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A B S T R A C T   

Implied volatility has consistently demonstrated its reliability as a superior estimator of the expected short-term 
volatility of underlying assets. In this study, we employ the newly constructed robust model-free implied vola-
tility (MFIV) indices for Bitcoin and Ethereum (BitVol and EthVol) to explore the asymmetric return-volatility 
relationship of these cryptocurrencies through the lens of behavioral finance theories. Utilizing the asym-
metric quantile regression model (QRM) and the Non-linear ARDL (NARDL) approach, our results reveal a 
notable difference from equities. Both positive and negative return shocks in the cryptocurrency market lead to 
an increase in volatility. However, during high volatility regimes, positive (negative) return shocks exert a more 
substantial impact on positive innovations of volatility for Bitcoin (Ethereum) compared to negative (positive) 
return shocks. The degree of asymmetry steadily intensifies as we progress from medium to uppermost quantiles 
of the volatility distribution. These observed phenomena can be attributed to behavioral aspects among market 
participants, including noise trading, behavioral biases, and fear of missing out (FOMO). Our findings hold 
significant implications for various aspects of cryptocurrency trading, portfolio hedging strategies, volatility 
derivatives pricing, and risk management.   

1. Introduction 

The high volatility of cryptocurrencies, compared to other asset 
classes, remains an ongoing market concern, leading investors, experts, 
and academics to continually seek further insights into this phenome-
non. As of now, the price volatility of cryptocurrencies, particularly that 
of Bitcoin, is attributed to several factors, including its inelastic supply, 
lack of an underlying asset, absence of regulatory controls, environ-
mental concerns, information asymmetry, and susceptibility to cyber- 
attacks. Moreover, the commonly accepted notion is that speculation 
is the main driver of cryptocurrency prices and volatility. In this regard, 
De la Horra, de la Fuente, and Perote (2019) demonstrate that Bitcoin 
behaves as a speculative asset in the short term. However, in the long 
term, speculation does not appear to significantly influence the demand 
for Bitcoin. Instead, demand might be driven by expectations concerning 

Bitcoin’s future utility as a medium of exchange. These results contradict 
early evidence on Bitcoin’s speculative bubble provided by Cheah and 
Fry (2015), who claimed that the fundamental price of Bitcoin is zero, as 
well as by Nicholas Taleb (2021). 

In this paper, we take this idea of speculation in the cryptocurrency 
market and explore the Bitcoin and Ethereum’s return-volatility rela-
tionship from the behavioral aspects of the market participants. It seems 
that the cryptocurrencies are still in the price discovery phase. There-
fore, understanding the return-volatility relationship in the crypto-
currency market appears to be pivotal. Some recent studies focused on 
cryptocurrencies’ volatility are Cheikh, Zaied, and Chevallier (2020), 
Katsiampa (2019), Katsiampa, Corbet, and Lucey (2019), Baur and 
Dimpfl (2018) and Katsiampa (2017). 

The return-volatility relationship has been extensively studied in the 
equity market, and empirical evidence from previous studies indicates 
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the presence of a negative asymmetric return-volatility relationship in 
the equity markets (Badshah, 2013; Hibbert, Daigler, & Dupoyet, 2008; 
Mele, 2007). The negative asymmetric return-volatility relationship 
phenomenon in the stock market is primarily attributed to two tradi-
tional hypotheses: the leverage and feedback theories. These two hy-
potheses differ in terms of the direction of causality between stock 
returns and volatility. The next section of this paper will discuss these 
theories concerning the return-volatility relationship in detail. 

However, cryptocurrencies differ from the equity market and are 
emerging as a distinct asset class. Unlike equities, cryptocurrencies lack 
a capital structure and underlying assets. As there is no underlying asset, 
the value of a cryptocurrency primarily hinges on factors such as the 
prospects of its underlying technology, regulatory acceptance, its role as 
a store of value, and its function as a medium of exchange. Some recent 
studies have attempted to elucidate how the markets price crypto-
currencies. For instance, Baur and Dimpfl (2018) demonstrate that 
cryptocurrency prices are influenced by the fear of missing out (FOMO). 
Other papers have found evidence of herding behavior in crypto-
currency markets (Ballis & Drakos, 2020; da Gama Silva, Klotzle, Pinto, 
& Gomes, 2019; King & Koutmos, 2021; Poyser, 2018; Yarovaya, Mat-
kovskyy, & Jalan, 2020). Since cryptocurrencies lack underlying assets 
and capital structures, unlike equities, the phenomenon of their asym-
metric return-volatility relationship cannot be explained using tradi-
tional hypotheses such as the leverage and feedback theories. Thus, in 
this paper, we explore the cryptocurrency return-volatility relationship 
using behavioral finance theories, which will be discussed in the next 
section. 

In the literature on the return-volatility relationship, various cate-
gories of volatility proxies have been used. These include volatility 
estimation using GARCH family models, market-based (model-free) 
volatility estimation (i.e., realized volatility), and, notably, implied 
volatility (IV) estimation using the Black-Scholes models (Karim, Kaw-
sar, Ariff, & Masih, 2022; Karim & Masih, 2021),. However, due to some 
drawbacks of Black-Scholes implied volatility (BSIV), the model-free 
implied volatility (MFIV) based on the variance swap methodology 
has been gaining popularity. Empirical studies have demonstrated the 
superiority of this model-free implied volatility (MFIV) as it incorporates 
information on both past volatility and future expected volatility, and is 
estimated using a full range of option strikes across all moneyness levels. 
Consequently, the use of implied volatility as a proxy for volatility 
estimation has been on the rise recently. In this paper, our approach 
differs from that of Cheikh et al. (2020) and Baur and Dimpfl (2018), and 
in this study, we delve into the asymmetric return-volatility relationship 
of cryptocurrencies, particularly Bitcoin and Ethereum, utilizing the 
recently introduced implied volatility measures, namely BitVol and 
EthVol. 

Recently, the T3 firm1 has constructed implied volatility (IV) indices 
of Bitcoin (BitVol) and Ethereum (EthVol) -implied by the market prices 
of the options- to better estimate and manage the cryptocurrency risk. 
These indices are forward-looking measures and provide the short-term 
expected volatility (30-day implied volatility) of the Bitcoin and Ether-
eum based on the tradable Bitcoin and Ethereum option prices. The 
consensus of market participants concerning the future expected vola-
tility of the underlying asset is represented by the options; hence, the 
implied volatility (IV) characterizes the future realized volatility (RV) of 
the underlying assets over the remaining life of the options (Badshah, 
2013). As a result, they are often attributed to “investors’ fear gauge” 
(Whaley, 2000). 

BitVol and EthVol are model-free implied volatility (MFIV) measures 
and constructed using the variance swap methodology. Unlike the 
traditional implied volatility of Black-Scholes (BSIV) at-the-money 
(ATM), MFIV is constructed using the full range of option strikes 
(across all moneyness) and provide the best estimation on the expected 
volatility of Bitcoin and Ethereum. As of June 10th 2022, both Bitcoin 
(having 41.17% of the total crypto market share) and Ethereum (17.80% 
of the total crypto market share) and combined they represent 58.97% of 
the total market share of the cryptocurrency market.2 

The main objective of this study is to investigate the asymmetric 
return-volatility relationship of the cryptocurrencies (only Bitcoin and 
Ethereum), using the newly constructed robust model-free implied 
volatility (MFIV) of the Bitcoin and Ethereum. Moreover, we also aim to 
extend this investigation to across different volatility regimes (low to 
high volatility), considering the fact that asymmetry if present may vary 
depending on the conditional distribution of the volatility. Furthermore, 
the asymmetric cointegration and long-run asymmetry of the return- 
volatility relationship of cryptocurrencies are explored. Finally, we try 
to explain the findings based on behavioral finance theories. 

First, in addition to using the standard OLS, we have used the 
asymmetric quantile regression model (QRM) to investigate the short- 
run asymmetric return-volatility relationship of the cryptocurrencies 
at different quantiles of the distribution of the changes of MFIV’s 
because it is more likely that the asymmetric effect is more pronounced 
at the extreme-tails of the distribution of volatility. One cannot observe 
these phenomena using the simple OLS since it captures only the mean 
effect, whereas using the GARCH models is also difficult since this 
market is exposed to huge shocks which are drastic price movements 
(Chaim & Laurini, 2018; Charles & Darné, 2019; Cheikh et al., 2020; 
Trucíos, 2019). 

Second, to investigate the co-integration and long-run asymmetry 
between the volatility level and cryptocurrency prices, we have used the 
Non-linear Autoregressive Distributed Lag (NARDL). For that, we have 
used the level form of the data instead of using the return series. The 
advantage of NARDL is that it can estimate both short- and long-run 
asymmetry from a single equation. Hence, we can obtain new infor-
mation such as the cointegration between MFIVs (i.e., BitVol and EthVol) 
and the cryptocurrencies (e.g., Bitcoin and Ethereum) prices and the 
existence of a long-run asymmetry. Moreover, the findings from the 
NARDL, particularly, the existence of the short-run asymmetry (positive 
or negative) and the coefficients of a positive-negative relationship, can 
be compared with the findings derived from the QRM. Third, besides 
Bitcoin, we have also examined Ethereum (the 2nd largest crypto-
currency by market cap). 

Hence, our study makes several contributions to the existing litera-
ture. In general, this study contributes to the literature on the behavioral 
aspects of the cryptocurrency market. More specifically, this study takes 
the initiative to reveal the asymmetry of the cryptocurrency return- 
volatility at different quantiles (i.e., low to high volatility regimes) 
using the model-free implied volatility (MFIV) of Bitcoin and Ethereum. 
This is the first study exploring the asymmetric return volatility using the 
newly available model free implied volatility of Bitcoin and Ethereum. 

This study makes three significant contributions to the existing body 
of knowledge on the cryptocurrency market. Firstly, it contributes to the 
identification of the asymmetric relationship between returns and 
implied volatility in the case of Bitcoin and Ethereum. Consistent with 
previous findings (Baur & Dimpfl, 2018; Katsiampa et al., 2019), this 
study reveals that, unlike equity markets (Badshah, 2013; Chakrabarti & 
Kumar, 2017; Hibbert et al., 2008), both positive and negative returns 
increase the volatility of cryptocurrencies (Bitcoin and Ethereum) in the 
short run. In contrast, Cheikh et al. (2020) show that the cryptocurrency 
market exhibits a positive return-volatility relationship. However, our 

1 “T3 Index is a research-driven financial indexing firm, specializing in 
volatility and options-related benchmarking. T3 Index is dedicated to devel-
oping investible, proprietary indices that track related strategies across a range 
of asset classes to transform the way people invest and manage risk”. The details 
can be found on https://www.prnewswire.com/news-releases/t3-index-to-laun 
ch-a-bitcoin-volatility-index-bitvol-301091318.html 

2 For more detailed information, please refer to https://coin. 
dance/stats#marketcap 
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approach is distinct from the above literature in terms of volatility 
measurement; specifically, we use market implied volatility, a measure 
not yet employed in studies on cryptocurrencies’ return volatility. 

Secondly, this study sheds light on the potential impact of the ‘good 
and bad news’ effect on cryptocurrency volatility. The presence of noise 
traders across cryptocurrencies and variations in investors’ attention to 
news related to different cryptocurrencies (Katsiampa et al., 2019) can 
lead to a positive effect on their volatility. Third, this research provides 
valuable insights into the asymmetric return-volatility relationship in 
the cryptocurrency market, considering the use of market implied 
volatility measures, and highlights the role of news and noise traders in 
influencing cryptocurrency price volatility. 

The study uncovers that positive return-shocks, or good news, have a 
more pronounced impact on the positive innovation (increase) of Bit-
coin’s volatility, as measured by changes in BitVol. This effect is 
particularly evident in the upper quantiles of the volatility distribution, 
which is synonymous with the high volatility regime. These findings 
align with the conclusions drawn in the studies by Cheikh et al. (2020) 
and Baur and Dimpfl (2018), supporting their observations. Conversely, 
the results differ for Ethereum, where negative return-shocks, or bad 
news, have a more significant impact on the positive innovation (in-
crease) of Ethereum’s volatility during high volatility regimes, as indi-
cated by the upper quantiles of the volatility distribution. 

The study also sheds light on the long-run asymmetry using NARDL. 
The results show that there is strong evidence of asymmetric cointe-
gration between the cryptocurrency prices and the volatility levels. 
Moreover, our findings show that both negative and positive price 
movements are associated with a positive innovation (increase) of the 
volatility in both short- and long-run. However, in the long run, the 
negative price movement has a greater impact on a positive innovation 
(increasing) of the volatility for both Bitcoin and Ethereum. 

The observed phenomena discussed above are primarily attributed to 
the behavioral aspects of market participants, including noise trading, 
behavioral and emotional biases, and the fear of missing out (FOMO). 
The increase in volatility following a negative return shock is expected. 
However, the rise in cryptocurrency volatility after a positive return 
shock (in addition to a negative return shock) can be attributed to the 
fear of missing out. Since there is no well-established theoretical model 
for valuing cryptocurrencies, any positive price movement tends to 
trigger speculative behavior among market participants regarding the 
future prospects of cryptocurrencies. 

Furthermore, investors are prone to engage in noise trading after 
cryptocurrency prices rise. As a result, Bitcoin exhibits a positive 
asymmetry (inverted asymmetry) in the short run, particularly during 
the medium to the highest volatility regimes. Interestingly, this phe-
nomenon of inverted asymmetry is absent in the case of Ethereum. Noise 
trading activities following a positive price movement are either less or 
absent for Ethereum. To provide further evidence, we have plotted the 
trading volumes of Bitcoin and Ethereum following positive and nega-
tive return shocks (given in Appendix A). The plots reveal that Bitcoin 
traders are more active following a high positive return (in response to 
good news), while Ethereum traders are more active following bad news 
(when negative return increases). Our findings demonstrate robustness 
through various estimation approaches and subsample analyses (pro-
vided in Tables 5-8). 

The remainder of this study is organized as follows. Section 2 dis-
cusses the asymmetry of return volatility. Sections 3 and 4 present the 
data and the methodology, respectively. Section 5 analyzes the empir-
ical results. Section 6 provides the discussion of the results. Finally, 
Section 7 concludes the paper by offering policy implications and 
recommendations. 

2. Asymmetry of return-volatility 

The two competing hypotheses, the leverage and feedback, for the 
asymmetric return-volatility relationships have been extensively studied 

in equity markets. Proponents of the leverage hypothesis (Black, 1976; 
Christie, 1982) assert that the value of a stock declines (increases) due to 
innovations in the negative (positive) return of the stock. Consequently, 
the firm’s financial leverage increases, and equity holders are exposed to 
more risk, leading to an increase in the stock’s volatility due to the 
decline in equity value. 

On the other hand, advocates of the feedback hypothesis (Bekaert & 
Wu, 2000; Campbell & Hentschel, 1992; French, Schwert, & Stambaugh, 
1987) propose that stock price changes primarily occur because of an 
increase or decrease in the stock’s volatility. This hypothesis is based on 
the assumption of the existence of a time-varying risk premium in the 
market, where volatility is not constant but rather priced in the market. 
Thus, any positive (negative) innovation in the time-varying volatility 
will lead to a decrease (increase) in the stock price. 

Since there is no capital structure in cryptocurrencies, the traditional 
hypothesis - the leverage and feedback - may not be suitable to be used 
to explain the asymmetric return-volatility relationship of the crypto-
currency market. To explain the asymmetric return-volatility of Bitcoin 
and Ethereum, we consider different kinds of biases, such as the repre-
sentative, effect and extrapolation. In the literature of the equity market, 
the similar biases have also been used to explain the asymmetric return- 
volatility relationship of the equity markets. Some recent empirical 
studies show that the evidence of traditional hypotheses such as the 
leverage and feedback theories is absent in the equity market (Badshah, 
2013; Chakrabarti & Kumar, 2017; Hibbert et al., 2008). Therefore, the 
asymmetric return-volatility relationship is associated with behavioral 
finance theories. 

Tversky and Kahneman (1974) first mentioned the representative 
bias (based on the heuristics principles) in describing the quick judg-
ment of the market participants. According to the representative heu-
ristics, people who participate in the market tend to judge the risk and 
return as representing a good and bad investment. For example, a high 
return and a low risk represent excellent investments, and, in contrast, a 
low return and a high risk represent a lousy investment. Therefore, 
empirical studies show that the relationship between return and vola-
tility is negative in the equity market (Fleming, Ostdiek and Whaley, 
1995; Whaley, 2000; Giot, 2005; Andersen, Bollerslev, Diebold, & 
Ebens, 2001; Bekaert & Wu, 2000; Dennis, Mayhew, & Stivers, 2006; 
Kim & Kon, 1994). In contrast, Cheikh et al. (2020) show that unlike the 
equity market, the cryptocurrency market exhibits a positive return- 
volatility relationship. Their findings imply that the volatility of cryp-
tocurrencies increases in response to good news - a positive innovation 
in return and volatility decrease in response to bad news - a negative 
innovation in return. In their studies, the proxy of volatility is estimated 
using the smooth transition GARCH model. However, another recent 
study by Baur and Dimpfl (2018) documents contradicting findings. 
Using the threshold GARCH model, Baur and Dimpfl (2018) find that 
both positive and negative returns are linked to an increase - a positive 
innovation - of the cryptocurrency volatility. 

Based on the above discussion, we can test the following hypothesis. 

H1. There exists a negative relationship between the returns and 
volatility of the selected cryptocurrencies.3 

The negative (positive) asymmetry between the return and volatility 
can be attributed to the effect bias (or the effect heuristics). According to 
the effect bias, people who participate in the market get swiftly influ-
enced by the current state of emotion. Because of that, they tend to relate 
the negative (positive) changes of the price as a sign of increasing 
(decreasing) risk and that is an indication of rising (decreasing) 

3 The following two sub hypotheses are also investigated based on the same 
discussionH1.1: Changes in implied volatility are only driven by the contempora-
neous negative and positive returns of the cryptocurrency.H1.2: Changes of present 
implied volatility are also driven by the lag of changes of implied volatility (past 
changes of implied volatility). 
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volatility. Based on the emotion (e.g., fear or greed) of the market par-
ticipants, a negative price movement can create a bigger response as 
increasing risk, compared to a positive price movement as a decreasing 
risk. For the equity market, empirical studies show that a negative price 
movement has a greater response to the volatility - negative asymmetry 
(Badshah, 2013; Chakrabarti & Kumar, 2017; Hibbert et al., 2008). This 
phenomenon is attributed to the theory of loss aversion by Kahneman 
and Tversky (1979). In contrast, the recent studies of Cheikh et al. 
(2020) and Baur and Dimpfl (2018) on the cryptocurrency return- 
volatility exhibit that a positive return shock tends to create a greater 
response to cryptocurrency volatility, compared to the volatility 
response to a negative return shock. It seems that good news tends to 
have more impact on cryptocurrency volatility, compared to bad news. 
This positive asymmetric (inverted asymmetric) reaction is attributed to 
the noise trading activity as shown by Baur and Dimpfl (2018). These 
authors argue that the informed trader trades more after a negative re-
turn shock. In contrast, after a positive return shock, noise trading ac-
tivities dominate the cryptocurrency market due to the fear of missing 
out (FOMO). Their findings are based on the volatility estimated using 
the GARCH family models. 

Based on the above discussion, we investigate the following 
hypothesis: 

H2. The impact of positive and negative return shocks on the changes 
of implied volatility exhibits asymmetry, suggesting the presence of an 
asymmetric relationship between cryptocurrency returns and volatility. 

There are some other biases to explain the above-mentioned phe-
nomenon. For example, the cryptocurrency market has heterogeneous 
investors investing at different investment horizons with distinctive 
beliefs, objectives, and investment strategies. The return-volatility esti-
mation (or forecast) varies (underestimate or overestimate) from one 
market participant to another based on their beliefs. Therefore, the final 
price in the market could result from the combined activities of those 
heterogeneous investors. Another kind of bias among the market par-
ticipants is the extrapolation bias or the extrapolation heuristics. Ac-
cording to the extrapolation bias theory, the market participant tends to 
extrapolate information from the past events. The judgment is that to-
day’s event is the result of past events. Hence, market participants 
decide by judging past events to represent future events (Chakrabarti & 
Kumar, 2017; Shefrin, 2008). 

Hence, in this paper, we investigate the asymmetry (positive or 
negative) of return-volatility of the cryptocurrency market at different 
quantiles – lower to higher quantiles – using the model-free implied 
volatility (MFIV), which is constructed using the variance swap meth-
odology. The MFIVs are forward-looking measures and derived from the 
tradable Bitcoin and Ethereum option prices. We also investigate if the 
asymmetric relationship varies across the quantiles of the distribution of 
the changes of MFIV. We expect that the asymmetry will be more pro-
nounced at the upper quantiles of the distribution of the changes of 
MFIV, compared to the lower quantiles of the distribution of the changes 
of MFIV. More specifically, we examine the following hypothesis: 

H3. The impact of positive and negative returns on the changes of 
implied volatility is different across the quantiles and the degree of the 
impact is more pronounced at the uppermost quantile (extreme tails) of 
the volatility distribution. 

Moreover, we also investigate if there is any long-run asymmetric 
relationship between the MFIVs and cryptocurrencies (Bitcoin and 
Ethereum). For that, instead of using the return series (the difference 
form) of the data, we have used the level form of the data for estimating 
the non-linear ARDL. One of the shortcomings of NARDL is that, unlike 
the quantile regression model (QRM), it cannot study the price and 
volatility relationship at the different conditional distributions of the 
volatility (the regime independent approach). By deploying the NARDL, 
the following hypothesis is verified: 

H4. The relationship between the cryptocurrency price and the implied 
volatility exhibits asymmetry in the long run.4 

3. Data description 

The T3 index recently introduced two new volatility indices (BitVol 
and EthVol). The Bitcoin 30-day volatility index (BitVol) is introduced in 
July 2020, and the data is available starting from January 08, 2019. The 
data for the Ethereum 30-day volatility index (EthVol) is available from 
April 15, 2020. The tickers for BitVol and EthVol on Refintiv’s Eikon 
terminal are BTCVOL = T3IN and ETHVOL = T3IN. The Bitcoin and 
Ethereum 30-day volatility indices are constructed using the traded 
option prices on Bitcoin (BTC) and Ethereum (ETH). For that, the ex-
pected variances of two expirations closest to the 30-day time point are 
linearly interpolated. Options of two subsequent monthly expirations 
(the 1st and 2nd closest to the point 30 days in the future) are selected 
for the calculation, and the options in the-money and the far out-of- 
money are removed in the subsequent step of the calculation.5 Using 
the variance swap methodology and the full range of option strikes 
provides the best estimation for the 30-day expected volatility. 

We collected the daily Bitcoin (BTC) and Ethereum (ETH) 30-day 
volatility data from Refintiv’s Eikon terminal from the starting date of 
the volatility index. For BitVol, the daily data is collected from January 
08, 2019, to January 08, 2022. For EthVol, daily data is collected from 
April 04, 2020 to January 08, 2022. Following the BitVol and EthVol, 
respective price data of Bitcoin (BTC) and Ethereum (ETH) are collected 
for the same periods.6 

Figs. 1 and 2 show the daily closing volatility levels of BitVol and 
EthVol and their corresponding prices of Bitcoin (BTC) and Ethereum 
(ETH). Following the World Health Organization (WHO)’s declaration 
of the virus (Covid-19) outbreak as a public health emergency of inter-
national concern on January 30, 2020, the volatility and prices of Bit-
coin and Ethereum started to increase to an all-time high. Especially in 
March 2020, when the major economies worldwide were going for 
complete lockdowns due to the virus outbreak, Bitcoin (BTC) lost almost 
half of its value. However, following the price fall, and due to buy at low, 
the excess buyer-motivated trade increased sharply; hence the Bitcoin 
(BTC) price also rose sharply. The price of Ethereum was fluctuating 
between $550 and $750 at the end of 2020. However, after the 
announcement of Ethereum 2 (new version), the price of Ethereum 
started to break the previous resistance level and raised to a new all-time 
high of $1432 on January 19, 2020. Another major event related to the 
cryptocurrency market was the listing of Coinbase7 on the NASDAQ 
stock exchange. Following that, Bitcoin and Ethereum prices reached a 
new all-time high. Following the significant positive price movement, 

4 By deploying NARDL, we also investigate the following sub hypotheses: 
H4.1: There is an asymmetric cointegration between the cryptocurrency (i.e., Bitcoin 
and Ethereum) price and the level of implied volatility.H4.2: The implied volatility 
and the cryptocurrency price are negatively co-related.H4.3: The negative price 
movement has a greater impact on the implied volatility, compared to the positive 
price movement.  

5 The detailed calculation process can be found on: https://t3index.co 
m/wp-content/uploads/2020/07/BitVol-Process_Guide_08-July-2020.pdf  

6 We wanted to divide the data into different sub periods (i.e. before and 
during Covid-19). However, the EthVol data is introduced on 4th April 2020. 
So, before Covid-19 data is not available.  

7 One of the largest cryptocurrency exchanges that is directly listed on the 
NASDAQ stock exchange on 14th April 2021. The ticker name is COIN. This is 
the first and only (till now) cryptocurrency exchange house that has gone 
public. 
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and to gain from the upside of the price, the excess seller-motivated 
trade raised sharply, compared to the excess buyer-motivated trade. 
Due to this fact, the cryptocurrency price was falling gradually. 

Moreover, the Bitcoin price has fallen sharply after the controversial 
tweets from Elon Musk.8 This is because the bitcoin adjusts the tune 
based on the tone of this wealthiest person, which is labelled as Musk 
effect on Bitcoin (Huynh, 2022; and Ante, 2023). For example, on May 
12, 2020, Musk tweeted that Tesla9 was no longer accepting Bitcoin for 
selling the car. Following this news, the Bitcoin price has fallen below 
$48,000 from $55,000. On May 16, 2020, Musk tweeted that Tesla was 

selling the Bitcoin that they bought previously. Because of that, the price 
of Bitcoin has further decreased to $42,000. 

From the above discussion, we can see that the cryptocurrencies are 
one of the most volatile asset classes globally. The good and bad news 
highly influences their market prices. One of the main reasons is that 
unlike equity, cryptocurrencies do not have any underlying assets, and 
their prices are determined based on the pure speculation about the 
prospect of the underlying technology and the acceptance of the cryp-
tocurrency as a medium of exchange and a payment system (Kaya, 
2018). Hence, it is crucial to study the cryptocurrency return-volatility 
relationship to make an informed decision on trading, investment and 
policy recommendation. 

Following Badshah (2013), we have calculated the daily percentage 
continuously compounded returns (denoted by BTC R and ETH R in 
Table 1) of Bitcoin (BTC) and Ethereum (ETH) using the formula (Eq. 1): 

100×(log(Pt) − log(Pt− 1) ) (1) 

The daily percentage returns of BitVol and EthVol (denoted by Δ 

Fig. 1. The trend between Bitcoin and Bitcoin volatility.  

Fig. 2. The trend between Ethereum and Ethereum volatility.  

8 Elon Musk is the “founder, CEO, and Chief Engineer at SpaceX; early-stage 
investor, CEO, and Product Architect of Tesla, Inc.; founder of The Boring 
Company; and co-founder of Neuralink and OpenAI. A centibillionaire, Musk is 
one of the richest people in the world.” https://en.wikipedia.org/wiki/Elon 
_Musk  

9 Tesla, Inc. is an American electric vehicle and clean energy company based 
in Palo Alto, California and is founded by Elon Musk. 
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EVOL and ΔBVOL in Table 1) are calculated as (Eq. 2): 

100×
(

Pt − Pt− 1

Pt− 1

)

(2) 

The summary statistics and the tests for normality and unit-roots for 
the variables mentioned above are also given in Table 1. The mean re-
turn of Ethereum is comparatively higher than the mean return of Bit-
coin during our sample periods. The mean of the volatility changes 
denoted by ΔEVOL and ΔBVOL are almost the same but slightly higher 
for Ethereum. The test for skewness and kurtosis shows that the Bitcoin 
return is negatively skewed, and the Ethereum return is positively 
skewed, whereas all the volatility indices’ returns are positively skewed. 
Moreover, all the variables exhibit the leptokurtic, picked curve (posi-
tive kurtosis) concerning the normal distribution. Hence, the Jarque- 
Bera statistics also reject the normality for each of the variables stated 
in Table. 1. The last 2nd row of Table 1 shows the unit-roots test (using 
the Augmented Dickey-Fuller). The results show that all the four vari-
ables given in Table 1 are stationary (they reject the null hypothesis of 
non-stationary at the 1% level). However, all the variables are non- 
stationary in their level form. Therefore Bitcoin, Ethereum, BitVol, and 
EthVol are all I(0) variables. 

4. Methodology 

4.1. Quantile regression 

This study applies the Quantile Regression Method (QRM) which was 
developed by Koenker and Bassett Jr (1978), and later reviewed and 
revised by Buchinsky (1998); Koenker and Hallock (2001); and Koenker 
(2005), followed by the broader application in the finance and banking 
literature (Arribas, Peiró-Palomino, & Tortosa-Ausina, 2020; Behr, 
2010; Covas, Rump, & Zakraǰsek, 2014; Schaeck, 2008). The advantage 
of applying the quantile regression is to understand the relationship 
between the variables outside the mean of the data to help understand 
the findings in the absence of the normal distribution and the presence of 
a Non-linear relationship. Thus, this method provides a greater flexi-
bility than other regression methods to identify the heterogeneous re-
lationships at different parts of the distribution of the outcome variable. 
All in all, the usage of the method offers features, i.e. robustness to the 
outlier and equibalance to monotonous transformation (Gilchrist, 
2000), that make this method useful to identify some stylized facts in the 
absence of linearity assumption. Therefore, this study uses quantile 
regression to allow the slope coefficient to vary across the quantiles and 
asymmetries of the dependent variable. We expect that the asymmetry 

will be heterogeneous across the quantiles (from the lower to upper 
quantiles) of the distribution of MFIV. That is because the market has 
heterogeneous investors with different beliefs, extrapolation biases, 
objectives, and investment strategies, making them invest at different 
investment horizons. 

Alike previous studies (e.g., Badshah, Frijns, Knif, & Tourani-Rad, 
2016; Das & Kannadhasan, 2020; You, Guo, Zhu, & Tang, 2017) use 
this method in the financial market arena to explore the asymmetric 
patterns at the different quantiles of the distribution of the dependent 
variable. This study uses an asymmetric quantile regression model to 
examine the cryptocurrency’s asymmetric (positive or negative) return- 
volatility relationship at different quantiles of the distribution of MFIV. 
We start with the mean-regression method, which is process-wise similar 
to that of Low (2004); Giot (2005); Badshah et al. (2016); Das and 
Kannadhasan (2020). We consider the mean regression as the bench-
mark for our analysis.10 Then, we extend this mean-regression model by 
incorporating the asymmetric relation, using the quantile regression 
model to investigate whether the changes of MFIV are affected hetero-
geneously by the positive and negative cryptocurrency returns (Eq. 3) 
across the distribution of MFIV. 

Here, we define ΔMFIVit as the percentage change in volatility (Eq. 
4) and Rit as the daily percentage continuously compounded return of 
cryptocurrency iwhere i=Bitcoin, and Etherum where 

R+
it =

{
Rit if Rit > 0
0 if Rit < 0 and R−

it =

{
Rit if Rit < 0
0 if Rit > 0 (3) 

For the asymmetric relation, the standard mean-regression model 
will have the following form (Eq. 4), 

ΔMFIVit = α+
∑3

L=1
βi LΔMFIVit− L +

∑3

L=0
γi L R+

it− L +
∑3

L=0
δi L R−

it− L + ut

(4) 

Here, α is the intercept, βiL represents the coefficient of the ΔMFIV in 
volatility iwhere lag L = 1–3. The coefficient γiL indicates the positive 
return of the cryptocurrency i, whereas the coefficient δiL Indicates the 
negative return of cryptocurrency. Here, L = 0–3 is applied for both 
types of returns. The error term ut is assumed to have independent and 
identical distribution with a zero mean. Next, we move forward to the 
quantile regression properties to capture the vital information across the 
quantiles. This capture of additional information cannot be done with 
the mean-regression method as it assumes that the effect of the crypto-
currency return is static across the changes of the response variable. To 
examine the asymmetric relation at different quantiles, we will have the 
following form of the equation (Eq. 5) 

ΔMFIVit =α(q)+
∑3

L=1
β(q)

i L LΔMFIVit− L+
∑3

L=0
γ(q)i L R+

it− L+
∑3

L=0
δ(q)i L R−

it− L+ut

(5) 

Here, α(q) is the intercept of the respective quantile, β(q)
i L is the coef-

ficient of lagged ΔMFIV in the volatility index i, where the lagged L =
1–3. The coefficient γ(q)i L and δ(q)i L represents the positive and negative 
return of cryptocurrency, respectively, where the lagged L = 0–3 are 
used for both positive and negative returns. The error term ut is assumed 
to have independent and derived from the error distribution of ∅qut with 
a zero mean at the qth quantile. The main feature of this quantile 
regression is that it provides the effect captured by β(q)

i L , γ(q)i L and δ(q)i L at 
each quantile with a range of q∈(0,1). The heteroscedasticity is now 
allowed in the error ut, thereby providing different coefficients for the 
different quantiles. Thus, we estimate our model following this quantile 
regression method of Koenker & Bassett Jr, 1978). 

Table 1 
Descriptive statistics of the variables’ returns.   

ΔBVOL BTC R ΔEVOL ETH R 

Mean 0.1806 0.2551 0.1283 0.4838 
Median − 0.4905 0.1780 − 0.5353 0.3756 
Max 75.6974 21.5423 68.5533 32.4082 
Min − 25.6149 − 30.9314 − 20.6794 − 27.8909 
SD 6.5379 4.2566 6.1618 5.2761 
Skewness 3.1273 − 0.2931 2.8887 0.0173 
Kurtosis 30.7157 8.7201 29.7225 9.5150 
Jarque-Bera 31,000 1281 20,000 1109 
P-Value 0.000 0.000 0.000 0.000 
ADF − 22.901*** − 22.170*** − 28.186*** − 28.046*** 
Number Obs 931 931 628 628 

Notes. We provide the descriptive statistics of the return and volatility of Bitcoin, 
Ethereum, respectively. BTC R and ETH R are the percentage continuous com-
pounding returns of Bitcoin and Ethereum. ΔBVOL and ΔEVOL are the per-
centage changes of the Bitcoin and Ethereum-volatility. We conduct the unit- 
root test Augmented Dickey-Fuller (ADF) to assess non-stationarity, and the 
Jarque-Bera statistics to check for normality. The ADF test rejects the null hy-
pothesis at the 1% significance level as denoted by ***.  

10 The studies of Low, (2004) and Giot, (2005) are among the first few to 
examine the return-volatility relation and conclude the presence of the asym-
metric and non-linear relations, thus relating their findings to specific behav-
ioral aspects (i.e., the loss aversion nature). 
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4.2. Non-linear ARDL 

We use the non-linear Autoregressive Distributed Lag (henceforth, 
NARDL) to address the possibility of asymmetric non-linear adjustments 
to the equilibrium. We believe that the deviations from the equilibrium 
are asymmetric and non-linear in nature. This is because the factors 
contributing to non-linearity can also contribute to asymmetric de-
viations from the equilibrium (Nam, Pyun, & Arize, 2002). The NARDL 
model more recently advanced by Shin, Yu, and Greenwood-Nimmo 
(2014) provides overreaching advantages in comparison with other 
approaches in allowing for short-and long-run asymmetry. This means 
that NARDL, based on the consideration of dynamic error-correction 
associated with the attribute of asymmetric long-run cointegrating 
regression, exhibits the relationship of short-and long-run asymmetries. 
Thus, it offers the parameter to quantify the magnitude of the responses 
of the dependent variable to the positive and negative shocks of the 
independent variable. In addition, the NARDL model is believed to 
provide robust estimates in implementing the cointegration tests, while 
dealing with small samples in the study. Plenty of time-series studies in 
the context of macroeconomy use this model to examine whether the 
effect of positive and negative changes of regression has different (not 
identical) influences on the regress and (Amin, Anwar, & Liu, 2022; 
Arize, Malindretos, & Igwe, 2017; Nusair & Olson, 2021; Sukmana & 
Ibrahim, 2017). 

Accordingly, we employ the NARDL model developed by Shin et al. 
(2014) as the asymmetric addition to the ARDL model developed by 
Pesaran and Shin (1995) and Pesaran, Shin, and Smith (2001). We start 
with the following equation, which considers the subset of regressors 
included in the long run relationship. 

MFIVjt = αj0 +αj1R+
jt + αj2R−

jt + ejt (6) 

Here, j=Bitcoin, and Etherum, MFIVjt is the model-free implied 
volatility constructed based on the cryptocurrencies separately, Rjt is the 
cryptocurrency return rate. The vector of long-run parameters i.e., 
αj0, αj1, and αj2 to be estimated. The stationary mean-zero error term ejt 

represents the deviation from the long-run equilibrium. R+
jt and R−

jt 

represent the partial sum process that captures the positive and negative 
changes in R such as: 

R+
jt =

∑t

n=1
ΔR+

jt =
∑t

n=1
max(ΔRn, 0) (7)  

R−
jt =

∑t

n=1
ΔR−

jt =
∑t

n=1
min(ΔRn, 0) (8) 

In the empirical setting, Eq. (4) can be transformed into an asym-
metric NARDL according to Shin et al. (2014) by including asymmetric 
short-and long-run parameters: 

ΔMFIVjt = βj0 + βj1MFIVjt− 1 + βj2R+
jt− 1 + βj3R−

jt− 1 +
∑p

i=1
φjiΔRjt− i

+
∑q

i=0

(
θ+

ji ΔR+
jt− i + θ−

ji ΔR−
jt− i

)
+ ejt

(9) 

The additional p and q are the lag orders, and the rest of the variables 
are defined as before. We can now identify both the long-run parameters 
and the asymmetric effect of the cryptocurrency rates of returns on 
volatility. 

We apply the procedures as in Fousekis, Katrakilidis, and Trachanas 
(2016) and Sukmana and Ibrahim (2017) by starting with the estimation 
of Eq. (7), using the ordinary least square method. To determine the 
presence of cointegration between the variables, we apply the F-test 
denoted as FPSS to test the null hypothesis of HO: ρ =

0=βj1=βj2=βj3 (Pesaran et al., 2001) or the t-test denoted as TBDM to test 
the null hypothesis of H0: ρ = 0 (Banerjee, Dolado, & Mestre, 1998). This 
is accomplished to conclude that the model is not suffering from the 

presence of insignificant lags. With the confirmation of the presence of a 
long-run relationship, we proceed to test the hypotheses H0 : − βj2/βj1 =

− βj3/βj1 for the long-run asymmetry and H0 :
∑q

i=0θ+ji =
∑q

i=0θ−ji for the 
short-run asymmetry. 

Finally, we also graph the asymmetric dynamic cumulative multi-
plier effect of one percentage point change in positive and negative in R 
to visually present the asymmetric relationship between the variables, as 
follows in the equation 

m+
jh =

∑h

m=0

∂MVIFjt+m

∂R+

jt
,m−

jh =
∑h

m=0

∂MVIFjt+m

∂R−

jt
, h = 0, 1, 2, (10) 

Note that as h→∞,m+
jh→αj1and m−

jh→αj2 by construction, where α1+

and α2− , symbolize the asymmetric long-run coefficients. 

5. Empirical results 

5.1. Findings using QRM 

Asymmetric quantile regression results for the Bitcoin return with 
the changes of the BitVol index are given in Fig. 3. We have a total of 12 
covariates, including an intercept, and they are plotted for a total of 
eleven different quantiles (quantiles q ranging from 0.05, 0.1…, 0.9, and 
0.95). The solid curves within the grey shaded area (the confidence in-
terval) are the estimated coefficients from the quantile regression, and 
the vertical dashed lines within the two dotted lines (the confidence 
interval) are the estimated coefficients from the OLS. The X-axis repre-
sents the quantiles (q), and the Y-axis presents the percentage of the 
covariate effect. They can be interpreted as the effect of the independent 
variables on the changes of Bitcoin volatility in a percentage-point. The 
right-hand side (the independents variables) denoted by L1Y, L2Y and 
L3Y11 are the lags of the dependent variable (Changes of BitVol), 
pCCRBTC represents positive continuous compounding return of Bit-
coin. L1P, L2P, and L3P are the lags of the pCCRBTC. Finally, nCCRBTC 
represents the negative continuous compounding return of Bitcoin. L1N, 
L2N, and L3N are the lags of the nCCRBTC. 

The estimated coefficients given in Fig. 3 are tabulated in Table 2 for 
the upper and lower quantiles. The standard errors are given in the 
parentheses, and the stars denote the levels of statistical significance of 
the coefficients (* significant at 10%, ** significant at 5%, and *** sig-
nificant at 1%). For each of the quantile estimates, the robust t-statistics 
are obtained using the bootstrap method. For the OLS, the standard 
errors are corrected (using the robust standard errors) for the hetero-
skedasticity problem. 

In Table 2,ΔBVOLt− 1, ΔBVOLt− 2 and ΔBVOLt− 3 represent the lags of 
the changes of the BITVOL. The positive return of the Bitcoin is denoted 
by R+

t and the negative return is denoted by R−
t . For both positive and 

negative returns, we have selected three lags. From the estimated 
contemporaneous coefficients given in columns 5 and 9, we can see that 
the relationship between changes of Bitcoin’s implied volatility and 
return are positive across the quantiles. The coefficients of R+

t are pos-
itive, so R+

t increases BitVol. The coefficients of R−
t are negative, and 

hence R−
t also increases BitVol. The result shows that the increase in the 

positive and negative returns also increases the volatility but the impact 
of the positive return on volatility is much higher during high volatility 
regimes – denoted by the uppermost quantiles. For example, the co-
efficients estimated at q = 0.95 quantile (and OLS) show that a 1% in-
crease in Bitcoin’s return is associated with a 1.243% (0.530%) increase 
in Bitcoin’s volatility. In contrast, a 1% decrease in Bitcoin’s return is 
linked to a 0.832% (0.567%) increase in Bitcoin’s volatility. These re-
sults are significant at the 1% level. It implies that, for Bitcoin, unlike 
equity, both good and bad news lead to an increase in Bitcoin’s implied 

11 The number of lags is selected based on the AIC and SBIC criteria. 
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volatility (BitVol). This finding rejects Hypothesis 1, which claims that 
the Bitcoin’s return-volatility are negatively co-related. 

However, the impact of positive returns is much higher than the 
impact of negative returns on the changes in Bitcoin’s volatility. Hence, 
this finding supports Hypothesis 2, which claims that the impacts of 
positive and negative returns on the changes of implied volatility are not 
the same; hence, there is an asymmetric relationship between Bitcoin’s 
return and volatility. We also can see that, as we move to uppermost 
quantiles, the difference between the coefficients of positive and nega-
tive returns (R+

t and R−
t ) increase monotonically. It implies that the 

marginal effects of positive and negative returns are much higher at the 
upper quantiles. The positive asymmetric effect is much more significant 
at the upper quantiles (high volatility regimes) of the distribution of the 
changes of BitVol. One cannot observe this phenomenon using the simple 
OLS since it captures only the mean effect. It accepts Hypothesis 3, which 
claims that the impacts of the positive and negative returns on the 
changes of implied volatility are different across the quantiles and the 
degree of the impact is more pronounced at the uppermost quantile 
(extreme tails) of the volatility distribution. Interestingly, in most of the 
cases, from the median to the lower quantiles, the impacts of bad and 
good news (positive and negative retunes) are insignificant. It implies 
that during the low to medium volatility regimes, there is no asymmetric 
relationship between Bitcoin’s return and volatility. It is interesting to 
see how the estimated coefficients vary with the distribution of the 
changes of volatility. 

Moreover, the sizes of the contemporaneous coefficients (R+
t and R−

t ) 

are higher (and significant at the 1% level) compared to the sizes of the 
coefficients of the lagged variables except for the coefficients of the 
highest quantile (q = 0.95). After the first lag, the impacts of lag-returns 
(second and third lags) mostly became insignificant. It implies that there 
is auto correlation up to one lag. Hence, we can reject Hypothesis1.1. The 
rejection says that the changes of implied volatility are only driven by 
the contemporaneous negative and positive returns of Bitcoin. More-
over, the first-lag of the changes of implied volatility (the dependent 
variable) is also significant at the lower to medium quantiles. Hence, it 
also supports Hypothesis 1.2. It argues that the changes of present 
implied volatility are also driven by the lag of changes of implied vola-
tility (past changes of implied volatility). 

The main findings are summarized as follows. Unlike equity, both 
positive and negative returns of Bitcoin are associated with the positive 
innovation (increase) of volatility. This result supports the findings of 
Baur and Dimpfl (2018), where this phenomenon can be attributed to 
the fear of missing out (FOMO). Moreover, our results indicate that 
during high volatility regimes (represented by upper quantiles), changes 
of Bitcoin’s volatility are more linked to the positive return than the 
negative return. It means, at upper quantiles, the impact of the good 
news on the positive innovation of BitVol is much higher, compared to 
the impact of bad news on the positive innovation of BitVol. In contrast, 
during the calm volatility periods (represented by the median-lower 
quantiles), the relationship between changes of volatility and positive- 
negative return are mostly insignificant. We can argue that the market 
participants’ reactions to Bitcoin’s positive return-shock are higher, 

Fig. 3. Quantile regression estimation plots (changes of BITVOL is the dependent variable).  
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Table 2 
Testing the changes of Bitcoin volatility across the quantiles.  

Quantile ΔBVOLt− 1 ΔBVOLt− 2 ΔBVOLt− 3 R+
t R+

t− 1 R+
t− 2 R+

t− 3 R−
t R−

t− 1 R−
t− 2 R−

t− 3 Intercept R2 

0.05 − 0.312*** − 0.0441 − 0.0249 0.0483 0.100 − 0.0437 − 0.266 0.184 − 0.130 0.135 0.199 − 7.058*** 0.0953  
(− 4.06) (− 0.58) (− 0.33) (0.25) (0.52) (− 0.22) (− 1.38) (0.96) (− 0.66) (0.68) (1.00) (− 7.85)  

0.1 − 0.224*** 0.0439 − 0.00554 0.0133 0.0668 − 0.293* − 0.217 − 0.107 − 0.0473 0.278 0.213 − 4.458*** 0.0627  
(− 3.93) (0.77) (− 0.10) (0.09) (0.47) (− 2.03) (− 1.51) (− 0.75) (− 0.32) (1.89) (1.43) (− 6.68)  

0.15 − 0.149*** 0.0143 − 0.0489 0.114 0.0621 − 0.308** − 0.0176 − 0.148 0.0638 0.254* 0.109 − 3.676*** 0.0507  
(− 3.83) (0.37) (− 1.28) (1.18) (0.64) (− 3.12) (− 0.18) (− 1.52) (0.64) (2.52) (1.08) (− 8.06)  

0.2 − 0.143*** − 0.0116 − 0.0628 0.111 0.0479 − 0.166* − 0.0426 − 0.146 − 0.0779 0.205* 0.138 − 3.257*** 0.0438  
(− 4.34) (− 0.35) (− 1.94) (1.36) (0.58) (− 1.98) (− 0.51) (− 1.77) (− 0.92) (2.40) (1.61) (− 8.43)  

0.25 − 0.0966** − 0.00519 − 0.0660* 0.101 0.00235 − 0.122 − 0.0377 − 0.222** 0.00905 0.132 0.138 − 2.578*** 0.0373  
(− 3.29) (− 0.18) (− 2.30) (1.39) (0.03) (− 1.64) (− 0.51) (− 3.02) (0.12) (1.74) (1.81) (− 7.50)  

Median − 0.113*** − 0.0174 − 0.0814*** 0.328*** 0.200*** − 0.0782 − 0.0957 − 0.461*** − 0.145* 0.134* 0.235*** − 1.082*** 0.0522  
(− 4.65) (− 0.72) (− 3.43) (5.45) (3.30) (− 1.27) (− 1.57) (− 7.60) (− 2.34) (2.14) (3.73) (− 3.81)  

0.75 − 0.121** − 0.0249 − 0.123*** 0.661*** 0.557*** − 0.152 − 0.171 − 0.675*** − 0.352*** 0.153 0.137 0.456 0.1054  
(− 3.19) (− 0.66) (− 3.32) (7.05) (5.88) (− 1.58) (− 1.79) (− 7.12) (− 3.63) (1.56) (1.39) (1.03)  

0.8 − 0.108** − 0.0468 − 0.137*** 0.719*** 0.589*** − 0.138 − 0.0880 − 0.718*** − 0.340*** − 0.0138 0.155 0.641 0.1231  
(− 2.78) (− 1.21) (− 3.60) (7.47) (6.06) (− 1.40) (− 0.90) (− 7.38) (− 3.42) (− 0.14) (1.54) (1.41)  

0.85 − 0.106 − 0.0373 − 0.159** 0.873*** 0.701*** − 0.114 − 0.0121 − 0.903*** − 0.388** − 0.0827 0.103 0.725 0.1432  
(− 1.94) (− 0.68) (− 2.97) (6.45) (5.13) (− 0.83) (− 0.09) (− 6.61) (− 2.77) (− 0.59) (0.72) (1.13)  

0.9 − 0.0904 − 0.0835 − 0.137 1.237*** 1.144*** − 0.194 0.0676 − 0.925*** − 0.724*** − 0.0394 0.125 0.932 0.1729  
(− 1.20) (− 1.11) (− 1.86) (6.60) (6.04) (− 1.01) (0.35) (− 4.89) (− 3.74) (− 0.20) (0.64) (1.05)  

0.95 0.0152 − 0.0950 − 0.0788 1.243*** 1.478*** − 0.265 − 0.131 − 0.832* − 1.927*** − 0.642 0.158 2.651 0.2372  
(0.10) (− 0.65) (− 0.55) (3.42) (4.02) (− 0.71) (− 0.35) (− 2.26) (− 5.13) (− 1.69) (0.41) (1.54)  

OLS − 0.0694 − 0.00744 − 0.107** 0.530*** 0.487** − 0.141 − 0.164 − 0.567*** − 0.518 0.00436 0.274** − 1.937*** 0.1437  
(− 0.83) (− 0.24) (− 3.21) (3.33) (2.66) (− 1.82) (− 1.86) (− 5.27) (− 1.53) (0.02) (2.71) (− 3.34)  

Notes. We provide findings from the lower to upper (i.e., 0.05 to 0.95) quantile regressions and the OLS regression of the changes of BITVOL on the set of independent variables. ΔBVOLt− 1, ΔBVOLt− 2 and ΔBVOLt− 3 

represent the lags of the changes of BITVOL. The positive return of the Bitcoin is denoted by R+
t while the negative return of this crypto currency is denoted by R−

t . Note that R+
t− 1, R+

t− 2 and R+
t− 3 are the lags of the positive 

returns. R−
t− 1, R−

t− 2 and R−
t− 3 are the lags of the negative returns. The significance levels at 1%, 5% and 10% are denoted by ***, ** and *, respectively. The t-statistics are given in parentheses.  
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compared to negative return-shock during high volatility regimes. It 
implies that following the positive return shock, the excess buyer- 
motivated trade increases due to the fear of missing out (FOMO). In 
Appendix A, we have provided further evidence to that. As a result, for 
hedging the risk, the excess demand on Bitcoin’s options due to a pos-
itive return-shock is much higher than the excess demand of options 
following a negative return-shock. Tables 7-8 demonestrate robustness 
of the findings through subsample analyses. 

A similar analysis is carried out for Ethereum, the 2nd largest cryp-
tocurrency by market capitalization. Even though the underlying tech-
nology and the scope of usage of Etherum are slightly different from 
Bitcoin, the purpose of the market participants in trading and holding 
Ethereum is still the same as Bitcoin. Hence, we expect to get similar 
results that we have already discussed for the Bitcoin above. However, a 
slightly different finding may appear because of the marginally different 
expectations of the market participants from Ethereum compared to 
Bitcoin. 

Fig. 4, the same as Fig. 3, presents the asymmetric quantile regres-
sion results for the Ethereum return with the changes of the EthVol 
index. We can see the shapes of Fig. 3 and Fig. 4 look the same. Some of 
the findings are a bit different from the results discussed for the asym-
metric relationship between Bitcoin and BitVol. For more details, the 
estimated coefficients of some of the critical quantiles (i.e., 0.05 to 0.95) 
from Fig. 4 are tabulated in Table 3. Like the findings on Bitcoin dis-
cussed earlier, and unlike equity, both positive and negative returns of 
the Ethereum are strongly linked to positive innovation of the volatility. 

As the case for Bitcoin, we can also see that impacts of the positive and 
negative returns of Ethereum on the positive innovation of the implied 
volatility of Ethereum (EthVol) are increasing monotonically from me-
dium to the uppermost quantiles. Moreover, the impacts of the 
contemporaneous returns (represented by Rt and R−

t ) on the changes of 
volatility are much higher and significant at the 1% level compared to 
the lagged effect. 

However, unlike Bitcoin during the high volatility regimes, the 
positive innovation (increase) in the volatility of Ethereum is more 
pronounced to the negative return-shock. It implies that the bad news 
has a greater impact on the positive innovation of the Ethereum vola-
tility at the uppermost qualities of the distribution of the volatility 
changes. It also implies that following the negative return shock, the 
excess buyer-motivated trade increases to take advantage at a lower 
price (buying at a lower price). In Appendix A, we have provided further 
evidence to that. As a result, for hedging the risk, the excess demand of 
options due to a negative return-shock is much higher than the excess 
demand of options following a positive return-shock. Moreover, the 
impact of the positive and negative returns of Ethereum on the volatility 
changes is mainly found to be insignificant from the lowermost to me-
dium quantiles (during calm periods). The reaction of the market par-
ticipants tends to vary depending on the gravity of the cryptocurrency 
return-shock. In addition, a subsample analyses is given in Tables 5-6 
for robustness checking. 

For a closer look, in Figs. 5 and 6, we report the impact of the 
cotemporaneous positive and negative returns (represented by R+

t 

Fig. 4. Quantile regression estimation plots (changes of ETHVOL is the dependent variable).  
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Table 3 
Testing the changes of Ethereum volatility across the quantiles.  

Quantile ΔEVOLt− 1 ΔEVOLt− 2 ΔEVOLt− 3 R+
t R+

t− 1 R+
t− 2 R+

t− 3 R−
t R−

t− 1 R−
t− 2 R−

t− 3 Intercept R2 

0.05 − 0.0492 − 0.173 0.00454 − 0.0793 − 0.111 − 0.267 0.0192 0.119 0.362 0.184 0.0941 − 5.215*** 0.0992  
(− 0.49) (− 1.73) (0.05) (− 0.41) (− 0.57) (− 1.39) (0.10) (0.60) (1.73) (0.89) (0.44) (− 4.67)  

0.1 − 0.170** − 0.149* − 0.0306 − 0.0901 0.0128 − 0.128 − 0.0986 − 0.0854 0.0713 0.107 0.162 − 4.222*** 0.0689  
(− 2.64) (− 2.32) (− 0.48) (− 0.73) (0.10) (− 1.04) (− 0.82) (− 0.67) (0.53) (0.81) (1.18) (− 5.88)  

0.15 − 0.218*** − 0.107* − 0.00597 − 0.0711 0.0149 − 0.0671 − 0.0526 − 0.0645 − 0.0237 0.0827 0.169 − 3.788*** 0.048  
(− 5.02) (− 2.47) (− 0.14) (− 0.86) (0.18) (− 0.81) (− 0.65) (− 0.76) (− 0.26) (0.92) (1.83) (− 7.83)  

0.2 − 0.215*** − 0.0720 − 0.0492 0.0331 − 0.0277 − 0.0496 − 0.0120 − 0.0999 0.0240 0.111 0.161 − 3.047*** 0.0379  
(− 4.95) (− 1.67) (− 1.15) (0.40) (− 0.33) (− 0.60) (− 0.15) (− 1.17) (0.27) (1.24) (1.75) (− 6.32)  

0.25 − 0.193*** − 0.0467 − 0.0536 0.0563 0.0363 − 0.0552 0.0189 − 0.169* 0.0644 0.144 0.0762 − 2.664*** 0.037  
(− 5.00) (− 1.21) (− 1.40) (0.76) (0.49) (− 0.74) (0.26) (− 2.23) (0.80) (1.80) (0.93) (− 6.19)  

Median − 0.0956* − 0.0698 − 0.0669 0.288*** 0.0950 − 0.0466 0.0297 − 0.301*** 0.129 0.196* 0.106 − 0.922* 0.044  
(− 2.51) (− 1.84) (− 1.78) (3.98) (1.30) (− 0.64) (0.42) (− 4.03) (1.64) (2.50) (1.31) (− 2.18)  

0.75 − 0.0379 − 0.00656 − 0.0270 0.598*** 0.281** − 0.0695 0.0614 − 0.602*** − 0.0798 0.187 − 0.0924 0.136 0.0804  
(− 0.68) (− 0.12) (− 0.49) (5.62) (2.61) (− 0.65) (0.59) (− 5.49) (− 0.69) (1.63) (− 0.78) (0.22)  

0.8 − 0.0384 0.0461 0.00147 0.753*** 0.297** − 0.0132 − 0.0892 − 0.735*** − 0.109 0.211 − 0.0535 0.590 0.1005  
(− 0.70) (0.85) (0.03) (7.22) (2.82) (− 0.13) (− 0.00) (− 6.85) (− 0.96) (1.87) (− 0.46) (0.97)  

0.85 − 0.0415 0.0716 − 0.0206 0.857*** 0.502*** − 0.0689 − 0.0519 − 0.713*** − 0.155 0.260 − 0.0566 1.447 0.1317  
(− 0.62) (1.07) (− 0.31) (6.69) (3.87) (− 0.54) (− 0.42) (− 5.41) (− 1.11) (1.88) (− 0.40) (1.94)  

0.9 − 0.111 0.0676 − 0.0186 0.922*** 0.488** − 0.143 − 0.0589 − 1.042*** − 0.120 0.344* − 0.0336 2.558** 0.1757  
(− 1.36) (0.84) (− 0.23) (5.95) (3.12) (− 0.92) (− 0.39) (− 6.54) (− 0.71) (2.05) (− 0.19) (2.83)  

0.95 − 0.117 0.0647 − 0.150 0.912*** 0.690** − 0.0970 0.290 − 1.789*** − 0.0582 0.519* − 0.393 2.592* 0.2877  
(− 1.04) (0.58) (− 1.35) (4.26) (3.18) (− 0.45) (1.39) (− 8.12) (− 0.25) (2.24) (− 1.64) (2.07)  

OLS − 0.132** − 0.0377 − 0.0168 0.455* 0.150 − 0.0923 0.0248 − 0.665* 0.117 0.307** 0.0642 − 1.237 0.1449  
(− 3.19) (− 0.85) (− 0.34) (2.54) (1.67) (− 0.85) (0.31) (− 2.53) (0.98) (3.20) (0.46) (− 1.91)  

We provide the results from the lower to upper (i.e., 0.05 to 0.95) quantile regressions and the OLS regression of the changes of ETHVOL on the set of the independent variables. The variables ΔEVOLt− 1, ΔEVOLt− 2 and 
ΔEVOLt− 3 represent the lags of the changes of BITVOL. The positive return of Ethereum is denoted by R+

t , while the negative return of this crypto is denoted by R−
t . Note that R+

t− 1, R+
t− 2 and R+

t− 3 are the lags of the positive 
return, while R−

t− 1, R−
t− 2 and R−

t− 3 are the lags of the negative return. The significance levels at 1%, 5% and 10% are denoted by ***, ** and *, respectively. The t-statistics are given in parentheses.  
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and R−
t ) on the changes of volatility. Fig. 4 (5) shows the impact of the 

cotemporaneous positive and negative return of Bitcoin (Ethereum) on 
the changes of Bitcoin’s (Ethereum’s) volatility across the quantiles (q =
0. 05 to 0.95) – the lower to high volatility regimes. In Figs. 5 and 6, the 
upward (downward) sloping dashed-line with a circle-marked (dashed- 
line with diamond-marked) represents the coefficients of the cotem-
poraneous positive returns (negative returns). The differences of the 
impact of positive and negative return is presented with the dashed- 
lined with a small circle-shaped. It is clear that the degree of asymme-
try is increasing as we move from the medium to the uppermost quan-
tiles. However, the asymmetry is absent during the lower to the medium 
volatility regimes as the coefficients are not significant, which we have 
already discussed. There is less asymmetry at the medium quantiles of 
the volatility distributions (during the relatively calm periods). During 
high volatility regimes (an extreme tail of the volatility distribution), the 
degree of asymmetry seems to be very high. For Ethereum (Fig. 5), the 

impact of negative returns is much higher compared to the impact of 
positive returns – denoted by the downward dashed line with the dia-
mond shaped marker. In contrast, for Bitcoin (Fig. 4), the impact of the 
positive return is much higher compared to the impact of negative return 
– denoted by the upward dashed line with the circle shaped marker. 

5.2. Findings using NARDL 

The results discussed above are estimated using the return series of 
the cryptocurrency and implied volatility. For that, we have calculated 
the percentage continuous compounding return of Bitcoin and Ether-
eum. Moreover, the percentage changes are measured for BitVol and 
EthVol. As can see from Table-1, both measures are stationary and 
represent short-run information. Since the difference form of the data is 
used, instead of using the price data (the level form), the long-term in-
formation is distorted. 

Fig. 5. BitVol response to contemporaneous positive and negative returns.  

Fig. 6. EthVol response to contemporaneous positive and negative returns.  
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Hence, besides the short-run asymmetry, to investigate the long-run 
asymmetry between cryptocurrency price and implied volatility’s level, 
we have deployed the Nonlinear Autoregressive Distributive lag 
(NARDL). The advantage of NARDL is that it can estimate short- and 
long-run asymmetry at the same time within a single equation. Before 
applying the NARDL, we have checked if there are any I(2) variables 
since this approach only takes I(0) and I(1) variables. Our data satisfies 
this pre-condition. 

We present the estimated results from the NARDL in Table 4. The 
number of lags is selected based on the AIC and SBIC criteria. First, we 
test for the presence of cointegration using the test statistics FPSS 
and tBDM. Based on the result given at the bottom of Table 4, we reject 
the null hypothesis of no cointegration for Bitcoin-BitVol and Ethereum- 
EthVol. Hence, this result supports Hypothesis 4.1, which claims that 
there is an asymmetric cointegration between cryptocurrency (i.e., Bit-
coin and Ethereum) prices and the levels of implied volatility. The long- 
and short-run asymmetry test results are also reported at the bottom of 
Table 4. The test statistics of the Wald F test reject the null hypothesis of 
a long-run symmetry and a short-run symmetry. This result confirms 
that the relationship between Bitcoin (Ethereum) and BitVol (EthVol) are 

asymmetric in both the short- and long run. This finding also supports 
the Hypothesis 4, which says that the relationship between the crypto-
currency price and implied volatility exhibits an asymmetry in the long 
run. 

The long-run coefficients of the increase and decrease in the Bitcoin 
(Ethereum) price are 0.496 (0.554) and − 0.742 (− 0.770), respectively, 
and significant at the 1% level. It means that the Bitcoin (Ethereum) 
price increases and decreases lead to an increase in the implied volatility 
of the Bitcoin and Ethereum (BitVol and EthVol). This finding rejects 
Hypothesis 4.2, which claims that the implied volatility and the crypto-
currency price are negatively co-related. Moreover, the impact of the 
negative price movement of Bitcoin (Ethereum) on the positive inno-
vation of BitVol (EthVol) is much higher compared to the impact of the 
positive price movement of Bitcoin (Ethereum) on the positive innova-
tion of BitVol (EthVol). For example, a 1 percentage point increase 
(decrease) in the Bitcoin price is associated with a 0.496 (0.742) per-
centage point increase in BITVOL. It implies that in the long run, for both 
Bitcoin and Ethereum, excess buyer-motivated trade is much higher 
following the bad news compared to the excess buyer-motivated trade 
following the good news. This finding support Hypothesis 4.3, which 
claims that the negative price movement has a greater impact on implied 
volatility compared to the positive price movement. 

For the short run, as can be seen in Table 4, the contemporaneous 
coefficients of the positive and negative changes of Bitcoin return 
(ΔLBTC+

t andΔLBTC−
t ) are 0.603 and − 0.885 and, for Ethereum, 

(ΔLETH+
t andΔLETH−

t ) are 0.517 and − 0.655, respectively, and sig-
nificant at the 1% level. It means, the same as for the long-run, the 
positive innovation of BitVol and EthVol are more associated with the 
negative return-shocks. Moreover, results also confirm that that the 
positive and negative return-shocks of cryptocurrency (Bitcoin and 
Ethereum) are linked to the increase in the implied volatility (BitVol and 
EthVol). the impact of lags retunes are mostly insignificant after one lag, 
the same as the finding from QRM. 

We provide the findings derived by using the Non-linear ARDL 
estimation. Dependent variables LETHVOL and LBTCVOL refer to the 
log of ETHVOL and BTCVOL, respectively. WLR is the Wald test for the 
long-run asymmetry and WSR is the Wald test for the short-run asym-
metry. The non-linear cointegration is tested using the test statistics FPSS 

and tBDM. Note that LBTC+
t LBTC−

t , LETH+
t and LETH−

t are the asym-
metric positive and negative long-run coefficients. Additionally, Δ 
LBTC+

t ΔLBTC−
t , ΔLETH+

t and ΔLETH−
t are the asymmetric positive and 

negative short-run contemporaneous coefficients. The significance 
levels at 1%, 5% and 10% are denoted by ***, ** and *, respectively. The 
standard errors are given in parenthesis. 

The asymmetric cumulative dynamic multipliers for both Bitcoin and 
Ethereum are displayed in Figs. 7 and 8. It shows that the temporal 
evolution of BitVol (Fig. 7) and EthVol (Fig. 8) in response to the increase 
and decrease of the Bitcoin and Ethereum over the 80-day horizons. The 
green dashed curve (the red dashed curve) represents the response to 
positive (negative) changes. The confidence interval (at the 90% level) is 
shown in the grey-color shaded area. The solid blue curve, together with 
the confidence interval, shows the difference in the upward and down-
ward movements. It is clearly shown that in the long run, the impact of 
the negative price movement on increasing the positive innovation in 
the volatility is much higher than the impact of the positive price 
movement on the increase of the positive innovation in the volatility. 

6. Discussion 

Cryptocurrencies, characterized by their controversial nature as 
mediums of exchange and stores of value, are known for their inherent 
volatility (Hazlett & Luther, 2020; Levulytė & Šapkauskienė, 2021; 
Yermack, 2015). This volatility is further compounded by the absence of 
underlying assets, leaving investors uncertain about the appropriate 
valuation. However, there are potential avenues for reducing 

Table 4 
Testing the asymmetry of Ethereum and Bitcoin-volatility.  

Variable LETHVOL Variable LBTCVOL 

LETHVOLt− 1 − 0.0841*** 
(− 4.79) 

LBTCVOLt− 1 − 0.0982*** 
(− 4.74) 

LETH+
t− 1 0.0466** 

(− 2.74) 
LBTC+

t− 1 0.0487** 
(− 2.68) 

LETH−
t− 1 0.0646* 

(− 2.58) 
LBTC−

t− 1 0.0729* 
(− 2.57) 

ΔLETHVOLt− 1 − 0.135** 
(− 2.69) 

ΔLBTCVOLt− 1 − 0.164** 
(− 3.24) 

ΔLETHVOLt− 2 − 0.0474 
(− 0.92) 

ΔLBTCVOLt− 2 − 0.00802 
(− 0.15) 

ΔLETHVOLt− 3 − 0.0346 
(− 0.68) 

ΔLBTCVOLt− 3 − 0.0919 
(− 1.82) 

ΔLETH+
t 0.517*** 

(− 5.36) 
ΔLBTC+

t 0.603*** 
(− 4.8) 

ΔLETH+
t− 1 0.271** 

(− 2.73) 
ΔLBTC+

t− 1 0.536*** 
(− 4.22) 

ΔLETH+
t− 2 − 0.0209 

(− 0.19) 
ΔLBTC+

t− 2 0.536*** 
(− 4.22) 

ΔLETH+
t− 3 0.212* 

(− 1.98) 
ΔLBTC+

t− 3 0.162 
(− 1.2) 

ΔLETH−
t − 0.655*** 

(− 6.28) 
ΔLBTC−

t − 0.885*** 
(− 6.77) 

ΔLETH−
t− 1 0.0773 

(− 0.68) 
ΔLBTC−

t− 1 − 0.197 
(− 1.31) 

ΔLETH−
t− 2 0.208 

(− 1.81) 
ΔLBTC−

t− 2 0.0525 
(− 0.35) 

ΔLETH−
t− 3 − 0.182 

(− 1.55) 
ΔLBTC−

t− 3 − 0.0213 
(− 0.14) 

Intercept 0.339*** 
(− 4.59) 

Intercept − 0.394*** 
(− 4.59) 

Long run asymmetry  Long run asymmetry  
LETH+

t 0.554*** LBTC+
t 0.496*** 

LETH−
t − 0.770*** LBTC−

t − 0.742*** 
WLR 5.486*** WLR 8.286*** 
Short run asymmetry  Short run asymmetry  
WSR 22.14*** WSR 24.78*** 
Cointegration test  Cointegration test  
FPSS 7.7165*** FPSS 7.7308*** 
TBDM − 4.7912*** TBDM − 4.7395*** 

We provide the findings derived by using the Non-linear ARDL estimation. 
Dependent variables LETHVOL and LBTCVOL refer to the log of ETHVOL and 
BTCVOL, respectively. is the Wald test for the long-run asymmetry and is the 
Wald test for the short-run asymmetry. The non-linear cointegration is tested 
using the test statistics and. Note that, and are the asymmetric positive and 
negative long-run coefficients. Additionally, and are the asymmetric positive 
and negative short-run contemporaneous coefficients. The significance levels at 
1%, 5% and 10% are denoted by ***, ** and *, respectively. The standard errors 
are given in parenthesis. 
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Table 5 
Robustness testing the changes of Ethereum volatility across the quantiles (using first half of the sample data).  

Quantile ΔEVOLt− 1 ΔEVOLt− 2 ΔEVOLt− 3 R+
t R+

t− 1 R+
t− 2 R+

t− 3 R−
t R−

t− 1 R−
t− 2 R−

t− 3 Intercept R2 

0.05 − 0.0568 − 0.0574 − 0.000316 0.0188 − 0.0329 − 0.188 0.138 0.408 − 0.127 0.252 − 0.277 − 7.153*** 0.1097  
(− 0.40) (− 0.40) (− 0.00) (0.07) (− 0.12) (− 0.67) (0.51) (1.33) (− 0.40) (0.80) (− 0.86) (− 4.42)  

0.1 − 0.0742 − 0.0888 − 0.0156 0.0658 0.0545 − 0.214 0.164 0.399* 0.0434 0.183 − 0.243 − 5.904*** 0.0698  
(− 0.84) (− 1.01) (− 0.18) (0.41) (0.31) (− 1.23) (0.97) (2.10) (0.22) (0.93) (− 1.22) (− 5.88)  

0.15 − 0.156 − 0.0517 − 0.0241 0.0244 0.188 − 0.132 0.0832 0.171 − 0.0589 0.214 − 0.0238 − 4.466*** 0.0559  
(− 1.80) (− 0.60) (− 0.28) (0.15) (1.10) (− 0.77) (0.50) (0.92) (− 0.31) (1.12) (− 0.12) (− 4.54)  

0.2 − 0.180* − 0.0413 0.0179 0.0593 0.318* − 0.144 − 0.0258 0.147 − 0.0453 0.284 0.0772 − 3.449*** 0.0529  
(− 2.53) (− 0.58) (0.25) (0.45) (2.28) (− 1.03) (− 0.19) (0.96) (− 0.29) (1.80) (0.48) (− 4.27)  

0.25 − 0.208*** − 0.0535 0.0209 0.141 0.318** − 0.134 0.0249 0.0153 0.0237 0.302** 0.138 − 3.257*** 0.0525  
(− 3.95) (− 1.02) (0.40) (1.46) (3.09) (− 1.30) (0.25) (0.14) (0.20) (2.60) (1.17) (− 5.47)  

Median − 0.108 − 0.0731 − 0.0152 0.491*** 0.244 − 0.0671 0.0302 − 0.139 0.192 0.393* 0.122 − 0.838 0.0597  
(− 1.57) (− 1.07) (− 0.22) (3.89) (1.81) (− 0.50) (0.23) (− 0.94) (1.26) (2.59) (0.79) (− 1.07)  

0.75 − 0.0606 − 0.0122 0.00343 0.980*** 0.519*** − 0.248 − 0.0277 − 0.747*** − 0.139 0.384* − 0.143 0.229 0.1313  
(− 0.84) (− 0.17) (0.05) (7.45) (3.69) (− 1.76) (− 0.20) (− 4.86) (− 0.88) (2.42) (− 0.89) (0.28)  

0.8 − 0.0612 0.0224 0.00782 0.967*** 0.763*** − 0.131 − 0.0814 − 0.741*** − 0.115 0.441** − 0.0891 0.849 0.166  
(− 0.80) (0.29) (0.10) (6.86) (5.06) (− 0.87) (− 0.56) (− 4.50) (− 0.68) (2.60) (− 0.51) (0.97)  

0.85 − 0.0807 0.0510 − 0.0409 0.954*** 0.723*** − 0.185 0.0252 − 0.743*** − 0.0259 0.466** − 0.158 1.741* 0.2071  
(− 1.18) (0.75) (− 0.61) (7.61) (5.40) (− 1.38) (0.19) (− 5.07) (− 0.17) (3.09) (− 1.02) (2.25)  

0.9 − 0.164 0.00962 − 0.0711 0.950*** 0.675* − 0.00938 0.102 − 0.722* − 0.0635 0.411 − 0.0653 2.327 0.2558  
(− 1.12) (0.07) (− 0.49) (3.55) (2.37) (− 0.03) (0.37) (− 2.31) (− 0.20) (1.28) (− 0.20) (1.41)  

0.95 − 0.127 − 0.0416 − 0.199 1.265*** 1.089** − 0.232 0.589 − 1.406** 0.140 0.604 − 0.856 2.213 0.3254  
(− 0.62) (− 0.21) (− 0.99) (3.39) (2.73) (− 0.58) (1.52) (− 3.22) (0.31) (1.34) (− 1.87) (0.96)  

OLS − 0.138* 0.00575 − 0.0165 0.694*** 0.315 − 0.140 − 0.00650 − 0.330 0.0595 0.382** 0.0117 − 1.377* 0.1649  
(− 2.50) (0.11) (− 0.30) (4.22) (1.90) (− 0.95) (− 0.07) (− 1.68) (0.41) (2.94) (0.09) (− 2.28)  

We provide the results from the lower to upper (i.e., 0.05 to 0.95) quantile regressions and the OLS regression of the changes of ETHVOL on the set of the independent variables. The variables ΔEVOLt− 1, ΔEVOLt− 2 and 
ΔEVOLt− 3 represent the lags of the changes of BITVOL. The positive return of Ethereum is denoted by R+

t , while the negative return of this crypto is denoted by R−
t . Note that R+

t− 1, R+
t− 2 and R+

t− 3 are the lags of the positive 
return, while R−

t− 1, R−
t− 2 and R−

t− 3 are the lags of the negative return. The significance levels at 1%, 5% and 10% are denoted by ***, ** and *, respectively. The t-statistics are given in parentheses.  
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Table 6 
Robustness testing the changes of Ethereum volatility across the quantiles (using the last half of the sample data).  

Quantile ΔEVOLt− 1 ΔEVOLt− 2 ΔEVOLt− 3 R+
t R+

t− 1 R+
t− 2 R+

t− 3 R−
t R−

t− 1 R−
t− 2 R−

t− 3 Intercept R2 

0.05 − 0.265 − 0.235 − 0.0376 − 0.207 − 0.0905 0.0393 − 0.0664 − 0.239 0.0372 − 0.235 0.130 − 6.068*** 0.2079  
(− 1.75) (− 1.54) (− 0.25) (− 0.71) (− 0.33) (0.14) (− 0.25) (− 0.93) (0.13) (− 0.85) (0.44) (− 3.98)  

0.1 − 0.195** − 0.214** − 0.130 − 0.0112 − 0.0350 − 0.0548 − 0.193 − 0.388** 0.0632 − 0.176 0.313* − 4.498*** 0.1504  
(− 2.71) (− 2.96) (− 1.81) (− 0.08) (− 0.27) (− 0.43) (− 1.54) (− 3.18) (0.47) (− 1.34) (2.21) (− 6.23)  

0.15 − 0.190*** − 0.182** − 0.0751 0.0400 − 0.164 0.0185 − 0.131 − 0.334*** 0.0580 − 0.152 0.272* − 3.835*** 0.1092  
(− 3.39) (− 3.22) (− 1.34) (0.37) (− 1.61) (0.18) (− 1.34) (− 3.51) (0.55) (− 1.48) (2.46) (− 6.80)  

0.2 − 0.145** − 0.160** − 0.141** 0.0407 − 0.269** 0.0163 − 0.0607 − 0.362*** 0.190 − 0.0885 0.169 − 2.954*** 0.0923  
(− 2.80) (− 3.08) (− 2.72) (0.41) (− 2.86) (0.18) (− 0.67) (− 4.12) (1.96) (− 0.93) (1.66) (− 5.68)  

0.25 − 0.144* − 0.124* − 0.0979 0.0581 − 0.256* 0.0486 0.0403 − 0.302** 0.223* − 0.0310 0.136 − 2.505*** 0.0805  
(− 2.53) (− 2.16) (− 1.71) (0.53) (− 2.47) (0.48) (0.40) (− 3.12) (2.09) (− 0.30) (1.21) (− 4.37)  

Median − 0.132* − 0.0870 − 0.107* 0.0954 0.0161 − 0.00448 0.101 − 0.279** 0.137 0.137 0.0927 − 0.730 0.0655  
(− 2.44) (− 1.60) (− 1.97) (0.92) (0.16) (− 0.05) (1.07) (− 3.04) (1.35) (1.38) (0.87) (− 1.34)  

0.75 − 0.0394 − 0.00538 0.00300 0.370*** − 0.0252 0.0933 0.0508 − 0.652*** 0.0736 0.170 0.0651 0.762 0.0926  
(− 0.70) (− 0.10) (0.05) (3.44) (− 0.25) (0.93) (0.52) (− 6.85) (0.70) (1.65) (0.59) (1.35)  

0.8 − 0.0141 − 0.000418 0.0314 0.326* − 0.0163 0.121 0.0463 − 0.683*** 0.0189 0.184 − 0.0775 0.970 0.1032  
(− 0.18) (− 0.01) (0.40) (2.17) (− 0.11) (0.86) (0.34) (− 5.12) (0.13) (1.27) (− 0.50) (1.23)  

0.85 0.0158 0.0860 − 0.00559 0.345 0.0830 0.0859 − 0.0513 − 0.760*** − 0.0487 0.257 − 0.163 1.517 0.1099  
(0.13) (0.69) (− 0.05) (1.46) (0.37) (0.39) (− 0.24) (− 3.62) (− 0.21) (1.13) (− 0.67) (1.22)  

0.9 − 0.0735 0.210 − 0.0506 0.510 0.240 − 0.0333 0.114 − 1.259*** − 0.186 0.377 − 0.238 1.676 0.1451  
(− 0.42) (1.18) (− 0.29) (1.50) (0.74) (− 0.11) (0.37) (− 4.19) (− 0.56) (1.16) (− 0.68) (0.94)  

0.95 0.0428 0.247 − 0.177 0.632* 0.307 − 0.120 0.268 − 2.013*** 0.0565 0.177 − 0.738* 2.258 0.2845  
(0.29) (1.68) (− 1.21) (2.26) (1.16) (− 0.46) (1.05) (− 8.11) (0.21) (0.66) (− 2.56) (1.54)  

OLS − 0.148* − 0.0914 − 0.00113 0.121 − 0.0471 − 0.123 0.0576 − 0.865* 0.143 0.236 0.0210 − 0.810 0.2635  
(− 2.57) (− 1.29) (− 0.01) (0.62) (− 0.46) (− 1.20) (0.47) (− 2.29) (0.99) (1.59) (0.12) (− 0.98)  

We provide the results from the lower to upper (i.e., 0.05 to 0.95) quantile regressions and the OLS regression of the changes of ETHVOL on the set of the independent variables. The variables, and represent the lags of the 
changes of BITVOL. The positive return of Ethereum is denoted by while the negative return of this crypto is denoted by. Note that, and are the lags of the positive return, while, and are the lags of the negative return. The 
significance levels at 1%, 5% and 10% are denoted by ***, ** and *, respectively. The t-statistics are given in parentheses. 
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Table 7 
Robustness testing the changes of Bitcoin volatility across the quantiles (using first half of the sample data).  

Quantile ΔBVOLt− 1 ΔBVOLt− 2 ΔBVOLt− 3 R+
t R+

t− 1 R+
t− 2 R+

t− 3 R−
t R−

t− 1 R−
t− 2 R−

t− 3 Intercept R2 

0.05 − 0.305** 0.0128 0.0263 0.0478 0.292 0.0135 − 0.389 0.0797 − 0.517 0.283 0.253 − 8.086*** 0.1031  
(− 2.89) (0.12) (0.26) (0.17) (1.02) (0.05) (− 1.32) (0.28) (− 1.78) (0.94) (0.84) (− 6.14)  

0.1 − 0.144* 0.0333 0.00419 − 0.0791 0.234 − 0.0507 − 0.361 0.378 − 0.407* 0.231 0.129 − 5.451*** 0.0692  
(− 2.02) (0.47) (0.06) (− 0.42) (1.20) (− 0.25) (− 1.81) (1.93) (− 2.07) (1.14) (0.63) (− 6.12)  

0.15 − 0.135* 0.0693 − 0.0168 0.149 0.155 − 0.0930 − 0.284 0.0578 − 0.313 0.191 0.310 − 4.479*** 0.0484  
(− 2.19) (1.13) (− 0.29) (0.91) (0.93) (− 0.54) (− 1.65) (0.34) (− 1.86) (1.10) (1.76) (− 5.85)  

0.2 − 0.0931* 0.0400 − 0.0302 0.241* 0.112 − 0.189 − 0.159 − 0.173 − 0.223 0.0340 0.351** − 3.654*** 0.0488  
(− 2.05) (0.89) (− 0.70) (2.00) (0.91) (− 1.49) (− 1.26) (− 1.39) (− 1.79) (0.26) (2.70) (− 6.46)  

0.25 − 0.0775 0.0249 − 0.0380 0.280* 0.0974 − 0.124 − 0.159 − 0.143 − 0.231* − 0.0443 0.374** − 3.325*** 0.0466  
(− 1.89) (0.61) (− 0.98) (2.58) (0.88) (− 1.08) (− 1.39) (− 1.27) (− 2.05) (− 0.38) (3.19) (− 6.51)  

Median − 0.0990** − 0.0266 − 0.0585 0.550*** 0.325*** − 0.0110 − 0.225* − 0.507*** − 0.488*** − 0.0318 0.318** − 2.027*** 0.0671  
(− 2.84) (− 0.77) (− 1.78) (5.94) (3.44) (− 0.11) (− 2.32) (− 5.33) (− 5.11) (− 0.32) (3.19) (− 4.67)  

0.75 − 0.0737 − 0.0613 − 0.116* 0.656*** 0.875*** − 0.0931 − 0.215 − 0.492** − 0.386* − 0.0734 0.140 0.146 0.1318  
(− 1.26) (− 1.06) (− 2.10) (4.23) (5.52) (− 0.57) (− 1.32) (− 3.08) (− 2.41) (− 0.44) (0.84) (0.20)  

0.8 − 0.0904 − 0.0198 − 0.147* 0.809*** 1.250*** − 0.110 − 0.244 − 0.486** − 0.796*** − 0.198 0.307 0.336 0.1534  
(− 1.32) (− 0.29) (− 2.27) (4.44) (6.72) (− 0.58) (− 1.27) (− 2.59) (− 4.23) (− 1.02) (1.56) (0.39)  

0.85 − 0.0443 − 0.0425 − 0.145 1.059*** 1.244*** − 0.211 − 0.267 − 0.766*** − 0.876*** − 0.156 0.253 0.613 0.1857  
(− 0.55) (− 0.53) (− 1.89) (4.92) (5.65) (− 0.93) (− 1.18) (− 3.45) (− 3.94) (− 0.68) (1.09) (0.61)  

0.9 − 0.0669 − 0.0574 − 0.140 1.260*** 1.279*** − 0.231 − 0.245 − 1.072** − 0.664 − 0.942* 0.243 1.187 0.2265  
(− 0.50) (− 0.43) (− 1.11) (3.56) (3.54) (− 0.62) (− 0.66) (− 2.95) (− 1.82) (− 2.50) (0.64) (0.72)  

0.95 − 0.0637 − 0.136 − 0.0654 2.172*** 2.067*** − 0.383 0.159 − 0.950** − 2.190*** − 0.795* − 0.148 1.069 0.3488  
(− 0.48) (− 1.02) (− 0.52) (6.11) (5.69) (− 1.03) (0.43) (− 2.60) (− 5.96) (− 2.10) (− 0.39) (0.64)  

OLS − 0.0481 0.0109 − 0.0990* 0.762*** 0.716** − 0.194 − 0.402** − 0.529** − 0.964* − 0.136 0.421* − 2.573** 0.2332  
(− 0.50) (0.23) (− 2.28) (3.48) (2.59) (− 1.67) (− 2.64) (− 3.30) (− 2.01) (− 0.46) (2.51) (− 3.24)  

Notes. We provide findings from the lower to upper (i.e., 0.05 to 0.95) quantile regressions and the OLS regression of the changes of BITVOL on the set of independent variables. ΔBVOLt− 1, ΔBVOLt− 2 and ΔBVOLt− 3 

represent the lags of the changes of BITVOL. The positive return of the Bitcoin is denoted by R+
t while the negative return of this crypto currency is denoted by R−

t . Note that R+
t− 1, R+

t− 2 and R+
t− 3 are the lags of the positive 

returns. R−
t− 1, R−

t− 2 and R−
t− 3 are the lags of the negative returns. The significance levels at 1%, 5% and 10% are denoted by ***, ** and *, respectively. The t-statistics are given in parentheses.  
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Table 8 
Robustness testing the changes of Bitcoin volatility across the quantiles (using the last half of the sample data).  

Quantile ΔBVOLt− 1 ΔBVOLt− 2 ΔBVOLt− 3 R+
t R+

t− 1 R+
t− 2 R+

t− 3 R−
t R−

t− 1 R−
t− 2 R−

t− 3 Intercept R2 

0.05 − 0.169 − 0.121 − 0.0801 − 0.191 0.175 − 0.529 − 0.0692 − 0.153 0.0930 0.180 0.0249 − 4.841*** 0.1723  
(− 1.22) (− 0.87) (− 0.58) (− 0.66) (0.61) (− 1.83) (− 0.25) (− 0.54) (0.31) (0.60) (0.08) (− 3.50)  

0.1 − 0.166** − 0.105 − 0.125* − 0.206 − 0.000297 − 0.365** 0.219 − 0.155 0.171 0.128 0.0435 − 3.875*** 0.1439  
(− 2.79) (− 1.75) (− 2.12) (− 1.67) (− 0.00) (− 2.94) (1.81) (− 1.27) (1.33) (1.00) (0.34) (− 6.51)  

0.15 − 0.185** − 0.142* − 0.110 − 0.0581 − 0.00769 − 0.345** 0.173 − 0.118 0.236 0.164 0.131 − 2.949*** 0.1105  
(− 3.10) (− 2.36) (− 1.85) (− 0.47) (− 0.06) (− 2.77) (1.43) (− 0.96) (1.82) (1.27) (1.01) (− 4.94)  

0.2 − 0.178*** − 0.0635 − 0.145** − 0.0427 − 0.0694 − 0.173 0.169 − 0.0722 0.176 0.197 0.121 − 2.232*** 0.0913  
(− 3.36) (− 1.19) (− 2.76) (− 0.39) (− 0.63) (− 1.57) (1.57) (− 0.66) (1.53) (1.72) (1.05) (− 4.21)  

0.25 − 0.152*** − 0.0570 − 0.111* 0.00611 − 0.00348 − 0.219* 0.0877 − 0.299*** 0.188* 0.279** 0.146 − 1.796*** 0.0845  
(− 3.49) (− 1.30) (− 2.56) (0.07) (− 0.04) (− 2.42) (0.99) (− 3.33) (2.00) (2.96) (1.54) (− 4.12)  

Median − 0.117* − 0.0413 − 0.116* 0.168 0.0793 − 0.252* − 0.0117 − 0.495*** 0.0160 0.299** 0.120 − 0.299 0.076  
(− 2.48) (− 0.87) (− 2.48) (1.71) (0.81) (− 2.57) (− 0.12) (− 5.11) (0.16) (2.94) (1.17) (− 0.63)  

0.75 − 0.116 − 0.0119 − 0.0413 0.488*** 0.382** − 0.147 − 0.0188 − 0.733*** − 0.165 0.225 0.196 0.684 0.0966  
(− 1.79) (− 0.18) (− 0.64) (3.61) (2.82) (− 1.08) (− 0.14) (− 5.49) (− 1.17) (1.61) (1.39) (1.05)  

0.8 − 0.149* − 0.0362 − 0.122 0.641*** 0.505*** − 0.0905 0.0415 − 0.908*** − 0.160 0.167 0.0900 0.466 0.109  
(− 2.12) (− 0.51) (− 1.75) (4.40) (3.47) (− 0.62) (0.29) (− 6.31) (− 1.05) (1.11) (0.59) (0.67)  

0.85 − 0.0990 − 0.0179 − 0.158 0.741*** 0.409* 0.0152 0.0260 − 0.967*** − 0.300 0.0201 0.115 0.843 0.1245  
(− 1.14) (− 0.21) (− 1.84) (4.11) (2.27) (0.08) (0.15) (− 5.43) (− 1.60) (0.11) (0.61) (0.97)  

0.9 − 0.0535 0.0233 − 0.110 1.131*** 0.370 0.0548 0.187 − 0.912*** − 0.236 − 0.121 0.0496 1.159 0.1531  
(− 0.47) (0.20) (− 0.97) (4.77) (1.56) (0.23) (0.81) (− 3.89) (− 0.96) (− 0.49) (0.20) (1.02)  

0.95 − 0.0537 0.0762 0.180 1.240*** 0.590 − 0.132 0.0886 − 1.025** − 0.621 0.155 0.229 3.399 0.2052  
(− 0.31) (0.43) (1.03) (3.40) (1.61) (− 0.36) (0.25) (− 2.84) (− 1.64) (0.41) (0.60) (1.94)  

OLS − 0.169** − 0.0441 − 0.132* 0.354* 0.230* − 0.136 0.00833 − 0.585*** − 0.0518 0.183 0.205 − 0.880 0.1415  
(− 2.87) (− 0.78) (− 2.34) (2.30) (1.99) (− 1.36) (0.07) (− 4.20) (− 0.34) (1.56) (1.73) (− 1.45)  

Notes. We provide findings from the lower to upper (i.e., 0.05 to 0.95) quantile regressions and the OLS regression of the changes of BITVOL on the set of independent variables. ΔBVOLt− 1, ΔBVOLt− 2 and ΔBVOLt− 3 

represent the lags of the changes of BITVOL. The positive return of the Bitcoin is denoted by R+
t while the negative return of this crypto currency is denoted by R−

t . Note that R+
t− 1, R+

t− 2 and R+
t− 3 are the lags of the positive 

returns. R−
t− 1, R−

t− 2 and R−
t− 3 are the lags of the negative returns. The significance levels at 1%, 5% and 10% are denoted by ***, ** and *, respectively. The t-statistics are given in parentheses.  
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cryptocurrency volatility, including the implementation of a regulatory 
framework, enhancing liquidity in the cryptocurrency market, and 
increasing the availability of trading pairs (Belke & Beretta, 2020). 
Furthermore, they contend that the volatility in cryptocurrencies rep-
resents a trade-off, as regulatory interventions cannot artificially sup-
port or suppress it. In addition to the aforementioned considerations and 
reasons, cryptocurrencies continue to exhibit volatility, and as of now, 
there is no study documenting whether price movements, be they pos-
itive or negative, can consistently induce volatility nearly every day. 
This raises the question of whether the existing factors are sufficient to 
fully explain cryptocurrency volatility or whether other elements, such 
as investors’ perspectives, psychological behaviors, and market phe-
nomena, may also play crucial roles in shaping cryptocurrency price 

behavior. The answer to this question remains unknown and warrants 
further attention from academics and experts. 

The recent studies of Trucíos (2019), Shen, Urquhart, and Wang 
(2020) and Hoang and Baur (2020) focus on the importance of esti-
mating risk using various forecasting methods based on the realized 
volatility of bitcoin. Other studies have examined the cryptocurrency 
price discoveries (Baur & Dimpfl, 2018) and herding behavior (Ballis & 
Drakos, 2020; King & Koutmos, 2021; Yarovaya et al., 2020). The above 
studies also provide insights on the presence of asymmetry, structural 
break, drastic price movement and outliers, which play a significant role 
in explaining the bitcoin risk. However, it is not obvious how non- 
linearity and asymmetric works between the return-volatility relation-
ship of Bitcoin and Ethereum, which is pivotal for a better investment 

Fig. 7. Dynamic multiplier, Bitcoin.  

Fig. 8. Dynamic multiplier, ethereum.  
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decision for hedging, market timing, and innovative trading strategies. 
To the best of our knowledge, there is hardly any study examining the 
non-linearity and asymmetric pattern in the light of the implied vola-
tility of Bitcoin and Ethereum. This is important as these crypto-
currencies show the highest volatility pattern out of all the financial 
asset classes. 

To address this issue, we conduct our study using a newly con-
structed volatility–model-free implied volatility of Bitcoin and Ether-
eum- to examine the dynamic relation between daily crypto returns and 
daily innovations in the crypto-derived implied volatility with the 
application of the quantile regression and the non-linear ARDL. We find 
that the changes in implied volatility are directly related to the positive 
and negative shocks to the returns. In particular, for Bitcoin, the good 
news (the positive-return shock) compared to the bad news (the nega-
tive return-shock) has a greater impact on the positive innovation 
(increasing) of the volatility at the medium to the upper quantiles and 
more pronounced at the uppermost quantile (extreme-tail). In contrast, 
for Ethereum, it is the negative news (the negative return-shock) that 
increases the volatility most at the uppermost quantile. Unlike equity, 
for Bitcoin and Ethereum, both positive and negative return-shocks in-
crease the volatility (BitVol and EthVol). 

Moreover, using the NARDL, we also find the short- and long-run 
asymmetric predictive power (asymmetric volatility phenomenon) 
shows a negative-return shock which has a more explanatory power on 
the positive innovation of the volatility in the short- and long-run. Be-
sides the foregoing reasons of volatility, we bring up the reasons of 
manipulation and speculation driven by the behavioral aspects in the 
market which are also responsible for high volatility that are captured 
through the return series of the cryptocurrencies. Thus, we highlight the 
market-wide factors such as noise trading, behavioral/emotional biases, 
fear of missing out that cause the cryptocurrency volatility. Hence, the 
findings of our study provide important inputs for the investors to 
consider when preparing or revising their investment strategies for 
Bitcoin in the future. 

7. Conclusion 

Using the newly introduced robust volatility indices, BitVol and 
EthVol, for Bitcoin and Ethereum, respectively, we have studied the 
asymmetric return-volatility relationship of these cryptocurrencies 
employing quantile regression and non-linear ARDL methodologies. 
With the quantile regression, we quantified the impact of positive and 
negative returns of Bitcoin and Ethereum across different quantiles 
(from lower to upper quantiles) of the MFIV change distribution. This 
analysis addresses the relationship between cryptocurrency returns and 
volatility, the presence of an asymmetric return-volatility relationship 
(positive or negative), and the extent of asymmetric responses in the 
uppermost quantiles compared to median (or mean) regressions. 

Furthermore, utilizing non-linear ARDL, we explored the asymmetric 
cointegration and short- and long-run asymmetry of the variables under 
study. To achieve this, we used the level form of the data rather than 
return series. Additionally, apart from serving as a robustness check for 
examining the asymmetric relationship, NARDL provides us with addi-
tional new insights. 

The results strongly support the presence of an asymmetric return- 

volatility relationship. The impact of the positive and negative returns 
of Bitcoin and Ethereum on the corresponding volatility indices (BitVol 
and EthVol) are asymmetric at the medium to upper quantiles. As we 
move from the medium to the uppermost quantiles, the asymmetry 
monotonically increases. Unlike in the case of equity, the positive 
innovation of the volatility (BitVol and EthVol) is linked to both positive 
and negative returns of the two cryptocurrencies (Bitcoin and Ether-
eum). This means that both positive and negative shocks in returns lead 
to an increase in volatility. Moreover, during the high volatility regimes, 
for Bitcoin (Ethereum) compared to the negative (positive) return- 
shock, the positive (negative) return-shock has a greater impact on the 
positive innovation of the volatility. The positive innovation of the 
volatility due to positive and negative return-shocks is more pronounced 
at the uppermost quantile – denoted as the high volatility regimes. We 
can conclude that, for Ethereum, following the bad news, the excess 
buyer-motivated trade is much higher during the high volatility regimes. 
Market participants want to gain profit by buying at lower prices. In 
contrast, for Bitcoin, following the good news, the excess buyer- 
motivated trade is much higher during the high volatility regimes. It is 
because, for Bitcoin, being the most popular cryptocurrency, noise 
trading activities are much high following a positive price movement. It 
is mainly due to the fear of missing out. 

The NARDL estimation result also confirms the existence of short- 
and long-run asymmetry and cointegration. It also confirms that (both) 
the increase and decrease of the returns lead to an increase in volatility. 
It also shows that in the long run the positive innovation of the volatility 
is more associated with the negative price movement than with the 
favorable price movement. In sum, our results tend to indicate that both 
negative and positive returns lead to an increase in the level of volatility. 
However, the negative-return shocks tend to have a greater impact on 
the positive innovation of the volatility in both sort and long-run. 

This finding may assist investors in formulating a robust trading 
strategy, particularly for market timing. By considering different vola-
tility regimes, traders can make informed decisions about the right time 
to invest or cash out based on their position in the cryptocurrency 
market. Furthermore, in addition to investing in Bitcoin and Ethereum, 
the availability of option implied volatility indices for these crypto-
currencies allows investors to trade on them and manage their crypto-
currency investment risk more effectively. 

The insights from this study can also be valuable for policymakers 
and regulators in understanding the behavior of the cryptocurrency 
market. Given that cryptocurrencies represent a relatively untapped 
territory for regulators, traditional policy approaches used for other 
financial markets may not be entirely suitable. The various behavioral 
aspects discussed in this paper could offer insightful information for 
policymakers and regulators to navigate this dynamic landscape 
effectively. 

In the future, it will be interesting to see how the cryptocurrency 
return-volatility relationship varies at different frequency intervals. For 
that, a similar study can be done using the high-frequency data (e.g., 1, 
5, 10, 15, and 60- min ranges of data when available). 

Data availability 

Data will be made available on request.  
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Appendix A. Appendix

Fig. 9. Traded Volume of Bitcoin and Ethereum at Different Quantiles of Positive and Negative Returns  

The left (right) panel of Figure-9 shows the volume of traded Bitcoin (Ethereum) at different quantiles of positive and negative returns. The volume 
data is based on the data provided by the Gemini Exchange.12 The X-axis of the Figure-9 shows the different quantiles of the positive and negative 
returns; where, quantile 1 represents the lowest positive and negative return regimes, and quantile 4 presents the highest positive and negative returns 
regimes. Y-axis shows the volume traded. The volume is given in the transacted currency (i.e. for BTC/USD, this is in BTC amount).  

1. The figure shows that the trading volume of Bitcoin and Ethereum increases as negative and positive return increase. It seems that following (both) 
positive and negative returns’ shocks, the trading volume of Bitcoin and Ethereum increases.  

2. Bitcoin traders trade more following the high positive return (following the good news). Whereas, Ethereum traders trade more following the bad 
news (when negative return increases). See the quantile- 4 of the Fig. 9. 

It seems that the noise trading activities following a positive price movement are less (or absent) for Ethere. 
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