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Abstract
Image registration and fusion are challenging tasks needed in manufacturing, including in high-quality steel production for
inspection, monitoring and safe operations. To solve some of these challenging tasks, this paper proposes computer vision
approaches aiming at monitoring the direction of motion of hot steel sections and remotely measuring their dimensions in
real time. Automated recognition of the steel section direction is performed first. Next, a new image registration approach is
developed based on extrinsic features, and it is combined with frequency domain image fusion ofoptical images. The fused
image provides information about the size of high-quality hot steel sections remotely. While the remote sizing approach keeps
operators informed of the section dimensions in real time, the mill stands can be configured to provide quality assurance.
The performance of the developed approaches is evaluated over real data and achieves accuracy above 95%. The proposed
approaches have the potential to introduce an enhanced level of autonomy in manufacturing and provide advanced digitised
solutions in steel manufacturing plants.

Keywords Vision measurement · Steel manufacturing · Camera calibration · Sizing

Introduction

The development of the new generation of Industry 5.0 is
based on a digital transformation of Industry 4.0. In the past
years, Industry 4.0 has introduced advanced intelligent man-
ufacturing technologies based on artificial intelligence and
data analysis to enable an increase in production and the
enhancement of operation efficiency (Barari et al., 2021;
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Qian et al., 2021). Different from the automation of Industry
4.0, Industry 5.0 aims to enhance safety in human-computer
cooperation and optimise the overall performance of human-
computer (Leng et al., 2022) systems. These objectives are
also valid for high-quality steel production.

High-quality steels are essential in industrial sectors such
as aerospace, oil and gas production. High-quality steels
are produced via a rolling process during which the steel
acquires the desired shape, size and desiredmechanical prop-
erty. Introducing autonomy in the monitoring and control of
the steel rolling process is essential for improving the effi-
ciency of the whole production. Achieving a high-quality
standard for the pure metal pieces called ingots, as well as
the steel sections manufactured from ingots, is important.

However, despite the technological advances, many steel
rolling plants nowadays are still relying on human operators
to manually control and monitor the manufacturing rolling
process. It has been shown that the long-term exposure to
a high-temperature, intense light environment in steel facto-
ries could cause injuries, particularly to human eyes (Hoyos
and Zimolong, 2014). In order to address such and related
challenges, this paper presents approaches that can be used
for remote monitoring and sizing of steel sections.
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Fig. 1 Overall diagram of the steel production process. This paper
focuses on the starting and the final stages of the production, and pro-
vides computer vision techniques for autonomous sizing and hot steel

section direction recognition. These stages are indicated in the upper
left part with the dashed lines, and respectively, in the upper right part
with the dashed lines, for the section sizing

A monocular real-time measurement algorithm is pro-
posed in our previous work (Wang et al., 2020, 2019). A
fast structural random forest algorithm detects edges of steel
sections, and the detected edges are further enhanced by a
regression algorithm to suppress edge detection noises and
increase the measurement accuracy. The steel section dimen-
sions are then calculated based on the regression results in
the image plane and the results are next converted from the
image plane to the physical plane to represent real sizes.

However, the monocular camera measurement system
depends significantly on the camera calibration.Due to safety
concerns and unwillingness to disrupt the rolling process, the
camera calibration becomes extremely difficult in remote
sizing of hot steel sections when the monitoring cameras
are positioned at dozens of metres’ distance from the rolling
mills (Wang et al., 2019). In addition, in such remote sizing
cases there are requirements for a certain estimation accu-
racy to be achieved which is required to be less than 2.5 mm
error for the estimated hot steel sections. In order to achieve
accurate remote sizing, instead of using one camera, a two
camera measurement system is proposed in this work.

The developed framework and measurement system com-
prises of two GoPro� cameras. Due to glares emitted from
the high-temperature steel sections, the two cameras need to
be carefully configured, especially for working at a fast shut-
ter speed. This helps to reduce significantly the edge blur
caused by glares in the input image. The overall diagram of

the steel rolling system is shown in Fig. 1. The cameras are
situated about 2.5ms apart from each other and are above the
steel rolling plant. The cameras are aligned approximately
with respect to their image planes.

Ingots are reheated and moved to the rolling line, where
steel sections are processed by a few mills to change their
size and shape. Dimension measurement during the rolling
process plays a key factor for quality assurance and is per-
formed wherever necessary. In the considered industrial case
study, sections are measured after the last mill. Laser range
finder measurements are provided only at the last mill and
these measurements are used as ground truth to assess the
performance of the developed computer vision remote siz-
ing measurement system.

In addition, the positioning of the ingots in the mills is an
important factor determining the quality of the steel. In par-
ticular, the top and bottom ends of the ingots are of different
sizes and impurity contents. The hot steel sections have to
be directed with their bottom ends toward the blooming mill
first. Currently, human operators take part of the monitoring
process and make decisions whether the ingots are placed
correctly - with the leading side upfront. A computer vision
pattern recognition system can replace human operators in
such repetitive tasks. It can not only increase the accuracy and
reliability of the decision making process, but can also pro-
tect the operators from potential eye injuries that the intense
glares could cause.
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Initial computer vision results for remote sizing with edge
detection approaches, preliminary results for image registra-
tion and image fusion are reported in Wang et al. (2019,
2020), Lin et al. (2021) where a checkerboard is only used
at the beginning of the process, for the camera calibration.

Contributions

This paper presents an innovative approach for remote siz-
ing of objectswith optical camera data. An image registration
approachbasedon extrinsic image features is proposedwhich
includes a virtual checkerboard and copes efficiently with
measurement errors due to environmental conditions and
variations of section dimensions and the different heights
at which measurements are taken.

The images provided by twooptical cameras are registered
first and then fused using several types of Discrete Wavelet
Transforms (DWTs) (Sundararajan, 2016). A detailed com-
parison is made to evaluates the performance of the image
fusion algorithms for remote sizing of the steel sections. The
paper also considers the ingot direction recognition prob-
lem at the very beginning stage of the whole rolling process.
A solution aimed at automating the ingots monitoring pro-
cess and reducing the involvement of human operators is
proposed. Although the approach presented is applied to
industrial tasks, it can also be applied to other areas such
as forestry.

The main contributions of this work can be summarised
as follows:

i) A new two-camera-based approach for hot steel section
remote sizing is proposed, which incorporates efficient
image fusionmethods. The approach is robust to environ-
mental changes, including high temperature, evaporation
and other sources of noise. It achieves high precision
results for non-contact measurements in medium-range
distances.

ii) A new image registration approach is proposed which
uses extrinsic features from a virtual checkerboard and
this approach also improves the system’s robustness
against environmental changes.

iii) An efficient image recognition approach is developed for
ingot direction recognition, offering a new perspective on
automating the recognition of steel ingot orientation.

iv) The proposed framework has been validated using real-
world data collected from a high-quality steel manufac-
turing plant, demonstrating the efficiency of the proposed
approach and its potential for industrial applications. The
achieved remote sizing accuracy is above 95%with a tol-
erance range of 2mm, representing a significant technical
advance in the process of remotely measuring the steel
sections.

Section “Related Work” gives an overview of related
works. The ingot direction recognition approach is given
in Section “The Proposed Approach for Ingots Direction
Recognition”. Section “The Proposed Approach for Remote
Sizing of Steel Section” elaborates the proposed two-camera
sizing system. Section “Performance Validation and Evalu-
ation” analyses the performance of different fusion results.
Section “Conclusions” summarises the results and discusses
directions for future work.

Related work

Computer vision technologies play a critical role in Industry
4.0 by providing a high level of automation of the pro-
duction for real-time evaluation and processing, improving
productivity and reducing waste. Recent data suggest that
oganisations report up to 12% increases in manufacturing
production, factory utilisation, and labour productivity after
investing in smart factory projects (Lu et al., 2016). Technolo-
gies introducing autonomy are developing rapidly and are
expected to grow in long term, with adopters already reaping
the benefits of increased profit margins while non-adopters
lag behind (Meindl et al., 2021). Robotics inspection systems
can operate faster and with enhanced automation compared
with human operators, as faults and exceptions are easily
identified. Kuo proposes a deep learning-based method for
foreign object detection in the graphic card assembly line,
which can effectively detect and mark foreign objects (Kuo
and Nursyahid, 2022).

Management structures constructed with computer vision
systems enable safe cooperation between robots and human
operators, increasing their efficiency. In addition, the Indus-
trial Internet of Things (IIoT) provides connectivity between
activities at different levels from the bottom to the top. Vision
based technologies can further enhance the functionality and
usability of sensors which reduces the IoT bandwidth needs.
The IoT combined with vision based technologies continues
to play a crucial role in industrial automation and intelligent
manufacturing, bringing new opportunities and challenges
for sustainable development of enterprises (Javaid et al.,
2022).

In the steelmaking process, accurate real-time non-contact
steel detection and measurement can guarantee high quality,
can help avoiding hazards and financial loss. Vision-based
systems have been widely applied for detecting defects on
steel surfaces, as demonstrated in the work of Luo and He
(2016). Zhou developed an online approach based on feature
line reconstruction of stereo vision with high measurement
accuracy for estimating the diameter of hot forgings (Zhou
et al., 2018). However, this method requires high ambient
lighting and accurate camera calibration.
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Fig. 2 These four images show a hot steel section moving on the mill.
The images a and c given on the left column are captured with the left
camera. The images b and d shown at the right column are taken by the
right camera. Feature points extracted by the SURF method are shown

with a green plus sign with a circle on images a and b. Feature points
extracted by the FAST method on images c and d are visualized with a
green plus sign

Similar to industrial applications where remote sizing
is necessary, there is a demand in forestry for non-contact
tree size estimation. A single camera method was developed
inPutra et al. (2021),where data collected in advance are used
for camera calibration. In Eliopoulos et al. (2020), remote
measuring of the diameter and height of trees with binocular
cameras is presented, achieving a measurement accuracy of
1–2cm error at 1–5ms from the measured trees.

Methods for image registration

Imagematching, also known as image registration, is the pro-
cess of establishing the correspondence of pixels from two
or more images. This involves finding geometric relation-

ships, and the multiple scenes are combined into a single
integrated image (Zitova and Flusser, 2003). In order to
understand well the changes in a scene or an object over a
long period of time, images are captured fromvarious sensors
at different times and from multiple viewpoints. The image
registration process ismainly divided into four stages: feature
detection, featurematching, transformmodel estimation, and
transformation (Zitova andFlusser, 2003). Image registration
methods have been an active area of research and a wealth of
methods have been developed for medical purposes (Brock
et al., 2017; Guan et al., 2018). Some registration algorithms
also use deep learning (Boveiri et al., 2020;Chen et al., 2021).
However, deep learning methods require large datasets, and
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the learning process of the networks still needs improvement,
especially under challenging environmental conditions.

There is a range of methods for feature extraction from
images in an automatic way (Mutlag et al., 2020). These
feature points are often corner points or reference points
of an object, which can describe the shape and position of
the object. Traditional image feature extraction algorithms
such as the scale invariant feature transformation (SIFT)
focus on extracting key points, image’s corner points or
edge features(Dalal and Triggs, 2005). Based on SIFT, many
other algorithms were developed with highly accurate per-
formance, such as the Speeded Up Robust Features (SURF)
method,which reduce the amount of calculation and speed up
the feature extraction process so that it canmeet the real-time
requirements (Bay et al., 2006; Tafti et al., 2018). In addition
to traditional feature detection methods, feature extraction
algorithms based on convolutional neural networks (Dar-
gan et al., 2019) have also become popular in recent years.
Encouraging results in accuracy and computing speed are
reported in Zheng et al. (2017). The methods mentioned
above extract intrinsic feature points in images. However,
if the noises present in images dominate and in combination
with low lighting conditions, such algorithms cannot extract
enough feature points. In the proposed framework, extrinsic
feature points will be used in the image registration (match-
ing) and fusion to cope with these challenges.

After detecting feature points from images, these feature
points should bematched to each other. Featurematching can
be performed in a number of ways one of which is by cal-
culating Euclidean distances (Brock et al., 2017) of feature
points in a pair of images. In addition to the spatial relation-
ship between features, different feature descriptors (Tafti et
al., 2018) and similarity metrics (Czolbe et al., 2021; Tong et
al., 2019) are used to evaluate the results with respect to the
matching accuracy and this is followed by other tasks such
as image fusion (Ma et al., 2019). To register the images,
the transform model between images need to be estimated.
Next, the corresponding features obtained from the previous
step are used to calculate the model. The choice of the trans-
form model depends on the prior knowledge of the image
acquisition process and the expected image distortion.

In the process of steel rolling, the challenging low-level
illumination conditions are challenging for computer vision
systems. The sparse feature points generated by conven-
tional approaches lead to inaccurate matching results, as
shown in Fig. 2. In this figure, the green points represent
the feature points detected by SURF and FAST (Features
from Accelerated Segment Test) algorithms (Tafti et al.,
2018). Advantages of FAST algorithms consist in their effi-
ciency in feature detection, which makes them suitable for
real-time applications, including manufacturing. However,
an improvement of the registration accuracy can be achieved

based on extrinsic features thanks to a virtual checkerboard
which is proposed in this paper.

Methods for image fusion

Image fusion aims to generate a high-quality image, with
quality that is better than those of the separate images (Jin
et al., 2017; James and Dasarathy, 2014). Different fusion
algorithms can be broadly divided into transform domain
fusion methods and spatial domain fusion methods in pixel-
level image fusion (Hall and Llinas, 2001).

Generally, the spatial domain fusion method directly uses
the intensity level of image pixels for image fusion. For
example, the simple average, minimum, maximum, max-
min and weighted average methods keep the pixels with low
or high intensity at the same position of two images. More
advanced methods include hue intensity saturation, Brovey
transform, principal component analysis and guided filtering
methods (Khan et al., 2021). Image registration is also often
performed in the frequency domain (Tong et al., 2019).

The proposed approach for ingots direction
recognition

The steel mill transports the hot steel sections during the
forming process and transfers them onto another production
line. The top and bottom ends of the ingot are different. If the
top and bottom directions are reversed, the piece of material
becomes unusable. Therefore, in order to inspect the sections
autonomously, the orientation of the ingot needs to be recog-
nized remotely. The following subsections present the main
stages of the proposed approach for recognising the front and
end parts of the hot steel sections.

Edge detection

In order to extract the cross-section of the ingot, the edge
information is first obtained. Canny-based edge extrac-
tion (Canny, 1986; Song et al., 2017; Dollár et al., 2021;
Dollár and Zitnick, 2014) is a feature extraction method that
can represent the edge features of the original image and sig-
nificantly reduce the amount of image information that needs
to be processed. The specific implementation can be divided
into four steps: Gaussian filtering, calculating the gradient
strength and direction, non-maximum suppression, and dou-
ble threshold detection to classify the edges into strong and
weak edges. Non-maximum suppression and double thresh-
old detection are used to find local maximum points and
these are classified as part of strong edges and weak edges.
An example of the original image and the image with the
extracted edges is shown in Fig. 3.
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Ingot contour segmentation

After the edge detection stage is completed, the next step is
to classify these edges and to extract the edges belonging to
the steel section. Many edge feature points provided by the
edge operators do not belong to the steel section, as shown in
Fig. 3b. Since these isolated edge points are due to oxides and
sediments on the surface of ingots, the surface texture has a
complex shape and the pixel intensity distribution is uneven.
A significant portion of the misidentified edges is due to
the texture of the steel material and strong lighting condi-
tions (with temperature around and above 1000◦ C) inside
the rolling mill. Therefore, a filter based on the SUZUKI
contour algorithm (Suzuki, 1985) is employed to help define
the hierarchical relationship between boundaries.

Figure 4a shows with dots the detected edge points. The
different colors represent different contour groups based on
contour algorithm classification. After that, only the promi-
nent parent edges remain, which represent the contour of
ingot as shown in Fig. 4b.

Cross-section Extraction

After the edge points are filtered, the sections are extracted
by the Hough gradient method (Nixon and Aguado, 2020) as
described in Algorithm 1. Algorithm 1 has two parts: find-
ing the centre of the circle and finding the length of the circle
radius. First, the circle centre is initialized by the voting space
Vc. Next, the traversal of all the edge points is performed,
and this traversal is expanded forward along the gradient
direction. This removes all points that pass through the cor-
responding voting space Vc(a, b) + 1, where (a, b) is the
position of the corresponding point. Finally, the voting space
Vc(a, b) is sorted, and the point with a higher number of
votes is more likely to be the centre of the circle.

Let C be the circle centre, and let initialize the radius
voting space Vr (r) for the circle centre, where r is the radius.
Next, we calculate the distance r from the edge points to the
centre of the circle. Finally, the Vr space is sorted in order
to get the radius of the cross section of cylinder ingots. The
extracted edges are used as inputs for the section extraction
with the Hough gradient method. One such result shown in
Fig. 5. The range of the green box in thefigure is theminimum
bounding rectangle of the steel section determined by the
previous edge detection.

The cyan box shows the minimum bounding rectangle of
the circle detected by the Hough circle detection, while the
blue circle and red dot represent respectively the detected cir-
cle and its centre. The circular cross-sections extracted from
the algorithm are shown in Fig. 6. Due to the presence of
sediment and oxides during the placement of ingots, there is
a visible difference between the top and bottom of the steel
ingots. The top row represents the top of the ingots, which

Algorithm 1Hough gradient method for estimating the cen-
tre and radius of the circular steel section
Input: The results of Canny Ek , the gradient direction θ of each point

in Ek .
Output: Circle Centers C and radius R.
1: Estimate the location of the center of the circle
2: Initialize the centre voting space Vc, a and b are the width and height

of the region of interest.
3: for i = 1, · · · , a do
4: for j = 1, · · · , b do
5: Extend forward along the gradient direction θ(i, j) of the point

Ek(i, j)
6: Every time meet a point :Vc(i, j)+ = 1
7: end for
8: end for
9: Sort the voting space Vc(i, j) and get C
10: Estimated radius
11: Initialize Circle radius Voter Vr
12: for m = 1, · · · , k do
13: rm = |CEm |
14: Vr (r)+ = 1
15: end for
16: Sort Vr , the larger the value, the more likely it is the radius

appears darker in colour compared with its surroundings and
exhibit a brain-like pattern due to the presence of oxides.
In contrast, the bottom of the ingots exhibits a smoother
and brighter surface with relatively higher temperatures and
fewer oxides compared with the top side.

Image classifier of ingot directions

After the steel sections are segmented, the top and bot-
tom images of each ingot constitute the patterns that need
to be recognised. All other end images are compared to
these patterns using the structural similarity index measure
(SSIM) (Wang et al., 2004), which is a one of the best mea-
sures for evaluating the similarity between two images.When
the algorithm detects the section, the section end Isection is
compared to Itop and Ibot with the SSIM which is calculated
as described in Algorithm 2. The direction of a section is
determined based on SSIM value.

Algorithm 2 SSIM Direction Recognition
Input: Itop, Ibot , Isection
Output: The direction of section Isection
1: Calculate the SSIMs between Isection and Itop, Ibot
2: SSI Mtop = SSIM(Itop, Isection)
3: SSI Mbot = SSIM(Ibot , Isection)
4: if SSI Mtop >= SSI Mbot then
5: The direction of Isection is T OP
6: else
7: The direction of Isection is BOT
8: end if
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Fig. 3 Figure a shows the original image, Figure b shows the Features Extracted by Canny Detector

Fig. 4 Figure a shows feature points detected by the Canny edge detector on the surface of the ingot. Figure b shows results after filtering and the
minimum bounding rectangle

The proposed approach for remote sizing of
steel section

Before cutting hot steel sections into different shapes and
sizes, they are moving on mills situated at different height
with respect to the ground. This creates challenges to com-
puter vision systems. Also amonocular measurement system
is not able to deal with the plane difference due to the lack
of depth information. Although, there are attempts to recon-
struct depth, e.g. with deep learning methods and monocular
data, the factory environment poses significant challenges to
deep learning algorithms which require significant amounts
of data for training and testing (Luo et al., 2018).

Achieving accurate vision-based measurements of the hot
steel sections at distances between 10 and 30ms with one
camera is difficult. When the object of interest which is sized
remotely has a certain thickness or is not in the same plane as
the camera calibration plane, the estimated object sizes vary

significantly from the actual object sizes. In contrast, tradi-
tional binocular cameras can obtain image depth by using
the parallax effect and after calibration. However, the cam-
era placement and environmental light conditions have an
additional impact on the object sizing accuracy.

Binocular imaging systems aremore accurate thanmonoc-
ular ones and hence a binocular camera solution is proposed
in this paper. A key advantage of the proposed approach
is that it is adaptive to the changes of the measurement
plane. After acquiring the images from two cameras, each
image pair are registered first. However, due to the chang-
ing lighting conditions in the factory and height of the mills,
image registration based on intrinsic feature points from the
images becomes unreliable. Furthermore, the large baseline
of the two cameras leads to a significant difference in the
estimated position of the object of interest in the images,
which further increases the image registration difficulty. The
approach proposed in this paper overcomes these difficulties
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Fig. 5 Cross section extraction

by performing the image registration with extrinsic feature
points from a checkerboard positioned close to the mills.
The checkerboard is part of the camera calibration process
and also it enhances the image registration process. The next
Section “Image registration” describes this process in detail.

Image registration

The image registration process is given succinctly in Algo-
rithm 3. The transformation matrix TRL is calculated by
matching the corner points of the checkerboards that are part
of images IL and IR and the two images are registered suc-
cessfully. In Algorithm 3 CR denotes a corner point from the
checkerboard of the right image and CL represents a corner
point from the checker board of the left image. The following
Section “Image registration evaluation” describes in detail
how the image registration process is evaluated.

Algorithm 3 Image Registration
Input: Images IL , IR
Output: The registered right image IRr
1: Extract the corner points CL ,CR of checkerboards in IL , IR
2: Calculate the geometric transformation TRL ,which transform

CR → CL
3: Apply TRL to IR :TRL (IR) = IRr

Image registration evaluation

To evaluate the quality of image registration, first extract
the steel section and its edges in the images. After the steel
section edges are obtained, the edges in the region close to
the checkerboard are selected to be evaluated. The region of
interest (ROI) in which the steel section is situated is deter-
mined automatically.

One way to automatically select the ROI around the steel
section is based of the y coordinate at the highest point of

the checkerboard and the lowest y coordinate of the checker-
board. Next, the highest and lowest y coordinate values are
expanded with a preset pixels which is set to 10 pixels in the
experiment.

Algorithm 4 Registration Evaluation
Input: Region of interest from the image IRO I
Output: A Quality Index of Registration QR
1: Select region of interest near the checkerboard
2: Create polygons Pr ,l with Edges in the ROI
3: Calculate QR based on Pr ∩ Pl

The polygons Pl,r from Algorithm 4 consist of the upper
and lower limits of the region of interest and the left and
right margins of the steel section. After Pl,r polygons are
created, the quality of registration index QR is calculated by
evaluating the overlapped area between two polygons. The
smaller the QR values are, the better the image registration
is.

Figure 7a shows the overlaid registered image and the
original left camera image. The left camera image is shaded
in green and the registered image is shaded in magenta both
on a) and b). The regions with light gray color represent the
overlapped areas from the two images. On b) the detected
polygons Pr and Pl are also visualised. The overlapped area
between two polygons over the polygon for left image Pl
form the quality index QR of registration and this is described
with the equation:

QR = 1 − Pr ∩ Pl
Pl

. (1)

In order to give a direction to this quality of registration index,
we consider QR to be positive when Pl is on the left of Pr
and vice versa.

The following Section “Embedding the Height Informa-
tion in the Registration Results” describes the how the prior
height information can incorporated to further improve the
image registration results.

Embedding the height information in the
registration results

The accuracy of the registered image can be further improved
by adjusting the height of the checkerboards from the
ground. Using real checkerboards with different heights
would require collecting many data. Since this is quite a
demanding process, a virtual checkerboard is created by
interpolation and extrapolation, which only needs to collect
the checkerboard data twice at the beginning equipment set-
ting process.

When a camera captures an image, the checkerboard is
projected from the three-dimensional to the two-dimensional
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Fig. 6 Sample images for ingot direction recognition. First row shows ingot top samples, and the second row shows ingot bottom samples

Fig. 7 Input Steel Section Images and DWT Fusion Results: a Registered Images; b Polygons Pr and Pl

image plane and the definite ratio point of division between
different height checkerboards is also a linear projection in
the image plane according to the following formula about the
steel section

P

(
(x1, y1) + λ (x2, y2)

1 + λ

)
= P (x1, y1) + Pλ (x2, y2)

1 + λ
, (2)

where P is the projection transformation, λ ∈ N
+ is the

ratio of division, x1, y1 are the coordinates of corner points
of lower checkerboard, x2, y2 are the coordinates of corner
points of higher checkerboard.

Therefore, the interpolation and extrapolation process can
be realized by directly inserting and extending data points
between the checkerboard’s corresponding points at different
heights. The interpolation process is applied to improve the
registration process results and it is described inAlgorithm 5.
After the interpolation, combined with the previous regis-
tration quality index QR , the registration result is updated
automatically.

The QR index serves as an indicator for the position-
ing of the virtual checkerboard relative to the measurement
plane. Positive values of the QR index suggest that the virtual
checkerboard is positioned too high, requiring the algorithm
to adjust its coordinates according to the height of the steel
section. Conversely, negative values imply that the virtual

checkerboard is too low in relation to themeasurement plane.
Ideally, for optimal positioning, the QR value should be close
to 0.

Algorithm5Refining the ImageRegistration Result with the
Virtual Checkerboard
Input: CLL ,CLH ,CRL ,CRH
Output: The adjust registered image IRr
1: Interpolate n set of corner points of checkerboards CLi ,CRi
2: for k = 1, · · · , n do
3: Calculate QRi for CLi ,CRi
4: end for
5: Find the IRr with maximum |QR |

The next Section “Image Fusion” describes how the two
registered images from the left and right cameras can be fused
with different wavelet transform methods.

Image fusion

Thanks to the virtual checkerboard and image registration
algorithm, the images from the two cameras are registered
with high accuracy.After the image registration, the positions
of the steel section parts taken by the left and right cameras in
the image can completely coincide. Next, the images taken
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Fig. 8 Input Steel Section Images and DWT Fusion Results: a Left Camera Image; b Right Camera Image; c FFT Fusion Results; d DWT Fusion
Results

by two cameras are fused in order to bring together the com-
plementary information from the two separate images. From
the fused image the steel section size is calculated remotely
- first in the image plane and next the result is converted
into the physical plane. Image fusion algorithms based on a
Fast Fourier Transform (FFT) (Cooley and Tukey, 1965) and
discrete wavelet transforms (DWT) (Pajares and de la Cruz,
2004; Sundararajan, 2016) are implemented and validated
over video data collected from the Liberty Speciality factory
in the UK (Fig. 8).

FFT

The left and right images are first transformed in the fre-
quency domain with the discrete FFT (Gao et al., 2021).
Then, the fusion step is completed by operating on the mag-
nitude and phase map of the images in the frequency domain.

The two dimensional (2D) FFT F[k, l] of an image I [m, n]
of size m × n is given by:

F[k, l] = 1

MN

M−1∑
m=0

N−1∑
n=0

I [m, n]e− j2π
(

k
M m+ l

N n
)
. (3)

The result of the Fourier transform F[k, l] can be expressed
by the amplitude ‖F[k, l]‖ and phase � F[k, l], M and N
characterise the respective image size. The FFT process of
fusing two images I1 and I2 in the frequency domain is given
as Algorithm 6.

DWT-Daubechies Wavelets

Discrete wavelet transforms (DWTs) can provide efficient
image fusion results (Pajares and de la Cruz, 2004) and
we adopt the one-dimensional DWT based on the selected
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Algorithm 6 FFT Image Fusion of Images I1 and I2
Input: FI1[k, l], FI2[k, l]
Output: The fused image IF
1: Calculate the magnitude ‖F[k, l]‖ and phase � F[k, l]
2: for k = 1, · · · , M do
3: for l = 1, · · · , N do
4: if ‖FI1[k, l]‖ > ‖FI2[k, l]‖ then
5: ‖F[k, l]‖ = ‖FI1[k, l]‖
6: � F[k, l] = � FI1[k, l]
7: else
8: ‖F[k, l]‖ = ‖FI2[k, l]‖
9: � F[k, l] = � FI2[k, l]
10: end if
11: end for
12: end for
13: Inverse FFT F[k, l] → IF

wavelet basis in the x and y directions of the image to achieve
a two-dimensional DWT. The selection of different wavelet
bases will lead to different fusion effects. Daubechis (DB)
wavelets (Daubechies, 1996; Hermessi et al., 2021) are first
tested with different wavelet coefficients. The DWT method
results are presented with 2, 4 and 16 coefficients and this is
denoted as DB2, DB4, DB8 and DB16, respectively.

DWT-Fejer-Korovkin wavelets

In addition to DB wavelets, Fejer-Korovkin wavelets (FK)
wavelets transform are applied in DWT fusion. The FK
wavelets are denoted as FK4, FK6, FK8 and FK18, respec-
tively, according to different filter coefficients. The FK
wavelets have shownbetter high-frequencyperformance than
other waveforms (Olhede and Walden, 2004).

When the image fusion process is completed, the steel sec-
tion edges from the fused image are identified and extracted.
The steel section pixel size can then be measured. Combined
with the camera parameters obtained during the camera cal-
ibration process, the pixel size of the steel section can be
converted to the actual steel width in physical units.

Performance validation and evaluation

The proposed framework has been validated over real images
from the Liberty Speciality Steels industrial plant in the UK
producing high-quality steels.

Ingot direction recognition

Through the above section extraction technology, a total of
2220 end-section images of ingots were extracted from 9
bottom videos and 9 top videos. The results are presented
in Table 1.

Figure 10 shows the confusion matrix for the proposed
SSIM classifier that distinguishes the top from the end part

Table 1 SSIM classification results

Precision Recall Accuracy

Top Sides 1 0.9589 0.9819

Bottom Sides 0.9688 1

Fig. 9 Top side results for the SSIM

of the steel sections. Table 1 shows the precision, recall and
accuracy performance measures for the classification results
of the SSIM classifier, respectively. For the top side of the
steel sections, based on 1329 detected end sections from 20
videos, the evaluated value of the precision is equal to 1,
the calculated recall rate is 0.9589, and the overall classifi-
cation accuracy is 0.9819. Figure 9 shows the results for the
SSIM of the top ingot side and that the SSI Mtop is larger
than SSI Mbot in most cases. Hence, the classifier detects
the top end sides with a high success rate. Out of a total of
1329 images corresponding to the end side of the ingot, 24
are incorrectly classified which corresponds to 1.8% mis-
classification. The analysis of the videos shows that these 24
misclassifications occur in images in which the end side of
the ingot is not well visible. Due to the rising temperature,
the brightness of the ingot in the images increases, leading to
significant changes in the SSIM values. The results show that
the ‘Top Side’ of the ingot has been successfully recognised,
and an early warning can be given to the human operator.

Remote calculation of the size of the steel hot rolling
sections

The whole sizing process is shown in the flow chart pre-
sented in Fig. 11. At the beginning of the process, we have
images of the steel section taken simultaneously by two
cameras in the left and right directions. The two cameras
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Fig. 10 Confusion matrix of the SSIM classifier distinguishing the top
and bottom parts of the steel section

are focused on the area of the movement of the steel sec-
tion but also incorporate different views of the industrial
plant. Next, the two images are registered with the approach
described in the previous sections, and the virtual checker-
board corresponding to the measurement plane of the steel
section is generated as described in Section “Image registra-
tion evaluation”. After that, the whole image is transformed
by computing the geometric transformation between the vir-
tual and the initial checkerboards. Using this algorithm, we
can make the measurement plane coincide with the initial
checkerboard’s height.

As Fig. 12 shows that when the checkerboard is set on the
ground, the cameras use the calibration data on a different
plane from the measurement plane. Therefore, the measured
results will be larger than the actual results in this case. In
order to correct this measurement error, the position of the
checkerboard should be raised to the height consistent with
the steel radius to make the height of the measurement plane
compatible with the steel radius. Through the virtual calibra-
tion plate, the calibration plate’s height can be freely moved
as shown in Fig. 12 (c). Through the measured value via
Algorithm 5, the height of the virtual calibration plate can
also be evaluated, as shown in Fig. 12 (b).

After the image registration is completed, the images taken
by the two cameras are registered together.Knowing the cam-
era internal and external calibration parameters and using the
algorithm from Wang et al. (2019), the pixel size of a steel
section can be transformed to its actual physical size.

In the considered steel production case study, the two
edges of a hot rolling bar (HRB) are scanned by a sliding
window IH×W , with height H and width W . This process
smooths the edge selection process and improves the edge
detection accuracy (Wang et al., 2020). The transformation
equation

⎡
⎣xw

i j
yw
i j
1

⎤
⎦ = H−1

⎡
⎣x Ih j
y Ih j
1

⎤
⎦ ,H = [K] [R|T] (4)

Fig. 11 Flow Chart of Sizing Process

Fig. 12 Virtual Checkerboard for Image Registration: The Leftmost Image Shows Image Captured when the Checkerboard is on the Floor; The
Middle Image Shows the Checkerboard on Another Height; The Rightmost Image Shows the Virtual Checkerboard at the Desired Height
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Fig. 13 Sizing Results: a QR is positive and the absolute value |QR | is large; b QR is negative and |QR | is small

Table 2 RMSE of Fig.13a, b a b

RMSE 9.3741 0.9872

converts the x Ii j and y Ii j image plane coordinates into the
[xw

i j , y
w
i j , 1] physical plane coordinates. The transformation

is performed with the help of the rotation matrix R, of the
translationmatrixT and theKmatrix containing the intrinsic
camera parameters. The specific values of R, T and K can
be calculated through the calibration process of the GoPro�

cameras. The calibration was performed using the Camera
Calibration Toolbox in MATLAB� (Bouguet, 2004). The
cameras used for capturing the video had a resolution of 2704
x 2028 and a frame rate of 30 FPS. They employed a linear
Field of View (FOV) mode with a shutter speed of 1/480s.

Given the vectors Ii1 = [x Ii1, y Ii1]T and Ii2 = [x Ii2, y Ii2]T
on two HRB edges with x Ii1 = x Ii2, the diameter l of the HRB
is then calculated through

l = ‖P1 − P2‖2 , (5)

where P1 = [xw
i1, y

w
i1]T and P2 = [xw

i2, y
w
i2]T are the physical

plane correspondences to Ii1 and Ii2. Here ‖.‖2 denotes the
Euclidean norm.

Figure 14 shows seven measurement results taken every
100 frames in the same video sequence. The actual diam-
eter of the hot steel section is equal to 190mm. The blue
data points represent measurements obtained with the vir-
tual checkerboards and the red data points are direct estimates
without using the virtual checkerboard. Figure 13a and 13b
show the sizing results with different checkerboard parame-
ters and how |QR | evaluates the sizing quality. In Fig. 13a, the
sizing results are underestimated. The QR values are large

Fig. 14 Sizing Results for Seven Different Frames

and positive, showing that the true size should bemuch larger
than the estimation. In Fig. 13b, a small negative QR shows
the true size is slightly smaller than the estimated value.

Image fusion performancemetrics and analysis of
the results

Several performance assessment metrics (Hermessi et al.,
2021; James and Dasarathy, 2014) that do not rely on ref-
erence images are utilised to evaluate the quality of fused
images and these are given below.
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Information entropy H (Singh and Anand, 2018)

H (I ) = −
∑

P log2 P, (6)

where P is the normalized histogram and I denotes the con-
sidered image. Information entropy (Hermessi et al., 2021)
characterises the amount of information contained in an
image.Thehigher the information entropy, themore informa-
tion the image contains. The unit of entropy when calculated
for the images is bit/pixel.

Standard Deviation SD (Haghighat et al., 2011)

SD =
√√√√ M∑

i=1

N∑
j=1

(I (i, j) − μ̄)2 /MN , (7)

where I is the intensity of pixel and it is within the range
[0, 255], μ̄ is the average image intensity over the considered
number of pixels, M and N represents the image size with
respect to the two coordinate axes. The standard deviation
of an image represents the variation of the pixel brightness.
The larger the standard deviation is, the more obvious the
brightness difference between image pixels is, and the greater
the contrast is.

Spatial Frequency SF (Eskicioglu and Fisher, 1995)

SF =
√

(RF)2 + (CF)2, (8)

where RF is the row frequency and CF is the column fre-
quency. The spatial frequency SF combines both frequencies
calculated in columns and rows.

Average Gradient AG (Prewitt, 1970)

AG = 1

(M − 1) (N − 1)

∑
x

∑
y

G (x, y)√
2

, (9)

whereM and N are size of image,G is the gradientmagnitude
of image pixels calculated byPrewiit operator. The first-order
difference between the intensity of a pixel and its adjacent
pixels reflects the brightness changes of the image. Images
with a high average gradient will be clearer than images with
small gradient values.

Feature Mutual Information FMI (Haghighat et al., 2011)

FMI = MIFA + MIFB, (10)

whereMIFA is themutual information between Image A and
the fused image F , MIFB is the mutual information between
image B and image F . The FMI evaluates the dependency
between the input images and the fused image. A large FMI
means that the fused image contains more information from
image A and B.

Sum of the Correlation of Differences SCD (Aslantas and
Bendes, 2015)

SCD = r(D1, I1) + r(D2, I2), (11)

where Di is the difference between the input image Ii , i =
1, 2 and the fused image, r (.) denotes the correlation func-
tion.

Edge-based Structural Similarity ESSIM (Chen et al., 2006)

ESSI M = f unction (l (I1, I2) , c (I1, I2) , e (I1, I2)) ,

(12)

Nessim(I f ) =
(
1 − ESSI M(I1, I f ) + ESSI M(I2, I f )

2

)

× 1000, (13)

where l(I1, I2) is a function characterising the luminance
difference between images I1 and I2, c(I1, I2) is a function
for the contrast comparison and e(I1, I2) is the function for
the edge comparison between the two considered images.
Compared with the original SSIM, ESSI M uses edge com-
parison to replace the original structural comparison. This
makes the metrics more sensitive to the edge information,
which is more critical for the steel sizing algorithm. Here,
we consider the ESSI M between fused image I f and orig-
inal images I1, I2 as shown in equation (13). The lower the
Nessim value, the better the fusion quality is.

Table 3 presents average results over 4 videos, each con-
taining 100 frames. It also includes results for the fused
images from both cameras with different methods, evalu-
ated with different performance metrics. It is evident that the
FFT andDWTwith high-order coefficients give better results
than the same approaches with low-order coefficients. The
FFT gives best results according to the following criteria:
SD, FMI , SCD and ESSI M .

According to the fusion performance metrics given in
Table 3, the DWT results achieved with a 16-coefficient
Daubechies wavelet transform have the highest information
entropy, which shows that it contains the most information in
all fusion results. At the same time, according to the indica-
tors related to image contrast and edge sharpness (spatial
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Table 3 Image Fusion
Performance Evaluation Results

Metrics H SD SF AG FMI SCD ESSIM

Left Image 1.4805 53.9503 6.5669 4.3598 – – –

Right Image 1.5052 54.3409 6.3998 4.0942 – – –

FFT 1.5056 56.4264 6.8742 4.8237 0.9663 1.3364 0.1458

DWT-DB Wavelets 2 1.5334 53.3971 7.0793 5.4118 0.9610 0.7495 0.1792

DWT-DB Wavelets 4 1.5492 53.1009 7.0279 5.3707 0.9622 0.7502 0.1791

DWT-DB Wavelets 8 1.5579 52.9425 6.9745 5.3455 0.9609 0.7370 0.1794

DWT-DB Wavelets 16 1.5738 52.6410 6.9257 5.3080 0.9593 0.7375 0.1799

DWT-FK Wavelets 4 1.5185 53.5126 7.1620 5.4216 0.9612 0.7606 0.1712

DWT-FK Wavelets 6 1.5392 53.2564 6.9780 5.3429 0.9626 0.7485 0.1795

DWT-FK Wavelets 8 1.5455 53.1555 7.0109 5.3871 0.9624 0.7548 0.1803

DWT-FK Wavelets 18 1.5628 52.9686 6.9345 5.3159 0.9606 0.7486 0.1780

frequency and average gradient), DWT fusion using a 4-
coefficient Fejer-Korovkin wavelet showed the best results.
For the remainingmetrics, the FFT image fusion results show
the best performance. Overall, the FFT fused image contains
more information than the original images. The DWT fusion
with an FK4 wavelet gives results with high contrast, which
benefits the edge extraction process.

In summary, the proposed approach has three main key
elements that are essential for the high-accuracy sizing pro-
cess.

Firstly, the proposed accurate edge detection algorithm
plays a pivotal role for identifying well the edges of the steel
sections within the images. This algorithm is specifically
designed to be highly sensitive to edges, thereby ensuring
that the true boundaries of the steel sections are captured,
even amidst significant noise.

Secondly, the virtual checkerboard serves as an innova-
tive tool that provides high-precision scale conversion from
the image plane to the physical plane. This allows us to
accurately map the dimensions of the image to the corre-
sponding real-world dimensions. This step is critical, as it
ensures that the representation in the image reflects accu-
rately the actual sizes of the steel sections. Furthermore, the
external features from the virtual checkerboard aid in align-
ing the images, which results in high registration accuracy.
By adopting this approach to create consistent calibration
features across different images from cameras, we achieve
precise alignment among the images, a critical prerequisite
for subsequent image fusion and measurement procedures.

Finally, the image fusion method enhances further the
edges and significantly reduces the impact of image noise
from the measurements. By combining the images in a man-
ner that maximises the information content and edge clarity,
we are able to generate a final image that is both clear and
accurate, despite the presence of image noises.

In conclusion, the high accuracy and robustness of our
framework can be attributed to the combination of precise

edge detection, accurate image registration with the virtual
checkerboard, and effective image fusion.

Conclusions

This paper presents a new framework for image registration,
fusion, sizing, and object recognition. It includes a two-
camera system that collects optical images of moving hot
steel sections. The paper also details a proposed recognition
algorithm that introduces autonomy, incorporates the struc-
tural similarity measure, and ensures the correct placement
of the hot steel sections.

Thedeveloped image registration approach embeds extrin-
sic features using a virtual checkerboard, making it adaptive
to environmental changes. It also helps in including the height
information at which the two images from the left and right
cameras are collected. The incorporation of the checkerboard
also helps cope with the challenges due to missing features
in the steel sections.

Efficient image fusion with Daubechies wavelets, the Fast
Fourier Transform, and Fejer-Korovkin wavelets algorithms
is achieved with the registered images. A series of perfor-
mance metrics evaluate the quality of the fused image from
the perspectives of information content and edge clarity. The
information content is evaluatedwithmetrics such as entropy,
standard deviation, image feature mutual information, sum
of the correlation of differences, and edge-based structural
similarity. The DWT-DB wavelets 16 create fused images
with the largest entropy, but fast Fourier transform fusion
gives better results among other metrics.

The image edge clarity is evaluated with the spatial fre-
quency and average gradient criteria. TheDWT-FKWavelets
4 fusion gives the best results in spatial frequency and average
gradient metrics.

The performance of the system is evaluated on various
real data with different metrics. We have shown that high
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precision sizing results with a tolerance range of less than
2mm are achieved, which helps with quality assurance of
manufacturing tasks. The achieved remote sizing accuracy is
above 95%(±2mm / 195mm) thanks to the efficient registra-
tion approach with extrinsic image features combined with
accurate image fusion algorithms.

The evaluation of the proposed approach on real data
suggests that it can achieve high precision sizing results.
However, its performance may vary depending on the type
of steel sections or environmental conditions. Moreover, in
the production environment, camera position deviation may
be affected by factors such as vibration, which requires reg-
ular maintenance and recalibration of the system to ensure
accurate measurement results.

The recognition task utilises only two images as reference,
while the remaining data is used for validation purposes.
Therefore, increasing the size of the dataset does not directly
impact the accuracy of the recognition model. However, if
we incorporate image fusion techniques to combine features
from multiple images as reference, having a larger dataset
may potentially lead to further improvement of the results.

For the remote steel section sizing task, the dataset is not
involved in the modeling process but rather used for result
validation. Therefore, the quantity of the data does not sig-
nificantly impact the effectiveness of the method.

Future work includes the development of efficient image
segmentation deep learning methods for pre-segmentation
of regions of interest of target objects to improve the sys-
tem’s robustness against interference. In addition, semantic
segmentation would provide another efficient solution for
measuring multiple objects in an image or different sur-
faces of a complex object. Theoretical quantification of the
impact of different uncertainties such asmeasurement noises,
occlusions, environmental and other conditions on the final
solutions is another area of current research.
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