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A B S T R A C T   

Drainage networks composed of small, channelized ditches are very common in the eastern United States. These 
are human-made features commonly constructed for wetland drainage and constitute the headwater portion of 
permanent hydrographic networks. Accurate information on the drainage ditch location can help define where 
wetlands have been drained and evaluate impacts of artificial drainage patterns on hydrologic changes. Tradi
tional water channel extraction approaches often cannot accurately identify small ditches especially in low-relief 
agricultural landscapes. In this study, we employed a state-of-the-art deep learning (DL) approach to extract 
drainage ditches using light detection and ranging (lidar) data in a low-relief agricultural landscape within the 
Delmarva area. First, we adopted a deep convolutional neural network based on U-Net architecture to classify 
ditches from different combinations of aerial optical and lidar derived (i.e., topographic and return intensity) 
features. The classification results were compared with a typical pixel-oriented machine learning classifier, 
random forest (RF). Next, we improved the connectivity of ditch networks through a minimum-cost approach 
and a further incorporation of FA to connect with natural drainage networks. Finally, we evaluated the connected 
drainage networks against flowlines derived from typical flow routing method (D8), an open-source channel 
network extraction tool (GeoNet), and the U.S. Geological Survey National Hydrography Dataset High Resolution 
data at 1:24,000 scale. Our results show that the DL model significantly outperformed the RF model, and the lidar 
derived topographic features were the most important input for ditch classification. The connected drainage 
networks extracted with DL exhibited pronouncedly higher precision (0.88) and recall (0.89) and a higher po
sitional accuracy (within one pixel) than other flowline products. Overall, this study demonstrates the utility of 
DL approaches for automated extraction of ditch networks and the important contribution of lidar-derived 
topographic data for operational drainage network mapping at local and regional scales.   

1. Introduction 

Drainage networks composed of small, channelized ditches are 
usually represented by linear and regularly distributed features and are 
mostly human-made elements in low-relief agricultural landscapes 
(Bailly et al., 2008; Cazorzi et al., 2013; Dollinger et al., 2015). Extensive 
drainage ditch networks are quite common along the East Coast of the 

United States and are typically a result of extensive practices of grid 
ditching for mosquito control and drainage of wetlands for large-scale 
agriculture (Jones et al., 2018; McCarty et al., 2008). The drainage 
ditch networks can alter hydrologic connectivity at large scales and 
affect the status and function of wetlands by connecting wetlands and 
streams (Cohen et al., 2016; Lang et al., 2012b). It is reported that 
agricultural drainage through ditching and tiling has led to the greatest 
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loss of wetlands globally and the majority of wetland loss within the 
United States has occurred through drainage (Bartzen et al., 2010; Blann 
et al., 2009; Stedman and Dahl, 2008). These ditches are also linked to 
habitats for animals and plants, and the transport of nutrients and sed
iments from poorly drained depressional areas (drained wetlands) 
which can serve as critical source areas to downstream waters (Herzon 
and Helenius, 2008). The resultant increased nutrients and sediments 
flows can influence water quality and result in substantial biodiversity 
consequences in the lower catchment area (McCarty et al., 2008). Thus, 
headwater ditches represent hydrologically and ecologically important 
drainage elements that link their surrounding agricultural landscape to 
large, downstream waters. Accurate and efficient mapping of ditch 
networks is essential to determining drainage densities and magnitudes 
for quantifying where wetlands have been drained in agricultural 
landscape and improving understanding of watershed-scale hydrologi
cal interactions. 

Hydrographical datasets, such as the U.S. Geological Survey (USGS) 
National Hydrography Dataset (NHD), are highly valuable at national 
and regional scales, providing a common reference of digital water 
drainage networks with features such as rivers and streams for the 
United States (Moore and Dewald, 2016). This dataset originated from 
USGS topographic quadrangle maps based on interpretations from ste
reo orthophotographs and field surveys and have been produced with a 
scale from 1:100,000 to 1:24,000 or more resolved, e.g., NHD Plus and 
NHD High Resolution. However, it has long been reported that 
commonly used stream network maps, like the NHD, underestimate 
actual stream length and provide limited information on extensive 
agricultural drainage ditches in headwater regions (Fritz et al., 2013; 
Hansen, 2001; Heine et al., 2008; Lang et al., 2012b; Persendt and 
Gomez, 2016). The headwater streams and ditches at the upstream 
extent of a watershed may be far more numerous than previously 
thought (Lang et al., 2012b; Nadeau and Rains, 2007). Since headwater 
streams and ditches are typically narrower, shallower, and in some cases 
heavily vegetated and temporarily inundated, it is challenging to use 
conventional mapping methods to detect their full length. This is espe
cially true in areas of low topographic relief and areas where hydrog
raphy has been altered by humans due to development and other 
redirections of flow (Cazorzi et al., 2013; Elmore et al., 2013; Lang et al., 
2012b). 

In recent years, airborne light detection and ranging (lidar) data have 
emerged as a new and effective tool to capture subtle changes of local 
terrain and allow for automatic delineation of flow networks across 
large areas (Bai et al., 2015; Flyckt et al., 2022; Hooshyar et al., 2015; 
Lang et al., 2012b; Lindsay and Dhun, 2015; Wu et al., 2021). Airborne 
lidar produces three-dimensional point cloud products, including 
elevation data (XYZ), returned intensity values (relative strength of the 
return pulse), and in some cases RGB values from simultaneously ac
quired aerial images for each georeferenced point near the Earth’s sur
face. It can be used to produce a map of bare earth high-resolution 
digital topographic products, such as digital elevation models (DEM) 
with buildings and vegetative canopy removed. These data have been 
widely used for extracting flow directions, topographic depressions, and 
channel networks (O’Neil et al., 2019; Wu et al., 2018). Moreover, lidar 
intensity can be effective in identifying inundation and channel net
works owing to the strong absorption of incident near-infrared (NIR) 
energy by water relative to dry uplands (Hooshyar et al., 2015; Lang 
et al., 2020). The extraction of high-precision drainage networks uti
lizing lidar data has become a subject of keen interest for water resource 
managers and researchers aiming to develop and update hydrographical 
knowledge of landscapes (Poppenga et al., 2013). 

To date, hydrologic modeling using flow routing methods based on 
gridded DEMs dominates in large-scale drainage network extraction 
given its simple form, efficient computational design, and hydrological 
continuity (O’Callaghan and Mark, 1984; Tarboton, 1997; Zhang et al., 
2021). The general procedures of flow routing methods include filling 
pits, computing flow direction, and computing the contributing area 

draining to each grid cell, as well as defining a minimum contributing 
area threshold that forms a linear drainage feature (Stanislawski et al., 
2017). Standard software tools such as Esri ArcGIS® Spatial Analyst 
Tools, and the System for Automated Geoscientific Analysis (SAGA) 
support the extraction of surface water drainage networks from DEMs 
using multiple flow routing methods such as D8 and D-infinity (Tarbo
ton, 1997). Though flow routing methods have been widely used in 
drainage system analytics, such models have multiple limitations. The 
flow direction approach is less effective in low relief areas, where 
instead of allowing water to flow in any direction naturally, commonly 
used methods constrain water to only flow from one pixel to one or more 
adjacent pixels, increasing the likelihood of predicting false flow paths, 
especially for low relief landscapes and when using large-scale DEMs. In 
addition, the delineation of drainage networks from flow paths requires 
a unique threshold that is generally not able to fully reproduce the actual 
network (Li et al., 2020a; Passalacqua et al., 2010a). Orlandini et al. 
(2011) demonstrated how classic flow routing approaches are subject to 
variable reliability and sensitivity over different drainage basins and 
grid cell sizes with a general tendency to overestimate the network, and 
that they do not provide reliable predictions of channel heads across 
drainage basins with different types of morphology and channel initia
tion. Thus, subsequent manual edits are usually required to modify the 
flowlines generated from flow routing methods (Lang et al., 2012b). 

Moreover, morphometric methods rather than hydrologic modeling 
are recommended to identify drainage networks in low relief landscapes 
(Gardner et al., 2007; Passalacqua et al., 2010a; Roelens et al., 2018a). 
Topographic metrics such as curvature, openness, and local relief, 
derived from DEMs often better define flow paths and are useful for the 
detection of local linear features at different spatial scales (Cazorzi et al., 
2013; Pirotti and Tarolli, 2010; Roelens et al., 2018b; Sofia et al., 2011). 
Passalacqua et al., (2010a) developed a geometric framework (GeoNet) 
for automatic extraction of channel networks from high resolution data, 
in which likely channelized pixels are primarily identified by curvature 
and flow accumulation (FA) thresholds in combination with a geodesic 
minimization approach for channel network identification. However, 
automatic detection of drainage networks using morphologic features 
remains a challenge due to the multi-scale nature of geomorphological 
processes and the absence of objective thresholds for feature classifica
tion using a small set of features (Sofia et al., 2011). To overcome this 
hurdle, machine learning classifiers, such as random forest (RF), have 
also been applied to improve the detection of ditches by integrating 
multiple lidar derived optical or morphometric features (Flyckt et al., 
2022; Roelens et al., 2018a). However, machine learning approaches 
based on morphometric features are primarily pixel oriented and don’t 
consider the spatial context of features in input images, often leading to 
strong “salt-and-pepper” noise (Flyckt et al., 2022). Thus, a post- 
processing step of noise removal or ditch object construction is 
required to generate a clean drainage network. Object-oriented classi
fiers that utilize both pixel and contextual information (such as size, 
position, and shape) have also been applied to ditch mapping, leading to 
better ditch object recognition by aggregating pixels with similar 
properties into one category (Rapinel et al., 2015). However, the con
ventional object-oriented classification methods require two steps, 
image segmentation and classification, which disrupt the end-to-end 
workflow and are usually very complicated and involve various soft
ware packages. 

With the emergence of graphic processing unit (GPU) configurations, 
rapid advances in deep learning (DL) have been widely acknowledged 
and adopted in computer vision tasks, such as challenging pattern 
recognition and object detection. Recently developed deep convolu
tional neural networks (DCNN) have demonstrated improvement in 
accuracy and efficiency for learning high-level contextual information 
from high resolution images. Several semantic network architectures, e. 
g., DeepLab, SegNET, and U-Net, have been developed and applied in 
classification tasks, such as urban and land use feature detection (Dang 
et al., 2020; Du et al., 2020; Pouliot et al., 2019). The DL approach has 
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been considered to have the potential to replace traditional object- 
oriented approaches in land cover classification and mapping (Zhang 
et al., 2020). Some pioneering efforts have explored DL techniques for 
extraction of geometric and hydrologic features, such as roads (Balado 
et al., 2019; Cira et al., 2020; Yang et al., 2019) and channels (Mao et al., 
2021; Stanislawski et al., 2018; Xu et al., 2021), but limited effort has 
been undertaken, to our knowledge, to apply DL to extract small, 
channelized ditch networks from lidar data in low relief landscapes. 

In this study, we employed a state-of-the-art DL model based on U- 
Net architecture to facilitate extraction of channelized ditches from lidar 
data in a low relief landscape within the Delmarva Peninsula in the 
eastern United States. A semi-automated stream reference product 
containing detailed headwater ditch information (either perennial or 
intermittent flow features) was used as the benchmark ditch reference. 
We investigated different combinations of aerial optical and lidar 
derived (i.e., topographic and return intensity) features for ditch clas
sification and compared DL with a traditional pixel-oriented RF classi
fier. We further enhanced drainage network connectivity using a 
minimum-cost connection approach and FA to connect with natural 
drainage networks. Finally, we evaluated the connected drainage net
works against flowlines derived from typical flow routing method (D8), 
an open-source channel network extraction tool (GeoNet) (described in 
section 2.5.2), and the USGS NHD High Resolution data at 1:24,000 
scale. Our specific objectives include: 1) evaluate the potential of the DL 

method in ditch classification and compare its performance to a typical 
pixel-oriented classification method (i.e., RF); 2) investigate the role of 
different optical and lidar derived features in ditch classification; and 3) 
improve drainage network connectivity as compared with common 
existing flowline products. 

2. Materials and methods 

2.1. Study area 

Our study area is located within the headwater region of the Upper 
Choptank River watershed on the Delmarva Peninsula in the eastern U.S. 
(Fig. 1). This region is characterized by thousands of vegetated 
depressional wetlands in a low relief agricultural landscape. The mean 
elevation of the Upper Choptank River watershed is ~16 m (maximum 
of ~46 m) above sea level, and the mean slope is less than 2◦ (Fig. 1). It 
has a humid, temperate climate with an average temperature of 2 ◦C in 
January-February and 25 ◦C in July-August. Rainfall is distributed 
nearly uniformly throughout the year (~1200 mm/yr) (Ator et al., 2005; 
Shedlock et al., 1999). The soils are largely derived from late Pleistocene 
fluvio-deltaic coastal plain and eolian sediments and are dominated by 
poorly drained soils in lower wet areas and better-drained (moderately 
well and well drained) soils in topographically higher uplands (Low
rance et al., 1997). Due to low relief and suitability of soils for ditch 

Fig. 1. Location of study area within the Upper Choptank River watershed (a). (b) and (c) are the DEM derived from lidar data, and optical image, respectively, for 
the study area. (d) and (e) illustrate small, channelized ditches that are commonly present in depressional areas. 
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drainage, the majority (58 %) of depressional wetlands have been con
verted or drained with extensive ditches to allow for agricultural culti
vation (i.e., prior converted croplands), primarily corn and soybean 
production (Benitez and Fisher, 2004; McCarty et al., 2008). In total, 
cropland (as the dominant land use type) covers about 60 % of the 
Choptank River watershed, with a smaller amount of forest (26 %) and 
urban area (6 %) (Fisher et al., 2006).The drainage ditches are often 
seasonally inundated, and the putative role of a channel for water 
movement is indicated by its connectivity to larger flow channel 
networks. 

2.2. Airborne lidar data and derived features 

We obtained the lidar flight campaign data of 2007 for the study area 
(Fig. 1). Three types of lidar features were derived for ditch classifica
tion, including topographic (T), intensity (I), and optical (O) features 
(Figs. 2-3), which are detailed in the following sections. 

2.2.1. Topographic features 
We used the DEM that was derived from the lidar data collected on 

December 24, 2007, when minimal inundation was present in the 
headwater region (Fig. 1). The Leica ALS50-II sensor with 1064 nm 
wavelength was flown at 1,829 m above the Earth’s surface to collect 
elevation and intensity data. Data were collected with a pulse rate of 
126,000 Hz and scan frequency of 50 Hz per second with a scan angle of 
+/-25◦. The product has a vertical accuracy of ≤0.15 m and a pulse 
density of ~2.8 pts/m2 (~0.35 m post spacing). Bare earth point ele
vations of bridges and other obstructions that can lead to inaccurate 
water routing were manually identified and lowered to the level of 
flowing water using LP360 software. Inverse distance weighted (IDW) 
interpolation was used to produce a 3 m gridded DEM. A more detailed 
description of this data collection and processing is available in Lang 

et al., (2012a). 
Topographic metrics including general curvature (GC), topographic 

positive openness (TPO), and topographic wetness index (TWI) were 
derived from the December lidar DEM using SAGA v. 7.3.0. As 
mentioned previously, the GC and TPO have been widely utilized to 
extract channel networks. They represent primary metrics directly 
calculated from elevation and describe local surface geometry or relative 
position of a given point (Li et al., 2020b). TWI is defined as a function of 
local upslope contributing area and slope, which represents a secondary 
(combined) metric (Li et al., 2020b), and has been commonly used in 
other studies to quantify local topographic control on hydrological 
processes (Du et al., 2021; Lang et al., 2012a). 

2.2.2. Intensity features 
We used lidar intensity data obtained over the same study site on 

March 27, 2007, a period of average maximum hydrologic expression in 
early spring, to test the utility of lidar intensity for ditch classification. 
The Optech Airborne Laser Terrain Mapper (ALTM) 3100 lidar sensor 
was flown at 610 m above the Earth’s surface to collect elevation and 
intensity data for the study area. Data were collected with a pulse rate of 
100,000 Hz and scan frequency of 50 Hz per second with a scan angle of 
+/-20◦. For each laser pulse, up to 4 returns were recorded (i.e., first, 
second, third, and ground) and intensity of each return was captured 
with a 12-bit dynamic range. The lidar data had an overall vertical ac
curacy of ≤ 0.15 m and an average point density of ~2.5 pts/m2 (0.40 m 
post spacing). A digital camera was used to capture coincident aerial 
photography including the NIR (720–920 nm), red (600–720 nm), and 
green (510–600 nm) bands. A more detailed description of this March 
lidar data collection and processing is available in Lang and McCarty 
(2009) and Lang et al., (2012a). 

We used the first and ground return lidar intensity raster images 
which were interpolated and filtered by Lang et al. (2020). To exclude 

Fig. 2. Workflow of drainage ditch network extraction from lidar data.  
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the effect of evergreen vegetation on inundated surface, which can be 
confused with inundation within ground lidar intensity images, we also 
employed the normalized intensity using the technique described in 
Lang et al. (2020). The normalized intensity has been shown effective in 
delineating forested wetland inundation (Du et al., 2020). 

2.2.3. Optical features 
The utility of optical data for ditch classification was investigated 

using the March aerial photography data which included the NIR, red, 
and green bands. Based on these bands, the Normalized Difference 
Vegetation Index (NDVI) and Normalized Difference Water Index 
(NDWI) were calculated (Equation (1) and (2). These two indices have 
been widely used for differentiating water surface features from soil and 
vegetation. 

NDVI =
NIR − Red
NIR + Red

(1)  

NDWI =
Green − NIR
Green + NIR

(2)  

2.3. Semi-automated stream reference 

We used the semi-automated stream product derived from lidar data 
by Lang et al., (2012b) as the benchmark, which includes perennial and 
intermittent streams and ditches at the headwater region of the Chop
tank watershed and was shown to be more inclusive of the lower order 
stream/ditch network than the NHD product. This semi-automated 
stream product was generated by automatic extraction of stream net
works based on FA followed by detailed manual editing. In this study, a 
3-m buffer was generated along the semi-automated streamlines to 

estimate the width of ditch channels. 

2.4. Initial ditch classification 

2.4.1. Deep learning network architecture and ditch classification 
We employed the novel DCNN established by Du et al. (2020) based 

on U-Net architecture to classify ditches using different input combi
nations, i.e., O, I, T, O + I, O + T, I + T, O + I + T (Figs. 2-3). U-Net is a 
sophisticated symmetric “U” type fully connected CNN, which was 
initially proposed by Ronneberger et al. (2015) to solve the biomedical 
imaging partition problem. U-Net structure consists of the encoder 
blocks, accounting for extracting deep hidden features from the input 
image by passing several convolution-pooling operations, and the 
decoder blocks that aim to produce pixel-level segmentation by recov
ering hidden features to the original image size through up sampling. 
Due to the special “U” type, U-Net often achieves high accuracy when 
solving image segmentation problems and has been the most widely 
used semantic segmentation structure in recent years. In this study, our 
U-Net based DL model combines the most recent components that 
maximize the performance of per-pixel classification, including 1) a U- 
Net backbone architecture, 2) use of modified residual blocks of con
volutional layers in architecture, and 3) a hybrid loss function 
combining the Dice loss and Focal loss to facilitate model training. 
Segmenting small-size objects is always challenging due to imbalanced 
data distribution. In our case, the small ditches are much smaller than 
non-ditches, leading to model training challenges. The combined loss 
function outperforms simple Dice or focal loss functions in addressing 
extremely imbalanced data and gauging the similarity between samples 
of prediction and ground truth (Zhu et al., 2019). Our ditch classification 
with the DL model included three steps: model training, image 

Fig. 3. Image patches of optical and lidar derived (i.e., topographic and return intensity) features with ditch reference labels for two example areas (a and b). RGB: 
NIR, red, green bands; NDVI: Normalized Difference Vegetation Index; NDWI: Normalized Difference Water Index; FI: first return intensity; GI: ground return in
tensity; NI: Normalized Intensity; DEM: Digital Elevation Model; TPO: Topographic Positive Openness; TWI: Topographic Wetness Index; GC: General Curvature. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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classification, and classification assessment. The ditch buffers generated 
from the semi-automated streams product were used to generate ditch 
labels for model training. 

For model training, ditch labels were binarized with the ditch pixels 
represented as “1″ and the non-ditch pixels as “0”. The ditch labels 
combined with optical and lidar derived features were further split into 
small image patches to allow for model training because DL model 
training is computationally intensive with entire remote sensing images. 
We used a simple sliding window (256*256) to split entire images and 
the overlap rate of the sliding window was set to 0.5 to increase the 
number of image samples. To further expand our training data, four 
types of data augmentation (rotate 90◦, rotate 180◦, rotate 270◦, and 
flip) were applied to each split image patch. Finally, we generated 315 
image patches that contain ditches, and randomly selected 63 (20 %) for 
model training and the remaining 252 (80 %) for validation. Our DL 
model was trained using the PyTorch framework. Model training was 
carried out on a computer with Intel(R) Xeon(R) Gold 6136 CPU @ 3.00 
GHz (48 CPUs) and NVIDIA Quadro P6000 GPU. Python libraries 
including fastai, scikit-image, GDAL, and NumPy, were used in our 
workflow. 

2.4.2. Classification assessment 
We compared the initial DL classification results with pixel-oriented 

classification based on RF classifier. The RF method is often considered 
to outperform other machine learning methods and have been widely 
applied to classification tasks. In our study, the RF classification was 
performed using the “randomForest” package in R (Liaw and Wiener, 
2002). We used constant ntree (the number of trees) of 500, and mtry 
(the number of variables at each split) equaled the square root of the 
number of total inputs. We used the same training and validation dataset 
that was used for DL classification to train and assess the RF model. The 
classification performance of DL and RF based on different input com
binations was evaluated at both the pixel level using the confusion 
matrix and the object level using the intersection over union (IoU) 
metric. 

We calculated Precision, Recall, and F1 score using the validation 
dataset for pixel level assessment. Precision represents the portion of 
pixels that are correctly classified as ditches (Equation (3), while Recall 
denotes the model’s ability to capture all ditch pixels from the reference 
data (Equation (4). A reliable classification is expected to have both high 
Precision and Recall, which in return results in a high F1 Score (Equation 
(5). 

Precision =
TP

TP + FP
× 100 (3)  

Recall =
TP

TP + FN
*100 (4)  

where TP is the number of true positives (i.e., ditches in reference labels 
correctly identified as ditches). FP is the number of false positives (i.e., 
non-ditches in reference labels identified as ditches), and FN is the 
number of false negatives (i.e., ditches in reference labels not identified). 

F1score = 2 ×
Precision × Recall
Precision + Recall

(5) 

To assess the accuracy of ditch classification at object level, we 
adopted a metric based on the intersection over union (IoU), also known 
as the Jaccard index. This is the ratio of overlapped area to the area of 
union between prediction and reference for a category (Equation (6) 
(Choi et al., 2010). The value of IoU ranges from 0 to 1, and an IoU of 0.5 
or above is usually considered satisfactory results. 

IoU(A,B) =
Area(A ∩ B)
Area(A ∪ B)

(6)  

where A and B correspond to ditches predicted from DL and in reference 

labels, respectively, in this study. 

2.5. Drainage connectivity improvement 

2.5.1. Ditch connection algorithms 
The previous step resulted in an initial prediction of ditches from the 

DL model, which was a ditch probability map represented by softmax 
values for each pixel. Ditch skeletons were created by thresholding the 
ditch probability and then using the skeletonize function in Python to 
generate ditch centerlines. The initial connection of ditch segments in 
our study is equivalent to finding a minimum cumulative cost path 
connecting two points based on the ditch probability map and ditch 
skeletons. We first excluded ditch skeletons with length ≤ 5 pixels to 
reduce computation complexity. For each ditch skeleton, we identified 
the starting point (the most downstream point with a low elevation 
value) and the ending point (the most upstream point with a high 
elevation value). From the endpoint of each ditch skeleton, we detected 
the closest vertices that have higher elevation values within a search 
radius of 100 m, and the minimum-cost path was selected as the po
tential connection segment. Note that the averaged connection proba
bility should be greater than a selected threshold and the potential 
connecting segment cannot cross other ditch segments. 

To further improve the connectivity at the intersection of ditch 
networks or the occlusion parts caused by bridges and other obstructions 
that are not connected by minimum-cost approach, we incorporated FA 
information to connect ditch segments with the major natural drainage 
network. Based on the initially connected ditches, we again identified 
the starting point (the most downstream point with the highest FA 
value) of each ditch network. From each starting point, we detected and 
traced the adjacent pixel with the highest FA value until a ditch pixel 
was encountered in a search radius of 500 m. In our study, FA was 
generated from the D8 algorithm using “whitebox” R package. 

2.5.2. Evaluation of connected drainage ditch network 
We evaluated the performance of the connected drainage network by 

comparisons with flowlines derived from typical D8 flow routing 
method and GeoNet tool as well as the existing NHD High Resolution 
product at 1:24,000 scale. By checking the histogram of the FA for 
randomly selected ditches (approximately 50 ditch sources) in depres
sional areas, we found that most ditch source pixels had a FA range of 1 
~ 4 ha. Thus, we selected 1 ha as the minimum FA threshold to auto
matically extract ditch flowlines based on D8 method. The GeoNet tool 
has also been demonstrated an effective tool to map channel heads and 
networks in either mountainous or flat landscapes (Passalacqua et al., 
2012; Passalacqua et al., 2010b). We tested the latest MATLAB version 
of GeoNet (GeoNet_v2.2) downloaded from GeoNet google site (avail
able at https://sites.google.com/site/geonethome/) for automatic 
extraction of channel flowlines. Because our study area is flat, we 
switched to Laplacian curvature in GeoNet which is recommended by 
Passalacqua et al. (2012) for channel network extraction in flat land
scapes, and the adjustable flowThresholdForSkeleton parameter was 
also set to 1 ha to remove convergent areas with contributing area below 
this threshold. 

For comparison, we also calculated the Precision and Recall for each 
flowline product according to Equation (3) and (4). Note that, here, TP is 
defined when the 7*7-pixel window of a predicted ditch pixel is tra
versed by the reference ditch centerline. FP represents the case when the 
7*7-pixel window of a predicted ditch pixel is not traversed by the 
reference ditch centerline. FN occurs when the 7*7-pixel window tra
versed by the actual ditch centerline cannot find a ditch prediction, i.e., 
a reference ditch pixel is not identified. In addition to Precision and 
Recall, we also calculated the distance error (Dk) for each ditch product, 
which is the Euclidean distance between the predicted ditch pixel (C) 
and the closet pixel (P) in the reference (Chen et al., 2020; Moretti and 
Orlandini, 2018). The distance error is defined as: 
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Dk =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x(c)k − x(p)k )
2
+ (y(c)k − y(p)k )

2
√

(7)  

where k = 1, …, N which represents each predicted dich pixel. N is the 
total number of ditch pixels identified. Then, the mean Euclidean dis
tance error E(D) can be calculated as 

E(D) =
1
N
×
∑N

k=1
Dk (8)  

3. Results 

3.1. Comparison of deep learning and random forest for ditch 
classification 

At the pixel level, there was a significantly higher classification ac
curacy using the DL than that using RF. The F1 score of all different 
optical and lidar feature combinations for DL was higher than that using 
RF (Table 1). The highest F1 score (0.69 ~ 0.71) occurred for the DL 
model when lidar topographic features are included (i.e., T, O + T, I + T, 
O + I + T). In contrast, without topographic features (i.e., O, I, and O +
I), DL achieved F1 score of 0.45 ~ 0.53. For RF, higher F1 scores (0.37 ~ 
0.41) also occurred with topographic features, and F1 score dropped to 
0.09 ~ 0.14 without topographic features. For each data input, the 
Precision of DL was significantly higher than that of RF, while the Recall 
of DL was lower than that of RF (Table 1). 

At the object level, by visual inspection, the ditch objects predicted 
from DL generally showed a clearer pattern of linear features and less 
speckles than those from RF (Figs. 4-5). This finding is supported by the 
higher IoU values of DL results. The ditches classified by DL matched the 
ditch labels very well and achieved the highest IoU values (0.53–0.56) 
with the inclusion of topographic features (Table 1 and Fig. 4). The 
highest IoU for RF was only 0.23–0.26 with topographic features 
included, and there were strong “salt-and-pepper effects” in predictions, 
especially for data inputs without topographic features (Table 1 and 
Fig. 5). 

3.2. Enhanced drainage network connectivity 

The drainage connectivity of ditches from initial DL prediction was 
improved by two steps: a minimum-cost connection approach and a 
further incorporation of FA (Fig. 2 and Fig. 6). Potential ditch segments 
between ditch vertices and in the intersection portions of ditch networks 
were successfully detected while small ditch noise was excluded 
(Fig. 6d, h). 

In comparison with the flowlines derived from typical D8 method, 
the GeoNet tool, and the NHD High Resolution product at 1:24,000 
scale, our connected drainage network showed the highest Precision 
(0.88) and Recall (0.89) (Table 2) and well reproduced ditch patterns in 
reference labels (Fig. 7). The total length of our connected drainage 
networks in the study area was 163 km, which was also comparable to 
the length of the labeled ditches (160 km). For GeoNet, it showed 
moderate Precision (0.62) and Recall (0.60) with a ditch length of 157 

km (Table 2). There were obvious errors of omission (false negative) and 
commission (false positive) in channel extraction using GeoNet (Fig. 7). 
The drainage flowline derived from the D8 method was more likely to be 
committed than omitted (Recall was 0.82, Recall was only 0.43) and 
almost doubled in the total length with lots of meandered centerlines 
generated around the actual ditches. Given the large 1:24,000 scale, 
NHD data were sparse and only included major channels in the study 
area. Not surprisingly, the NHD data exhibited a substantial underesti
mation in drainage length (79 km), contributed by the lowest Precision 
(0.32) and a moderate Recall (0.65) (Table 2 and Fig. 6). Moreover, the 
mean distance error of our connected drainage network was the lowest 
(2.17 m, less than the side length of one pixel) followed by the typical D8 
method, with the largest distance error for NHD flowlines (29.31 m). 

4. Discussions 

Extraction of drainage ditch networks in agricultural landscapes is 
important and challenging due to low local relief and complex hydro
logic processes in headwater regions. The overall quality and utility of 
any drainage map is determined by its ability to represent these small 
headwater streams and ditches. As high resolution lidar data have 
become widely available from a variety of vendors during recent years, 
new opportunities for automatically extracting drainage network from 
lidar data at large scales are emerging. However, there are various 
limitations in automatic and accurate extraction of natural and artificial 
channel networks using traditional hydrologic or morphometric 
methods. In this study, we employed a state-of-the-art DL model based 
on U-Net architecture to classify ditches using different combinations of 
aerial optical and lidar derived features as inputs and further enhanced 
the drainage connectivity within the Upper Choptank River watershed. 
We found that the DL model has great potential for accurate ditch 
extraction compared to typical machine learning classification methods 
(i.e., RF) and demonstrated the importance of topographic features in 
ditch classification. The connected drainage network also outperformed 
the flowlines derived from typical flow routing method, the GeoNet tool, 
and the NHD High Resolution product. The effectiveness of DL models 
based on DCNN to fully utilize the contextual information from lidar 
data (especially topographic features) to detect small ditches is the 
primary strength of this study. 

The DL model based on U-Net performed better in extracting ditch 
features with a clear pattern, whereas traditional classification methods 
such as RF failed to do so and resulted in considerable prediction noise 
(Figs. 4-5). There are mixed sources of noise associated with surface 
water or urban features such as roads in RF results (Fig. 5). Satisfactory 
prediction results using DL were demonstrated by both higher F1 scores 
and IoU values relative to RF (Table 1). High-resolution lidar data pro
vide much more information about object-oriented contextual features 
than pixel-oriented spectral features. The DL model is object-oriented, 
allowing it to take both the pixel and multi-scale contextual informa
tion into consideration while extracting ditch information from lidar 
data. In contrast, RF classification is performed at the pixel level which 
often leads to strong “salt-and-pepper” noise and a mix of other 

Table 1 
Accuracy assessment of initial ditch classification using DL and RF. Bold fonts represent the highest F1 scores and IoU achieved from DL, with inclusion of topographic 
features. O: optical features; I: intensity features; T: topographic features; DL: deep learning, RF: random forest; IoU: intersection over union.  

Data 
Input # 

Lidar features DL RF 

O I T Precision Recall F1 score IoU Precision Recall F1 score IoU 

1 × 0.56  0.38  0.45  0.29  0.05  0.72  0.09  0.05 
2  × 0.42  0.49  0.45  0.29  0.05  0.71  0.10  0.05 
3   × 0.63  0.76  0.69  0.53  0.23  0.93  0.37  0.23 
4 × × 0.53  0.53  0.53  0.36  0.08  0.82  0.14  0.08 
5 × × 0.69  0.74  0.71  0.55  0.25  0.94  0.39  0.24 
6  × × 0.67  0.76  0.71  0.56  0.25  0.94  0.40  0.25 
7 × × × 0.68  0.73  0.70  0.54  0.26  0.94  0.41  0.26  
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categories in ditch class. Thus, a second step of noise removal or ditch 
object construction is usually required through filtering or aggregation 
methods (Roelens et al., 2018a). In our study, though the RF model 
generated the highest Recall, its Precision was much lower than that of 
DL (Table 1), which indicates that RF can completely capture the ditches 
from the reference map but heavily overestimate the ditch class, leading 
to both low overall F1 scores and IoU estimates. Hence, we recommend 
the combined usage of IoU and overall accuracy for evaluation of clas
sification models. 

We obtained better classification results when the lidar derived 
topographic features (T) were included in both DL and RF models 
(Table 1, Figs. 4-5), showing the important contribution of topographic 
information in ditch classification for both models. We also found a 
generally greater relative importance of topographic features (i.e., TPO 
and DEM) than intensity and optical features using the RF model 
(Fig. 8). This suggests that the DL model holds promise to map perennial 
and intermittent ditch/stream networks at large scales solely based on 
topographic metrics without involvement of water-related indices. 
Though drainage ditch networks could be captured well using lidar 
topographic features and the DL model, the agricultural landscape 
introduced many challenges in capturing roadside ditches which were 
much narrower channels designed to convey stormwater away from 
transportation throughways. Potential roadside ditches can be more 
precisely inferred from higher resolution lidar DEM data. 

The initial extraction of ditches with DL often generated good con
nectivity for main ditch networks with inclusion of topographic data 
(Fig. 4), which is consistent with the work of Xu et al. (2021) showing 
that the U-Net model achieves significantly better smoothness and 
connectivity between classified streamline channels relative to other 
machine learning methods. To enhance drainage connectivity between 
small ditches, we implemented a minimum-cost approach directly based 

on initial ditch probability from DL to identify the potential connection 
between ditch segments. This was simpler than other reported connec
tion models such as building a logistic regression model to add possible 
missing channel connections (Roelens et al., 2018a). The incorporation 
of FA information into the ditch segments could further improve hy
drologic connectivity with the major natural drainage network where 
the accuracy of FA is relatively high. Our connected drainage network 
outperformed all other flowlines derived from D8 flow routing method, 
the GeoNet tool, and the NHD High Resolution product, in terms of 
Precision, Recall, total length, and distance error (Table 2). As expected, 
flow routing methods can generate good connectivity of flow paths and 
detect the natural network well, but they showed a broader ditch extent 
with many occurrences of channels (e.g., unchanneled preferential 
surface flows) in locations where ditch channels are not observed, 
resulting in a low Precision (0.43), and also failed to capture some truth 
dich channels (Fig. 7). This is in line with Orlandini et al. (2011), who 
found that there is a general tendency to overestimate the network using 
flow routine methods, and that they do not provide reliable prediction of 
channel heads across drainage basins. Though Passalacqua et al. (2012) 
documented that the GeoNet had the ability to distinguish channel 
heads in flat landscapes (i.e., Le Sueur River Basin, Minnesota) based on 
the Laplacian curvature, it still generated moderate errors of omission 
and commission in ditch extraction (Fig. 7). In GeoNet, the likely 
channelized pixels are primarily distinguished by thresholding the cur
vature first and then filtered by a FA threshold parameter to remove 
small convergent areas (unwanted noise). The classification errors of 
GeoNet can be likely caused by the reliance on FA to distinguish truth 
drainage pixels and noisy areas, because flow routine methods (D8 or D- 
Infinity) have large uncertainties in quantifying the drainage area in a 
super low relief landscape in our study area. Also, this tool requires 
filtering techniques (e.g., median filtering) to remove unwanted sources 

Fig. 4. Ditch classification results for two example areas using the deep learning model based on different input combinations (O: optical features; I: intensity 
features; T: topographic features). False color near-infrared imagery (RGB), Normalized Intensity (NI), and Topographic Positive Openness (TPO) are shown at the 
top for reference. 
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Fig. 5. Ditch classification results for two example areas using the random forest model based on different input combinations (O: optical features; I: intensity 
features; T: topographic features). False color near-infrared imagery (RGB), Normalized Intensity (NI), and Topographic Positive Openness (TPO) are shown at the 
top for reference. 

Fig. 6. Examples of enhanced drainage connectivity using the proposed connection methods. (a) and (e): the probability map of ditches represented by softmax 
values; (b) and (f): ditch skeletons obtained by thresholding predicted ditch probability; (c) and (g): flow accumulation based on the D8 algorithm; (d) and (h) 
connected drainage network. Blue segments were detected by minimum-cost connection approach, while red segments were incorporated from flow accumulation. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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of noise in raw elevation data processing (Sangireddy et al., 2016), with 
uncertainty in setting filtering window sizes. This highlights the 
advantage of the DL method based on DCNN in identifying detailed 
contextual information from high-resolution images while automati
cally excluding noisy features in results without filtering operations. In 
our study, a larger FA threshold (e.g., 2 ~ 5 ha) can result in more 
realistic ditch networks for both D8 and GeoNet methods, however, 
substantially omitted many ditches and shorten the extracted drainage 
network (results not shown). The NHD flowlines also provides a realistic 
and well-connected drainage network product, however, the large scale 
(1:24,000) of NHD only allows it to include major stream channels, and 
ignores smaller tributaries, leading to lower accuracy than the other 
products. Overall, the DL approach is superior to both pixel-oriented 
machine learning methods and existing automatic methods for extract
ing ditch features. 

Despite the advantages of using DL in pattern recognition and object 
detection from images, preparing good quality training labels for DL 
models has proven challenging due to the scarcity of high-resolution 
reference data. In contrast, traditional pixel-oriented machine learning 
approaches (e.g., RF) only require a small number of point format 
training data. Note that results using RF were usually less satisfactory 
with lots of speckle noise. In our study, we employed the semi- 
automated stream product generated by Lang et al., (2012b) to repre
sent the perennial and intermittent stream and ditch reference data for 
model training and validation. This was generated by combing the FA- 
derived stream network and extensive human edits (nearly half of the 
streams and ditches). This workflow is extremely time consuming and 

requires extensive prior knowledge. In the future, it may be possible to 
use Self-Supervised Learning (SSL) technology to solve some of chal
lenges posed by the over-dependence of semantic segmentation on 
labeled data (Hu et al., 2021). Moreover, there have also been some 
efforts in identifying ditches directly from 3D lidar point clouds that 
contain volume, accurate 3D information about the ground targets 
(Roelens et al., 2018a). The potential of DL models for improving ditch 
identification from 3D space could also be evaluated in future research. 

5. Conclusions 

Mapping channelized ditch drainage networks in headwater regions 
is essential but challenging using high resolution lidar data. In this 
study, we demonstrated the advantage of using a state-of-the-art DL 
model based on U-Net architecture to classify ditches in a low-relief 
landscape from lidar data. The use of minimum-cost connection 
approach and flow accumulation can further improve the connectivity of 
the DL generated ditch networks. The DL model significantly out
performed the traditional pixel-oriented RF model with significantly less 
“salt-and-pepper” effects. And lidar derived topographic features are 
essential for accurate ditch classification. The connected drainage net
works also show higher accuracy (Precision = 0.88, and Recall = 0.89) 
and lower distance error (within one pixel) than flowlines derived from 
typical D8 method, the GeoNet tool, and the NHD High Resolution 
product. Our study demonstrated the benefits of using DL models to 
extract ditches from high resolution lidar derivatives and showed the 
potential of DL techniques to support future operational drainage 
network mapping at large scale. 
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Fig. 7. Comparison of connected drainage network using deep learning (DL) in this study and flowlines derived from typical D8, GeoNet v2.2 tool, and the NHD High 
Resolution at 1:24,000 scale. RGB: false color near-infrared imagery, TPO: Topographic Positive Openness. 
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