

Please cite the Published Version

Li, Q, Zallot, R, Mactavish, BS, Montoya, A, Payan, DJ, Hu, Y, Gerlt, JA ^(D), Angerhofer, A ^(D), De Crécy-Lagard, V ^(D) and Bruner, SD ^(D) (2021) Epoxyqueuosine Reductase QueH in the Biosynthetic Pathway to tRNA Queuosine Is a Unique Metalloenzyme. Biochemistry, 60 (42). pp. 3152-3161. ISSN 0006-2960

DOI: https://doi.org/10.1021/acs.biochem.1c00164

Publisher: American Chemical Society (ACS)

Version: Supplemental Material

Downloaded from: https://e-space.mmu.ac.uk/636706/

Usage rights: O In Copyright

Additional Information: This is an accepted manuscript of an article which appeared in final form in Biochemistry, published by American Chemical Society (ACS)

Enquiries:

If you have questions about this document, contact openresearch@mmu.ac.uk. Please include the URL of the record in e-space. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

Supporting Information for:

"The epoxyqueuosine reductase QueH in the biosynthetic pathway to tRNA queuosine is a unique metalloenzyme"

Qiang Li¹, Rémi Zallot², Brian S. MacTavish¹, Alvaro Montoya¹, Daniel J Payan², You Hu¹, , John A. Gerlt^{2,3}, Alexander Angerhofer¹, Valérie de Crécy-Lagard^{4,5}, Steven D. Bruner¹*

¹ Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States; ² Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801, United States; ³ Departments of Biochemistry and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 United States; ⁴ Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, United States; ⁵ University of Florida Genetics Institute, Florida 32611, United States

*to whom correspondence should be addressed. Email: bruner@ufl.edu

Supplementary Figures/Tables

Figure S1. Summary of the queuosine biosynthetic pathway.

Figure S2. UV-Vis spectra of TmQueH before (blue) and after (red) reconstitution. UV-vis spectra of aerobically purified SpQueH.

Figure S3. Graphical representation of the QueH substrate binding pocket located between two concurrent protein loops.

Figure S4. Calculated electrostatic surface map of QueH

ID	Avg_BR [Å]	Max_BR [Å]	Avg_L [Å]
Tunnel_1	1.594	1.59	8.881
Tunnel_2	1.934	1.93	15.547
Tunnel_3	0.977	0.98	14.043

Figure S5. Three solvent accessible tunnels, calculated by CAVER, leading between the [4Fe-4S] cluster active site and surrounding solvent.

Figure S6. LC-MS analysis of a recombinant TmQueH *in vitro* reaction. **a.** Mass spectroscopy of oQ in the absence of TmQueH at 7.96 min. **b.** Disappearance of oQ signal after treating with 1 μ M TmQueH. **c.** No Q signal at 8.60 min in the presence of 1 μ M TmQueH.

Figure S7 | Mass spectrometry-based TmQueH *in vitro* activity. **a.** Mass spectroscopy of oQ disappearance in the presence of 1 μ M untagged TmQueH (Reaction A in Supplementary Table 2). **b.** Mass spectroscopy of oQ disappearance in the presence of 10 μ M untagged TmQueH (Reaction D in Supplementary Table 2). **c.** Mass spectroscopy of oQ disappearance in the presence of 1 μ M tagged TmQueH (Reaction G in Supplementary Table 2). **d.** Mass spectroscopy of oQ disappearance in the presence of 10 μ M tagged TmQueH (Reaction J in Supplementary Table 2).

Figure S8 | UV-vis spectrometry of TmQueH. Black: anaerobically prepared sample, pink: sample reduced with sodium dithionate, red and blue:QueH after 10- and 30-min exposure to air, respectively.

Figure S9 | EPR spectra from fig. 3C expanded into a narrow field range of approximately +/-400 G around g = 2. Acquisition parameters are given in Materials and Methods.

No:	PDB	Z	rmsd	lali	nres	%id
1	4kr6	11.2	2.7	153	388	10
2	5gha	10.9	3.7	150	310	11
3	6scy	10.8	3.1	140	297	11
4	2deu	10.8	3.3	158	364	9
5	1kor	10.7	3.5	154	387	8
6	3bl5	10.5	3.4	141	195	9

Table S1 | Structural homology, DALI server, search results

No Tag Reaction (1 µM)					
	А	в	С	Final Concentration	Units
	All	No Enzyme	No tRNA		
50 mM HEPES pH 8.0	48 µL	48 µL	48 µL	24	mM
tRNA (5.4 µg/ µL)	40 µL	40 µL	0 µL	200	μg/ 100 μL
50 µM TmQueH	2 µL	0 µL	2 µL	1	μΜ
1 mM Sodium Dithionite	10 µL	10 µL	10 µL	100	μM
Storage Buffer	0 µL	2 µL	0 µL	N/A	N/A
ddH ₂ O	0 µL	ΟµL	40 µL	N/A	N/A
No Tag Reaction (10 µM)	-	_	_		
	D	E	F	Final Concentration	Units
	All	No Enzyme	No tRNA		
50 mM HEPES pH 8.0	45.8 µL	45.8 µL	45.8 µL	22.9	mM
tRNA (5.4 μg/ μL)	40 µL	40 µL	0 µL	200	μg/ 100 μL
240 µM TmQueH	4.2 µL	0 µL	4.2 µL	10.08	μM
1 mM Sodium Dithionite	10 µL	10 µL	10 µL	100	μM
Storage Buffer	0 µL	4.2 µL	0 µL	N/A	N/A
ddH ₂ O	0 µL	0 µL	40 µL	N/A	N/A
Tag Reaction (1 µM)	0			Fig. 1.O.	
	G	H		Final Concentration	Units
	All	No Enzyme	NO TRNA	04	
50 mM HEPES pH 8.0	48 µL	48 µL	48 µL	24	mM
trina (5.4 μ g/ μ L)	40 µL	40 µL	ΟμL	200	μg/ 100 μL
50 µM TmQueH	2 µL	0 µL	2 µL	1	μΜ
1 mM Sodium Dithionite	10 µL	10 µL	10 µL	100	μΜ
Storage Buffer	0 µL	2 µL	0 µL	N/A	N/A
ddH ₂ O	0 µL	0 µL	40 µL	N/A	N/A
Tag Reaction (10 µM)					
rag reaction (to pin)	J	к	L	Final Concentration	Units
	All	No Enzyme	No tRNA		
50 mM HEPES pH 8.0	48.1 µL	48.1 µL	48.1 µL	24.05	mM
tRNA (5.4 µg/ µL)	40 µL	40 µL	0 μL	200	μg/ 100 μL
540 µM TmQueH	1.9 µL	0 µL	1.9 µL	10.26	μM
1 mM Sodium Dithionite	10 µL	10 µL	10 µL	100	μM
Storage Buffer	ΟμL	1.9 µL	0 µL	N/A	N/A
ddH ₂ O	ΟµL	0 µL	40 µL	N/A	N/A
Reagent Final Concentrations					
Benzonase		0.2 U/ µL			
Phosphodiesterase I		0.002 U/ µL			
Alkaline Phosphatase		0.02 U/ µL			
QueH Reaction (2 µg/ µL tRNA)		20 µg tRNA			

Table S2 | Recombinant QueH in vitro reaction conditions