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ABSTRACT The increasing popularity of Internet of Things (IoT)-based wireless services highlights the
urgent need to upgrade fifth-generation (5G) wireless networks and beyond to accommodate these services.
Although 5G networks currently support a variety of wireless services, they might not fully meet the high
computational and communication resource demands of new applications. Issues such as latency, energy
consumption, network congestion, signaling overhead, and potential privacy breaches contribute to this
limitation. Machine learning (ML) frequently offers solutions to these problems. As a result, sixth-generation
(6G) wireless technologies are being developed to address the deficiencies of 5G networks. Traditional ML
methods are generally centralized. However, the vast amount of wireless data generated, growing privacy
concerns, and the increasing computational capabilities of edge devices have led to a shift towards optimizing
system performance in a distributed manner. This paper provides a thorough analysis of distributed learning
techniques, including federated learning (FL), multi-agent reinforcement learning (MARL), and the multi-
agent federated reinforcement learning (FRL) framework. It explains how these techniques can be effectively
and efficiently implemented in wireless networks. These methods offer potential solutions to the challenges
faced by current wireless networks, promising to create a more robust, capable, and versatile network that
meets the growing demands of IoT and other emerging applications. Implementing the FRL framework can
significantly improve the learning efficiency of wireless networks. To tackle the challenges posed by rapidly
changing radio channels, we propose a robust FRL framework that enables local users to perform distributed
power allocation, bandwidth allocation, interference mitigation, and communication mode selection. Finally,
the paper outlines several future research directions aimed at effectively integrating the FRL framework into
wireless networks.

INDEX TERMS Federated reinforcement learning, power allocation, bandwidth allocation, interference
mitigation, communication mode selection.

I. INTRODUCTION
The growing number of connected user equipment (UE),
including industrial machines, Internet of Things (IoT) de-
vices, and smartphones and, is causing bottlenecks in the

inadequate radio resources of cellular networks. Conse-
quently, there is a constant essential to improve the current
wireless network structure to fulfill various needs. Fifth-
generation (5G) networks are seen as the cornerstone of future
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Internet of Everything (IoE)-based wireless services, sup-
porting four main application categories: ultra-reliable and
low-latency communications (URLLC), massive machine-
type communications (mMTC), virtual reality (VR), and
enhanced mobile broadband (eMBB) [1]. Since 2020, 5G net-
works have been partially deployed in some countries. While
5G is a significant advancement toward a fully connected
society, it is acknowledged that it alone is not sufficient to
achieve this alteration [2]. Significant enhancements are nec-
essary to manage forthcoming heterogeneous networks and
address new trends in user and application demands, such as
increased authenticity and improved quality video streaming.

Huawei has introduced several additional wireless appli-
cations within the realm of 5.5G networks. These frame-
works encompass machine vision (MV), augmented reality
(AR), extended reality (XR), high-definition video upload-
ing, real-time broadband communication (RTBC), vehicle-
to-everything (V2X), harmonized communication and sens-
ing (HCS), and uplink-centric broadband communication
(UCBC) [1]. Consequently, both academia and industry have
initiated discussions on a new standard, termed 6G, to delin-
eate the essential requirements, needs, and potential use cases
for 6G networks [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20].

Anticipated for 6G networks are three innovative wireless
applications and services: Contextually Agile eMBB Commu-
nications (CAeC), Event-Defined URLLC (EDuRLLC), and
Computation-Oriented Communications (COC). Given the in-
tricate nature and diverse dimensions of 6G systems, tackling
these challenges will heavily rely on machine learning (ML)
and resource optimization strategies in wireless communi-
cation. As advancements progress in radio data collection,
learning models and methods, and software and hardware
platforms, the adoption of federated learning (FL) algorithms
will be crucial for advancing cellular technologies. These
technologies will expedite the development, calibration, and
deployment of 6G networks, addressing issues such as latency,
energy consumption, network congestion, and privacy con-
cerns. Moreover, FL will augment digital transformation and
efficiency gains across various industries.

Specifically, FL is a distributed learning paradigm that
can be integrated with the multi-agent reinforcement learning
(MARL) algorithm. In this review article, this integration is
referred to as the multi-agent federated reinforcement learning
(FRL) framework. The integration of FRL into mobile edge
computing (MEC) is expected to bring about genuine intelli-
gence in intricate wireless environments, thereby unlocking
the complete capabilities of FRL across diverse intelligent
6G wireless applications. This amalgamation aims to improve
both Quality of Experience (QoE) and Quality of Service
(QoS), catering to the extensive intelligence requirements
of forthcoming societies. In this review article, we discuss
the FRL framework for optimized model design in wireless
networks, focusing on power allocation (PA), bandwidth allo-
cation (BA), interference mitigation (IM), and communication
mode selection mechanism (CMSM).

A. RELATED WORKS
To achieve the deployment of 6G technology by 2030, a
multidisciplinary approach and numerous disruptive wireless
technologies are necessary [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40],
[41], [42], [43], [44], [45]. These include radio resource tech-
nologies [46], electronic circuit technologies [47], massive
random-access [48], finite blocklength (FBL) regimes [49],
non-orthogonal multiple access (NOMA) with asynchronized
transmission [50], unsourced random access [51], edge com-
puting [2], wireless sensing [12], and AI functionalities [1].

In [48], the authors addressed the challenge of providing
multiple access (MAC) to a large number of uncoordinated
users. They also explore the asymptotic coding problem
for a K-user Gaussian MAC, where K is proportional to
blocklength, with each user having a fixed payload. They
identify an interesting tradeoff between energy-per-bit and
spectral efficiency in this context. In [49], the authors ex-
plored the maximum channel coding rate achievable at a given
blocklength and error probability, presenting new, tighter
achievability and converse bounds for a broad range of pa-
rameters. These bounds provide close approximations of the
maximum achievable rate for given blocklengths. In [50], the
authors investigated the achievable rate for narrowband up-
link NOMA with asynchronized transmission systems, where
each user experiences random link delays. By leveraging
the bandlimited property of asynchronized NOMA signals,
the study examines the upper and lower bounds of the
achievable rates under these conditions. In [51], the authors
examined the problem of user activity detection (AD) and
large-scale fading coefficient (LSFC) estimation in random
access wireless uplink systems with a massive MIMO base
station (BS) using an iterative component-wise minimization,
resulting in a scheme with complexity comparable to non-
negative least squares (NNLS) and an adapted version of
multiple measurement vector-approximate message passing
(MMV-AMP) algorithms. While traditional methods exist to
manage these advanced communication scenarios, they often
struggle with scalability, efficiency, and complexity. ML can
offer improvements by predicting traffic patterns, optimiz-
ing resource allocation (RA), and managing interference, but
without it, these systems tend to be less adaptable and more
challenging to optimize in real-time.

ML particularly artificial neural networks (ANN), plays
a crucial role in building and optimizing future cellular
networks across the physical, medium access control, and
application layers [1]. Deep learning (DL) plays a piv-
otal role in advancing beyond 5G (B5G) air interfaces by
optimizing the smart radio environment (SRE), enhancing
source-channel coding, improving semantic communication
(SC), and holistically supporting URLLC wireless networks
and services [22], [23], [24], [25]. However, traditional
DL methods are generally static and require substantial
computational and communication resources, especially for
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large-scale ML models, highlighting the need for innovative
solutions to better address these challenges.

In [14], the authors critically assessed recent literature on
FL, focusing on studies related to IoT applications. They
evaluated network performance using key metrics such as
scalability, quantization, robustness, sparsification, security,
and privacy. In [32], the authors explored a novel concept
within vehicular networks called a federated vehicular net-
work (FVN), characterized as a resilient distributed vehicular
network. To support transactions and deter malicious activ-
ities, they incorporated auxiliary blockchain-based systems
and identified open problems and future research directions
for this disruptive technology. In [33], the authors reviewed
current research, technical challenges, potential solutions, and
unresolved questions related to deploying FL in vehicular
IoT. They outlined future research avenues for combining FL
with vehicular IoT, focusing on both using FL to improve
vehicular IoT and advancing vehicular IoT technologies to
better support FL. In [34], the authors presented a tutorial
on FL and a comprehensive survey on implementation issues.
They provided detailed reviews, analyses, and comparisons of
approaches for emerging challenges in FL implementation,
including communication cost, RA, data privacy, and data
security. Additionally, in [35], the authors conducted a com-
prehensive study on the efficient and effective deployment of
distributed learning over wireless edge networks. They pre-
sented an overview of several emerging distributed learning
paradigms, including FL, federated distillation, distributed in-
ference, and MARL, and offered a holistic set of guidelines for
deploying a broad range of distributed learning frameworks
over real-world wireless communication networks.

In [36], the authors introduced a novel FL algorithm that
extends the federated averaging (FedAvg) approach by incor-
porating a weight-based proximal term into each local loss
function. This modification addresses challenges posed by
non-independent and identically distributed (non-IID) data,
data imbalance, and heterogeneity among UEs, significantly
reducing training time and energy consumption compared
to traditional FL methods, such as those involving full user
participation and equal BA. In [37], the authors proposed an
AI-enabled architecture for 6G networks designed to facilitate
knowledge discovery, smart resource management, automatic
network adjustments, and intelligent service provisioning.
They also highlighted important future research directions
and potential solutions for AI-enabled 6G networks, including
computation efficiency, algorithm robustness, hardware devel-
opment, and energy management. In [38], a comprehensive
survey was provided on communication-efficient techniques
in FL, covering wireless communications for FL and FL ap-
plications within wireless communication settings. They also
discussed open problems for FL and provided future direc-
tions helpful for researchers working at the intersection of
the two emerging paradigms, FL and next-generation wire-
less communications. In [39], the discussion focused on the
motivations for employing FL in the operation, design, and
optimization of FL-based wireless networks. They identified

TABLE 1 List of the Main Acronyms and Their Definitions

techniques required to meet the challenges of using FL in
practical wireless communication situations. Finally, in [40],
the authors outlined the benefits of using FL in IoT envi-
ronments and explored several significant applications. They
highlighted key research challenges that need to be addressed
to advance the development of FL in the IoT domain.

In [41], the authors introduced a novel scheduling policy
and PA strategy for NOMA settings, aiming to maximize the
weighted sum data rate under realistic constraints through-
out the learning process. This strategy enhances FL testing
accuracy in NOMA-based wireless networks, outperform-
ing existing schemes within equivalent learning durations.
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TABLE 2 Comparison of This Article With Selected Recent Works on Existing FL and MARL Techniques

In [42], the authors proposed a FL-based RA strategy for wire-
less communication networks, enabling users to cooperatively
train an RA policy in a distributed manner. This approach
allows traditional DL-based RA methods to apply and adapt
their policies in distributed scenarios and time-varying envi-
ronments without needing a computationally intensive server.
In [43], the authors proposed a cooperative multi-cell FL
optimization framework to effectively manage interference
in both downlink and uplink transmissions. The algorithm
shows significantly improved average learning performance
across multiple cells compared to non-cooperative baseline
approaches. The authors in [44] introduced a method aimed
at handling stochastic radio channels to optimize joint re-
source blocks (RBs) management and PA in real-time IoT
applications. They investigated the complexities and benefits
of FL and provided specific service use-cases to demon-
strate how various architectures and protocols leveraging FL
can be integrated to achieve desired outcomes. In [45], the
authors addressed a problem aiming to minimize the com-
bined weighted sum of system and learning costs through
the joint optimization of bandwidth, computation frequency,
transmission PA, and subcarrier assignment. The proposed al-
gorithm shows superior performance compared to benchmark
schemes.

B. NOTATIONS, CONTRIBUTIONS, AND ORGANIZATIONS
Table 1 presents the main acronyms and their definitions.
The main contributions of these works on existing FL and

MARL techniques are summarized in Table 2 for compar-
ison. From an implementation perspective, the wide range
of computing and networking resources available on client
UEs can cause significant delays in the existing FL train-
ing process, known as “stragglers” [52], [53]. This issue is
worsened by the uneven distribution of client data sizes, with
clients holding larger data volumes typically experiencing
increased training latency. Moreover, the existing FL train-
ing process often incurs substantial communication costs due
to the repeated need for model updates between client UEs
and the central server. To address these issues, we present
the FRL framework for wireless networks. FRL combines
the robust adaptability of DRL for addressing complex chal-
lenges in uncertain environments with the collaborative and
privacy-preserving characteristics of FL through model ag-
gregation. This offers a ground-breaking approach to enhance
the network performance of conventional MARL techniques.
However, fine-tuning learning parameters, such as aggrega-
tion frequency, and optimizing the architecture are essential
to balance network performance, communication costs, and
privacy. The main contributions of this review article are as
follows:
� We explore various distributed learning paradigms, in-

cluding FL, MARL, and FRL, and provide a comprehen-
sive analysis of the FRL framework for future wireless
networks. This analysis covers elements related to the
design of wireless communication systems, evaluation
of performance, and the influence of wireless factors on
FRL parameters.
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FIGURE 1. Article organization.

� A comprehensive discussion is presented on traditional
ML-aided PA, BA, IM, and communication mode se-
lection process techniques in wireless networks. This
discussion explores their strengths, weaknesses, and
constraints, prompting the adoption of a FRL framework
in a decentralized way.

� We present several critical research challenges and
propose potential directions for the development of
next-generation communication networks. In summary,
we provide comprehensive guidelines for implement-
ing FRL frameworks, addressing key issues crucial
for fully realizing the potential of intelligent wireless
networks.

The structure of this review article is organized as follows
(see also Fig. 1). Section II explains the operating princi-
ples of FL, covering its architecture and model aggregation
process. Section III discusses distributed MARL algorithms.
Section IV discusses the FRL framework. Section V provides
a concise outline of the design considerations in the FRL
framework for wireless communications. Sections VI, VII,
and VIII delve into the challenges associated with designing
future intelligent wireless networks focused on FRL-based
RA, IM, and communication mode selection process, respec-
tively. Lastly, Section IX outlines prospective avenues for
future research in wireless networks, followed by Section X
which concludes the paper.
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FIGURE 2. Classical architecture and communication process of the FL scheme.

II. FL FRAMEWORK
This section discusses the operating principles of FL, in-
cluding its architecture, classification, and model aggregation
process.

A. FUNDAMENTALS
Centralizing data from multiple BSs and terminals into a sin-
gle fusion server for processing faces significant challenges
due to extensive storage requirements, high computational
complexity, and privacy considerations. FL addresses these
challenges by facilitating local model training on distributed
datasets without the need to transmit raw data to a central
server [54], [55], [56], [57]. FL minimizes the data transmitted
to the server by communicating only model updates, thereby
reducing the strain on network resources.

B. WORKING PROCEDURE OF FL
In a FL-based wireless network setup, there is typically a
central server alongside multiple end devices, depicted in
Fig. 2(a). Each end device conducts local model training, and
the global model is updated by the aggregator until conver-
gence. As illustrated in Fig. 2(b), the learning process unfolds
in three stages:
� Task initialization: Select a subset of IoT devices with

updates and good channel states to minimize communi-
cation overhead.

� Upload local model: IoT devices update their local mod-
els based on the global model and transmit them to the
aggregator.

� Download global model: The global model is updated
by the aggregator through aggregation of local models,
which are subsequently distributed to selected end de-
vices for further learning.

In an on-device FL system, each device stores its own train-
ing data, ensuring higher user confidentiality, lower power
requirements, and reduced delay. Fig. 2(a) shows a FL system
where a BS with I IoT devices conducts distributed ML tasks.

During each learning round, the central server estimates the
global model, selects participating devices based on criteria
like user mobility and signal coverage, and manages the learn-
ing process. The ith client receives initial global parameters
Ao and uses its dataset Di, represented by input-output pairs
(xk

i , yk
i ), for local model training, determining the loss func-

tion gradient using stochastic gradient descent (SGD) at the
t th communication round.

C. PROBLEM FORMULATION OF TYPICAL FL
If I client devices participate in model training managed by a
parameter server, the standard FL training objective is:

min
mk

i

I∑
i=1

ci

Di

∑
k∈Di

f
(

mk
i , xk

i , yk
i

)
, (1)

where the primary aim is to estimate the ML model, denoted
by mk

i ∈ R
d , where the loss function f (·) depends on the

input vector xk
i and output vector yk

i . Additionally, the scaling
parameter ci helps to adjust the weight of the average loss for
the ith client,

1

Di

∑
k∈Di

f
(

mk
i , xk

i , yk
i

)
, (2)

on the total training loss with

I∑
i=1

ci = 1. (3)

To train efficient ML models, each IoT device may collect
limited data, necessitating additional inputs. FL addresses this
challenge by managing extensive training data across mul-
tiple edge devices within intelligent wireless systems [58],
[59]. While current distributed methods typically assume
independent and identically distributed (IID) data among
training agents, FL effectively handles non-IID data through
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advanced selection and utilization techniques. FL also ad-
dresses issues of unbalanced data sharing and introduces
concepts like personalized FL for non-IID data scenarios.
Specifically, Model-Agnostic Meta-Learning (MAML) and
Federated Multi-Task Learning (FMTL) algorithms are tai-
lored to tackle the complexities associated with non-IID data
distributions.

1) FMTL: FMTL involves UEs performing distinct yet
interconnected learning tasks, where each UE han-
dles a unique task within a non-IID data distribu-
tion. The training objective enabled by FMTL can be
formulated as:

min
M,�

I∑
i=1

∑
k∈Di

f
(

mk
i , xk

i , yi

)
+ r(M,�), (4)

where M = [mk
1, . . . , mk

I ], function r(·) performs regu-
larization, and � represents the correlation of various
learning activities of clients. Problem (4) can be divided
into sub-problems for distributed solving, as shown us-
ing quadratic approximation and dual methods [45].
Each device optimizes its model, updating � at the
parameter server, resulting in diverse converged models
and lower total training loss compared to traditional FL.

2) MAML-based FL: The goal of MAML-based FL is to
find a global ML model that allows each client to obtain
a personalized ML model through gradient descent iter-
ations. The training objective for MAML-enabled FL is
represented as:

min
mk

i

I∑
i=1

ci

Di

∑
k∈Di

f
(

mk
i − λk

i ∇ f k
i , xk

i , yk
i

)
, (5)

where, the gradient descent and learning rate for the ith
client are denoted by ∇ f k

i and λk
i , respectively. Each de-

vice updates the global model through gradient descent
iterations to develop a personalized ML model.

D. MODEL AGGREGATION
We present two primary model aggregation processes, namely,
federated averaging (FedAvg) and gradient descent (GD), as
explained below.

Federated averaging: Model aggregation refers to the pro-
cess of combining models from multiple UEs to generate a
new model, as elaborated in the following.

The foundational method for model aggregation is the Fe-
dAvg approach. In this method, the averaging of weights from
local models occurs at the central server, specifically the BS,
to update the training of the global model [60], [61]. Here,
pi represents the percentage of the number of data samples at
the ith UE over the total number of data samples across all
UEs, si indicates the number of data samples in dataset Di,
A denotes the learning weights, and s is the total number of
data samples, computed as s = ∑I

i=1 si. The learning aim of

FedAvg is provided as follows [60],

min
A

L(AG) =
I∑

i=1

pi fi(Ai ), (6)

where

pi = si

s
and fi(Ai ) = 1

si

∑
k∈Di

lk (Ai ). (7)

In (7), lk (Ai ) signifies the loss of the FL model linked to the
kth data sample, calculated based on the local model weights
Ai of the ith UE, with AG indicating the weight of the global
model.

Two methods are employed for updating the training of the
global model. The initial approach involves computing the
gradient for each UE, followed by the BS aggregating these
gradients from the ith UE to update the global model,

At+1
G = At

G − η

I∑
i=1

pig
t
i, with gt

i = ∇ fi
(
At

i

)
, (8)

wherein ∇ fi(At
i ) represents the gradient computed at the ith

UE and η is the learning rate. The alternative method involves
updating the weights of the local model at each UE using this
gradient,

At+1
i = At

G − ηgt
i, (9)

wherein gt
i denotes the gradient computed employing (8). Sub-

sequently, the global model at the BS undergoes an update as
follows,

At+1
G =

I∑
i=1

piA
t+1
i . (10)

In the alternate method, each UE initiates the GD process for
its local model using local datasets, and the BS then averages
these local models. This allows each UE to iterate the local
update multiple times according to (10) before uploading the
local models, thereby accelerating convergence speed.

Despite the significant success of FedAvg, one of the most
renowned methods in FL, challenges due to statistical het-
erogeneity in the data remain. Specifically, the training data
exhibit non-IID characteristics, which negatively impact con-
vergence behavior.

GD: Conventional federated optimization techniques, such
as FedAvg [60], may demonstrate suboptimal convergence
performance, especially in heterogeneous wireless networks.
This is primarily due to two factors: 1) client drift (CD), where
local models diverge from the optimal global model, causing
unstable and slow convergence; and 2) lack of adaptivity,
where FedAvg may not be suitable for large datasets with
heavy-tailed stochastic gradient noise distributions, a common
issue in natural language processing research [62]. Heavy-
tailed distributions are probability distributions with tails that
are heavier than those of the exponential distribution [63].
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Several innovative GD methods have been proposed to ad-
dress the challenges of CD and lack of adaptivity, as described
below:

1) CD: Addressing the issue of CD, in [64], the au-
thors introduced a novel stochastic controlled averaging
(SCAFFOLD) method. This method incorporates con-
trol variates for the ith UE (ei) and the variate for the
server eG = 1

I

∑I
k=1 ek in the GD process to update

the training of local and global models, respectively.
In contrast to FedAvg, the GD of the ith UE in the
SCAFFOLD method is expressed as follows,

At+1
i = At

i − η
(
gt

i + et
G − et

i

)
, (11)

wherein et
G − et

i ensures that the GD moves in the cor-
rect direction, and et+1

i is computed utilizing,

et+1
i = et

i − et
G + 1

Niη

(
At

G − At
i

)
, (12)

where Ni denotes the number of iterations for updating
the ith UE with its local information in the t th time
slot. In (12), the SCAFFOLD method employs gradients
computed in previous steps to modernize the control
variate. Following this, the control variate of global
model eG is aggregated as follows,

et+1
G = et

G + 1

I

I∑
k=1

(
et+1

k − et
k

)
. (13)

The corrective term (et
G − et

i ) in (11) guarantees that the
updates to the local model move in the optimal direc-
tion, effectively addressing the CD problem observed in
FedAvg.

2) Adaptivity: The adaptive learning method includes ad-
justable training parameters, such as the learning rate,
which can automatically adapt to the statistics of ob-
tained data, available computational radio resources, or
other relevant information in its operating environment.
Incorporating adaptive variants helps learning algo-
rithms improve convergence performance and training
accuracy [60]. To enhance convergence performance in
FedAvg, three approaches have been introduced in [60]:
adaptive optimizer, fast-convergent FL, and federated
proximal.

III. DISTRIBUTED MARL ALGORITHMS
This section delves into the fundamentals of reinforcement
learning (RL) and the operational principles of distributed
MARL algorithms, including their classification and chal-
lenges.

A. PRELIMINARY ON RL ALGORITHMS
The fundamentals of RL revolve around goal-oriented training
and intelligent decision-making. Then, RL utilizes a decision-
maker, commonly known as an agent, which is trained to make
beneficial decisions through interactions with its environ-
ment. Central to these interactions is a reward system, which

reinforces actions that lead to positive outcomes, guiding the
agent towards maximizing cumulative rewards over time. The
iterative refinement of the agent’s approach, referred to as a
policy, is crucial in directing actions within the RL framework.
The agent begins its interaction with the environment using an
initial policy, observes the outcomes of its actions, and adjusts
the policy based on feedback. This process of iterative training
persists until the agent achieves an optimal policy. In real-
world wireless applications, RL is operationalized through its
mathematical model known as a Markov Decision Process
(MDP), providing a structured framework for modeling and
analyzing the entire process of training and decision-making
in RL techniques.

Formally, a MDP is denoted as a tuple (S, A, P, R, γ ),
wherein S and A denote for the sets of the agent’s states
and actions, respectively. The state transition probability set,
defined as P : S × A × S → [0, 1], indicates the likelihood of
transitions. On the other hand, R : S × A × S → R indicates
the set of rewards denoted as r(st , at , st+1), obtained through
the agent from the radio environment. Typically, a finite MDP
with T time steps is considered, and the interaction within
it can be represented as an order {s0, a0, s1, a1, . . . , sT , aT },
commonly referred to as an episode.

At each time step t , the agent makes a decision to select
an action at based on the present state st . Subsequently, the
radio environment transitions to a new state st+1 and issues
a reward r(st , at , st+1) to the agent. It is essential to focus
that the agent’s objective is to boost the discounted cumulative
return Gt = ∑T

k=0 γ kr(st+k, at+k, st+1+k ) rather than the in-
stant reward r(st , at , st+1). The symbol γ ∈ [0, 1] provides as
a discount rate, striking a balance amid instant and upcoming
rewards.

As emphasized, the goal of RL is to determine the optimal
strategy. The agent’s strategy is denoted as π (at |st ), represent-
ing the probability of selecting action at given state st .

Classical RL approaches can be categorized into two types,
such as: value-based RL and policy-based RL, as explained
below.

Value-based RL methods calculate the value function, pre-
dicting the anticipated cumulative reward for each state-action
pair. The objective is to determine the optimal value function,
indicating the maximum anticipated cumulative reward for
each state-action pair. This optimal value function then guides
the optimal strategy, where the agent chooses the action that
outcomes in the state having the maximum anticipated value
at each stage.

Policy-based RL techniques concentrate on directly pin-
pointing the optimal strategy without requiring the training
of a value function. In these methodologies, the strategy gets
parameterized, frequently employing neural networks in intri-
cate radio environments, and the model parameters experience
iterative updates to enhance the strategy. The fundamental
principle guiding strategy-based methods is known as policy
gradient. In straightforward language, policy gradient meth-
ods aim to boost the anticipated return by modifying strategy
parameters to optimally boost performance.

VOLUME 5, 2024 1407



DAS ET AL.: FEDERATED REINFORCEMENT LEARNING FOR WIRELESS NETWORKS: FUNDAMENTALS, CHALLENGES AND FUTURE RESEARCH TRENDS

FIGURE 3. Classical architecture and communication process of the MARL scheme.

B. FUNDAMENTALS OF MARL ALGORITHMS
MARL algorithms are designed to enable multiple agents
to learn and make decisions in an environment where the
actions of each agent affect not only their own outcomes
but also the outcomes of other agents. This field extends
the principles of single-agent RL to scenarios involving
multiple decision-makers, introducing unique challenges and
opportunities.

MARL provides an ideal framework for making sequen-
tial decisions in dynamic settings by interactively engaging
with the highly dynamic radio environment, as illustrated
in Fig. 3(a). In MARL scenarios, each agent independently
selects its action based on its own observation of the radio
environment, as illustrated in Fig. 3(b). In forthcoming 6G
wireless communications networks, an agent’s state may en-
compass transmission PA status, radio channel information,
and throughput. Actions taken by the agent can involve ra-
dio RBs and power levels. Rewards are typically associated
with the learning objectives, such as enhancing the aggregate
energy efficiency (EE) or spectrum efficiency (SE), and are
defined as the currently attained EE or user rate.

MARL is often designed as a decision-making and training
model within a discrete-time stochastic control process, such
as the MDP [65]. Traditional RL methods include value-based
algorithms (e.g., Q-learning), actor-critic schemes, model-
enhanced algorithms, and policy-driven algorithms. In [66],
the authors developed an asynchronous algorithm incorporat-
ing parallel computing to tackle non-convex problems using
RL. However, in modern intelligent IoT applications, such as
smart transportation systems and robotics communications,
employing the MARL algorithm is essential. This approach
involves multiple agents collaborating with a radio environ-
ment to achieve a common goal and maximize the shared

team’s reward across various local action spaces [67]. Given
the vast state-action spaces, delayed rewards and feedback,
high mobility, and stochastic radio environments that must be
coordinated with heterogeneous agents’ behaviors, an effec-
tive communication policy among multiple agents is crucial
for achieving better and stable network performance with the
MARL algorithm.

In the server-client enhanced MARL architecture, the pro-
posed scheme manages the training process for all edge
agents. In [68], the authors introduced a multi-agent actor-
critic method featuring decentralized actors at each agent
and a centralized critic for sharing parameters among the
edge agents. To improve the CE of the gradient function for
the distribution strategy in the MARL scheme, [69] presents
a gradient function for a loosely aggregated system that
reduces communication rounds by only using informative
gradients from selected edge agents and reusing outdated
gradients for the remaining agents. For IoT applications
without central controllers, such as smart transportation sys-
tems, [70] proposes a communication connectivity graph for
a decentralized MARL scheme where edge agents only al-
low information exchange. In [71], the authors introduced
a decentralized actor-critic algorithm with function approx-
imation, where each agent makes independent decisions
based on local data observation and communication mes-
sages shared through a consensus stage over the wireless
network. In [72], a decentralized gradient method for an
entropy-regularized strategy is proposed, which requires data
exchange only with nearby edge agents to train a single strat-
egy for a multi-task RL algorithm involving multiple edge
agents operating in different radio environments. Based on
these studies, we describe some common MARL algorithms
as follows.
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� Independent Q-learning (IQL): Treats other agents as
part of the environment, learning independently.

� Deep distributed Q-networks (DDQN): Extends deep
Q-network (DQN) to multi-agent settings for handling
high-dimensional state and action spaces.

� Multi-agent deep deterministic policy gradient (MAD-
DPG): An actor-critic approach that learns continuous
actions in a cooperative or competitive setting.

� Counterfactual multi-agent (COMA) policy gradients:
Focuses on the credit assignment problem by using a
counterfactual baseline to evaluate an agent’s contribu-
tion to the collective outcome.

C. CHALLENGES OF MARL FRAMEWORK
Despite substantial progress made in MARL, especially in
the domain of distributed learning, there are still numerous
challenges that need to be addressed before it can be fully
utilized in practical applications.

Non-stationary environment: In multi-agent systems, all
agents are learning their strategies simultaneously, and each
agent must consider not only its own actions but also
those of other agents. This ongoing interaction with other
agents constantly changes the environment, making it dif-
ficult for agents to identify optimal strategies. When ap-
plying MARL in a distributed manner, a popular solu-
tion is to use centralized training and distributed execution
(CTDE). This technique is particularly effective for opti-
mizing transmissions within multiuser wireless networks,
as it offers extra spatial degrees of freedom for signal
manipulation.

Partial observation: In real-world scenarios, individual
agents often only have access to a subset of the total state data,
restricting their capacity to learn the globally optimal strategy.
To mitigate this issue in dynamic environments that involve
machine-to-machine (M2M) communications, a consensus
communication method that utilizes a graph network-based
self-attention mechanism can significantly reduce the effects
of partial observation on MARL.

Training method: There are various multi-agent approaches
that either adopt a fully centralized or fully distributed training
method. In the fully centralized scheme, a central unit takes on
the responsibility of strategy learning, utilizing data from all
agents. However, this method encounters considerable com-
putational complexity. Conversely, fully distributed training
methods often struggle with convergence problems due to the
absence of comprehensive state data for training. Studies have
demonstrated that the CTDE method outperforms both fully
centralized and fully distributed training schemes. In CTDE, a
centralized network uses global data for centralized training,
whereas agents execute the learned strategy in a distributed
fashion using their individual local data samples. This strategy
effectively counters the challenges posed by non-stationary
environments, guarantees convergence, and minimizes train-
ing overhead.

FIGURE 4. Typical architecture and communication process of FRL
framework.

IV. FRL FRAMEWORK
This section delves into the fundamentals of the FRL frame-
work and the operational principles of extended FRL algo-
rithms, highlighting their advantages and classification.

A. FUNDAMENTALS
FL-enabled systems protect raw data by transmitting model
parameters for aggregation, but increasing FL training
efficiency and accuracy is challenging. Designing techniques
to enhance communication efficiency, reduce delay, and im-
prove accuracy is crucial. Integrating MARL with FL can
improve client selection using a two-layer perceptron-based
MARL agent at the aggregation server, optimizing global
model accuracy and communication delay. MARL agents then
learn value decomposition to maximize team rewards, mak-
ing distributed FRL adaptable to various real-time systems.
Unlike traditional RL, FRL ensures fast convergence for large
state and action spaces, as shown in Fig. 4(a).

B. WORKFLOW OF FRL FRAMEWORK
The workflow of the FRL framework, illustrated in Fig. 4(b),
involves three main components at the central server: the
model storage block, the MARL block, and the statistics
collection block [53]. The model storage block stores and
updates the global deep neural network (DNN) model. The
MARL block executes trained MARL agents for client selec-
tion. The statistics collection block gathers client information.
The following summarizes the functionalities at each stage per
iteration:

Stage 1: At each training round, K client devices are se-
lected from the client pool.

Stage 2: Selected clients receive the global model parame-
ters.

Stage 3: Clients conduct training and report losses to the
MARL block.

Stage 4: Clients also send latency information to the statis-
tics collection block.

Stage 5: The MARL agents receive and combine loss infor-
mation with previously stored data.

Stage 6: Client selection decisions are generated.
Stage 7: Chosen clients perform local training and send

updated parameters to the model storage block, which updates
the global model. Latency data is updated in the statistics col-
lection block. Clients report initial training losses to the BS,
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which collects loss values and latency information. Clients
share model weights in a FL manner to train the DNN model
quickly via the DRL controller. In subsequent iterations,
stages 6 and 7 transition into stages 1 and 3, respectively.

C. PROBLEM FORMULATION OF FRL FRAMEWORK
Nevertheless, the decentralized arrangement poses a risk to
the agent’s generalization performance as the diversity of
data within isolated multi-user agent systems is restricted.
This limitation could potentially lead the agent into a local
optimum. In response to this challenge, we introduce a FRL
algorithm, leveraging FL to enhance the agent’s generalization
during training while upholding data privacy.

In FL, two roles are distinguished: the participant and the
collaborator [73]. The participant k, k ∈ [1, nn], is represented
as a DNN model f k

Ak
. It undergoes local self-training and

periodically uploads its parameters Ak to the collaborator.
Here, nn is the number of participants processed concurrently.
Due to data privacy constraints, the participant f k

Ak
only trains

on the local dataset, leading to potential issues with insuf-
ficient training due to limited data capacity and diversity.
FL addresses this challenge through the following steps. Ini-
tially, at training epoch p, p ∈ [1, Np], the model of the kth
participant is defined as f p

Ap
k
, undergoing self-training to ac-

quire parameters Ap
k , with Np representing the total number

of training epochs. Subsequently, each participant uploads its
parameters to the collaborator, forming a parameter list Ap =
[Ap

1, Ap
2, . . . , Ap

nn ]. The collaborator calculates the weighted
average of Ap to estimate a global model f p

G with param-
eters Āp

G. After aggregation, the collaborator broadcasts Āp
G

to all participants, replacing their individual parameters, i.e.,
Āp

G = Ap+1
1 = Ap+1

2 . . . = Ap+1
nn . The local loss function and

the learning rate of the kth participant are denoted as Fk (.) and
η, respectively. The aggregation mechanism of FL is mathe-
matically formulated as follows,

Ap+1
k = Āp

G − η∇Fk
(
Ap

k

)
, (14)

where

Āp
G =

nn∑
k=1

1

nn
Ap+1

k . (15)

In this comprehensive review, one can regard the participant
as the agent within each multi-user system, while the collabo-
rator assumes the role of a server responsible for aggregating
and broadcasting the parameters. The objective of FRL is to
address the distributed optimization model presented below,

min
Āp

G

F
(
Āp

G

) =
nn∑

k=1

pkFk
(
Ap

k

)
, (16)

wherein pk signifies the relative weight assigned to each
multi-user agent in the global model, F (.) denotes the
global loss, with pk > 0 and

∑nn
k=1 pk = 1. We define pk =

|Dk |∑nn
k=1 |Dk | , where Dk denotes the data size utilized for the local

training of the kth multi-user agent. It is important to note

that the direct computation of F (.) is not feasible without the
exchange of information among participants.

The architecture of extended FRL framework is depicted
in Fig. 5(a). At epoch p, the global agent in three multi-user
agent is initially replaced by the global agent in the (p + 1)th

epoch. Subsequently, the three multi-user agents engage in
self-training to acquire parameters, which are then sent to
the server for aggregation. Following this, the global agent
is constructed on the server, and the parameters are broad-
casted to the multi-user agent for the (p + 1)th epoch. The
FRL comprises two main components: one executed on the
server, serving as the collaborator, and the other executed on
multi-user agent, acting as the participant. The procedures
carried out on the server and multi-user agent are explained
below, respectively.

1) SERVER PART
In the initial stages of FRL training epochs on the server,
the primary focus lies in aggregating and broadcasting agent
parameters. At the commencement of the FRL training epoch,
the server establishes a global agent with the parameter Ā0

G,
which is subsequently disseminated to each multi-user agent
for self-training. As the agents concurrently update their pa-
rameters, the server consolidates the parameter list Ap =
[Ap

1, Ap
2, . . . , Ap

nn ] using (15). Moreover, the aggregated pa-
rameters Āp

G are employed to update the parameters of global
model and broadcast to the multi-user agents for the training
of epoch p + 1.

2) MULTI-USER AGENT PART
The self-training process is embraced by the multi-user agent
in the FRL procedure, and it collaborates with the server.
Upon receiving the parameter Āp

G from the global model at
epoch p, the parameter of each multi-user agent is substituted
by Āp

G, denoted as Ap
k = Āp

G. Subsequently, each multi-user
agent undergoes Nm individual self-training epochs concur-
rently. Following this, the parameters of the multi-user agent
at the last self-training epoch, specifically sNm and uNm , are
stored and transmitted to the server.

Each multi-user agent performs self-training with a famous
DRL algorithm, namely, proximal policy optimization (PPO),
to obtain the optimal policy e. Here are two types of DNN,
namely, actor and critic, defined by the muti-user agent. Actor
es is parameterized by s, which aims produce the action, and
the critic is denoted as vu, which is parameterized by u.

The training process of the self-training procedure within a
single episode is depicted in Fig. 5(b). Initially, the experiment
tuples T are sampled as,

T = {
< so, ao, ro, s1 >,< s1, a1, r1, s2 >,

. . . , < sL, aL, rL, sL+1 >
}
, (17)

where L signifies the length of T . Subsequently, the loss func-
tion of the actor at the jth episode is computed, defined as
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FIGURE 5. Typical architecture and communication process of extended FRL framework.

follows,

Lc = E
s,a∼T

[(
min

es
j (a|s)

es
j−1(a|s)

As,a
es

j
,

clip

(
es

j (a|s)

es
j−1(a|s)

, 1 − γ , 1 + γ

)
As,a

es
j

)]
, (18)

wherein E
s,a∼T [.] denotes the empirical average across the

sampled experiment tuples T . e j−1 and e j represent the pre-
vious and new policies, respectively. γ serves as the clip
parameter, and As,a

e j
signifies the advantage, assessing the wor-

thiness of an action by comparing the action value and state
value,

Ast ,at

e j
=E

[
L|so=st , ao=at ]−v

(
st )=Q

(
st , at )− v

(
st ) .

(19)

Nonetheless, obtaining As,a
e j

directly poses challenges due to

the complexity in determining Q(st , at ). Consequently, this
study employs the generalized advantage estimation method,

As,a
es

j
= ξo

v + (πθ )ξ1
v + (πθ )2ξ2

v , . . . ,+(πθ )L−t+1ξL−t+1
v ,

(20)

wherein θ ∈ [0, 1] and π ∈ [0, 1] represent the a hyperparam-
eter and discount factor adjusting the tradeoff between bias
and variance in the estimation, respectively. It is worth noting
that increasing θ raises the variance while decreasing bias.
Following Schulman et al.’s recommendation [73], θ is set to
0.95. The calculation of ξ

j
v is expressed as follows,

ξ j
v = r j + πvu

j

(
st+1)− vu

j

(
st ) , (21)

wherein vu
j (st+1) and vu

j (st ) are provided through the critic,
which is trained using the loss function Lv ,

Lv = E
s,a∼T

[(
πvu

j

(
st+1)+ r

(
st , at )− vu

j

(
st ))2

]
. (22)

The actor’s parameter updates are expressed as follows,

s j+1 = s j + ηc∇s jLc, (23)

wherein ηc denotes the learning rate of the actor. The critic’s
parameter updates are expressed as follows,

u j+1 = u j + ηv∇u jLv, (24)

wherein ηv denotes the learning rate of the critic. As both
Lc and Lv are optimized within each multi-user agent in the
extended FRL algorithm, they serve as the local loss functions
contributing to the construction of the global loss according
to (16).

D. ADVANTAGES
FRL utilizes RL agents to address a problem underneath the
guidance of a central processing entity while safeguarding
private information. Through the aggregation of local models,
FRL effectively reduces the communication burden that con-
ventional DRL methods entail, enhancing privacy. Through
tackling problems at the edge of the wireless network, it
significantly decreases overall complexity, leading to lower
processing delays. As a result, FRL emerges as a promising
solution aligned with the expectations of advanced networks
like 6G. However, the distributed manner of FRL presents var-
ious challenges. Relying on the specific network scenario, it is
crucial to explore various implementations of FRL methods
to strike the optimal balance between system performance,
communication costs, and privacy preservation.

E. CLASSIFICATION
FRL methods can be classified based on their aggregation fre-
quency, specifically as slot-aided aggregation and multi-slot-
aided aggregation methods [20]. In the slot-aided aggregation
approach within the FRL framework, model aggregation takes
place following each local model update for every com-
munication round. Although this method yields comparable
system performance to conventional MARL, it does incur a
substantial communication overhead due to frequent informa-
tion exchanges. In contrast, when considering communication
rounds greater than one, multi-slot-aided aggregation methods
in FRL conduct model aggregation after multiple local model
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FIGURE 6. FRL framework for 6G networks.

updates have occurred. In addition, multi-slot-aided aggrega-
tion methods enhance the independence of UEs, reducing the
need for coordination, communication burden, and the threat
of information leakage.

F. FRL FRAMEWORK FOR 6G WIRELESS NETWORKS
As a result of the growing size of wireless networks, the
increasing density of UE connections, and the presence of
system heterogeneity, it has become increasingly difficult,
and in certain instances, impractical to model such a dy-
namic cellular network using traditional ML techniques.
Conventional ML-based wireless network optimization re-
lies on the assumption that the convex loss function can be
represented in easily manageable geometric shape, enabling
an optimizer to evaluate solutions through simple computa-
tions [1]. Nevertheless, establishing the connection between
a decision and its consequences on the physical wireless
system is excessively communication costly and may not be
amenable to non-convex problem solutions. Modern advance-
ments in ML technologies, i.e., statistical learning, FL, and
MARL algorithms, have the potential to effectively tackle
complex network optimization problems in upcoming cellu-
lar networks. These DL methodologies have the capacity to
iteratively identify asymptotically optimal solutions through
the use of SGD techniques. To elaborate further, FRL tech-
niques, which include FL, multi-armed bandit theory, and
MARL algorithms, create a feedback loop within the physi-
cal system and decision-maker. This arrangement allows the
decision-maker to progressively refine its actions based on the
feedback it receives from the system, ultimately leading to
the attainment of optimality. As demonstrated in Fig. 6, FRL
techniques have been extensively applied to address a wide
array of emerging challenges in the realm of communication
and networking. These challenges include tasks like BA, PA,
IM, CMSM, and others.

V. DESIGN ASPECTS OF FRL FRAMEWORK FOR WIRELESS
NETWORKS
This section describes a FRL framework for wireless commu-
nications, performance evaluation, and the impact of wireless
factors on FRL parameters. Below, we provide a brief review
of the design aspects of the FRL framework for wireless net-
works to properly set the stage for our contributions in this
paper.
� Choosing and scheduling client: The random client-

choosing technique in FRL frameworks for wireless
communications can require additional time and re-
sources, leading to system heterogeneity. Selecting and
scheduling clients effectively addresses convergence
time, learning accuracy, and client capabilities but in-
creases communication overhead and decreases reliabil-
ity in spectrum-limited systems [74], [75], [76]. Proper
client-choosing and resource management mechanisms
are crucial. Maximizing participating devices while bal-
ancing accuracy, reliability, and resource requirements
is essential, particularly for straggler clients. Including
switches in RF client scheduling strategies enhances
global model transmission efficiency.

� Combined learning and communication: Within a FRL
framework designed for wireless systems, local mod-
els are transmitted to the central server through RF
signals during the uplink phase, while the updated
global model is disseminated via radio signals during
the downlink phase. Dynamic propagation and wire-
less impairments can impact model accuracy, which
can be mitigated through error detection and correction
methods such as longitudinal redundancy check, cyclic
redundancy check, and parity checking. Enhancing ac-
curacy and training speed involves adjusting training
parameters according to client capabilities and employ-
ing model-based optimization schemes that consider
system bandwidth, memory constraints, and computa-
tional capabilities.

� Communication efficiency: In extensive FRL systems,
minimal data exchange per transmission can lead to low
CE. Researchers have proposed several solutions to ad-
dress this, including reducing the size of updated models,
adjusting transmission categories, and decreasing com-
munication frequency, as detailed in Fig. 7 [77], [78],
[79], [80], [81], [82], [83].

� Predicting user mobility: Predicting user mobility is
crucial for maintaining high performance in outdoor
wireless systems, as learning parameters vary with de-
vice movement. Effective wireless RA, position updates,
signal transmission, and handover management depend
on accurate mobility prediction. Current schemes com-
bine comprehensive data with mobility models and
localization data. A large number of FL-aided clients can
aid in mobility prediction, ensuring only low-mobility
clients are selected for local training to minimize com-
munication errors. Developing robust training strategies
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FIGURE 7. Various CE increment methods in FRL framework.

that account for asynchronous cooperation and pre-
dictive techniques is essential for dynamic wireless
networks.

� Trade-off between training accuracy and processing de-
lay: The agents in the FRL framework utilize an optimal
approach to strike a balance between two key objectives:
achieving optimal local training accuracy and minimiz-
ing total processing delay [84], [85]. During the initial
stages of FL training, a relatively smaller number of
UEs are selected compared to the later stages. This se-
lection takes place both at the beginning and at the end
of the training rounds. There is a rationale behind this
approach. In the early phases of training, DNNs typically
acquire low-complexity functional components before
progressing to further advanced features. These early
components tend to be more robust in the face of noise
and perturbations [84]. Consequently, it becomes possi-
ble to achieve effective training with less training data
during the early stages, resulting in reduced processing
delay and communication costs [85].

� Incentive mechanism: Typically, in distributed learning
setups, it is assumed that all users will willingly take
part in the global model aggregation process without
expecting any compensation in return. Nevertheless, in
practical scenarios, participants may hesitate to join this
federation process as training MARL models consumes
valuable resources [86], [87], [88], [89]. In [90], the au-
thors explored the concept of incentivizing participants
in FL by introducing an incentive-compatible scoring
system to establish a payment framework. Fig. 8 illus-
trates the architecture of this incentive mechanism in FL,
where users can encompass mobile UEs, edge UEs, IoT
UEs in cross-UE FL, or large corporations in cross-silo
FL. These users contribute various types of resources,
not limited to just data, all of which significantly impact
the learning performance. Following global ML model

FIGURE 8. Typical architecture of incentive mechanism.

aggregation, the server compensates each user based on
their individual contributions to the FL process. In [91]
and [89], the authors conducted comprehensive surveys
on incentive mechanisms in recent FL research. These
surveys identified the challenges in designing incentive
mechanisms for FL and categorized existing incentive
mechanisms into various techniques, including Stack-
elberg games [92], auctions [93], contract theory [94],
[95], Shapley values [96], RL [97], and blockchain [98].
Stackelberg games, auctions, and contract theory are pri-
marily employed to select users and allocate payments
to incentivize their participation in the FL process, while
the Shapley value is utilized for an equitable evaluation
of user contributions to FL. FRL and blockchain are cru-
cial to enhance the performance and resilience of these
incentive schemes.
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� Scalability: The projection is for the number of mobile
UEs to reach 10.3 billion and the count of IoT UEs to
hit 30.9 billion by 2025 [99], [100], creating a notable
scalability challenge. The traditional cloud infrastruc-
ture struggles to provide scalability for both data and
applications because of the high likelihood of network
congestion caused by the data transmission from tens
of millions of end UEs. Edge computing offers a solu-
tion whereby, if one edge server becomes congested and
cannot meet incoming requests, the corresponding ser-
vice can be seamlessly shifted to another nearby edge
server to handle the computational workload.
On the contrary, edge computing shares a similar oper-
ational concept with cloud computing but brings com-
putational resources closer to local UEs. Instead of
sending resource-intensive computational tasks to a re-
mote cloud, end UEs turn to nearby edge servers for
computational resources. Typically, there are several
nearby edge servers accessible to each end UE. How-
ever, it is important to note that edge servers possess
limited power and computational resources compared to
the cloud server, which is typically assumed to be highly
potent. This introduces additional complexity into the
computation offloading problem, as it necessitates con-
siderations regarding edge server selection and resource
management [100].
In cloud computing, the central aspect of computa-
tion offloading revolves around determining whether to
offload, the extent of offloading, and what should be of-
floaded. In the context of edge computing, in addition to
these aspects, we must also address where and how to of-
fload and the allocation of resources. Recent research has
delved into the joint problem of computation offloading
and resource management with the objective of mini-
mizing energy consumption and processing delay [101],
[102]. Researchers have formulated this joint problem as
a combinatorial optimization challenge with non-linear
constraints and have proposed computation offloading
algorithms based on convex optimization [103], [104],
Lyapunov optimization [105], [106], and game the-
ory [107], [108]. Furthermore, the design of computation
offloading schemes can be likened to the decision-
making process for offloading and RA within a dynamic
environment, a facet explored through the applica-
tion of FRL methods in numerous research endeavors
[109], [110].

� Privacy: A key advantage of FRL is its ability to enable
UEs to train a learning model without the need to share
the raw data of those UEs. However, it is important
to note that some level of private information can still
be revealed through the analysis of differences between
the uploaded models [111], [112], [113], [114], [115],
[116], [117], [118]. For instance, in [113], the authors
demonstrated that with access only to the trained ML
model of a specific hospital’s private information, at-
tackers can deduce whether an individual had been a

patient at that hospital. In general, within the FL sys-
tem, honest but inquisitive coordinators, untrustworthy
users, and potential eavesdroppers in the wireless net-
work may exploit the system to glean information about
UEs.
To tackle this issue and protect user privacy in the
context of 6G networks, it is essential to employ privacy-
preserving techniques such as differential privacy (DP)
and secure multiparty computation (SMC). Table 3
provides an overview of various approaches aimed at
safeguarding user privacy within the FRL framework,
along with pertinent references.

� Security: One of the primary goals of FRL is to en-
sure privacy. To implement FRL over wireless networks
while safeguarding the privacy of each user from both
external and internal threats, it is essential to employ
a dependable approach [119]. However, it is impor-
tant to acknowledge that these methods can only offer
a limited level of privacy protection. Moreover, FRL
remains vulnerable to various security challenges, in-
cluding poisoning attacks [120], backdoor attacks [121],
and channel attacks [122]. Additionally, these privacy
approaches primarily focus on safeguarding data. The
nature of wireless access mediums is also susceptible
to communication-based attacks, such as jamming [123]
and Denial-of-Service (DoS) [124]. For a comprehensive
exploration of security issues in FRL, we suggest to read
in [119].
Remark: Transmitting model parameters imposes greater
requirements on reliable, low-latency radio links, as the
convergence performance of the ML model is intricately
linked to the efficiency of wireless communication. Tra-
ditional communication technologies such as PA, IM,
CMSM, and BA must be improved with a focus on pri-
oritizing ML model convergence as a key performance
metric. From the preceding discussion, it is evident that
deploying the FRL framework in real-world scenarios
entails considering factors such as over-the-air computa-
tion, privacy, scalability, gradient compression, and the
allocation of communication and computing resources.
This is done to enhance the performance of wireless
networks and support distributed FRL effectively in 6G
wireless networks.

A. PERFORMANCE EVALUATION OF FRL FRAMEWORK
Executing a FRL framework in a cellular network involves
several key steps during each communication round. At the
outset, each end UE trains a local model and subsequently
uploads the locally computed parameters of the FRL model.
The central server then aggregates these local models to gen-
erate and broadcast the global model. Performance of FRL
frameworks is indicated by training loss, convergence time,
latency, power consumption, and reliability. These factors are
crucial for evaluating the efficiency and effectiveness of FRL
systems in wireless environments.

1414 VOLUME 5, 2024



TABLE 3 Methods to Address the Privacy Challenges Within the FRL Framework

FIGURE 9. Time performance in the FRL framework, where M represents
the total number of UEs.

� Training loss: The loss function measures training loss
in a FRL framework, which is influenced by the clients’
ML models. Poor wireless channel conditions can cause
errors in transmitted ML models, leading to increased
training loss. Additionally, since only selected clients
participate due to computational and power constraints,
the use of fewer local models in generating the global
ML model further increases training loss. This reduc-
tion in client participation can compromise the overall
model’s accuracy and effectiveness.

� Convergence time: The convergence time T of a FRL
framework for a wireless network depends on three fac-
tors (τi, li, ti ) as illustrated in Fig. 9 and can be calculated
by

T =max (τ1l1, τ2l2,. . . ,τMlM )+max (t1, t2, . . . , tM ) ,

(25)

where τi is the training time for updating the local model
per iteration at UE i, li is the number of iterations for
convergence at UE i, i = 1, 2, . . . , M, and M denotes the
total number of UEs in the learning process. Note that
τi and li are interdependent, meaning that the required
number of iterations for convergence can be reduced
by increasing the SGD step amounts while updating a
local ML model in each learning round. Finally, ti is
the training time for transmitting the ML model in each
learning round by UE i .

� Latency: Latency in FRL systems can occur during local
training, uplink transmission, model aggregation, and
downlink transmission, as shown in Fig. 9. To minimize
latency and improve performance, combined optimiza-
tion of both computation and transmission processes
should be implemented. This holistic approach ensures
that delays in one part of the system do not dispro-
portionately affect the overall performance, leading to a
more efficient and responsive FRL framework.

� Power consumption: FRL clients use their limited bat-
tery power to compute locally and transmit parameters to
the central server. This process, repeated multiple times,
can deplete battery life and reduce system efficiency. To
prolong battery life and enhance efficiency, it is crucial
to minimize the frequency of these activities. Implement-
ing strategies to reduce computational and transmission
demands on clients will help maintain their operational
longevity and optimize the overall performance of the
FRL system.

� Reliability: Usually unreliability of radio channels and
the finite availability of wireless resources can lead to
communication errors in FRL frameworks, resulting in
performance degradation. To mitigate these issues, it is
essential to implement robust error correction techniques
and optimize the allocation of radio resources, ensuring a
more reliable and efficient communication process. This
approach helps maintain the integrity of the transmitted
data and enhances the overall performance of the FRL
system.

� Channel conditions: In FRL, the convergence perfor-
mance of the distributed ML model is significantly
influenced by transmitting of model parameters. Conse-
quently, it is of utmost importance to take into account
the conditions of the radio channel when scheduling
users. In [125], a thorough investigation is carried out
regarding the user scheduling technique known as “pro-
portional fair,” with a particular focus on its applicability
in various radio channel environments. Additionally,
in [126], researchers immersed themselves in the do-
main of FRL within the context of wireless multi-path
fading propagation channels. They developed a user
scheduling method that chooses a user for transmitting
signals based on the complex wireless propagation en-
vironment. Furthermore, they extended this method to
establish the “best radio channel scheduling method”
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FIGURE 10. The accuracy of learning performance across various learning
architectures.

through choosing multiple users with the most favorable
channel gains [68].

� Age of update: User scheduling strategies aim to opti-
mize the use of limited radio resources or leverage the
diversity of local datasets to maximize updates that the
BS can accumulate in each round of global communi-
cation. However, these strategies often neglect the issue
of update staleness. In [127], the authors introduced a
new metric called age-of-update (AoU) to evaluate the
staleness of local model updates in each communication
round. They then formulated a user scheduling method
that considers both the straggler effect and communi-
cation quality, aiming to minimize AoU. This approach
ensures the freshness of all local updates while main-
taining fairness among users. Furthermore, in [128],
the authors used AoU as a performance metric for
user fairness, and optimization of user selection pol-
icy, throughput, transmission power, spectral efficiency,
mobility management, and CPU-cycle frequency can be
conducted based on this metric.

In the FRL context, the BS can perform model aggrega-
tion as soon as it receives model updates from local users,
without waiting for potentially delayed users. Fig. 10 shows
the accuracy of learning performance across various learning
architectures. Furthermore, our assessment encompasses three
aggregation scenarios: FL and centralized MARL, both of
which aggregate models after each communication round, and
FRL, which aggregates models periodically every 10 DRL
communication rounds. Given the asynchrony in local users
completing their model updates, it is important to note that
updates submitted within the same round may contain dis-
tinct and potentially outdated information. This is because
local models are trained using global model versions received
at various time points. Additionally, the time-varying radio
channel conditions contribute to the asynchrony in transmit-
ting model updates from multiple local users. Consequently, it
is imperative to develop an effective and efficient FRL method
tailored for wireless networks. Such an algorithm should

adeptly address staleness within the system while working
within the constraints of limited wireless resources.

B. EFFECTS OF WIRELESS COMMUNICATION FACTORS ON
FRL FRAMEWORK
Various components of cellular networks, such as compu-
tational resources, transmission power, and bandwidth, can
significantly impact the efficiency of FRL frameworks. The
relationship between FRL efficiency and these elements is
summarized in Table 4, wherein every tick mark identifies
the specific influence on efficiency through each communi-
cation component. The subsequent section provides a detailed
explanation of how these wireless elements influence the per-
formance and efficiency of FRL systems.
� Based on the BA to each UE, the user throughput, error

probability, and signal-to-interference-plus-noise ratio
(SINR) is calculated. Consequently, bandwidth distribu-
tion significantly impacts latency, reliability, transmis-
sion power, training loss, and transmission time. Proper
management of bandwidth ensures efficient data trans-
fer, minimizes delays, and maintains high reliability and
performance in the FRL framework. By optimizing these
factors, the overall system efficiency and effectiveness
are enhanced, leading to improved learning outcomes
and reduced operational costs.

� As the SGD updates in each iteration are based on com-
putational ability, the required transmission power and
training time for local model training are directly im-
pacted by this capability. Additionally, an increase in the
number of SGD updates leads to higher training loss and
more iterations needed for convergence. Efficiently man-
aging computational resources can thus help minimize
training loss and reduce the overall convergence time in
the FRL framework.

� Wireless link quality and transmission power influence
the data rate, SINR, and transmission error probability.
As transmission power increases, the number of iter-
ations, reliability, training time, and training loss all
improve [35]. Effective management of transmission
power is essential for enhancing the overall performance
of the FRL framework by ensuring faster convergence,
higher reliability, and reduced training loss. This ap-
proach helps optimize the learning process and maintains
efficient communication within the wireless network.

� Increasing the number of participating clients in a FRL
framework enhances reliability and training time, while
reducing the number of iterations and training loss. This
is because a larger number of clients contribute more
diverse data and computational resources, leading to a
more robust and accurate global model. Consequently,
the learning process becomes more efficient, achieving
convergence with fewer iterations and lower training
loss.

� Increasing the size of parameters in local training of a
FRL model generally leads to higher power and time
requirements. Conversely, it results in fewer iterations,
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improved reliability, and reduced training loss. This is
because larger parameter sizes can capture more de-
tailed information, which enhances the accuracy and
stability of the model but requires more computational
resources and time for processing. This trade-off is cru-
cial for optimizing the efficiency and performance of
FRL frameworks.

C. INTERPLAY OF FRL FRAMEWORK AND WIRELESS
NETWORKS
The learning performance in the FRL framework depends on
radio environments, as well as the communication resources
and energy constraints of the workers, since all communi-
cations between workers and the server occur over wireless
links. Factors such as path loss, interference, and fading can
influence this performance.

Increasing transmission power raises energy consumption
for communication, while reducing the transmission rate re-
quires faster local computation within a fixed time period
for each communication round, potentially leading to higher
energy consumption for local computation. Given the typi-
cally limited battery capacity of mobile devices, minimizing
their energy consumption is crucial. This can be achieved by
appropriately adjusting local computation and communication
parameters, while ensuring the learning performance require-
ments are met.

The centralized architecture with a parameter server op-
erates similarly to current cellular networks, Wi-Fi, and IoT
networks with a central controller. These controllers can be
an app, a router, or an IoT device. Even in data centers, com-
munication is often a bottleneck for centralized ML, leading
to issues such as fading, additive noise, and bandwidth limi-
tations. These problems can cause network congestion, high
energy consumption by user devices, or wireless interference.

In distributed ML, the training goal is global, meaning
all participating UEs share a common objective. Therefore,
it is essential to use limited wireless resources efficiently.
The philosophy of “wireless for FL” focuses on task-oriented
approaches, where the aim of the communication system is
to derive intelligence from data. The FRL framework can be
directly applied to RA, where environment factors include

channel quality and interference level. The action space en-
compasses spectrum access, PA, and spatial resources, while
the reward function can be defined in terms of latency, data
rate, EE, user throughput, and other relevant metrics.

The framework can be used to obtain an optimal policy
for RA to maximize the desired reward. Initially proposed to
address concerns of privacy, device computation and storage,
and communication bandwidth, the framework has already
found numerous wireless applications, such as PA, IM, trans-
mission mode selection, and BA, as detailed in Section VI.
The primary advantages of the FRL framework include:
i) agents account for the specific nature and environment of
individual applications; ii) local interactions between agents
can be modeled and examined; iii) challenges in modeling and
computation can be tackled in distributed ways.

D. DISCUSSION AND OUTLOOK
A major challenge in autonomous wireless networks is man-
aging the heterogeneity of wireless propagation and adapting
effectively without adding complexity. In intelligent cellular
networks with vast amounts of sensed information and highly
dynamic environments, data or model-assisted optimization
methods need to be more consistent. The FRL framework ad-
dresses this by handling the stochastic nature of wireless chan-
nels and efficiently utilizing limited resources for adaptive
optimization in real-time network environments. It synergis-
tically employs both data-driven and model-driven techniques
through transfer learning, leveraging wireless propagation ca-
pabilities [129]. By learning from interactions with unreliable
or dynamic environments, the FRL framework can determine
the optimal policy by observing radio environments and the
policies of other entities. This approach significantly reduces
latency, energy consumption, and network congestion in vari-
ous use cases, such as interference cancellation, PA, BA, and
transmission mode selection for 6G wireless networks.

By enhancing the communication design to focus on learn-
ing performance, the efficiency and effectiveness of FRL
algorithms can be improved. In [130], the authors introduced
a grant-free massive random access scheme for online FL
in environments with extensive connectivity, addressing dy-
namic device participation due to intermittent local updates by
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TABLE V. Wireless Communication-Efficient Strategies for FRL Framework

reducing the impacts of transmission outages and device ac-
tivity on learning outcomes. Despite their potential, practical
deployment of FRL systems faces challenges such as man-
aging numerous active UEs, significant delays, and risks to
UEs’ privacy. To address these issues, [131] described the in-
tegration of unsourced random access into FL systems, which
supports massive connectivity and safeguards UEs’ identity
privacy through its unsourced property.

It is noted in [132] that the secrecy capacity cannot be
achieved using FL coding schemes for unsourced random
access, as it relies on random binning coding schemes. This
raises the question: is it possible to develop a coding scheme
for edge servers to maximize confusion for eavesdroppers?
Addressing this, [133] introduced a practical FBL coding
scheme for wireless FL with physical layer security, achieving
near-perfect secrecy without compromising learning perfor-
mance. Conversely, traditional designs of FRL models have
primarily focused on optimizing key performance metrics,
such as convergence speed, latency, EE, and accuracy, for
both synchronous and asynchronous transmissions. In [134],
the authors explored optimal RA strategies to improve EE
in multi-carrier NOMA and simultaneous wireless informa-
tion and power transfer-based FL systems supporting asyn-
chronous transmission, aiming to minimize energy use while
adhering to latency constraints in FRL systems.

In the context of deploying FRL within cellular networks,
the quality of radio links plays a pivotal role in determining
the sharing of model parameters. This necessitates greater
standards for traditional wireless communication emerging
technologies, prompting the need for innovative solutions
that can enhance network performance by offering greater
reliability and smaller processing delay. Table 5 provides
an overview of contemporary wireless technologies, encom-
passing gradient compression, over-the-air computation, and
UEs scheduling and RA, all aimed at improving the sharing
of model parameters in a distributed ML manner while en-
hancing CE. UEs scheduling and RA prove to be effective
strategies for addressing the challenges posed by limited wire-
less resources and a diverse user base, with the ultimate goal
of optimizing the convergence performance of distributed ML.
However, it is worth noting that the complexity inherent in the
UEs scheduling method itself can impact convergence time
and should be minimized to ensure efficiency.

In addition to optimizing RA and scheduling strategies,
over the air computation takes a unique approach by bypass-
ing digital conversion and employing analog transmission for
direct model aggregation. Additionally, decreasing the dimen-
sion of local model modernizes at the data samples before

sharing proves to be an effective method. This method not
only conserves wireless resource but also decreases process-
ing delay. However, it is important to note that many of the
techniques mentioned above have primarily been studied in
isolation. Consequently, it is becoming increasingly evident
that there is a growing need to develop an effective framework
that promotes synergy among these wireless communication
technologies.

VI. RESOURCE ALLOCATION
RA focuses on minimizing traffic delays and enhancing
SE and EE by dynamically distributing the available time-
frequency RBs to users based on evolving radio conditions.
With the advent of 6G networks, there is a pressing need
for significantly increased capacity and reduced latency com-
pared to existing 5G networks.

RA in wireless networks, when based on conventional opti-
mization approaches, faces several challenges that stem from
the dynamic and complex nature of wireless environments, as
well as from the limitations inherent in traditional optimiza-
tion methods. These challenges can hinder the effectiveness,
efficiency, and practical implementation of RA strategies.
Here is a detailed exploration of the key challenges associ-
ated with using conventional optimization approaches for RA
[9], [54]:
� Dynamic network conditions: Wireless networks are

characterized by highly dynamic conditions, with vary-
ing user demands, mobility patterns, and channel con-
ditions. Conventional optimization methods, which typi-
cally rely on static models or assumptions, may not adapt
quickly enough to these changes, leading to suboptimal
RA.

� Non-convex problems: Many RA problems are inher-
ently non-convex, making them difficult to solve using
conventional optimization techniques that are designed
for convex problems. Non-convexity arises due to var-
ious reasons, including interference management and
user fairness considerations, and can lead to local optima
rather than global solutions.

� Real-time constraints: For RA to be effective, it often
needs to be performed in real-time or near real-time.
Traditional optimization methods may require signifi-
cant computation time, especially for complex network
models, which can make them impractical for real-time
applications.

� User fairness: Ensuring fairness among users is a crit-
ical aspect of RA. Conventional optimization methods
may focus on maximizing overall network throughput or
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efficiency without adequately addressing the fairness of
bandwidth distribution among users, leading to dissatis-
faction and degraded service quality for dynamic users.

� Spectrum efficiency: Maximizing SE is essential for
meeting the growing demand for wireless services. Tra-
ditional optimization techniques may not effectively
balance the trade-offs between maximizing spectrum uti-
lization and ensuring QoS, especially in congested or
interference-limited environments.

� Integration with existing infrastructure: Implement-
ing new RA strategies based on conventional opti-
mization approaches may require significant changes
to existing network infrastructure and protocols, posing
challenges in terms of compatibility, cost, and deploy-
ment.

� Cross-layer dependencies: RA decisions can have impli-
cations across multiple layers of the network stack, from
the physical layer up to the application layer. Conven-
tional optimization approaches may not fully account for
these cross-layer interactions, leading to solutions that
are optimal from a narrow perspective but suboptimal in
terms of overall network performance.

To address these issues, numerous researchers have ex-
plored ML as a tool to enhance radio channel conditions,
thereby supporting RA in upcoming wireless networks. Be-
low, we first review some recent centralized ML approaches
for PA and briefly comment on their limitations. We then
discuss some related works fostering the use of FRL for PA.
Finally, we review recent centralized ML-based methods for
BA and introduce a FRL framework to improve network per-
formance and privacy.

A. POWER ALLOCATION
In [135], the authors introduced a Deep-Q-Fully-Connected-
Network (DQFCNet) for multicell PA. The simulation results
demonstrate that DQFCNet significantly improves both con-
vergence speed and stability when compared to traditional
water-filling and Q-learning methods. In [136], an algorithm
based on convolutional neural network (CNN) was devel-
oped to predict and allocate power factors for each user in a
Multi-Input Single-Output (MISO)-NOMA cell. The simula-
tion results show that the proposed approach can improve the
system perform compared to selected benchmark methods in
terms outage probability and bit error rate (BER). In [137], the
authors designed a DNN structure that utilizes the mathemat-
ical model of data rates to enhance the learning of PA policies
in multicell systems. This design incorporates parameter shar-
ing between the dimension reduction network and the update
network within the proposed data-rate based DNN (DRNN),
leveraging permutation equivariance (PE) properties to im-
prove learning efficacy. Simulation results show that the sum
rate achieved by the learned policy can be enhanced with a
given number of training samples, or alternatively, training
complexity can be significantly reduced. In [138], the focus
was on a device-to-device (D2D) network where ML methods
were applied to address power optimization challenges. It

was demonstrated that the ML approach, specifically a feed-
forward neural network (FNN), achieved better performance
compared to selected several benchmark methods in terms of
QoS metrics across different optimization models.

The main contributions of these works, which focus on cen-
tralized ML-based PA, faces several challenges that stem from
the intrinsic characteristics of centralized architectures and the
dynamic nature of wireless environments. These challenges
can impact the effectiveness, efficiency, and practical imple-
mentation of PA strategies. Here are some key challenges
associated with using centralized ML for PA:
� Complexity: Centralized ML models require processing

vast amounts of data from all nodes in the network,
which can lead to scalability issues as the network grows.
The complexity of managing and analyzing this data
in real-time increases exponentially with the number of
nodes and the variability of network conditions.

� Communication overhead: All data generated by end-
points (like sensors, user devices, etc.) must be sent to
the central server. As the number of endpoints grows, the
volume of data transmission increases, which can lead to
congestion in the network and increased latency.

� Power constrains: In systems where endpoints are
battery-operated or have limited power sources, such as
IoT devices, this can be a significant limitation. The
need to transmit all data to a central point can lead to
inefficiencies, particularly if the data has to travel over
busy networks or during peak times, which could result
in bottlenecks. This can limit the applicability of such
models in power-constrained environments.

� Latency concerns: The need to aggregate data at a central
point and then disseminate decisions back to the nodes
introduces latency, which in communication networks
can include over-the-air delay, backhaul delay, and rout-
ing delay. In dynamic environments where conditions
change rapidly, these delays can result in PA decisions
becoming outdated by the time they are implemented.

� Single point of failure: Centralizing the ML model
creates a single point of failure. If the central server
experiences a fault or becomes compromised, the entire
system’s ability to allocate power effectively can be jeop-
ardized, impacting network performance and reliability.

� Privacy and security risks: Centralizing data aggrega-
tion from all nodes raises concerns about privacy and
security. This process can expose sensitive information
to unauthorized access or attacks, making it challenging
to secure data both in transit and when stored.

� Adaptability and flexibility: Adapting centralized ML
models to changes in network topology, user behavior,
or power availability can be cumbersome. Modifying the
model to reflect new conditions or to incorporate new
nodes requires retraining and redeployment, which may
not be feasible in real-time.

� Model generalization: Centralized ML models trained
on data from specific network conditions or configura-
tions may not generalize well to different scenarios. This
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can limit the model’s effectiveness in environments that
differ from those on which it was trained.

To address these challenges, there is growing interest in
decentralized FL approaches, where ML models are trained
locally on the nodes and only model updates are shared,
reducing communication overhead, enhancing privacy, and
improving scalability. Additionally, exploring lightweight FL
models, optimizing data transmission for model training, and
implementing robust security measures are crucial for over-
coming the limitations of centralized ML in PA. Below,
we provide a brief review of some key works on FL-aided
PA to properly set the stage for our contributions in this
paper.

1) FL FRAMEWORK FOR POWER ALLOCATION
The study in [139] introduced a PA method aimed at min-
imizing a loss function while operating within a resource
budget, achieving optimal balance between local updates and
global parameter aggregation. The authors in [140] addressed
FL over cellular networks, focusing on two trade-offs: train-
ing time versus power consumption employing the Pareto
efficiency model, and computation versus communication
training time by optimizing the training accuracy constraint.
In [141], a joint optimization problem was formulated for
training, transmission PA, and client selection to minimize
the loss function. The study in [142] explored FL in wireless
networks, formulating a stochastic optimization problem for
joint UEs selection and PA under finite energy constraints
to maximize throughput. In [143], a cooperative computation
and transmission PA and edge association problem for users
was analyzed under a hierarchical FL framework to minimize
global costs.

While FL can reduce energy consumption during the
parameter updating process, it also incurs significant com-
munication costs owing to numerous UEs and communi-
cation rounds. Nevertheless, achieving additional reductions
in energy consumption remains challenging, particularly in
scenarios involving large state and action spaces influenced
by time-varying radio propagation. The inherent difficulty
in acquiring precise channel state information (CSI) poses
considerable challenges for PA problems. Therefore, the
development of innovative PA techniques and energy conser-
vation methods for intelligent networks is imperative.

FRL-aided PA in wireless networks offers several advan-
tages over traditional FL approaches. It can enhance EE and
spectrum utilization, dynamically adjust user scheduling and
power control to improve system performance, and enable
more effective and efficient PA in future B5G/6G networks.
Additionally, FRL can help reduce latency and ensure sustain-
able operation by optimizing various network performance
indicators, including energy and QoE factors, which are essen-
tial for AI-based applications in complex edge computation
and wireless communication environments.

Below, we provide a brief review of some key works on
FRL for PA and energy consumption to properly set the stage
for our contributions in this paper.

2) FRL FRAMEWORK FOR POWER ALLOCATION
Recent studies suggest employing DRL algorithms to tackle
various optimization challenges in cellular communication
networks [144]. PA is a critical issue, and numerous studies
have applied DRL algorithms to determine the appropriate
transmission power for every device. Some of these studies
employ the DQN method for discrete power levels, while
others employ advanced DRL methods like trust region policy
optimization (TRPO) [145] and deep deterministic policy gra-
dient (DDPG) [146] for PA in multi-cell network scenarios.
Current research investigates the potential of DRL algorithms
for addressing various wireless resource utilization problems,
including optimal PA. However, the optimization problem re-
mains non-convex and challenging due to interference terms
in the SINR denominator.

The non-convexity of the problem adds complexity to
solving the PA issue. Iterative schemes, although capable of
achieving satisfactory network performance, necessitate com-
putationally intensive procedures such as the singular value
decomposition (SVD), bisection method, solving NP-hard
problems, and channel matrix inversion in each communi-
cation round, complicating their execution. Moreover, these
methods need knowledge of the CSI for all devices to allocate
the proper transmission power for every device.

Hence, finding a nearly optimal solution becomes crucial to
ensure efficient performance and high network quality despite
having incomplete knowledge of the dynamic environment.
In this scenario, employing MARL allows a network entity
to learn a more stable policy compared to single-agent RL
and DRL, which operate without leveraging information from
other network entities. This transforms the problem into a
MARL framework [56], where each BS acts as an independent
agent determining transmission PA for its connected users in
each time slot. Through FRL-based PA methods, these agents
fine-tune their transmission power levels based on feedback
regarding throughput and transmission powers of other users
and neighboring BSs. Hence, the FRL framework emerges as
an effective approach to address the PA problem.

Fig. 11 illustrates the variation of EE with respect to the
transmission power of each UE for different frameworks. It
can be seen that with the increase of the transmission power,
the EE performance first increases and then decreases af-
ter reaching the maximum. Fig. 11 clearly shows that the
proposed FRL framework consumes lower power compared
to MARL and FL frameworks. This advantage stems from
the FRL framework’s ability to allocate the optimal trans-
mit power for each UE in scenarios with a large number of
users. This significantly reduces power consumption of each
UE while maintaining user desired data rate, ultimately im-
proving EE. The figure demonstrates that the proposed FRL
framework achieves higher EE without requiring additional
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FIGURE 11. Impact of varying transmission power on EE across different
frameworks.

transmission power. Furthermore, it is worth noting that the
proposed FRL framework can substantially improve the sys-
tem performance in terms of EE.

3) FRL FRAMEWORK FOR TACKLING ENERGY LIMITATIONS IN
UE
The FRL framework concerning energy consumption presents
significant challenges when deployed in wireless networks,
primarily due to the energy constraints imposed on UEs [147],
[148], [149], [150], [151], [152], [153], [154]. These UEs
encompass both mobile and IoT UEs, typically relying on bat-
tery power, and must carefully manage their energy utilization
during both local model computation and model updates with
the central server. This update process involves broadcasting
the updated global model from the central server and trans-
mitting the modernized local model to the central server.

In order to attain a predetermined global accuracy target for
the training model, UEs are entrusted with the responsibility
of carefully apportioning their limited energy resources be-
tween computational and transmission tasks. It is worth noting
that this allocation directly impacts the overall training time,
encompassing both transmission and local computation dura-
tions. Consequently, there exists a delicate equilibrium to be
established, considering the allocation of energy across com-
putation, transmission, and the ensuing training time. More-
over, the computational process itself faces constraints related
to UE resources, including limitations like the maximum CPU
cycles per second. Simultaneously, the transmission phase is
governed by UE capabilities, i.e., the maximum data transmis-
sion rate, as well as the available transmission power.

In a typical FRL system, there is a synchronized compu-
tational phase wherein all UEs are required to successfully
solve their respective local problems up to a predetermined
level of local training accuracy within a specified timeframe.
Following this, a communication phase is initiated. This par-
ticular implementation approach has the capability to utilize
channel access methods such as time division multiple access
(TDMA). The trade-off within training time and the overall

power consumption of UEs in this synchronized execution
has been examined in [140]. In this approach, which deviates
from the conventional FL scheme conducting a set number
of local communication rounds, UEs continue communication
rounds until they attain a predetermined level of local training
accuracy. In the synchronized execution approach, it has been
shown, especially for loss functions that exhibit strong con-
vexity, that there exists an upper limit on the total number of
global communication rounds. This upper limit is expressed as
O(log 1

β )

1−α
[148], [149] and is dependent on both the local accu-

racy (α) and global accuracy (β ), as explained in [149]. This
implies that, when aiming for a predefined global accuracy
target, there exists an inverse relationship between the number
of transmissions to the central server and the local accuracy.
This, in turn, determines the count of local communication
rounds.

By utilizing dynamic computational resources, i.e., the
ability to adjust CPU cycles per second, and dynamic trans-
mission radio resources, i.e., modernizing upload data rate,
the network model can achieve reduced power consumption
and improved training times, particularly wherein CSI is ac-
cessible [148], [149]. Moreover, by making efficient choices
regarding local accuracy, we have the flexibility to fine-tune
the balance between local computation and the number of
transmissions, leading to reduced energy usage and enhanced
training times [148], [149]. Alternatively, we can explore
energy-conscious scheduling, selectively engaging UEs with
sufficient computational capacity and favorable channel con-
ditions for global model updates, even if this results in a
slight reduction in the training model’s accuracy [147], [152].
Table 6 presents a discussion of various methods for address-
ing the challenge posed by energy-constrained UEs within the
FRL framework, along with relevant references.

B. BANDWIDTH ALLOCATION
There is increasing interest in utilizing advanced techniques
such as ML, which can provide more adaptive, scalable,
and efficient solutions for BA. Centralized ML approaches
are more capable of handling the dynamic, non-convex, and
real-time aspects of BA in modern wireless networks com-
pared to traditional optimization methods [155], [156], [157],
[158], [159], [160], [161], [162], [163], [164], [165], [166],
[167]. Although initial efforts focused on centralized ML ap-
proaches, recent shifts have favored FRL due to its numerous
benefits within wireless network contexts. Below, we provide
a brief review of some key works on centralized ML-aided BA
to properly set the stage for our contributions in this paper.

1) CENTRALIZED ML TECHNIQUES FOR BANDWIDTH
ALLOCATION
In [155], the liquid state machine (LSM) algorithm was in-
troduced to enhance Wi-Fi multiple access performance in
Unmanned Aerial Vehicle (UAV)-based LTE networks. It for-
mulates an optimization problem integrating user association,
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TABLE 6 Strategies to Mitigate the Challenges Posed by Energy Constrained UEs Within the FRL Framework

RBs allocation, and content caching to minimize transmis-
sion overhead. Compared to traditional learning algorithms
like Q-learning, LSM reduces convergence time by up to
20%. Meanwhile, in [156], the DQN algorithm was applied
to jointly optimize user association and beamforming in sym-
biotic radio networks (SRNs), aiming for spectrum, energy,
and infrastructure-efficient communications in IoT-cellular
networks. This DRL algorithm performs competitively with
the optimal user association policy, which requires perfect
real-time information.

The authors in [157] presented a model-free DRL frame-
work to address the dynamic BA challenge within a weighted
fair queueing (WFQ) system. This WFQ-DRL framework en-
ables the system to derive a control policy that effectively
minimizes both average delay and packet loss rate, despite
limited bandwidth resources. Trained controllers show su-
perior performance over traditional rule-based policies, such
as the longest connected queue (LCQ), especially under real
traffic conditions. The WFQ-DRL framework optimizes band-
width use in telecommunication networks with limited band-
width, complex traffic patterns, and finite buffering capacities,
aligning well with modern routers’ operational realities.

In [158], a DRL approach utilizing single-agent actor-critic
was proposed for channel assignment in NOMA-based B5G
networks. It demonstrated superior performance in terms of
sum rate and spectral efficiency compared to traditional meth-
ods. Meanwhile, in [159], the DQN method was introduced
for cooperative spectrum sensing in CR, enabling spectrum
sensing for potential information transmission while avoiding
interference with primary users. This approach achieves faster
convergence and improved reward performance compared
to traditional RL methods employing ε -greedy exploration.
Lastly, in [160], researchers investigated single-agent DQN
and DDQN based DRL methods for dynamic RBs manage-
ment in cellular networks. These methods enable sensing of

discrete frequency channels for potential information trans-
mission, allowing the system to learn to avoid collisions and
achieve near-optimal performance even in complex scenarios.

In [161], a deep actor-critic-based DRL model was pro-
posed for dynamic multi-channel access in cellular networks,
addressing channel selection. This framework demonstrates
competitive performance across 16 channels and superior per-
formance with 32 and 64 channels. Meanwhile, in [162],
a DDQN-based DRL model was introduced for distributed
spectrum access in B5G networks. It aims to maximize user
throughput by prioritizing users with the highest number
of packets in their queues, ensuring fair BA. Additionally,
in [163], an recurrent neural network (RNN)-based DQN
model was presented to enhance channel utilization and
reduce packet loss rates in vehicular communications, out-
performing existing algorithms. In [164], a DQN-based DRL
method was proposed for RB assignment in multi-beam satel-
lite communication systems, improving traffic capacity and
spectral efficiency while reducing blocking probability com-
pared to other allocation algorithms. Furthermore, in [165],
a Q-learning-aided RL model was explored for LEO satel-
lite communication systems. It focuses on optimizing the
joint distribution of fixed channel pre-allocation and dynamic
channel scheduling to enhance channel resource efficiency.
Lastly, in [166], an MEC-based vehicular network utilized a
DDPG-based DRL algorithm for joint spectrum, computing,
and storage RA, achieving high satisfaction ratios for delay
and QoS with the proposed RBs management strategies.

Finally, in the aforementioned works focused on centralized
ML-based methods for BA in various promising technologies.
Nevertheless, conventional DRL-based RA is typically not
scalable or manageable, making it difficult for DRL methods
to converge. Consequently, several new research challenges
emerge in the context of the conventional DRL process, as
explained below.
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Challenge-1: At the start of each iteration in the con-
ventional DRL process, the BS must first handle spectrum
allocation duties, such as selecting UE and allocating RBs,
which involve solving both convex and non-convex optimiza-
tion problems. However, the reliability and dependability of
these links can be severely compromised in wireless networks
due to shadowing and multi-path fading, preventing some UEs
from reliably transmitting their CSI to the BS through direct
links. Consequently, the BS may struggle to efficiently utilize
the available RBs in such scenarios.

Challenge-2: Considering the potential instability of wire-
less links and the constraints on bandwidth, the swift conver-
gence of the DRL process might be compromised due to the
reduced accuracy of the uploaded local models. Consequently,
the efficacy of DRL predictions may decline since numerous
local models could contain out-of-date CSI at the BS.

The FRL framework represents a revolutionary technol-
ogy for addressing wireless RA and management in mod-
ern wireless networks. It facilitates a global approach to
solving complex optimization problems without requiring
data sharing among BSs; instead, each BS independently
resolves its optimization problem and shares results with
neighboring BSs. This approach is particularly beneficial
for managing RBs in wireless networks, addressing intricate
optimization challenges like UE selection and beamform-
ing for extensive state and action spaces. Consequently,
it markedly decreases communication overhead and traffic
delays.

2) FRL FRAMEWORK FOR BANDWIDTH ALLOCATION
The above-mentioned challenges have spurred the develop-
ment of an architecture in which local parameters can be
trained utilizing local information, such as CSI. These local
parameters can be integrated into a global model to enable
devices to learn from each other, thus increasing the user data
rate. A widely recognized method to achieve this involves av-
eraging distributed networks to form a global FL model [57],
[168], [169], [170], [171], [172].

Fig. 12 illustrates the FRL framework, which is specifically
designed to allocate communication bandwidth for each UE.
This approach enhances the user throughput and SE. Unlike
supervised learning, unsupervised learning, and DRL methods
that need large datasets and predefined network models, the
FRL framework trains local parameters using CSI obtained
from each UE’s interaction with the environment. Each net-
work entity relies solely on its local observations to create
action decisions, eliminating the need for information ex-
change between entities. This reduction in communication
overhead significantly decreases the computation offloading
burden on the UEs.

In this context, we present leveraging DRL to address
the combinatorial optimization problem in a decentralized
manner. Next, we transform the challenge of joint channel
selection and BA as a multi-agent DRL problem. Each M2M
pair acts as an independent agent, autonomously executing

FIGURE 12. FRL framework for BA.

FIGURE 13. Impact of the number of RBs on EE for different frameworks.

and refining its BA strategy. We utilize a common FL al-
gorithm, specifically FedAvg [60], for the model iteration.
FedAvg organizes the training of a global model into rounds,
wherein each round involves updating a local model at each
multi-user agent.

In Fig. 13, we plot EE versus the number of RBs for
different frameworks. We consider a total system bandwidth
of 4MHz divided into 20 RBs and a total of 20 UEs in
this plot. Each RB has a bandwidth of 200 kHz. Examin-
ing the EE achieved by the three frameworks (FRL, MARL,
and FL), we observe that EE increases with the number of
RBs. This is because a larger system bandwidth allows for
higher throughput and, consequently, higher EE. The reason
is that when the number of UEs increases, the proposed
FRL framework has more flexibility in choosing RBs. We
can therefore conclude that the proposed FRL framework
is more energy-efficient than existing schemes like MARL
and FL.
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TABLE 7 Strategies to Mitigate the Challenges Posed by Limited Wireless Bandwidth Within the FRL Framework

3) FRL FRAMEWORK FOR EFFICIENT UTILIZATION OF
LIMITED WIRELESS BANDWIDTH
FRL necessitates periodic exchanges of model parameters,
and these models can be exceedingly large. Consequently,
the primary concern in real-world FRL implementation is
the substantial communication burden, particularly for UEs
with limited wireless bandwidth. For example, the VGGNet
design boasts about 138 million parameters (equivalent to
4264 Mb) [168], while UEs often have restricted wireless
resources. In ideal radio channel conditions, the maximum
wireless uplink data rate is 75 Mb/s [169]. Transmitting VG-
GNet in each FRL communication round over a wireless
network would take approximately one minute under ideal
radio channel conditions. This inherent wireless communica-
tion bottleneck in FRL hampers the computational complexity
of DL models and user engagement. Moreover, disparities in
network capacity among users can lead to performance bottle-
necks in FRL framework. Hence, the effective implementation
of FRL hinges on communication-efficient constructs capable
of accommodating wireless resource variations among UEs.
Numerous approaches need to be investigated for mitigating
the communication burden in FRL networks. Table 7 presents
a discussion of various methods for addressing the challenge
posed by limited wireless bandwidth within the FRL frame-
work, along with relevant references.

C. LESSON LEARNED
This section discussed the FRL framework for RA in 6G
networks to improve performance and privacy by leverag-
ing local resources at the UEs. Existing ML techniques,
particularly RL approaches, offer a promising avenue for
addressing enduring and challenging optimization problems.
This is primarily due to their advanced decision-making ca-
pabilities, especially in dynamic scenarios characterized by
uncertainty [173]. Motivated by the success of RL in handling
NP-hard and nonconvex problems, we draw inspiration from
RL approaches to reevaluate longstanding PA challenges in
wireless networks. RL has proven its superiority and potential
in wireless communication networks [174], but its deployment

typically assumes a centralized system with global informa-
tion, which may not be practical in reality [175] and may face
feasibility challenges [176]. To overcome the constraints of
observing only local information, distributed MARL, has been
proposed. For example, in [177], the authors considered each
M2M link as an agent, creating a multi-agent communication
system in a distributed manner. Nevertheless, the learning
quality and stability of the FRL system encounter limitations
due to the neglect of strategic interactions among UEs or link
agents, especially with a growing number of agents. This issue
needs thorough investigation.

Implementing a FRL framework for PA in wireless net-
works, while ensuring data privacy, introduces a set of
challenges. These challenges arise from the need to balance
efficient PA with the imperative to protect sensitive informa-
tion inherent in the data used for learning. PA decisions can
reveal sensitive information about network traffic patterns,
user behavior, and device locations. Ensuring that the learn-
ing process does not inadvertently expose this information
to other agents or external entities is crucial. To address this
challenges, the implementation of the FRL framework for PA
requires a careful design that incorporates advanced cryp-
tographic techniques, robust privacy-preserving algorithms,
secure aggregation protocols, and effective anomaly detection
mechanisms. Additionally, ongoing research and collabora-
tion between academia, industry, and regulatory bodies are
essential to develop secure, efficient, and scalable FRL frame-
works for PA.

In [178], the authors proposed a multi-agent DRL approach
to allocate radio resources for both unicast and broadcast
wireless applications without relying on global knowledge
of the CSI. Similarly, in [179], the authors designed an
energy-efficient BA protocol based on DRL to maximize
the number of admissible service requests in a wireless net-
work and conserve the communication bandwidth. However,
these studies require centralized training on data collected
from all participating UEs to obtain robust learning models.
Since the data is typically decentralized among UEs, cen-
tralized data aggregation and training would incur significant
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communication overhead and raise privacy concerns. The
FRL framework can induce the training instability problem
induced by the cooperative multi-agent environment for opti-
mal BA. Therefore, robust FRL algorithms for BA should be
investigated to address the issue.

Addressing user incentive issues within a FRL framework
for BA presents several challenges. These challenges stem
from the need to motivate user participation in the learn-
ing process while ensuring fair and efficient BA across the
network. Ensuring that the incentive mechanism promotes
fairness in BA among users. Users contributing more valu-
able data or computational resources might expect higher
rewards, which could lead to disparities in BA. Addressing
these expectations while maintaining equitable network ac-
cess is challenging. To overcome these challenges, the design
and implementation of incentive mechanisms within the FRL
framework for BA require a multidisciplinary approach that
combines insights from network theory, and privacy protec-
tion. Moreover, continuous testing, feedback, and adaptation
are essential to refine the incentive mechanisms and ensure
they effectively motivate user participation while achieving
fair and efficient BA.

VII. INTERFERENCE MITIGATION
IM is a critical concern in M2M networks, particularly when
reusing the same RBs. To prevent degradation in successive
interference cancellation (SIC) performance with increasing
average data rates, it is essential to balance the traffic load
for user-cell association and PA [180], [181], [182], [183],
[184], [185], [186], [187], [188], [189], [190], [191], [192],
[193], [194], [195], [196], [197], [198], [199], [200], [201],
[202], [203], [204], [205]. Similar to emerging technologies
such as millimeter Wave (mmWave), ultra-dense networks
(UDNs), beamforming, reconfigurable intelligent surfaces
(RISs), satellite, terahertz (THz), semantic, and NOMA com-
munication, significant efforts are being made to develop IM
methods to enhance the performance of next-generation cel-
lular networks.

Below, we first review some recent conventional ap-
proaches for IM and briefly comment on their limitations.
We then discuss some related works promoting the use of
centralized ML for IM. Finally, we review recent works on
FRL-based methods for IM and introduce a FRL framework
that provides additional flexibility in implementing distributed
learning for IM.

A. CONVENTIONAL OPTIMIZATION APPROACHES FOR
INTERFERENCE MITIGATION
Current research on IM in cellular networks can be classified
into four categories: i) time-domain, ii) frequency-domain,
iii) transmission power optimization, and iv) spatial-domain
methods. Frequency-domain approaches, such as fractional
frequency reuse and soft frequency reuse, focus on achiev-
ing frequency reuse by using orthogonal polarization states
for transmission in networks on the outskirts of a central-
ized network. In [183], [184], the authors proposed reducing

co-channel interference (CCI) by addressing a combined
scheduling issue based on dynamic fractional frequency reuse,
involving more than two schedulers operating on different
time scales. The authors in [185] analyzed a decentralized soft
frequency reuse scheme that improves the average cell data
rate at the cell edge without requiring data exchanges among
small BSs. However, frequency-domain IM approaches are
inadequate when wireless resources are limited.

In [186], the authors examined the asymptotic and finite
frame length performance of a frame asynchronous coded
slotted ALOHA (FA-CSA) system for uncoordinated mul-
tiple access. In this system, users join on a slot-by-slot
basis according to a Poisson random process and, unlike in
standard frame synchronous CSA (FS-CSA), they are not
frame-synchronized. FA-CSA generally outperforms FS-CSA
in both the error floor (EF) and waterfall regions. Additionally,
FA-CSA demonstrates superior delay properties compared to
FS-CSA. In FA-CSA, collisions occur when multiple users
attempt to transmit in the same slot. The FA-CSA typically
handles collisions using simple retransmission strategies,
which may not be efficient in highly congested networks to
mitigate interference. In [187], the authors provided an ex-
tensive literature review of state-of-the-art hybrid automatic
repeat request (HARQ) techniques and discuss their integra-
tion into various wireless technologies. The review offers
insights into the advantages and disadvantages of different
automatic repeat request types, as well as open problems
and future directions. Traditional HARQ mechanisms do not
dynamically adjust transmission parameters, such as modu-
lation and coding schemes, based on time-changing channel
conditions. This can lead to inefficient use of bandwidth and
power, as these parameters may not be optimally allocated
to varying communication channel conditions for mitigating
interference.

In [188], a game theory approach was introduced to op-
timize transmission PA for each device in D2D networks to
mitigate interference. However, this solution necessitates ad-
ditional data exchanges and must account for dynamic radio
channel conditions, which diminish its efficacy. Meanwhile,
authors in [189] proposed a game theory-based method for
joint radio resource and PA in D2D networks, enhancing per-
formance for both cellular UEs (CUEs) and D2D UEs (DUEs)
through a mixed game approach aimed at reducing aver-
age power consumption. Additionally, in [190], researchers
investigated a game theory-based PA method for NOMA net-
works to mitigate CCI. Despite the potential improvements in
network performance offered by game theory and bisection
algorithms, solving consecutive decision problems remains
challenging and impractical due to prolonged convergence
times.

Proper network planning, such as mounting antennas at
lower altitudes or adjusting the down-tilt of the victim or
aggressor to balance CCI levels, can also mitigate CCI but
may decrease cell coverage and increase deployment costs.
In the spatial domain, dynamic solutions like beam nulling,
interference rejection combining, or beam selection can be
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applied by the victim. The authors in [191] proposed interfer-
ence management algorithms for large-scale MIMO networks
over backhaul links and joint downlink transmission using
zero-forcing (ZF) beamforming to provide the same number
of spatial degrees of freedom per user. However, this approach
may not be feasible for real-time wireless applications due to
the high cost of adding extra antennas at each cell site and the
stochastic nature of the wireless channel.

Conventional optimization-based IM methods are unsuit-
able for mitigating interference in 6G networks. By leveraging
global network insights, centralized ML can optimize RA
across the network better than conventional optimization
schemes. This includes dynamically adjusting bandwidth,
power levels, and channel assignments to minimize inter-
ference and improve overall network quality and capacity.
Below, we review some key works on centralized ML for IM
to properly set the stage for our contributions in this paper.

B. CENTRALIZED ML TECHNIQUES FOR INTERFERENCE
MITIGATION
In [192], an IM scheme utilizing a distributed PA method
based on Q-learning for each UE was proposed. However,
the practicality of this solution is questionable due to its as-
sumption that a small BS serves only one user. Meanwhile,
authors in [193] examined a RL-based intelligent handoff
strategy with information dissemination to mitigate handoff
overhead. They also investigated reinforcement-aided edge
caching across diverse network configurations, including fixed
access points, fog-enabled paradigms, cooperative schemes,
and aerial and ground vehicles. The research illustrated
that integrating learning with edge caching yields significant
advantages, surpassing traditional optimization methods by
autonomously and dynamically meeting service requirements
online. Nevertheless, these methods necessitate radio signal-
ing exchanges among small BSs or macro BSs, which are
undesirable in intelligent networks. Moreover, several ap-
proaches overlook transmission power control for each UE or
only consider single-cell, single-user scenarios. Hence, devel-
oping a fully distributed transmission PA scheme is crucial
to minimize radio signaling exchanges among small BSs,
thereby reducing interference and enabling intelligent net-
work operations.

In [194], a PA-based time-domain CCI mitigation method
employing a Q-learning approach in wireless networks was
proposed to improve user throughput. In [195], a new RL-
based framework utilizing an adaptive multi-thresholding
policy was proposed to efficiently mitigate interference for
dynamic scenarios without prior knowledge about the in-
terference links. As the time-domain method for dynamic
environments increases the complexity of the IM approach,
such as typical joint RBs and PA algorithms, it needs greater
processing capabilities of the BSs, thus impacting network
performance.

In [196], the authors introduced an algorithm for mitigating
narrow-band interference (NBI) and wide-band interference
(WBI) utilizing a deep residual network (ResNet).

Subsequently, a detection model based on a conventional
CNN framework was developed to ascertain the presence of
interference in echo signals. The efficacy of this mitigation
algorithm was validated through simulations and on synthetic
aperture radar (SAR) data derived from terrain observation by
progressive scans (TOPS) mode. Moreover, the performance
comparison with notch filtering and eigensubspace filtering
demonstrated the superiority of the proposed IM algorithm.

In [197], the authors proposed a novel real-time nonlinear
self-interference cancellation strategy, denoted as DL-based
self-interference cancellation (DSIC), to facilitate in-band
full-duplex (IBFD) wireless communication. The study ad-
dressed three critical questions: 1) the method for collecting
synchronized wireless channel data for training the DL model,
2) the approach to modeling a wireless channel using a DNN,
and 3) the strategy for implementing an open-source software-
defined radio (SDR) IBFD wireless framework in real-world
scenarios.

In [198], the authors introduced an innovative algorithm
based on RNN aimed at reducing interference in environ-
ments using frequency modulated continuous wave (FMCW)
and Orthogonal Frequency Division Multiplexing (OFDM)
radar systems. By integrating an attention module into the
existing gated recurrent unit (GRU) model, the enhanced ap-
proach more effectively discerns the relationships within time
sequences. This advanced model not only eliminates interfer-
ence but also restores the original signal, outperforming the
current leading methods in this domain.

In [199], the authors proposed a novel strategy for radar
IM, involving the training of a CNN-based autoencoder to
denoise range-Doppler (RD) images affected by interference.
The proposed neural network shows significant improvement
with respect to SINR compared to other state-of-the-art miti-
gation techniques, while better preserving phase information
of the spectrum.

In [200], the authors introduced a new multi-cell cluster-
free NOMA framework, where coordinated beamforming
and cluster-free SIC are jointly optimized to mitigate both
intra-cell and inter-cell interference. To address the complex-
ities of this mixed integer nonlinear programming (MINLP)
problem, a novel communication-efficient distributed auto-
learning graph neural network (AutoGNN) architecture was
developed. This architecture autonomously adjusts the GNN
structure, reducing computational and communication de-
mands. Numerical results highlighted the superiority of the
cluster-free NOMA approach over traditional cluster-based
methods in multi-cell environments and demonstrated the
computational and communicational advantages of AutoGNN
over existing algorithms.

In [201], the authors proposed a distributed DRL algorithm
for BSs to alleviate inter-cell interference in multi-cell net-
works, relying solely on limited inter-cell information sharing,
power measurements at the target cell, and user coordinates.
Simulations indicated that this distributed approach closely
matches the effectiveness of centralized techniques, with
spectral efficiency increasing as the number of cells grows.
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TABLE 8 A Summary of Works on Centralized ML Methods-Based IM

In [202], the authors formulated a long short-term memory
(LSTM)-based soft cooperative fusion model to capture the
spatial and temporal dependencies in spectrum detection data.
This model significantly enhances performance for secondary
users (SUs) located near low-cost spectrum sensors (LCSS),
suggesting that SUs can leverage cooperative prediction to op-
timize energy consumption and enhance cognitive capabilities
without direct environmental sensing.

In [203], the authors employed a generative adversarial net-
work (GAN) as an innovative interference mitigation strategy
for the fast Fourier transform of fast-time samples (RFFT
spectrum) in automotive radar systems. This approach sig-
nificantly boosts the signal-to-interference-plus-noise ratio
(SINR) and maintains robustness in complex disturbance sce-
narios beyond the training dataset’s scope.

In [204], the authors discussed deep unfolding meth-
ods, including the Analytical Learned Iterative Shrinkage
Thresholding Algorithm (ALISTA) and the Analytic Learned
Fast Iterative Shrinkage Thresholding Algorithm (ALFISTA).
These methods reconstruct corrupted time-domain samples by

exploiting the sparsity attribute of radar targets in the range-
Doppler plane, utilizing all available uncorrupted data. While
ALFISTA demonstrates superior performance, ALISTA is ad-
vantageous under constraints of limited computational power
and memory.

In [205], the authors addressed the adaptability challenges
in current DL-based methods for wireless interference identi-
fication using meta-learning. The study simulated a practical
scenario where the interference identifier must adapt to un-
familiar signals from new technologies and frequencies with
minimal samples. Comparative performance evaluations be-
tween a meta-learning model and a traditional DL model in
a coexistence system were conducted to assess the impact
of a meta-learning-based solution for wireless interference
identification.

Table 8 outlines the limitations of various centralized ML-
based IM methods. Therefore, developing new distributed
ML-aided IM techniques for intelligent networks that aim to
maximize the sum rate is crucial. Unlike the current predom-
inant approach that utilizes an infinite state and centralized
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FIGURE 14. FRL framework for mitigating interference.

method to tackle the IM problem, the FRL framework is cru-
cial for addressing stochastic optimization problems with ex-
tensive state and action spaces. FRL minimizes transmission
power per UE, decreases CCI, confirms individual user de-
sired throughput, and enhances overall system performance.
This includes accommodating more UEs and decreasing the
outage ratio in the proposed model [206], [207], [208], [209],
[210], [211].

C. FRL FRAMEWORK FOR INTERFERENCE MITIGATION
Existing MARL methods depend on a combined reward from
all agents to accomplish tasks in an uncertain radio propaga-
tion environment, where each agent receives a unique reward
and shares it with others. However, this method faces practical
challenges in real-world wireless applications because sharing
observations and rewards raises privacy and security concerns.
Within the FRL framework, agents share their local obser-
vations and rewards with one another, subsequently updating
their strategies to maximize long-term local rewards. MARL
can be described as a tuple consisting of sets of states for
all agents, observation space, a group of actions, transition
function, reward function, and discounting factor. The ob-
jective of the proposed network is to optimize the combined
reward, calculated as the sum of each agent’s reward weighted
by its importance. The FRL framework is depicted in Fig. 14.
The proposed model utilizes SINR as a metric for predict-
ing channel quality, incorporating factors like additive white
Gaussian noise (AWGN), transmission PA for each UE, and
CCI among concurrent M2M pairs. Furthermore, the model

FIGURE 15. CDF of the interference power for different frameworks.

determines the data rate by performing actions to obtain re-
wards for reducing interference, based on a dynamic RB
allocation strategy and UE selection [59].

Additionally, a well-trained global model, developed from
local learning samples, can accurately predict optimal chan-
nels for users across various channel states. This effectiveness
extends to newly joined users as long as similar channel states
are encountered in the local training samples. In the FRL
mechanism, each user undertakes minimal training with local
samples, avoiding the need for individual RL model training.
Compared to centralized RL, global aggregation significantly
reduces users’ computing requirements, making it more suit-
able for mobile users engaged in dynamic spectrum access to
mitigate interference.

Fig. 15 illustrates the cumulative distribution function
(CDF) curves of interference power for various frameworks.
The figure indicates that the proposed framework experi-
ences lower interference compared to the other frameworks,
namely MARL and FL, which suffer from more interfer-
ence in the network. This is beacuse for a large number
of UEs in the proposed FRL framework, most UEs utilize
the proper optimal transmission power, thereby mitigating
interference.

D. INTERFERENCE MITIGATION IN DYNAMIC WIRELESS
CHANNELS USING FRL
Another significant obstacle in the deployment of FRL over
cellular networks is the impact of radio channel character-
istics and their dynamic fluctuations on FRL performance.
Unfavorable radio channel conditions can lead to inaccura-
cies or failures in uploading the updated model parameters.
For example, inaccuracies in CSI estimation, quantization of
feedback information, signal acquisition delays in multi-path
fading radio channels, and similar factors can result in inac-
curacies in the obtained updated model by UE or the central
server [206]. In real-world implementations where wireless
channel noise is an inherent component of the transmitted
model, this can prolong the training process, particularly for
models that are not resilient to noise, i.e., DNN [207]. This
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TABLE 9 Strategies to Mitigate the Challenges Posed by the Dynamic Fluctuations of Wireless Channel to Mitigate Interference Within the FRL Framework

results from the fact that the UE necessitates a higher trans-
mission power, which in turn leads to increased interference
among concurrent communication pairs.

Furthermore, radio channels can render the transmitted in-
formation of the modernized model undetectable and result in
its loss. In cases where an upload fails, waiting for retrans-
mission may not be efficient, especially given that the FRL
method is inherently iterative and can incorporate the update
in subsequent global model transmissions. Additionally, due
to the characteristics of training models, it may even be advan-
tageous to randomly dispose of the UE’s modernized model
parameters as a measure to preclude overfitting [208]. How-
ever, wherein the number of failure radio signal transmissions
accumulates due to a decline in the SINR, the FRL algorithm
forfeits crucial information about the UE’s data samples and
their computations. Consequently, in order to achieve a pre-
determined level of training accuracy, it becomes necessary
to execute more global model iterations to retransmit the lost
data sample information, ultimately prolonging the training
process.

Addressing the challenges of failure signal transmissions
is crucial. In cases where networks suffer from failure sig-
nal transmissions, one effective approach is to modify the
main loss function through introducing a regularizer. This can
help mitigate the impact of statistically known radio chan-
nel properties, such as quantization errors, to some extent
and enhance the training efficiency [206]. Additionally, in
the context of the objective loss functions is strictly convex,
mitigating the effects of failure signal transmission in FRL
over cellular networks can be achieved by scaling the trans-
mission SINR. This can be accomplished through methods
like diversity combining or dynamic transmission power ad-
justment [209]. For cellular networks prone to failure signal
transmissions due to factors like AWGN and interference, it is
advisable to employ channel-conscious scheduling strategies.
These policies allocate communication resources preferen-
tially to UEs with better radio channel conditions, thereby
optimizing the training process. This approach is particularly
beneficial because UEs with superior radio channel conditions
can compensate for the interfering signal information from
other UEs [210]. Table 9 presents a discussion of various
methods for addressing the challenge posed by the dynamic
fluctuations of wireless channel to mitigate interference within
the FRL framework, along with relevant references.

E. LESSON LEARNED
This section discussed the FRL framework for IM to meet
the high demand while enhancing the QoS. The authors
of [212], [213] addressed the spectrum access problem us-
ing a distributed game-theoretic stochastic learning method
without information interactions. The concept of adjusting the
probability of each action based on individual action-reward
experiences after each iteration is intriguing. However, their
methods are not suitable for solving our fully distributed PA
problem, given the continuous action space and the proba-
bility of a specific action being zero. Due to the stochastic
nature of the radio channel and user arrival process, the adjust-
ment of power for IM in intelligent wireless networks poses
a sequential decision problem within the realm of stochastic
optimization for the FRL framework [214]. Fortunately, there
is a need to investigate and address the challenges of solving
sequential decision problems in complex dynamic radio envi-
ronments for FRL-based IM.

The robustness of optimization models for IM problems in
communication networks has been an under-explored area.
Most existing algorithms for solving robust optimization
problems are centralized [215], making them unsuitable for
IM problems that require distributed solutions. FRL with
distributionally robust optimization (DRO) addresses this
challenge by designing a communication strategy that lever-
ages DRO for IM, allowing control over gradient bias. This
aspect should be further investigated to mitigate interference
in wireless networks.

VIII. COMMUNICATION MODE SELECTION
The communication modes in M2M networks include direct
mode (i.e., M2M mode), indirect mode (i.e., traditional cellu-
lar communications), and hybrid mode. These modes are used
to deliver various IoT applications, i.e., crowd sensing and
video streaming. UEs requiring frequent access to the internet
or computing servers with massive capacity for M2M commu-
nications utilize these modes [216], [217], [218], [219], [220],
[221], [222], [223], [224], [225], [226], [227], [228], [229],
[230], [231], [232], [233], [234], [235], [236]. To fully exploit
the potential of underlaid M2M communications based on the
communication mode selection process, it is crucial to provide
the appropriate resources for each UE using the RA scheme
and to design an efficient ML-based resource utilization policy
that mitigates interference.

VOLUME 5, 2024 1429



DAS ET AL.: FEDERATED REINFORCEMENT LEARNING FOR WIRELESS NETWORKS: FUNDAMENTALS, CHALLENGES AND FUTURE RESEARCH TRENDS

Below, we first review some recent conventional ap-
proaches for communication mode selection and briefly com-
ment on their limitations. We then discuss some related works
fostering the use of centralized ML for CMSM. Finally, we re-
view recent FRL-based methods for the communication mode
selection process that can further improve network perfor-
mance and privacy.

A. CONVENTIONAL OPTIMIZATION APPROACHES FOR
COMMUNICATION MODE SELECTION
A location-aware communication mode selection mechanism
and RB allocation strategy for M2M networks is proposed
in [226], [227]. Simulation results show that this approach
significantly enhances system performance by increasing per-
user throughput and reducing the traffic load on BSs. In [228],
a novel power control mechanism based on location-aware
communication mode selection using the water-filling algo-
rithm was presented to reduce interference in M2M networks.
Extensive simulations demonstrated the performance of this
mechanism compared to selected benchmark algorithms.
In [229], the authors described a security-critical message
of 1.2 kilobytes requiring a maximum traffic delay of 5 ms
and a dependability of 99.999%. However, conventional RA
methods in radio networks struggle to meet such diverse QoS
requirements, especially for URLLC.

Transmission mode selection is crucial due to its im-
pact on wireless resource utilization and the behavior of the
wireless propagation environment. Traditional optimization
algorithms, such as the water-filling algorithm, heuristic al-
gorithms, bisection algorithm, and NP-hard algorithms, have
been used to address transmission mode selection issues.
However, these methods often assume M2M communications
occur in a dedicated resource pool, while severe interference
between UEs in the shared resource pool remains a chal-
lenge. To tackle this, a ML algorithm can be employed, but
the dynamic nature of wireless networks requires continu-
ous updates to the M2M pairs’ transmission modes, making
highly complex algorithms less suitable. Therefore, innovative
centralized ML-assisted transmission mode selection-based
RA methods are crucial for ensuring latency and reliability
requirements. Below, we review key works on centralized
ML for transmission mode selection to set the stage for our
contributions in this paper.

B. CENTRALIZED ML TECHNIQUES FOR COMMUNICATION
MODE SELECTION
To reduce the computational complexity and overhead asso-
ciated with acquiring complete CSI in traditional methods,
adopting AI methods for efficient M2M communications is
essential. In [230], the authors explored a DRL-based RA
method for M2M networks, where each M2M source acts as
an independent agent making decisions based on local obser-
vations of radio RBs. This DRL method enables M2M users
to autonomously select available channels and power levels
to maximize SE while minimizing interference, significantly
improving BA and power control.

In [231], the authors described a mode selection-based joint
RBs management and PA problem using a RL algorithm for
various network load scenarios, including light and heavy
network loads, to enhance UE QoS. In [232], the authors
proposed a distributed technique for communication mode se-
lection and RB distribution for M2M networks, wherein M2M
pairs update their strategies using a RL process. This scheme
allows UEs to autonomously select available channels and
optimal power to maximize SE while reducing co-tier interfer-
ence, with convergence reducing computational complexity
compared to traditional schemes. Lastly, in [233], the authors
proposed a transmission mode selection scheme based on the
Q-learning algorithm for resource utilization policy, develop-
ing DQN-based and DDPG-based optimization approaches to
adjust the PA of cluster heads and the scheduling and BA of
UAVs during their missions to improve overall network data
transmission performance. The validity and superiority of the
proposed approaches were compared with other benchmark
policies from different perspectives.

Despite the various sensing elements and realistic radio
channel gains, the Q-learning approach may prove ineffec-
tive due to large state and action spaces. However, the DRL
approach can address these challenges. In [43], the authors
investigated a DRL scheme for training an optimal commu-
nication mode selection policy from high-dimensional inputs
in M2M communications. This approach reduces traffic bur-
den for time-changing radio channels and highly dynamic
topology in M2M communications while ensuring QoS ne-
cessities. In the aforementioned works focused on centralized
ML-aided communication mode selection processes, various
aim functions were considered. However, centralized ML
algorithm-based communication mode selection process for
wireless networks are infeasible for practical applications due
to limited radio resources. To address this issue, we explain
the FRL-aided transmission mode selection for 6G networks
as follows.

C. FRL FRAMEWORK FOR COMMUNICATION MODE
SELECTION
The above-mentioned works based on conventional ML sys-
tems are typically trained in a centralized way. However, due
to constraints like limited resource, communication delay,
and privacy concerns, uploading training information is not
feasible. Additionally, despite the assumptions in [234], the
time-changing radio channel remains unknown at the UE due
to the highly dynamic propagation environment. Imperfect
training information on each UE also limits the robustness of
the DRL method, and improper clustering can significantly
degrade network performance. Therefore, a distributed FRL
framework is necessary for enabling UEs to create intelligent
decisions.

A FL-based mode selection and RA in M2M networks is
required to address the challenges posed by unreliable M2M
links and heterogeneous QoS requirements. Fig. 16 illustrates
the typical architecture and communication mode selection
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FIGURE 16. Typical architecture and communication mode selection process of FRL framework.

process of the FRL framework. Additionally, Fig. 16(b) illus-
trates the type of control that can be employed to establish
M2M links. Next, we describe the control of the communica-
tion mode selection process.
� Centralized: The BS fully controls the UEs and acts as

the central entity to control the communication path, co-
ordinate interference, establish the communication path,
and perform other essential functions within the cell.

� Conventional ML algorithm: The tasks of coordinating
interference, creating the communication path, and per-
forming other functions in the cell are handled by a
classical ML method, which independently controls the
communication path of the UEs, reducing computational
load and burden. However, this classical ML method
may not be appropriate for many M2M pairs due to the
stochastic nature of the channel. Combining neural net-
works and RL can complicate managing a high number
of M2M pairs. In the conventional centralized DQN ap-
proach, interactive experiences of the radio environment,
such as state transitions, are stored in replay memory
and used to train the DQN network. The highly dynamic
topology and time-varying spectrum states prevent local
observations from representing the global radio envi-
ronment state, significantly decreasing the efficiency of
replay memory. Although some authors have suggested
using replay memory for multi-agent-based DRL meth-
ods [43], this approach lacks scalability and does not
offer an optimal trade-off between communication bur-
den and network performance. In this context, a specific
distributed ML method can achieve superior network
performance compared to centralized ML methods.

� Distributed ML algorithm: To manage the commu-
nication path, a specific instance of a distributed
FRL algorithm is utilized, with all control processes

asynchronously handled by the UEs. The FRL frame-
work is illustrated in Fig. 16(a). The BSs periodically
create undirected graphs based on the proximity of
M2M UEs (MUEs) and large-scale radio channel gains,
facilitating a high-performance communication mode se-
lection process. For each cluster, selected RBs for each
UE are calculated to reduce network size and alleviate
communication overload on the BSs. Conversely, the
average local networks of M2M pairs are located within
the same cluster, using FL methods where M2M pairs
simultaneously select their actions and train local net-
works in every subframe. These are then uploaded and
averaged, with the resulting global model responding to
the entire set of M2M pairs. Furthermore, the global
model can be broadcast to newly operative M2M pairs
to reduce training time and achieve fast convergence.
Given the training limitations of local DRL models, a
FRL algorithm is developed to aid in obtaining robust
models.

� Hybrid: Interference coordination, path link establish-
ment, and other tasks within the cell are managed by
the BSs, using distributed or centralized ML methods to
manage the communication path. The goal is to utilize
these methods to enhance network performance.

Fig. 17 illustrates the impact of varying the communication
mode selection threshold distance on EE for different frame-
works. We observe that EE decreases as the mode selection
threshold distance increases. This is because the UE experi-
ences more interference, which degrades EE. Additionally, the
figure shows that when the mode selection threshold distance
increases from 0 meters to 60 meters, EE decreases rapidly.
As the mode selection threshold distance increases, the UE
requires more transmit power. This is due to the necessity
of higher transmission power to overcome the deteriorating
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FIGURE 17. Impact of varying the communication mode selection
threshold distance on EE for different frameworks.

channel conditions. Furthermore, it is evident that the mode
selection threshold distance between M2M pairs significantly
affects network performance. The figure demonstrates that the
proposed FRL framework achieves superior system perfor-
mance in the network. This is because when a large number
of UEs use optimal RBs and transmission power, they can
significantly mitigate interference, thereby enhancing EE as
the mode selection threshold distance increases.

D. LESSON LEARNED
This section discussed the FRL framework for transmission
mode selection techniques aimed at reducing data processing
time and complexity for real-time operation while achieving
lower learning errors and faster convergence in model train-
ing. Unstable M2M links and the high signaling overhead
associated with centralized transmission mode selection meth-
ods can significantly constrain safety-critical applications. To
address this, a joint optimization problem for communication
mode selection and RBs allocation for M2M communications
is proposed to meet diverse QoS requirements, particularly
URLLC needs.

As noted in [237], UEs frequently experience highly dy-
namic, rapidly changing, fast-fading radio channels that are
unknown to them. To enable UEs to make independent de-
cisions, a distributed DRL method is required. However, the
limited local training data available on each UE can impede
the robust learning of the DRL model, and improperly fed-
erated clusters can reduce network performance. To address
these issues, a FRL framework is proposed. This framework
functions as a DRL agent, making adaptive decisions based
on local observations such as interference levels, traffic loads,
and large-scale radio channel qualities. These factors must
be examined to select a transmission mode and maximize
capacity.

IX. FUTURE DIRECTIONS
Despite notable progress in the configuration, construction,
security, and other aspects of wireless network technology, its
application and implementation are still in their early stages.
This section focuses key challenges and exciting research
guidelines for next-generation communication networks on
promising FRL technologies that could improve 6G wireless
networks.

A. XL-MIMO SYSTEM FOR OWC
Optical wireless communication (OWC) systems can utilize
the widespread deployment of light-emitting diodes (LEDs)
to enable a distributed MIMO configuration. Extremely large-
scale MIMO (XL-MIMO) is considered a promising technol-
ogy for managing the growing UE data traffic by employing
extremely large-scale arrays, which significantly enhance
spectral efficiency and spatial resolution by increasing the
number of antennas. However, a major challenge lies in devel-
oping effective CSI estimation approaches to obtain accurate
CSI at the source for creating efficient precoders, which
require substantial pilot signals and complicate the under-
standing of XL-MIMO in OWC systems. Additionally, OWC
based XL-MIMO systems face significant self-interference
due to high spatial correlation in the CSI.

Traditionally, designing precoders involves solving opti-
mization problems in an iterative manner, posing challenges
in attaining optimal solutions and managing computational
complexity. Consequently, FRL schemes are crucial for the
development of robust precoders in multi-antenna OWC net-
works. It is anticipated that each UE will possess its own set
of training data pairs, with the channel matrix as the input and
the precoder values as the output. During training, the gradient
values from local training at each UE are consolidated at
a central server. Once the desired accuracy is achieved, the
trained global model is disseminated to the UEs, enabling
them to predict the corresponding precoder. Thus, XL-MIMO
systems for OWC can significantly enhance the network per-
formance within the FRL framework by exploiting substantial
spatial multiplexing gains, which facilitate the parallel execu-
tion of tasks such as inference, training, communication, and
computation. These aspects warrant further investigation.

B. RISS-BASED OWC SYSTEM
RISs have recently emerged as a revolutionary technology for
B5G networks, enhancing radio signal coverage, reliability,
and EE. Composed of numerous reconfigurable metasurfaces
with unique electromagnetic properties, RISs can manipulate
incoming radio signals in various ways [9], [167], [238],
[239]. These capabilities include reflection, refraction, beam
focusing, wavefront shaping, frequency shifting, splitting,
absorption, nonreciprocity, and polarization [9], [167]. Conse-
quently, RISs are particularly significant in FL-based wireless
networks, especially in RIS-assisted OWC systems.

In RIS-enhanced OWC systems, multiple RISs can be in-
stalled on indoor walls to facilitate various functions that
support the transmission of the global model’s radio signal.
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Specifically, RISs can help establish line-of-sight (LoS) con-
nections between connected UEs and the computing server,
which is crucial for OWC systems as any obstacle can lead
to a connection failure. Moreover, RISs can reflect radio
signals for energy harvesting, enabling resource-limited UEs
to reliably connect their models. By intelligently controlling
the electromagnetic properties of incoming wireless signals,
beam focusing can be achieved by adjusting RISs located
at the source front-end, resulting in improved global model
performance and enhanced radio signal coverage for more
UEs. Additionally, RISs can bolster physical layer security by
destructively transmitting the global model, preventing eaves-
droppers from intercepting the signal.

However, to realize these promising benefits in FL-based
OWC systems using RISs, it is crucial to properly satisfy and
adjust the RIS constraints to achieve the desired outcomes.
Notably, the optimization of FRL frameworks for OWC with
RISs remains unexplored in the literature, making it a com-
pelling area for future research.

C. EXTENDED REALITY
XR applications in wireless technology represent a modern
trend that enhances interactive and immersive experiences
by integrating virtual visual and auditory content with real-
world dynamic radio environments. These XR-enabled UEs,
equipped with GPS modules and instruments, are designed
to enrich everyday experiences. However, XR-based wireless
applications are often highly localized and particularly sensi-
tive to traffic delays. Additionally, these applications generate
vast amounts of data from multiple users, such as images,

requiring intensive information processing and efficient use of
limited radio resources. Consequently, high-quality XR-based
applications demand a high data rate.

Moreover, with the growing need for multi-target virtual-
ization, accurate identification and taxonomy are crucial for
enhancing the immersive experience of UEs. To address traffic
delays, improve client confidentiality, and reduce traffic bur-
den, XR processes can be managed at both the source and
receiver sides using the FRL framework. Additionally, SC has
the potential to provide secure and high-speed data rates for
XR applications [240], [241].

Thus, creating high-speed cellular connections between XR
users and a centralized computing server can offload models
and streamline traffic from the congested radio spectrum. In-
corporating the FRL framework into SC and OWC is essential
for enhancing the user experience of XR-based wireless appli-
cations. This area deserves further research.

D. METAVERSE
The metaverse is anticipated to symbolize the next stage of
Internet development, succeeding the mobile networks era. In
this innovative setup, users-represented by digital avatars-can
engage with others and software applications in a 3D vir-
tual space via head-mounted displays [242]. These services
demand ultra-high bandwidth and URLLC to provide im-
mersive, delay-free virtual experiences at scale, introducing
new challenges for distributed intelligence. To address the
diverse and rigorous needs of various metaverse processes, an
efficient orchestrator is crucial for managing cloud and edge
interactions [243], [244]. Therefore, creating a distributed
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system, like the FRL framework backed by synchronized end-
edge-cloud computing, presents a promising research avenue.
This system would merge cloud and edge resources with data
processing capabilities, ensuring a seamless experience for
metaverse users.

Dynamic network slicing (NS) and RA, essential features
of the FRL framework for next-generation metaverse ap-
plications, such as the allocation of RBs. This enhances
QoS, flexibility, and battery life by optimizing network in-
frastructure for real-time data transmission from sensors,
devices, high-resolution videos, social media, and other sys-
tems. Lastly, Table 10 describes potential research directions
for FRL-aided promising technologies in future wireless net-
works.

X. CONCLUSION
This paper has delved into various distributed learning frame-
works, including FL, MARL, and FRL. Furthermore, we
conducted an in-depth analysis of the FRL framework, de-
signed for wireless networks. This analysis covered aspects
of wireless communication design, performance assessment,
and the impact of wireless factors on FRL parameters. More-
over, we provided a detailed discussion of conventional
ML-aided PA, BA, IM, and communication mode selection
process techniques for wireless networks. We then addressed
their capabilities, shortcomings, and limitations, which have
paved the way for integrating the FRL framework in a dis-
tributed manner. We also highlighted several critical research
challenges and proposed potential directions for advancing
next-generation communication networks. In summary, we
have provided a comprehensive set of guidelines for imple-
menting FRL frameworks, addressing key issues essential to
fully unlocking the potential of intelligent wireless networks.
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