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Abstract—Ensuring network security, effective malware de-
tection is of paramount importance. Traditional methods often
struggle to accurately learn and process the characteristics of
network traffic data, and must balance rapid processing with
retaining memory for previously encountered malware categories
as new ones emerge. To tackle these challenges, we propose
a cutting-edge approach using self-paced class incremental
learning (SPCIL). This method harnesses network traffic data for
enhanced class incremental learning (CIL). A pivotal technique
in deep learning, CIL facilitates the integration of new malware
classes while preserving recognition of prior categories. The
unique loss function in our SPCIL-driven malware detection
combines sparse pairwise loss with sparse loss, striking
an optimal balance between model simplicity and accuracy.
Experimental results reveal that SPCIL proficiently identifies
both existing and emerging malware classes, adeptly addressing
catastrophic forgetting. In comparison to other incremental
learning approaches, SPCIL stands out in performance and
efficiency. It operates with a minimal model parameter count
(8.35 million) and in increments of 2, 4, and 5, achieves impressive
accuracy rates of 89.61%, 94.74%, and 97.21% respectively,
underscoring its effectiveness and operational efficiency.

Index Terms—Malware detection, deep learning, class-
incremental learning, sparse pairwise loss, sparse loss.

I. INTRODUCTION

The widespread implementation of fifth-generation (5G)
wireless networks marks a major leap forward in high-
speed data transmission and broader coverage. This significant
progress is primarily attributed to the extensive deployment
of numerous base stations, which has notably increased
network capacity, enhanced the quality of service (QoS),
and minimized latency, as detailed in recent studies [1].
However, with the rapid advancement of 5G technology comes
a heightened risk, especially in terms of security concerns. As
depicted in Fig. 1, these risks are predominantly associated
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with the security of communications between Internet of
Things (IoT) devices and base stations (BSs), encompassing
device-to-device (D2D) interactions. The vulnerability of these
communication channels to intrusions presents a significant
threat to user privacy and overall network security. For
example, denial of service (DoS) attacks, which can gravely
compromise the integrity of network servers such as web
servers, represent a critical concern. In scenarios of malicious
traffic breaches, these attacks could lead to server paralysis
and a range of other serious repercussions [2].

Malware detection (MD) is a critical technology designed
to identify and neutralize malicious software, thereby
safeguarding computer systems and networks [3]. Malware
encompasses a range of software types, including viruses,
worms, Trojan horses, spyware, and adware, all of which are
aimed at damaging, disrupting, or illicitly accessing computer
systems. MD employs techniques like static and dynamic
analysis for detecting such threats [4]. Static analysis involves
a thorough examination of a software’s binary or source
code to pinpoint potential malicious patterns, while dynamic
analysis tracks software behavior in real-time to spot signs of
malign activity. Feature-based recognition, another key method
in MD, entails scanning and extracting distinctive features
from known malware and comparing these to unidentified
software [5].

Recently, deep learning has been revolutionarily integrated
into MD, enhancing aspects such as feature extraction,
classification, execution process analysis, attack detection,
and model transfer [6]–[8]. This technological evolution
significantly boosts the precision and speed of malware
detection, fortifying the security of computer systems and
networks. In the realm of network security, particularly
for internet-connected systems, the deployment of intrusion
detection system (IDS) is essential. IDS plays a pivotal role in
identifying malicious network traffic, as cited in recent studies
[9]–[11]. Within these systems, MD is vital for accurately
categorizing network traffic, which is crucial for not only
enhancing QoS but also for detecting malicious exploitation of
network resources [12]–[14]. Given the continuous influx of
vast amounts of new network traffic, coupled with the need for
the precise identification of existing tasks, the adoption of class
incremental learning (CIL) [15], [16] has become increasingly
important. CIL adeptly meets the challenge of effectively
detecting and categorizing this ever-expanding traffic volume.

Neural network-based methodologies frequently encounter
a significant obstacle known as catastrophic forgetting, a
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Fig. 1. Illustration of 5G networks and its potential threat landscape.

challenge particularly pronounced in incremental learning
scenarios [17]–[19]. These models often suffer a notable
decline in performance on tasks they have previously mastered
as they acquire new information. This issue underscores a
critical dilemma in neural networks known as the stability-
plasticity dilemma [16]. Here, plasticity denotes the capacity
of the network to assimilate new data, while stability pertains
to its ability to retain existing knowledge during the learning
process [20].

In this paper, we present a novel approach to resolving
the stability-plasticity dilemma by developing the Aggregated
Network, an intricate dual-layer architecture. Utilizing ResNet
as the foundational model, our design integrates two unique
residual blocks at each layer of the network. The first
block is devoted to stability, focusing on the preservation
of previously acquired knowledge, while the second block,
tailored for plasticity, concentrates on assimilating new
information. The stability block features a select number
of adjustable parameters, specifically designed to bolster
knowledge retention. In contrast, the plasticity block uses
aggregated weights to alter the outputs of feature maps.
These modified outputs are then merged and relayed to
the next layer [21]. This architectural design skillfully
maintains a dynamic balance between stability and plasticity,
by automatically adjusting aggregation weights through the
end-to-end optimization of these weights as hyperparameters
during the training process [22].

Moreover, we address two additional challenges intrinsic to
our dual-layer architecture: the increase in model parameters
and the potential decrease in accuracy due to limited data
samples. To counteract the former, we have incorporated a
sparse auxiliary loss in the training of the plasticity block,
effectively diminishing the overall weight footprint of the
network. In scenarios characterized by limited data availability,
we introduce an adaptive sparse pairwise loss, a cutting-edge
auxiliary approach crafted to optimize model performance
under such limitations. Our methodology has been thoroughly
vetted using network traffic data. The results, including

comprehensive ablation studies, unequivocally demonstrate the
superiority of our approach compared to current leading-edge
methods in balancing stability and plasticity within the scope
of incremental learning. The primary contributions of our
study are outlined as follows:

• We derive an innovative dual-branch network model
specifically designed to achieve an effective balance
between stability and plasticity in class incremental
learning.

• Our research introduces a breakthrough loss function that
artfully blends adaptive sparse pairwise loss with sparse
loss. This innovation is critical for efficiently managing
sparse model parameters while skillfully learning new
classes. Its effectiveness is particularly pronounced in
contexts characterized by limited sample sizes and model
pruning, where it demonstrates the ability to distill
compact yet powerful features.

• We conduct extensive experimental validation, employing
a range of adjustable parameters within our loss function
to arrive at optimal solutions.

The paper is structured as follows: Section II introduces
related MD methods. Section III details problem formulation.
Section IV describes our proposed CIL-based MD methods.
Section V presents a range of simulation results that illustrate
the performance of our method. Finally, Section VI concludes
the paper.

II. RELATED WORK

In this section, we provide an overview of traditional
MD methods, deep learning-based MD methods, and the
application of incremental learning and CIL approaches for
malware traffic classification.

A. Traditional MD methods

In earlier studies, various techniques for classifying malware
traffic have been introduced. For instance, H. Dreger et al. [23]
presented a port-based approach, which offers the advantage
of simplicity and speed in implementation but falls short in
terms of detection accuracy. Other researchers, as seen in
[24] and [25], proposed the use of data packet inspection
(DPI) methods to enhance detection accuracy, albeit limited
to unencrypted data. However, with the increasing prevalence
of encrypted network traffic and the growing emphasis on
security, DPI methods have become less applicable. V. Paxson
et al. [26] put forward a solution based on static flow analysis,
which is versatile and can be applied to both encrypted and
unencrypted data. Nevertheless, a notable limitation of this
approach is the need for manual design of data features. The
escalating complexity of modern networks and the relatively
low accuracy of manually designed features make this method
impractical for real-world scenarios.

B. DL-based MD methods

In recent years, deep learning has witnessed widespread
adoption across diverse domains [27]–[34], and it has also
made significant inroads in the realm of network security
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[35]. Researchers have delved into the domain of malware
traffic classification, exploring methods based on deep
learning [36]–[38]. The convolutional neural network (CNN)
approach [39]–[41] holds a distinct advantage in its ability to
learn traffic characteristics directly from raw data, enabling
accurate classification [42]–[44]. Nonetheless, CNN-based
methods come with demanding requirements for extensive
datasets, necessitating a substantial amount of training data to
effectively train the network. Furthermore, CNNs are typically
tailored to specific tasks, making them less adaptable to
handling both new and existing tasks concurrently. In practice,
obtaining large-scale, and up-to-date network traffic data is
a challenging task, as network traffic is subject to constant
change, with malicious traffic patterns evolving daily.

C. CIL-based MD methods

There exists a significant technology gap in the development
of an adaptive traffic detection method. Incremental learning
(IL) [45] has emerged as an appealing solution to address
this gap. IL can be incorporated into various applications
in numerous ways [46]. It encompasses various types
of IL methods, categorized into three primary paradigms:
regularization, replay, and parameter isolation [15]. The replay
method involves the storage of samples in their original
format or the generation of pseudo samples using a generative
model. During the process of learning new tasks to mitigate
forgetfulness, previous task samples are replayed. These
samples can be either reused as model input for practice
or constrained to optimize the loss of new tasks to prevent
interference from past tasks. Regularization-based methods
enhance the retention of prior knowledge when learning new
data by introducing additional regularization terms in the loss
function. This approach can be further subdivided into a data-
centric and a priori-centric method. A notable advantage of this
approach is the avoidance of storing original input, a focus
on privacy, and a reduction in memory requirements. Data-
focused methods [45], [47] and prior-focused methods [48]
represent further variations within this paradigm. Parameter
isolation methods [49] entails the specification of distinct
model parameters for each task. The advantage of this
approach is its ability to prevent potential forgetting. However,
a drawback is the reliance on a task oracle, and it may not be
suitable for handling shared tasks.

A conventional benchmark technique known as knowledge
distillation using a transfer set [50], initially applied to
incremental learning by Li et al. [45], has been instrumental.
Building upon this foundation, Yan et al. [51] incorporated
representation learning and employed a limited set of herding
exemplars to store and replay prior knowledge. The herding
technique involves selecting the nearest neighbors of the
average sample per class. Subsequently, using the same
herding exemplars, Xu et al. [17] explored balanced fine-
tuning and temporary distillation to construct an end-to-end
framework, and introduced multiple techniques to balance
classifiers.

Current CIL methodologies aim to tackle the challenge of
retaining knowledge of previous classes while accommodating

the assimilation of new classes as the number of categories
grows. Nevertheless, these approaches typically necessitate a
considerable volume of samples. Moreover, as the number
of increments increases, the number of model parameters
also increases, which poses a drawback for efficient model
deployment. The proposed SPCIL method adeptly meets the
dual objectives of acquiring new class knowledge without
erasing the memory of the old classes, while simultaneously
ensuring that the growth model parameters is not affected
by the increasing number of increments. Furthermore, our
proposed approach is designed to achieve optimal performance
levels.

III. SCENARIO DESCRIPTION AND PROBLEM
FORMULATION

A. Scenario Description

CIL refers to the process of gradually learning new classes
or patterns on top of an existing model, rather than retraining
the entire model [52]. This learning approach is particularly
useful for handling data streams, updating models in dynamic
environments, or situations with limited resources. CIL enables
the model to acquire knowledge about new classes without
forgetting the previously learned knowledge.

Fig. 2. Scenario description for class incremental learning.

CIL typically involves n+ 1 learning phases in total. This
comprises an initial phase and n incremental phases, where the
number of classes gradually expands. We present a formalized
framework for CIL in Fig. 2. Starting from an initial non-
incremental state S0, a model M0 is trained from scratch on
a dataset D0 = {(xi

0, y
i
0); i = 1, 2, ...,K0}, where xi

0 and
yi0 represent the set of data and labels for the i-th class in
S0, respectively, and N0 = K0 is the number of classes in
the first non-incremental state. In each incremental state St, a
new batch of Kt classes is introduced, and the goal is to train
a model Mt capable of recognizing Nt = K0+K1+ . . . +Kt

classes. This model is trained using the previous state model
Mt−1 on a dataset Dt = {(xi

t, y
i
t); i = 1, 2, ...,Kt} ∪ P . It is

important to note that while all data from the new Kt classes
are available, only a bounded exemplar subset P of data from
the Nt−1 = K0 + K1 + ... + Kt−1 past classes is utilized.
An inherent imbalance favoring new classes emerges and
grows across incremental states due to the constrained memory
P , which needs to be allocated to an increasing number
of past classes with each iteration. Following this inference,
the process continues until the final stage of incremental
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Fig. 3. Problem description for CIL-based MD method.

learning, the n-th stage. At this stage, the trained model Mn

becomes the ultimate incremental learning model, capable of
recognizing new classes without forgetting the knowledge of
the old classes.

B. Problem Formulation

The goal of CIL for MD is to continuously learn
new categories from network traffic datasets while avoiding
catastrophic forgetting issues. We divide the training set
into M classes and K labeled instances, in the form of
{(xi, yi)}Ki=1, where yi ∈ Y = {1, 2, . . . ,M}, represents the
label of sample xi. We define fϕ(x) : X → RM+N , a neural
network parameterized by ϕ, where X is the input space of x,
and N represents continuously added new classes.

The optimization objective of CIL typically encompasses
two main aspects: maintaining stability in knowledge for old
classes and achieving accuracy in learning new classes. The
problem description for the CIL-based MD method is shown in
Fig. 3. The formalization of this objective function L consists
of two components:

1) Old Class Stability: This part aims to ensure that the
model does not forget knowledge of old classes while learning
new ones. Typically, this can be achieved by minimizing the
loss of the model on samples from old classes. Let Lold
represent the loss function for old classes, fo represents the
initially incremented model or the model saved in the previous
incremental steps, Do represents samples from old classes, and
θ denote the model parameters. The objective for this part can
be expressed as:

Lold(θ) = min
∑

(xi,yi)∈Do

ℓ (fo (xi) , yi). (1)

2) New Class Accuracy: This part aims to ensure that
the model effectively learns newly introduced classes. Let

Lnew represent the loss function for new classes, ϕ represents
the model parameters for incrementally learning new classes,
fϕ represent the model for learning new classes, and Dn

represents samples from new classes. The objective for this
part can be expressed as:

Lnew(θ, ϕ) = min
∑

(xi,yi)∈Dn

ℓ
(
fn
ϕ (xi) , yi

)
s.t. ∥R(θ)∥ ≤ C.

(2)

The introduction of new classes results in the dynamic
expansion of the network model in both feature extraction
and classifier components. Consequently, the model weights
increase with the rising number of incremental updates. To
address this, we employ a sparse modeling approach to
minimize model weights without compromising accuracy, and
we constrain the model weights to lie within a constant
range C. Combining these two aspects, the complete objective
function is a weighted combination of the two components:

L = λ · Lold(θ) + (1− λ) · Lnew(θ, ϕ), (3)

where λ is a hyperparameter that balances the objectives
for old and new classes. The optimization of this objective
function can be carried out using optimization algorithms
such as gradient descent. It is important to note that the
specific form may vary depending on the method, and the
above representation is one common form. From Eq. (3),
it is apparent that when the model is tackling the task of
learning new class Dn, it needs to simultaneously consider
its loss on past samples from old classes. The optimization
of the model, f(·), is geared towards enabling it to possess
discriminative capabilities for both old and new classes. If the
model is trained incrementally using the entire training dataset
D1∪D2∪· · · DM∪· · · DN , it allows for a holistic consideration
of information from all classes. This approach empowers the
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model to acquire discriminative capabilities encompassing all
categories.

Algorithm 1: Training process of the proposed SPCIL
method.

1 [Required hyperparameters]:
2 Set the init-training epochs Einit as 200;
3 Set the incremental training epochs Etrain as 200;
4 Set the λa as 0.01 for Loss;
5 Set the λb as 0.001 for Loss;
6 Set the λ as 0.5 for LRS .
7 [Init training stage]:
8 Randomly initialize the parameters θinit;
9 for i = 1, 2, · · · , Einit do

10 Set the init-training class number Ninit;
11 θinit ← SPCIL(x0, y0);
12 Loss← min(LCE(xi, yi));
13 Update θinit with Loss
14 end
15 Save θinit.
16 [Incremental training stage]:
17 Randomly initialize the parameters θtrain
18 i = Ninit;
19 Set incremental step t;
20 for (i+ t) ≤ K do
21 Load θinit;
22 Expand the feature extractor Fi dynamically based

on parameter t;
23 Expand the classifier yi dynamically based on

parameter t;
24 for j = 1, 2, · · · , Etrain do
25 Freeze F1, F2, · · · , Fi−1;
26 Feature Fusion Φi = Φi−1 ∪ Fi;
27 Classifier fusion Ci = Ci−1 ∪ yi;
28 θtrain ← SPCIL(xt, yt);
29 Loss← min(LCE(xi, yi) + λa · LSP (xi, yi) +

λb · LRS(xi, yi));
30 Update θtrain with Loss;
31 end
32 i← i+ t;
33 θinit ← θtrain;
34 end
35 Save θtrain.

IV. THE PROPOSED SPCIL MD METHOD

A. Framework of Proposed SPCIL-Based MD Method

In this section, we propose SPCIL method to address the
MD problem using CIL, aiming to achieve a better balance
between stability and adaptability. To do so, we introduce a
dynamically expandable network that incrementally enhances
previously learned representations through new features and
a two-stage learning strategy. The proposed SPCIL method
consists of stability modules and plasticity modules. The goal
of the stability modules is to prevent catastrophic forgetting,
while the objective of the plasticity modules is to acquire new
knowledge. Additionally, we also incorporate adaptive sparse

pairwise (ADASP) loss [62] and sparsity loss to reduce model
complexity.

We are aware that, in contrast to task-incremental learning,
CIL involves the addition of new classes during the inference
process. Specifically, in this model, it observes a sequence of
class groups Yn along with their corresponding training data
Xn. At the n-th step, the dataset Xn takes the form (xi

n, y
i
n),

where xi
n represents the input image, and yin ∈ Yn corresponds

to labels from the label set Yn. As new classes are introduced
with each incremental step, the prediction at the n-th step
should encompass the summation of both new and old class
labels, and Algorithm 1 describes the training process of the
SPCIL method.

Our approach employs a pre-storage strategy, where a
portion of the data is saved as memory, denoted as Mn,
for future training use. At the n-th step, for the training,
we decouple the training process into the following two
consecutive stages:

1) Feature Extraction Stage: To strike a better balance
between stability and adaptability, we maintain the previous
feature representations while training the incoming and
memory data using two separate feature extractors [61].
Specifically, we train the data from the old class, denoted as
Xn−1, with the feature extractor F1, and the data from the
new class, denoted as Xn, is trained using the feature extractor
F2. Subsequently, we fuse the features from both the new and
old classes. Additionally, we introduce an auxiliary loss on
the new extractor to encourage the learning of diverse and
discriminative features. To enhance the model efficiency, we
introduce a pruning method based on channel-level masks,
which dynamically expands the representation of the model
according to the complexity of the new classes. An overview
of this process is depicted in Fig. 4.

2) Classifier Fusion Stage: Following the feature extraction
stage, we combine the feature results obtained from the feature
extractor F1 and the feature extractor F2. At step n, we retrain
the classifier using all the current data (Xn = Xn−1 ∪Mn)
and employ fine-tuning techniques to address class imbalance
issues. This results in a classifier that encompasses all the
classes, including both old and new classes.

B. Expandable Feature Extraction
From Fig. 4, it is evident that our feature extractor is

composed of both the feature extractor F1 and the feature
extractor F2. Our SPCIL model is structured as illustrated in
Fig. 4. The feature extractors F1 and F2 are both implemented
using ResNet18 [43]. At the n-th step, our model consists of
the feature extractor Φn and the classifier Cn. The feature
extractor Φn is constructed by extending the feature extractor
Φn−1 obtained from the previous n − 1 steps using the
new feature extractor Ft. More specifically, for a given data
x ∈ Xn, the features Fe extracted by Φn are obtained using
the following formula:

Fe = Φn = [Φn−1, Fn], (4)

where Φn−1 is obtained through training up to the previous
n− 1 steps and can be represented by the following formula:

Φn−1 = [F1, F2, · · · , Fn−1]. (5)
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Fig. 4. Framework of the proposed SPCIL MD method.

From the above formulas, it is evident that each training
iteration expands the feature extractor based on the increment
size. The newly obtained feature extractor, Fn, subsequently
becomes the old feature extractor Φn−1 for the next increment,
and a new feature extractor is introduced to extend this old
feature extractor, and so on. This iterative process allows us
to develop feature extractors for all classes.

Furthermore, to mitigate catastrophic forgetting during the
training process, we freeze the learned function Φn−1 at the n-
th step since it captures the intrinsic structure of the previous
data. This means that the parameters of the previous super
feature extractor Φn−1 and the statistics of batch normalization
are not updated. Additionally, we instantiate Fn with Fn−1 to
initialize it, allowing us to rapidly adapt and perform forward
transfer by reusing prior knowledge.

C. Expandable Classifier Fusion

After feature extraction, it becomes necessary to expand
the classifier to enhance its classification capacity, as the
introduction of new classes demands a corresponding
augmentation. Furthermore, following the feature extraction
phase, there is a need to merge the features extracted
by the feature extractor Φn−1 and the feature extractor
Fn to create a super-feature with dynamic expansion
capabilities. Following the super feature creation, we
retrain the classifier to accommodate the addition of
new classes. At the nth increment, the training dataset
expands from Dold = (X1, X2, · · · , Xn−1), where Xr =
{(x1

r, y1
r), (x2

r, y2
r), · · · , (xn−1

r, yn−1
r)|1 ≤ n ≤ 20}

to Dnew = (X1, X2, · · · , Xn), where Xr =
{(x1

r, y1
r), (x2

r, y2
r), · · · , (xn

r, yn
r)|1 ≤ n ≤ 20}, and

the labels transition from Yold = (y1, y2, · · · , yn−1) to
Ynew = (y1, y2, · · · , yn). This enables the classifier to
perform classification and recognition for both new and

old classes, ultimately achieving a dynamically expandable
classifier. The classifier is now a fusion of both new and old
classes.

D. Loss Function

To enhance accuracy while reducing network model
complexity, we propose a novel loss function comprising
three components: the cross-entropy (CE) loss, the sparse
pairwise (SP) loss, and the L1 regularized sparse (RS) loss.
Its formulation is as follows:

Loss = LCE + λa · LSP + λb · LRS , (6)

where λa and λb are loss parameters. In our experiments, we
set λa to 0.01 and λb to 0.01 [63].

The CE loss function is a commonly used loss function
for classification problems, widely employed in training
neural networks. It is typically utilized to measure the
disparity between the predicted output of the model and the
actual target values. This loss function effectively quantifies
the performance of the model in classification tasks and
provides clear gradient information for the backpropagation
algorithm, enabling parameter updates to enhance accuracy.
Its formulation is

LCE = H(yi, pi) = −
1

N

N∑
i=1

yi log(pi), (7)

where yi represents the actual multi-class labels. pi is the
model’s predicted probability vector, and N represents the
total number of categories.

The SP loss is an objective function designed for
classification problems, aiming to minimize classification error
rates by comparing the scores of two instances. In contrast to
the traditional CE loss, SP loss exhibits excellent performance
and greater robustness when dealing with issues such as
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sample imbalance and noisy data. The SP loss is utilized to
measure the similarity or dissimilarity between sample pairs.
It aids the model in determining which features or dimensions
are most critical for the task during the learning process. The
SP loss extracts a positive pair and a negative pair for each
class individually, and its formulation is:

LSP =
1

N

N∑
i

log

(
1 + e

s
−
i

+s
+
i

T

)
, (8)

where N is the total number of classes, s+i denotes the
similarity of the selected positive pairs for the i-th class from
all its positive pairs, s−i represents the similarity of the selected
negative pairs for the i-th class from all its negative pairs, and
T is the temperature coefficient.

The addition of new classes leads to a gradual increase
in model parameters, and with the growing number of
incremental learning iterations, the parameter size of the model
continues to expand. To address this issue, we introduce a
sparse loss function to induce sparsity in the model parameters.
ℓ1 regularization sparse loss function is commonly used in
sparse learning or feature selection. Its objective is to minimize
the loss term while encouraging the parameters of the model
to have more zero values through the regularization penalty
term λ ∗

∑
θi, thus achieving sparsity, which retains only the

most important features or model parameters. Its general form
is as follows:

LRS(θ) = L(θ) + λ

n∑
i=1

|θi|, (9)

where θ represents the model that needs to be made sparse,
θi refers to the model’s parameters, λ is the weight of L1
regularization. In our experiments, λ is set to 0.5. L(θ) is
the loss function specific to the problem, often utilizing cross-
entropy loss. But for the sake of clarity, we omit the loss
function in this context.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Dataset and Experiment Setup

The dataset utilized is the USTC-TFC2016 [36], which com-
prises a total of 142,700 samples across 20 categories. This
dataset undergoes a four-stage processing pipeline, including
traffic segmentation, data cleaning, image conversion, and
ultimately, the transformation of results into the IDX format
suitable for network training. During the image conversion
phase, each unit of traffic data is transformed into a grayscale
image. The resulting grayscale images have dimensions of 784
bytes (28×28×1).

The dataset is partitioned into training, validation, and test
sets in a 7:2:1 ratio. As our focus is on class incremental,
we initialize training based on 10 classes (an increment of
2), followed by 8 classes (an increment of 4), and 5 classes
(an increment of 5). The initial training epoch is set to 200,
and the incremental training epoch is also set to 200. Detailed
configurations of the experimental parameters are provided in
Table I.

TABLE I
EXPERIMENTAL PARAMETERS.

Parameter Value
Dataset USTC-TFC2016

The number of train samples 102,746
The number of val samples 25,687
The number of test samples 14,267

Device Geforce GTX 3090 Ti
Environment PyTorch

Optimizer SGD
Batch size 32

Learning rate 0.001
Init epoch 200

Incremental epoch 200

B. Performance of SPCIL MD Method

In the context of multi-class classification tasks, overall
accuracy (OA) and average accuracy (AA) are two commonly
used performance metrics. OA refers to the proportion of
correctly classified samples in the overall dataset, calculated
by considering True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN) across all classes.
On the other hand, AA represents the average classification
accuracy for each class, focusing on the performance of
individual categories. These metrics provide a comprehensive
evaluation of the performance of the model across the entire
dataset and individual classes. In this paper, we utilize both of
these metrics to assess the performance of the model. Their
formulas are as follows:

OA =
TP + TN

TP + TN + FP + FN
, (10a)

AA =
1

N

N∑
i=1

TP i

TP i + FN i
, (10b)

where N is the total number of classes.
We conduct experiments to investigate the performance of

the SPCIL network. We test the network under the incremental
steps of 2, 4, and 5, selecting different numbers of categories
to incrementally add to the network at each step. Specifically,
we selected 10 categories as the base category and added
2 new categories for each step for the incremental step of
2. For the incremental step of 4, we chose 8 categories as
the base category and added 4 new categories at each step.
For the incremental step of 5, we select 5 categories as the
base category and add 5 new categories in each step. We
also explore the model performance without sparsity, with L1
regularization sparse loss, and with sparse pairwise loss added
to the L1 regularization sparse loss.

The experimental results are shown in Fig. 5. As can be seen
from the figure, without any sparsity constraints, our network
performed the best, reaching the upper limit of its potential
performance. However, when we added the L1 regularization
sparse loss function, the model’s sparsity increased, leading to
a decrease in performance. Nevertheless, further introduction
of sparse pairwise loss to the loss function improved the
performance and approached the upper limit. Upon examining
Table II, it is evident that the model parameters of our
SPCIL network are 8.35 million, significantly lower than



IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, MONTH YEAR 8

(a) Incremental steps = 2 (b) Incremental steps = 4 (c) Incremental steps = 5

Fig. 5. The AA of different incremental steps.

the parameters of the network without employing sparse
strategies (67.08 million). More importantly, our network
achieves superior model parameter efficiency, maintaining
accuracy while also surpassing the parameter count of other
minimal models (11.18 million).

It can also be observed from the figure that as the
incremental step size decreases, the performance decreases
when the SPCIL increment reaches 20 classes. This is because,
in our incremental training approach, we freeze the results of
previous steps of incremental training. When the incremental
step size is smaller, there are more frozen layers, resulting
in lower performance. Therefore, the performance for the
incremental step of 2 (89.61%) is lower than that for the
incremental step of 4 (94.74%), which is also lower than that
for the incremental step of 5 (97.21%).

TABLE II
PERFORMANCE OF DIFFERENT NETWORKS ON OA.

Methods #Param OA (%)
(million) CIL=2 CIL=4 CIL=5

Upper Bound 67.08 91.51 97.45 95.34
BiC 11.18 51.52 75.3 89.77

EWC 11.18 28.26 44.36 51.95
Foster 22.38 85.15 90.53 93.85

Finetune 11.18 27.49 44.14 51.42
LwF 11.18 29.41 54.36 61.65

iCaRL 11.18 88.69 93.05 95.94
SimpleCIL 11.69 81.21 80.14 78.63

ours (SPCIL) 8.35 91.18 97.36 95.06

C. Performance of Different Network

To validate the performance of the SPCIL model, we
compared it with existing state-of-the-art incremental learning
methods. The baseline approach (Fine-tune) which involves
simply updating parameters on new tasks and is susceptible
to severe catastrophic forgetting. BiC [64] trains an additional
adaptation layer based on iCaRL, adjusting the logits for new
classes. EWC [66] utilizes the Fisher information matrix to

weigh the importance of each parameter and regularizes them
to overcome forgetting. Foster [67] dynamically expands new
modules to fit the residuals between the target and the output of
the original model. LwF [45] utilizes knowledge distillation to
align the output probability between the old and new models.
iCaRL [65], an extension of LwF, introduces exemplar sets
for rehearsal and utilizes the nearest center mean classifier
for classification. SimpleCIL [68] configures the classifiers of
pre-trained models to use prototype features. The experimental
results are shown in Fig. 6.

To present a clearer comparison of the performance of
different network models in incremental learning, we have
included tables displaying the accuracy rates for increments of
2, 4, and 5 in Tables III, IV, and V, respectively. These tables
provide a detailed comparison of the performance of different
models in various incremental learning scenarios, enabling a
more comprehensive evaluation of their abilities.

We compare the performance of different models using
OA curves. The OA curve is presented in Fig. 7. From Fig.
7, it is evident that our proposed SPCIL model consistently
outperforms existing models. Furthermore, we summarize the
OA value for different models in Table II, where #Paras
represents the average number of parameters during inference
over steps, measured in millions. The table indicates that our
model achieves high accuracy with fewer parameters than
other models.

Based on Table III, we can draw the following conclusions
that our network SPCIL (Upper Bound) performs the best, only
slightly lower than EWC by 0.02% at CIL = 10, and superior
to the other networks in other incremental stages. From Table
IV, our network SPCIL (Upper Bound) still maintains the best
but not optimal performance, only slightly lower than BiC by
0.05% at CIL = 10, and higher than the other networks in
other incremental stages. Similarly, from Table V, our network
SPCIL (Upper Bound) still maintains the optimal performance,
only slightly lower than BiC by 0.04% at CIL = 10, and
higher than the other networks in other incremental stages.
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(a) Incremental steps = 2 (b) Incremental steps = 4 (c) Incremental steps = 5

Fig. 6. The AA of different networks.

(a) Incremental steps = 2 (b) Incremental steps = 4 (c) Incremental steps = 5

Fig. 7. The performance of OA with different networks.

TABLE III
OPERATION TIME OF DIFFERENT SECONDARY CLASSIFIER.

Methods CIL = 10 CIL = 12 CIL = 14 CIL = 16 CIL = 18 CIL = 20
Upper Bound 99.99 96.61 94.07 92.77 91.61 90.51

BiC 99.98 84.63 75.41 64.60 58.91 51.52
EWC 99.99 58.74 45.14 37.06 32.16 28.26
Foster 99.98 95.21 90.84 85.85 84.86 85.15

Finetune 99.93 58.28 44.45 33.29 31.25 27.49
LwF 99.98 62.46 47.58 38.84 34.19 29.41

iCaRL 99.96 94.85 91.18 89.16 88.97 88.69
SimpleCIL 99.97 94.74 89.76 85.45 83.23 81.21

ours (Sparse) 99.96 93.61 90.14 87.32 84.95 82.64
ours (SPCIL) 99.97 93.89 91.96 90.31 89.84 89.61

TABLE IV
OPERATION TIME OF DIFFERENT SECONDARY CLASSIFIER.

Methods CIL = 8 CIL = 12 CIL = 16 CIL = 20
Upper Bound 99.99 97.27 95.60 95.34

BiC 99.99 96.68 83.98 75.30
EWC 99.99 65.70 52.80 44.36
Foster 99.99 94.59 90.63 90.53

Finetune 99.99 65.69 52.59 44.14
LwF 99.99 77.12 63.90 54.36

iCaRL 99.99 96.46 93.19 93.05
SimpleCIL 99.99 91.97 84.06 80.04

ours (Sparse) 99.99 95.54 91.89 91.85
ours (SPCIL) 99.99 96.63 95.10 94.74
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TABLE V
OPERATION TIME OF DIFFERENT SECONDARY CLASSIFIER.

Methods CIL = 5 CIL = 10 CIL = 15 CIL = 20
Upper Bound 99.99 99.92 98.34 97.45

BiC 99.99 98.87 95.41 89.77
EWC 99.99 73.89 61.01 51.95
Foster 99.99 98.54 95.93 93.85

Finetune 99.99 73.88 60.54 51.42
LwF 99.99 82.79 69.75 61.65

iCaRL 99.99 99.92 97.73 95.94
SimpleCIL 99.99 92.33 84.33 78.63

ours (Sparse) 99.99 98.63 96.79 94.53
ours (SPCIL) 99.99 98.83 97.65 97.21

In addition, it can be observed from the data that the stability
of our network is generally superior to the other networks.

Therefore, our proposed SPCIL model demonstrates excel-
lent performance and stability in incremental learning tasks
compared to other network models, and thus has significant
advantages.

VI. CONCLUSION

In this paper, we propose an SPCIL method based on CIL
for MD in IDS. Compared with traditional methods and other
CIL-based techniques, our method employs a dual-branch
network model and introduces adaptive sparse pairwise loss
and sparse loss in the loss function, enabling SPCIL to achieve
superior performance with fewer model parameters, and it can
learn new tasks without forgetting old tasks. Experimental
results demonstrate that the performance of the SPCIL method
outperforms the other CIL methods and approaches its upper
limit performance. Therefore, our proposed SPCIL method
can be used for IDS to detect malware identification in the
field of network security. The principles and framework of
our SPCIL method can provide valuable references for class-
incremental algorithms across various domains. Our research
holds significance not only in the field of malicious software
detection but also offers valuable insights and methods for
addressing similar challenges in other domains. This cross-
domain expansion opens up new possibilities for different
application scenarios, prompting class-incremental methods to
play a more widespread role in addressing practical challenges.
Furthermore, our model is sparse, resulting in a lightweight
approach that is efficient and easy to deploy. In future work, we
will consider more practical scenarios for MD problems under
few-shot sample conditions, which is a promising direction.
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