conv. Filters 128

Temporal Module
Number of LSTM Units 32

Network Parameters
All Conv. Blocks:

16
Convolutional Kernel Size

Merge Type
Concatenate

Axis = 2

Dropout Rate 0.15

Optimizer Nadam

C. DeepPulse Architecture and Implementation
DeepPulse contains four main architectural sections:

sensor-speci®c module, global module, temporal module and
prediction module (Figure 1). The convolutional blocks in
the sensor-speci®c module extract local interactions within
each sensing modality. The sensor-speci®c features are then
merged together and passed through the convolutional blocks
in the global module to extract global features. The global
features are then used in the temporal module to extract
temporal features using bidirectional Long Short-Term Mem-
ory (LSTM) layers. The temporal features are passed to
the prediction module which contains a convolutional layer
to reduce the dimensionality of the features for the fully
connected layer. The selected hyper-parameters of the archi-
tectural components and network parameters can be found in
Table I. A NLL loss function was used to evaluate how the
DNN models the data in terms of both accuracy and aleatoric
uncertainty. Each convolutional block contains a MCDropout
layer used to produce an ensemble of predictions (T=10) for
each input to evaluate epistemic uncertainty.

The training phase of DeepPulse was run for 200 epochs
with a batch size of 32. During the training phase, early
stopping was employed aiming at reducing the risk of over-
®tting and the learning rate was reduced when the learning
had stagnated. DeepPulse was implemented using Tensor¯ ow
(Version: 2.7.0) and Tensor¯ ow Probability (Version: 0.14.1).
Computation was carried out using 8 Intel Broadwell CPU
cores and a NVIDIA Tesla K80 GPU (CUDA Version:
11.2). The implementation of DeepPulse can be found at:
https://github.com/danielray54/DeepPulse



D. Evaluation Metrics

Mean absolute error (MAE) was employed to assess the
accuracy. Predicted values were averaged across all LOSO
iteration to obtain a generalized MAE. Additionally, two
uncertainty metrics were employed. ua(xi) is the aleatoric
uncertainty (Equation 1) which is the average of the squared
σi,t output unit for an ensemble of predictions, T , for each
input window xi:

ua(xi) =
1

T

T∑

t=1

σ̂2
i,t (1)

ue is the epistemic uncertainty (Equation 2) which is the
variance computed from the predicted mean values µi,t from
the ensemble of predictions, T , for each input window xi:

ue(xi) =
1

T

T∑

t=1

µ2
i,t −

(
1

T

T∑

t=1

µi,t

)2

(2)

III. RESULTS

A. Accuracy & Complexity

The MAE results show that DeepPulse is the second most
accurate method of all DNN PPG HR estimation methods for
all datasets (Table II). However, when comparing methods
with smaller model sizes, under 1 million parameters, (Table
III) DeepPulse is the most accurate for all datasets. This
is significant as models with large complexities have not
accounted for the resource constraints of edge devices [10].

TABLE II
COMPARISON OF MEAN ABSOLUTE ERRORS FOR DNN PPG HR

ESTIMATION METHODS

Method
Datasets

IEEE
Train

IEEE
Test

PPG-
DaLiA

BAMI-
II

Deep PPG [4] 4.00
±5.40

16.51
±16.10

7.65
±4.20

N/A

CorNET (LOSO)
[6]

4.67
±3.71

6.61
±5.35

N/A N/A

Binary CorNET
[6]

6.20
±4.95

7.31
±6.14

N/A N/A

PPGnet [7] 3.36
±4.10

12.48
±14.45

N/A N/A

Chung et al. [8] 0.67
±0.50

0.86
±0.80

N/A 1.46
±1.23

MH Conv-LSTM
DeepPPG [9]

N/A N/A 6.28
±3.53

N/A

DeepPulse 2.76
±2.95

5.05
±5.50

2.12
±3.09

2.38
±2.57

All values are BPM.

B. Uncertainty

For the IEEE datasets, as the number of input windows
per activity decreases the epistemic uncertainty estimates
increase (Figure 2(a)). This supports the hypothesis that
increasing the size and ‘diversity’ of the dataset will reduce
the epistemic uncertainty. Assuming more intense activity or
higher BPM values require more movement from the body

thus more noise in the PPG signals then as either BPM values
or activity intensity increase so will the aleatoric uncertainty
estimates which is shown for the BAMI-II and PPG-DaLiA
datasets in Figure 2(b) & 2(c). Finally, Figure 2(d) illus-
trates that there is little to no relationship between between
aleatoric uncertainty and epistemic uncertainty estimates for
the BAMI-II dataset.

TABLE III
COMPARISON OF NETWORK COMPLEXITIES FOR DNN PPG HR

ESTIMATION METHODS

Method Number of Parameters
Deep PPG [4] 8.5M

CorNET [5] 250K

PPGnet [7] 765K

Chung et al. [8] 3.3M

MH Conv-LSTM
DeepPPG [9]

680K

DeepPulse 730K

IV. FUTURE WORK

The performance of PPG sensing is affected by several
sources of interference and inaccuracies. Some of these
sources such as skin tone, skin temperature, age, sex and
BMI have not been fully considered in the datasets used. In-
creasing the size and ‘diversity’ of the data will be beneficial
in improving the accuracy, robustness and generalizability
[1] as well as epistemic uncertainty of DNN PPG HR
estimation algorithms. Moreover, ensuring that the collected
“truth values” are an accurate depiction of the cardiac activity
is essential which can achieved by using medically validated
chest-worn ECG devices [1].

In order to improve the performance and reduce the model
size of DeepPulse, hyperparameter optimization and network
architecture search should be carried out [18]. Additionally,
weight clustering and model quantization may prove to be
effective methods to further reduce the model size.

Finally, further improvement to the accuracy of DeepPulse
may be made by introducing a post-processing step that
averages predicted values of several input windows when
the aleatoric uncertainty is high. To better evaluate aleatoric
uncertainty, an accurate signal-to-noise ratio method should
be developed to eliminate assumption made based on activ-
ity type. Additionally, to validate the epistemic uncertainty
estimates, training DeepPulse on subsets of the datasets
would provide more insight. Similarly, adding noise to the
input windows would enable the validation of the aleatoric
uncertainty estimates.

V. CONCLUSION

Wearable Photoplethysmography (PPG) has gained promi-
nence as a method for physiological monitoring but is subject
to several sources of interference making the estimation of
HR challenging. DNNs have gained popularity in recent
years with promising results. However, the “black-box” and
complex nature of DNNs has caused a lack of trust in



(a) (b) (c)

(d)

Fig. 2. (a) shows the relationship between epistemic uncertainty and the number of input windows for each activity in both of the IEEE datasets, (b)
shows the relationship between aleatoric uncertainty and activity in the BAMI-II and PPG-DaLiA datasets, (c) shows the relationship between aleatoric
uncertainty and truth values in BAMI-II dataset and (d) shows the relationship between aleatoric and epistemic uncertainty in the BAMI-II dataset.

the predicted values. This paper contributes DeepPulse, a
multimodal uncertainty-aware DNN method for estimating
HR from PPG and accelerometer signals. The results show
DeepPulse is the most accurate method for DNNs with less
than 1 million network parameters. Finally, recommendations
have been given to improve the accuracy and reduce the com-
plexity of DeepPulse for resource-constrained edge devices
as well as reduce and validate uncertainty estimates.

REFERENCES

[1] D. Ray, T. Collins, S. Woolley and P. Ponnapalli, "A Review of
Wearable Multi-wavelength Photoplethysmography," in IEEE Reviews
in Biomedical Engineering, doi: 10.1109/RBME.2021.3121476.

[2] Pankaj, A. Kumar, R. Komaragiri, and M. Kumar, “A Review on
Computation Methods Used in Photoplethysmography Signal Analysis
for Heart Rate Estimation,” Archives of Computational Methods in
Engineering, vol. 1. p. 3, 2021, doi: 10.1007/s11831-021-09597-4.

[3] Z. Zhang, Z. Pi, and B. Liu, “TROIKA: A general framework for
heart rate monitoring using wrist-type photoplethysmographic signals
during intensive physical exercise,” IEEE Trans. Biomed. Eng., vol.
62, no. 2, pp. 522–531, 2015, doi: 10.1109/TBME.2014.2359372.

[4] A. Reiss, I. Indlekofer, P. Schmidt, and K. Van Laerhoven, “Deep
PPG: Large-Scale Heart Rate Estimation with Convolutional Neu-
ral Networks,” Sensor, vol. 19, no. 14, pp. 1–27, 2019, doi:
10.3390/s19143079.

[5] D. Biswas et al., “CorNET: Deep Learning Framework for PPG-
Based Heart Rate Estimation and Biometric Identification in Ambulant
Environment,” IEEE Trans. Biomed. Circuits Syst., vol. 13, no. 2, pp.
282–291, 2019, doi: 10.1109/TBCAS.2019.2892297.

[6] L. G. Rocha et al., “Binary CorNET: Accelerator for HR Estimation
from Wrist-PPG,” IEEE Trans. Biomed. Circuits Syst., vol. 14, no. 4,
pp. 715–726, Aug. 2020, doi: 10.1109/TBCAS.2020.3001675.

[7] A. Shyam, V. Ravichandran, S. P. Preejith, J. Joseph, and M.
Sivaprakasam, “PPGnet: Deep Network for Device Independent Heart
Rate Estimation from Photoplethysmogram,” Proc. Annu. Int. Conf.
IEEE Eng. Med. Biol. Soc. EMBS, pp. 1899–1902, 2019, doi:
10.1109/EMBC.2019.8856989.

[8] H. Chung, H. Ko, H. Lee, and J. Lee, “Deep Learning for Heart Rate
Estimation from Reflectance Photoplethysmography with Acceleration
Power Spectrum and Acceleration Intensity,” IEEE Access, vol. 8, pp.
63390–63402, 2020, doi: 10.1109/ACCESS.2020.2981956.
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I. PROBLEM STATEMENT

Photoplethysmography (PPG) sensing takes advantage of
hemoglobins’ absorbent qualities to visible and infrared (IR)
light. Consisting of a light source and a photo-detector, light
is emitted into the skin and the intensity of light transmitted
into the photo-detector is inversely proportional to the volume
of blood in the vascular bed of the measurement site [1], [2].

PPG sensing is widely used in clinical settings for peripheral
pulse oximetry measurements (SpO2). Using the transmittive
mode, where the light source and photo-detector are separated
by tissue, two wavelengths of light usually red and IR are used
to measure SpO2 on the fingertip. Wrist-worn consumer health
monitoring devices have adopted the reflectance mode, where
the light source and photo-detector are positioned along side
each other, typically using green light to measure heart rate
(HR) on the wrist [1], [2].

Selecting the wavelength(s) of light used for PPG sensing
is a trade-off and based on the application and measurement
site as visible and IR light interact with compounds in human
skin and blood to varying degrees. Shorter wavelengths such as
blue, green and yellow are highly absorbent to oxyhemoglobin
(HbO2), deoxyhemoglobin (Hb) and melanin and penetrate the
skin to a lesser degree than longer wavelengths. Red light is
more absorbent to Hb whilst IR is more absorbent to HbO2
but both produce more complex and sometimes noisy signals
[2]. Additionally, exposure to differing temperatures causes
varying amounts of blood in the peripheral circulation [3].

The accuracy, robustness & generalizability of wrist-worn
PPG sensing is adversely affected by several factors such
as: motion, skin-melanin content, skin temperature, sensor
geometry and ambient light [2]–[5]. These factors cause the
acquired signal to attenuate or contain artifacts making the
extraction of accurate physiological measurements challenging
[4], [5].

II. A BRIEF REVIEW OF MULTI-WAVELENGTH PPG
HARDWARE SOLUTIONS

Initial multi-wavelength PPG sensing hardware was
reliant on fiber optics [6] progressing into patch sensor
development [7] due to its low cost and simple form factor.
Researchers have also explored ear-worn PPG sensors [8],
however wrist-worn devices have a pre-existing cultural
acceptance and provide the most convenient and unobtrusive

solution. The latest developments in multi-wavelength PPG
sensing hardware is an on-chip spectrometer approach based
on plasmonic filters [9].

Research suggests that consumer-grade wrist-worn multi-
wavelength PPG devices are more accurate at rest than
research-grade devices [5], with the most accurate commercial
device being the Apple watch producing a Mean Average Error
(MAE) of 4.4BPM and 2.7% missingness [5]. Research-grade
devices such as Empatica E4 and Biovotion Everion provide
data-streamed raw signals, however, the E4 accuracy has been
reported to be lower than the consumer-grade devices with
Mean Absolute Percentage Errors of 7.2% and 29.2% whilst
collecting data on a treadmill [10].

Concerns have arisen due to both consumer and research-
grade devices being used in clinical trials, with Fitbit alone
having 476 published studies and 449 studies registered on
ClinicalTrials.gov [5]. Fitbit, Garmin and Apple all state that
their optical heart rate monitors should not be used as medical
devices with intent to diagnose, treat, cure or prevent any
disease [11]–[13].

III. A BRIEF REVIEW OF PPG HEART RATE ESTIMATION
ALGORITHMS

Extracting Heart Rate from PPG signals is challenging
in periods of motion due to overlapping frequency bands,
with HR frequency range typically being 0-4.5Hz whilst the
motion frequency range is within 0-10Hz. Researchers’ have
employed several approaches with varying results. Statistical
approaches such as a correlation-based spectral analysis
and harmonic noise dampening produced a MAE of 1.32
± 1.24BPM [14]. Matrix manipulation techniques such as
singular value decomposition have also seen promising results
such as in period of intense motion a MAE of 2.92BPM was
achieved [15].

Researchers have also explored deep learning methods such
as using Convolutional networks [16] as well as a combination
of Convolutional and Long short-term memory Networks
[17]. In periods of intense activities the Convolutional
network method outperformed the classical methods by a
MAE of 8.91BPM [16]. However, the generalizability of the
methodologies stated above has been called into question
as the datasets used to evaluate the performance lacks



proportional representation of skin-melanin content with a
skew towards lower skin-melanin content.

IV. EXISTING & PROPOSED WORK

This research program seeks to investigate, develop and
evaluate wrist-worn PPG methodologies that have increased
generalizability and robustness to skin characteristics and
motion artifacts.

1) Hardware: Building on research into sensor placement
& arrangement, wavelengths of light selection, light
intensity and wrist measurement sites a modular multi-
sensor, multi-wavelength wrist-worn PPG device will be
constructed and evaluated.

2) Data Collection: Current research and datasets lack
proportional representation of skin-melanin content. To
the best of the authors’ knowledge, there is no research
exploring the compounded effects of skin-melanin
content, skin temperature and motion. The proposed
dataset will include both naturalistic and laboratory
based collection protocols. A Holter monitor (3-Lead
ECG) will be used to collect truth values. Existing
commercial multi-wavelength wrist-worn devices will
also be used to evaluate the proposed methodologies.

3) Algorithms: Adapting and building upon single-
wavelength PPG HR estimation algorithms to multi-
wavelength PPG data using statistical, signal processing,
linear algebra and deep learning learning approaches.
Currently, Network Architecture Search algorithms, such
as Jin et al. [18], are being explore to create elaborate
and complex deep learning networks for HR estimations
on single-wavelength PPG data which will then be
adapted to multi-wavelength PPG data once collected.

V. EXPECTED CONTRIBUTIONS & IMPACT

The expected contributions this project intends to produce
upon completion can be separated into three parts: a hardware
solution, a diverse dataset in both subjects & activities as
well as several single-wavelength and multi-wavelength HR
estimation algorithms.

Surrounding disciplines such as medicine and computer
science both have cases of racial bias, due to lack of
proportional representation in validation studies [19], [20],
therefore it is necessary that the influence is made clear.
Wrist-worn PPG sensing must work accurately regardless of
the individuals’ skin-melanin content when used in medical
applications.
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Abstract. Extracting accurate heart rate estimations from wrist-worn
photoplethysmography (PPG) devices is challenging due to the signal containing
artifacts from several sources. Deep Learning approaches have shown very
promising results outperforming classical methods with improvements of 21% and
31% on two state-of-the-art datasets. This paper provides an analysis of several
data-driven methods for creating deep neural network architectures with hopes of
further improvements.

Keywords. wearable, heart rate, photoplethysmography, deep neural networks,
network architecture search

1. Introduction

Wrist-worn PPG heart rate monitors provide an unobtrusive and low-cost method for
continuous heart rate measurements, widely adopted in both commercial and clinical
settings [1,2]. Researchers have identified several factors, such as motion, skin
characteristics and ambient light, that cause the acquired signal to contain artifacts
making the extraction of accurate heart rate estimations challenging [2]. Deep Neural
Networks (DNN) have seen promising results as a method to accurately estimate heart
rate from signals that contain artifacts [1]. However, applying a data-driven approach
may improve on state-of-the-art deep learning methods by creating elaborate and
complex network architectures that would be un-achievable for machine learning
engineers to create due to the enormous search space of compounded architectural
components.

2. Methods

Several Network Architecture Search strategies will be applied to the current
state-of-the-art PPG datasets [1,3,4] to establish an architecture that improves upon the
accuracy achieved in [1]. These strategies include Reinforcement Learning [5],
NeuroEvolution of Augmenting Typologies [6] and a Bayesian Optimization Network
Morphing method [7]. The current standard is to use both PPG and 3-axis
accelerometer, as a motion reference, signals which are segmented into overlapping

1Corresponding Author: John R. Dalton Building, All Saints Campus, Manchester Metropolitan University,
Manchester, UK, M15 6BH; E-mail: daniel.ray@stu.mmu.ac.uk



sliding windows [1]. The ‘truth’ values are recorded using a chest-worn
Electrocardiography device. Each window is then transformed into the frequency
domain using a Fourier Transform, then inputted into the network during the training
process using Mean Absolute Error (MAE) as comparable metric.

3. Results

Preliminary results show the method of Network Morphing [7] created an architecture
that achieved a MAE of 18.2 BPM after 10 iterations. These results would be expected
to dramatically improve as more iterations are carried out, allowing for more complex
and elaborate architectures to be created.

4. Discussion

Establishing accurate methods for heart rate extraction from wrist-worn PPG devices is
becoming increasingly important due to an expanded use in clinical settings [2].
Classical methods using statistical and signal processing techniques have much smaller
computational footprints compared to DNN techniques. However, in periods of intense
activities the DNN method outperformed the classical methods by a MAE of 8.91 BPM
[1].

5. Conclusion

Preliminary results show that network architecture search is a viable method for creating
architectures that would be un-achievable to create due to the enormous search space.
With more search iterations and analysis of differing strategies, improvements on MAE
are likely to be achieved.
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