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Abstract
To address rapid climate change, wind energy has beenwidely developed inChina in the last two
decades. However, wind farm (WF) turbulence effects can change the local climate by redistributing
temperature, humidity, and heatfluxes. Previous studies indicate thatWFs can significantly increase
nighttime land surface temperature (LST); however, their conclusions aremainly derived from
individualWFs and ignore heterogeneous impacts amongmulti-WFs inChina. Another large source
of uncertainty is that theWFs used in previous studies aremainly located in croplands or grasslands,
whichmay obscure directWF impacts because of the interactions between vegetation and the
atmosphere. In this study, we detect impacts withMODIS LST products during 2001–2018 at sixteen
WFs in the desert of northernChina. The results suggest that the averagedwarming impacts ofWFs on
LST are similar between nighttime (0.237 °C) and daytime (0.250 °C). However, the uncertainty is
much greater for daytime (SD=0.519 °C) than for nighttime (SD=0.146 °C) due to spatially
heterogeneous impacts of desertWFs on LST.Optimal structural equationmodels suggest that wind
speed, precipitation, and distribution patterns of wind turbinesmainly explain the spatial
heterogeneity of the desertWF impacts on nighttime LST. Given the rapid development ofWFs
globally, the local warming impacts ofWFs and their correspondingmechanisms should be
highlighted as a high priority in the fields of energy and climate.

1. Introduction

Wind energy plays amajor role in renewable energy exploitation, which provides amassive amount of clean
energy and reduces greenhouse gas emissions by fossil fuels (Veers et al 2019). TheWorldWind Energy
Association reported that the sumof the global wind turbine capacity has been rapidly growing in the past two
decades. It reached approximately 600Gigawatts by the end of 2018, which could cover 6%of the total human
electricity demand (WorldWind Energy Association 2019).Moreover, there has been an exploding increase in
wind turbine installation inChina since the beginning of the 21st century, accounting for approximately one-
third (210Gigawatts) of the global wind energy by the end of 2018 (ChineseWind Energy Association 2019).

In spite of the fact that themain purpose of rapidwind energy development is to reduce fossil fuel emissions
andmitigate global warming, environmental side effects have also appeared as the number of wind turbines have
largely expanded (Dai et al 2015, Tabassum et al 2014,Wang andWang 2015).Wind turbines usually generate
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wake turbulence by the rotating blades, which can redistribute the surrounding temperature, humidity, and heat
fluxes (Roy andTraiteur 2010, Zhou et al 2012, Armstrong et al 2014). Therefore, the large-scale construction of
wind farms (WFs)may change the local climate, which depends on the stability of the atmospheric boundary
layer (ABL) (Armstrong et al 2014,Wu andArcher 2021).When theABL is stable with cooler air near the ground
andwarmer air in the upper layer, which ismore probable to happen in the nighttime, the rotations of wind
turbine bladesmix thewarmer air layer and the air cooler near the surface and heat the land surface.However,
when theABL is unstable, withwarmer air near the surface and cooler air in the upper layer, theWF impact on
daytime LST ismore complicated. Rotations of thewind turbine bladesmix the cooler upper air and thewarmer
near-surface air and cool down the land surface (Miller andKeith 2018, Zhou et al 2020,Qin et al 2022), solar
radiation heats the surface and creates upward convection. Besides, when the ABL is neutral, the temperatures of
upper and lower air layers are approximate and the heat convection is near zero. The rotation has little impact on
the surface. In addition to theABL process, the conversion of the kinetic energy of thewind into the electric
power of thewind turbines also producesmassive heat (Corten 2000,Nematollahi et al 2019), whichmay also
contribute to thewarming effects.

Based on remote sensing time series, previous studies indicated thatWFs can significantly increase nighttime
land surface temperature (LST) (Zhou et al 2013 2012, Slawsky et al 2015, Tang et al 2017), however, the impacts
on daytime LST are divergent (Zhou et al 2013 2012, Slawsky et al 2015, Tang et al 2017,Wu et al 2019).
According tomultiplemodel simulations at different scales, aWF can lead to a 0.2 °C–2.16 °Cwarming of local
temperature (Keith et al 2004, Vautard et al 2014, Xia et al 2017, Li et al 2018, Pryor et al 2018), which suggests
large climatic impacts ofWFs.

Although there are some preliminary conclusions in terms of theWF impacts on LST, twomain aspects
should be further considered to obtain a clear picture of the driving processes. First, previous conclusions were
mainly derived from individualWFs inChina, which ignored background environmental effects. For example,
themagnitude of the local wind speedmay affectWF impacts by altering the speed of their wind blade rotation
(Abo-Khalil et al 2019, Tahir et al 2019). The other uncertainty source is that theWFs used in previousworks
weremainly located in croplands and grasslands, whichmay obscure the directWF impacts because of the
interactions between vegetation and the atmosphere (Feng et al 2016, Grossiord et al 2020). For example, human
irrigation in croplands can cool the air temperature by evapotranspiration (Payero et al 2008, Kurylyk et al 2014),
whichwill weaken theWF impacts on LST observed by remote sensing. Tominimize the effects of vegetation-
atmosphere interactions, desertWFswith no vegetation cover are the optimal study areas for detecting the direct
WF impacts on LST.

Considering the twomain uncertainty sources, in this study, 16 desertWFs (with�100wind turbines in
eachWF)were selected to evaluate theWF impacts on local LST in northernChina. Based on a remote sensing
time series, we analyzed theWF impact on the local daytime and nighttime LST by comparing theWF areas and
their surrounding control areas (buffer). Then, the spatial distribution of the impact was evaluated at a grid scale
in both theWFs and buffers. Furthermore, based on the structural equationmodel, we ultimately detected the
possible environmental drivers of the spatial heterogeneity of desertWF impacts on daytime and
nighttime LSTs.

2.Materials andmethods

2.1. Study area
In this study, we extract 7077wind turbines distributed in 16 desert wind farms (WFs) through the deep learning
algorithmYouOnly LookOnce (YOLO) (Zhang et al 2020) in 2018, which are theworld’s largest desertWF
group. YOLO is a fast, high-efficient, and high-precision object detection approach based on a single neural
network (Redmon et al 2016). The number of wind turbines installed at theWFs vary from100 to 1965
(figure 1(a) and table S1). Shuttle Radar TopographyMission (SRTM) datasets (Jarvis et al 2008) are used to
represent the elevation (figure S1). Themean annualModerate Resolution Imaging Spectroradiometer
(MODIS)normalized difference vegetation index (NDVI) of the 16WFs is lower than 0.1 (table S1). Based on the
SoilGrids datasets (Hengl et al 2017), there are 4 soil types among the 16WFs, and 12WFs are covered by
gypsisols. The following analyses are based on 16WFs, and further analyses have beenmade on 12 gypsisolsWFs
to restrict the potential thermal property differences brought by soil components.

To detect theWF impact, a comparison strategy is widely used betweenWFpixels and their surrounding
control region (buffer) (Zhou et al 2012, Slawsky et al 2015, Tang et al 2017). TheWF areas are extracted based on
1 km* 1 kmpixels to ensure that every pixel contains at least onewind turbine. The buffer is built as 1 km* 1 km
pixels 5 to 9 kmoutside theWF to avoid any air turbulence influence caused bywind turbines (figure 1(b)). The
wake effect of wind turbines generates turbulence that spreads for kilometers downwind, the buffer should be
outside thewake range.Meanwhile, the buffer should not be too far from theWF to share a similar climate
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background (Zhou et al 2012, Tang et al 2017,Qin et al 2022). The desert pixels are finallyfiltered byMCD12Q1
IGBP land cover data (figure S2), thefiltered pixels are defined aswind farmpixels (WFPs) and buffer pixels
(BUPs) in the following text.

2.2.Datasets
2.2.1. Land surface temperature
To explore the spatial heterogeneity ofWF impacts on desert LST, we use theModerate Resolution Imaging
Spectroradiometer (MODIS)MOD11A2 Land Surface Temperature (LST) time series between 2001 and 2018.
The temporal resolution ofMODIS LST is 8 days, and the spatial resolution is 1 km. Furthermore,MODIS
provides both daytime (10:30AM) and nighttime (10:30 PM) LST products (Wan,Hook, andHulley 2015),
which can help us better understand theWF impacts on the local climate. Further, we useMODISAqua LST
time series ofMYD11A2 as a supplementary test, the spatial and temporal resolutions are the same as
MOD11A2, and the overpass time is 1:30AM in the nighttime and 1:30 PM in the daytime.

2.2.2. Environmental factors
Four kinds of related environmental factors are used to explain the spatial heterogeneity of theWF impact on
desert LST. First, theWorldClim precipitation andTropical RainfallMeasuringMission (TRMM) 3B43
monthly precipitation datasets are used. TheWorldClim precipitation datasets are downscaled from the
Climatic ResearchUnit (CRU), the spatial resolution is 2.5 arcminutes, and the temporal resolution ismonthly
(Fick andHijmans 2017). The TRMMprecipitation product algorithmicallymergesmicrowave data from
multiple satellites. The spatial range is 50°S–50°Nglobally with a spatial resolution of 0.25° *0.25° (Kummerow
et al 1998). Second, wind speed (50 mabove ground) is derived from theModern-Era Retrospective analysis for
Research andApplications Version 2 (MERRA-2)monthly datasets (Gelaro et al 2017), with a spatial resolution
of 0.625°*0.5°. The height of thewind speed is close to the blades of thewind turbines. Third, topography
factors, including elevation and surface roughness, are used. The elevation is derived from the SRTMDEM
dataset with a spatial resolution of 90 m (Jarvis et al 2008). Surface roughness is provided by the Sentinel-1
Synthetic Aperture Radar (SAR)GroundRangeDetected (GRD) dataset, which is updated daily at a spatial
resolution of 10 mand the preprocessing is already radiometric and terrain-corrected (Torres et al 2012).
Fourth, soil properties, including soil type and sand content, are obtained from the SoilGrids datasets (Hengl
et al 2017), which aremodeled andfitted frommore than 230000 soil profile observations at a spatial resolution
of 250 m.

2.2.3.Wind farm shape factors
In addition to environmental drivers,WF shape factors are also used to explain the differentWF impacts on the
desert LST. TheWF shape factors include the shape index, patch density, landscape division index, andmean

Figure 1.Distribution of the 16WFs and the concept for the study area. (a)The spatial distribution of the 16WFs, which aremainly
located in the TaklaMakan andGobi deserts. TheWF sizes are represented by symbols of differentmagnitudes, and the basemap is
theMODISMCD12Q1 International Geosphere-Biosphere Programme (IGBP) land cover classification in 2018. (b)The concept for
the wind farmpixels (WFPs) and buffer pixels (BUPs).
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Euclidean nearest-neighbor distance, which can be calculated via the Fragstates platform (version 4.2.1)
(McGarigal 1995). These factors describe the distribution of wind turbines withinWF in different dimensions.

First, the shape index represents the ratio of the perimeter and area of patches in aWF,which can be
calculated as:

=
⁎

( )SI
p

a

0.25
1i

i

i

where SIi is the shape index of theWF; i is the serial number of theWF; pi is the perimeter of theWF (m); and ai

is the area of theWF (m2). The shape index usually increases as the patches in aWFbecomemore irregular and
fragmented.

Second, the patch density indicates the number of patches within 100 hectares, which can be calculated as:
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where PDi is the patch density of theWF; i is the serial number of theWF; Ni is the number of patches in theWF;
and ai is the area of theWF (m2). The patch density increases when there aremore patches in aWF.A patch is an
independent group ofWFs pixels using the 8-neighbor rule in our study.

Third, the landscape division index is the divisive level of theWF,which can be calculated as:
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where LDIi is the landscape division index of theWF; i is the serial number of theWF; n is the number of patches
ofWFs; aij is the area of patch j in theWF (m2); and ai is the total area of theWF (m2). The landscape division
index is closer to 1when theWF ismore fragmented.

Fourth, themean Euclidean nearest-neighbor distance is calculated as:
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where MEDi is themean Euclidean nearest-neighbor distance of theWF; i is the serial number of theWF; n is the
number of patch pairs ofWFs; and hij is the distance to the nearest neighboring patch (m). Themean Euclidean
nearest-neighbor distance increases when the nearest patches within theWF get further.

2.2.4. Soil thermal admittance
To explore the relationship between surface thermal properties andWFs LST impacts, we calculate thermal
admittance of 16WFs as follows:

m = ( )Ck 5

where m is thermal admittance by Jm−2 s− 1/2 K−1, C is heat capacity by Jm−3 K−1, k is thermal conductivity by
J s−1m−1 K−1 (Oke et al 1991, Runnalls andOke 2000), heat capacity could be estimated by:

å= + + ( )C f C f C f C 6s s w w a ai i

where fx represent the volume fraction of solid, water, and gas components, and Cx are heat capacity of each
component (Meyers 2002). The volume fractions of clay, silt, and sand are given by the SoilGrids dataset, while
water volume fractions are provided by climate change initiative (CCI) soilmoisturewith daily temporal and
0.25° spatial resolution (Dorigo et al 2017, Gruber et al 2019). The volume fraction of air is set to 0.25 in this
study. The heat capacity of clay, silt, sand, water, and air are 1.5, 1.5, 1.4, 4.2, and 0.0012MJm−3 K−1

(Pahud 2002).
The thermal conductivity could be calculated as:
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where ksat and kdry are saturated and dry thermal conductivities of soil. Sr is the degree of saturation, which is set
to 0.7 in our study. k is the empirical fabric factor set to 3.55 (Côté andKonrad 2005). ksat and kdry could be
calculated by:

= ( )k k k 8sat s
f

w
fs w

c= ´ h- ( )k 10 9dry
n

where ks and kw are thermal conductivities of solid andwater components (Barry-Macaulay et al 2015). The
thermal conductivities of clay, silt, sand, andwater are 2.9, 2.9, 5.5, and 0.6 J s−1m−1 K−1. c and η are empirical
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soil type parameters that account for particle shape effect, which are set to 0.75 and 1.2. n is porosity and set to
0.43 in this study (Côté andKonrad 2005).

2.3.Methods
2.3.1.Wind farm impacts on land surface temperature
The spatial distribution of theWFPs andBUPs is close (∼5 kmdistance) for eachWF (figure 1(b)). Because they
usually have similar regional background climate conditions, signals derived from the LST differences between
WFPs andBUPsmainly represent the impacts of theWF (Zhou et al 2020). In this study, we used three different
methods to determine the desertWF impacts on LST. Themethods and theworkflows of this study are given in
figure 2.

Thefirstmethod is the trend in the LST differences time series on regional scale, which can be expressed as:

D = - ( )· · · · ·LST LST LST 10i j WFPs i j BUPs i j

where · ·LSTWFPs i j is themean annual LST in theWFPs in year j; i is the serial number of theWF; · ·LSTBUPs i j is the
mean annual LST in the BUPs in year j; andD ·LSTi j is the LST difference between theWFPs andBUPs. The time
series of theD ·LSTi j are constructed between 2001 and 2018 on theGoogle Earth Engine (Gorelick et al 2017).
The trends in theD ·LSTi j time-series are calculated via the slopes of ordinary least squares, and the significance
of the trend is tested on at a level of 0.05. The impacts ofWFs on LST (ΔLST) between 2001 and 2018 are the
results of slopesmultiplied by the period length of 18 years.

The secondmethod is calculating the ordinary least square slopes and then theΔLST between 2001 and 2018
at a grid scale. Then, we compare the pixel trends of LST between theWFPs andBUPs using a two-sample t-test

Figure 2.Workflows of the set up of study areas, regional and grid scale analysis, and driving factors analysis in this study.
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at a significance level of 0.05. If theΔLST in theWFPs are significantly larger than those in BUPs, they could be
considered significant warming impacts ofWF.

The thirdmethod is to compare the preconstruction and postconstruction periods of theWFs at a grid scale.
We define the postconstruction period as 2016–2018 and the preconstruction period as 2001–2003. Then, we
compare theΔLST between theWFPs andBUPs using a two-sample t-test at a significance level of 0.05.

2.3.2. Driving factor analyses with structural equationmodeling
Todetermine the possible driving processes of the spatial heterogeneity of the desertWFs on LST, we first build
linear relationships between the trends in theΔLST (daytime and nighttime) and 15 environmental factors (i.e.,
climate, terrain, soil, and shape factors) among the 16WFs. The coefficients of determination (R2) are used to
evaluate the robustness of the relationships. Then, based on a priori knowledge, we use structural equation
modeling (SEM) tofind themain driving factors of the spatial heterogeneity of the desertWFs on daytime and
nighttime LST. The SEM is amultivariate statisticalmodel used for complex relationships between directly and
indirectly observed variables bymultivariate statistical techniques of factor analysis and path analysis
(Maruyama 1997). During themodel optimization, the individual path coefficients with p>0.05 are removed
to obtain aminimumchi-square value (χ 2), Akaike information criterion (AIC), andmaximumcoefficient of
determination (R2). To eliminate the potential effects of soil properties, we also establish an SEMwith the 12
WFs covered by gypsisols.

3. Results

3.1.Wind farm impacts on land surface temperature at a regional scale
Based on theMODIS LST time series from2001 to 2018 in the 16 desertWFs, the results suggest that average
ΔLST between theWFPs andBUPs is significantly increasing for both daytime and nighttime, which indicates
thatWFs increase the local temperature. The averagedwarming impacts ofWFs on LST are comparable between
nighttime (0.237 °C) and daytime (0.250 °C) (figures 3(a), (d)); however, the uncertainty ismuch larger for
daytime (SD=0.519 °C) than for nighttime (SD=0.146 °C). This suggests that theWF impacts on nighttime
LST aremore consistent than those on daytime LST.

For daytime LST (figure 3(b),figure S3), 10 of the 16WFs showwarming impacts, and 5 of those are
significant (p<0.05). The range of theWFwarming impacts is between 0.368 °CatWFNo. 3 and 1.456 °Cat
WFNo. 13.However, 6WFs suggest cooling impacts on LST, which range from−0.016 °C to−0.729 °C. In
contrast, theWF impacts on nighttime LST aremore robust (figure 3(e),figure S4). Specifically, 14 of the 16WFs
showwarming impacts, and 10WFs are significant (p<0.05). The range of theWFwarming impacts at
nighttime is between 0.181 °C atWFNo. 3 and 0.543 °CatWFNo. 11.Only twoWFs (No. 2 andNo. 4)
suggested nonsignificant cooling impacts on LST. Interestingly, theWFswith significant impacts on daytime
and nighttime LST aremainly located at the center of our study area (WFNo. 5-WFNo. 11).

In addition to theWF impacts at an annual scale, we also analyzed theWF impacts on daytime and nighttime
LST in different seasons (i.e., spring, summer, autumn, andwinter). Similar to those at the annual scale, theWF
impacts on daytime LST aremore divergent than those on nighttime LST (figure S5). For daytime, the average
ΔLST range from0.063 °C in spring to 0.244 °C inwinter. In contrast, for nighttime, themaximum impacts of
theWFs are in summer (0.285 °C) and theminimum impacts of theWFs are in autumn (0.188 °C).

3.2.Wind farm impacts on land surface temperature at the grid scale
In addition to the regional scale, theΔLST are also applied at the grid scale to detect theWF impacts on LST
(seeMethods). For daytime, LST in theWFPs rises 0.206 °Cor 0.255 °C (23.28%or 25.71%) faster than the
BUPs between preconstruction (2001–2003) and postconstruction (2016–2018) or 18 years (2001–2018)
periods (figures S6(a)(c)). Among 16WFs, the largest warming impacts occur atWFNo. 13with 1.434 °C
warmer inWFPs than BUPs in 18 years period (figure 4(m)). In contrast,WFNo. 7 shows themost obvious
cooling effect of−0.749 °C (figure 4(g)).

For nighttime, the averagedΔLST is 0.231 °Cor 0.172 °C,which is 30.92%or 21.03% larger in theWFPs
than in the BUPs between preconstruction and postconstruction or 18 years periods (figures S6(b) (d)). The
largest warming impact occurs atWFNo. 11, the LST in theWFPs gets warmer 0.555 °C faster than in the BUPs,
while inWFNo. 2,WFPs get cooler by−0.037 °C (figure 5). Furthermore, the differences between the
preconstruction and postconstruction periods of theWFs at the grid scale also suggest similar patterns of theWF
impacts on daytime andnighttime LST (figures S7, S8).
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3.3.Driving factors ofwind farm impacts on land surface temperature
Tounderstand the potentialmechanisms behind the differentWF impacts on annualmean daytime and
nighttime LST, linear regressions between theΔLST and environmental factors arefirst established at the 16
WFs (figures S9, S10). For nighttime LST, themost robust relationship is found between theΔLST and annual
precipitation (R2=0.24). For daytime, the highest R2 is observed between theΔLST and theΔ surface
roughness (R2=0.21). For other factors, the results suggest that the relationships with theΔLST areweak.
Whenwe establish the relationships in the 12WFs covered by gypsisols, the relationships becomemore robust,
which indicates that soil typesmight also affect the spatial heterogeneity of the desertWF impacts on daytime
and nighttime LST (figures S11, S12).

Based on a priori knowledge ofWF affected LST, SEM is used tofind themain driving factors for the spatial
heterogeneity of desertWFs on daytime and nighttime LST. Aftermodel optimization based onχ 2, AIC, and
maximumR2, three factors, including the shape index, wind speed, and annual precipitation, explain 60%of the
variation in theWF impacts on nighttime LST (figure 6(a)). The path coefficients of the shape index (0.35,
p=0.09) andwind speed (0.43, p<0.05) are positive, while the path coefficient of the annual precipitation is
negative (−0.54, p<0.05). However, the three factors only explain 9%of the variation in theWF impacts on
daytime LST (figure 6(b)). Furthermore, none of the three path coefficients are significant (p>0.05), which also
implies that the processes of theWF impacts on daytime LST aremore complex than those on nighttime LST.

To further remove the possible influences of different properties of soil types, we also use SEMbased on the
12WFs covered by gypsisols. The results suggest that the three factors can explain 76%of the variation in theWF

Figure 3.MODIS daytime and nighttime time-seriesΔLST at 16WFs from 2001 to 2018. (a), (d) averagedMODIS daytime and
nighttimeΔLST time-series in 16 desertWFs. TheΔLST and significances of theΔLST trends are given. The shaded ranges are the
standard deviations of the average time series. (b), (e) the spatial distribution and significances of annual daytime and nighttimeΔLST
at the 16WFs. (c), (f) the distributions of theΔLST values at the 16WFs. The averagedΔLST values and the significances of one-
sample t-tests are given.
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impacts on nighttime LST (figure 6(c)), and the path coefficient of the shape index is also similar to the SEM
establishedwith all theWFs.However, the SEM still could not adequately explain the variations in theWF
impacts on daytime LST, although the coefficients of determination increased (R2=0.16,figure 6(d)).

In addition, we also apply the SEM in different seasons (figure S13). The results suggest that the three factors
canwell explain the variations in theWF impacts on night LST in spring (R2=0.54), autumn (R2=0.49), and
winter (R2=0.54), but the results suggest a low explanation in summer (R2=0.13). The sign of the path
coefficients is the same as the results on the annual scale. In contrast, this factor is still unable towell explain the
variations in theWF impacts on daytime LST across the different seasons.

4.Discussion

4.1. Processes andmagnitudes ofwind farm impact on land surface temperature
Previous studies ofWF impacts on LST in vegetated regions (grasslands and croplands) indicate that theΔLST
in the nighttime range from−0.18 °C to 0.47 °C,while theΔLST in the daytime range from−0.26 °C to 0.72 °C

Figure 4.MODIS daytimeΔLST from2001 to 2018 in 16WFs. (a)-(p) Spatial distributions ofMODIS daytimeΔLST in 18 years
periods, respectively. The background images are STRMDEMhill shade images. The kernel density estimation (KDE) plots are the
distribution of image values within theWFPs (green) andBUPs (brown). TheΔLST and significance levels of the two-sample t-tests
between the image values within theWFPs andBUPs are shown in theKDEplots. Significant warming or cooling (p<0.05) in the
WFPs is illustrated by the red or blue color, respectively, of theΔLST text in the KDEplots.
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(Zhou et al 2012 2013,Harris et al 2014, Slawsky et al 2015, Xia et al 2016, Tang et al 2017,Miller andKeith 2018,
Wu et al 2019). In comparison, the impacts of desertWFs aremore stable (−0.033 °C to 0.543 °C) in the
nighttime andmore divergent (−0.729 °C to 1.456 °C) in the daytime. This phenomenonmay be explained by
the interactions between different land cover types and the atmosphere. For example, potential
evapotranspiration in croplands and grasslandsmay increase under thewarmer environment caused byWFs.
The cooling effects of increased evapotranspirationmay ease theWF impacts on daytime LST observed by
remote sensing. The higher water contents of leaf and soil in grassland or cropland lead to slower land surface
cooling than desert soil (Ceccato et al 2001). It should be noted that the previous conclusions ofWF impacts on
LST are derived from individualWFswith different climatic and environmental backgrounds. Therefore, the
background conditions should be consideredwhen comparing the impacts ofWFs on different land cover types
in the future. Thewarming impacts are higher in the nighttime in spring, summer, and autumn, but the opposite
inwinter (figure S5). Thesemight be because of the enhanced likelihood of turbulent inducedwarming by the
increase of ABL stability, which happensmore likely in the nighttime.However, inwinter, there is a higher
probability of inversions by changes in snow cover, and the surface thermal properties are altered by higher

Figure 5.MODIS nighttimeΔLST from2001 to 2018 at 16WFs. (a)-(p) Spatial distributions ofMODIS nighttimeΔLST of 18 years
periods, respectively. The background images are STRMDEMhill shade images. The kernel density estimation (KDE) plots are the
distributions of the image values within theWFPs (green) andBUPs (brown). TheΔLST and significance levels of the two-sample
t-tests between the image values within theWFPs andBUPs are shown in theKDEplots. Significant warming or cooling (p<0.05) in
theWFPs is illustrated by the red or blue color, respectively, of theΔLST text in theKDEplots.
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albedo and various thermal admittances of snow and ice aswell (Oke et al 1991). In this study, there is no obvious
correlation between nighttimeΔLST and snow cover inwinter, thewinterΔLSTmight be driven by other
factors (figure S14).

4.2. Spatial heterogeneity of wind farm impacts on land surface temperature
Based on the optimal structural equationmodel, annual precipitation, annualmeanwind speed, and shape
indexmainly explain the spatial heterogeneity of theWF impact on nighttime LST. First, the path coefficient of
annual precipitation is negative, whichmeans thatWFs located inwetter regionswith relatively higher
evaporation levelsmay haveweaker warming effects. Inwinter, the thermal properties of snow- and ice-covered
surfaces are variable. For instance, the thermal admittance of new snow is low and can support faster warming
than desert soil. However, after the snow turns into ice, the thermal admittance becomes higher than that of
desert soil, allowingmore heat conduction and storage heat andmitigates the observedwarming impacts
compared to that of the desert soil surface (Oke 2002). In our results, the 4WFs (Nos. 1, 2, 3, and 4)with higher
precipitation (10.38 to 19.91 mm) inwinter showweakerwarming effects than the remaining 12WFs (figure
S15). Second, the path coefficient of wind speed is positive, whichmeans thatWFs located in higher wind speed
regionsmay have strongerwarming effects. A higher wind speed can increase the rotation speed of thewind
turbine’s blades before itmeets the rated power (Ragheb andRagheb 2011); therefore, itmay increase thewake
turbulence by rotating the blades and then increasing the LST. Third, the path coefficient of the shape index is
positive, whichmeans that theWF impacts on LST becomemore obvious when theWF shape becomesmore
irregular and fragmentary.Meanwhile, the higher the shape index is, themore dispersed thewind turbines in
WFwill be, whichwould help alleviate thewake effects of turbines andmitigate thewind speed loss (De-Prada-
Gil et al 2015), whichmight lead to a faster rotation speed. The path coefficients of the other three shape factors
are not as high as the shape index because it is the only factor that can indicate the shape complexity within a
singleWFpatch.

However, annual precipitation, annualmeanwind speed and shape index cannot well explain the spatial
heterogeneity ofWF impacts on daytime LST. TheΔ surface roughness between theWFPs andBUPs negatively
correlates with theΔLST, which implies that theWFs on surfaces with a lower surface roughness than buffer

Figure 6.TheMODIS daytime and nighttimeΔLST SEM results in 16WFs and 12WFswith gypsisols. (a), (b)The SEM relationship
between the nighttime and daytimeΔLST and the shape index,MEERA-2wind speed 50 m above ground, andWorldClim annual
precipitation. (c), (d)The SEMrelationship between the nighttime and daytimeΔLST and the shape index, wind speed, and
precipitation in the 12WFswith gypsisols. The samples, degree of freedom (DF), Chi-square value (χ2), Akaike information criterion
(AIC), coefficient of determination (R2) of the SEM, path coefficients, and significances (p) of each factor are given.
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regionsmay cause strongerwarming effects. TheΔ surface roughness can explain 21%of the variations in all 16
WFs and 31%of the variations in the 12WFs covered by gypsisols (figures S9(j), S11(j)). The relative surface
roughness betweenWFPs andBUPsmightmodify the convection of sensible heat between the two regions
(Zhao et al 2014,Manoli et al 2019).When the BUPs are relatively rougher, the heat generated by turbulence
effects in theWFPsmight be restricted to diffuse into BUPs and could lead tomore obviouswarming effects.
Besides, higher surface roughness in the BUPsmay lead to stronger verticle sensible heat flux and suppress
surfacewarming (Potter et al 1987), which couldmakemore obvious relative warming in theWFPs. In the
nighttime, thermal admittancemight affectΔLST, the lower thermal admittance is in the BUPs, the higher
ΔLST ismore likely to happen because of low thermal sensitivitymatch.Moreover, when theΔthermal
admittance is higher betweenWFPs andBUPs, theΔLSTmight be higher (Oke et al 1991). The relationships
between nighttimeΔLST and thermal admittance andΔthermal admittance are weak in our study (figure S16),
whichmight be the result of two sources. Thefirst source is the uncertainties brought by the parameters of
thermal admittance calculation, which are given by literatures without experiments. The second sourcemight be
the uncertainty of SoilGrids datasets, which are rasterized by soil samples andmachine learning algorithms. The
sparse desert soil samples inNorthwestern Chinamight lead to higher uncertainty than other soil types.

4.3. Uncertainties, implications, and futureworks
In this work, we use the latest remote sensing products to detectWF impacts on LST, but uncertainties still
remain that should be further studied in future research. First, all thewind turbines in eachWFwere built in the
last two decades. However, there are still no datasets on the construction period and operation time for each
wind turbine. Because theWF impacts on LSTmainly occurwhen thewind turbines are running, lacking these
data obscures the quantification of theWF impacts on LST in ourwork. Second, wind turbines with higher rated
powermay generate strongerweak turbulence than turbines with lower rated power (Fan andZhu 2019).
Therefore, providing the rated power for eachwind turbine can help us better understand themagnitudes of the
WF impacts on LST. Third, there is no obvious averaged difference betweenMODISTerra andAquaΔLST in
the nighttime (0.001 °C), while it is higher in the daytime (0.083 °C) (figure S17). The overpass time of satellite
might affect observedΔLST due to the lower ABL stability in the daytime. Fourth, although long-term remote
sensing series are an optimal technologicalmethod for studyingWF impacts, we still need in situmeasurements
andfield experiments to evaluate our results and discover the drivingmechanisms.

In previous studies, researchers have simulatedWFswithWeather Research and Forecasting (WRF)models
(Vautard et al 2014,Miller andKeith 2018, Pryor et al 2018, Sun et al 2018). The currentWFmodule inWRF
mainly includes two processes: an elevated sink ofmomentum and a source of kinetic energy turbulence (Xia
et al 2019 2017, Zhou et al 2020). Although it has been used to simulateWFs in croplands and grasslands, the
WRFmodel does notwell consider the complex interactions between vegetation and the atmosphere (Chen et al
2016, Gao et al 2017). Given that there aremarginal interactions between vegetation and the atmosphere in
desertWFs, the observation-based results in our study provide a good opportunity for improving the
parameterizations in theWRFmodel.

The terrainwithinWFswill influence thewindflow and shortwave radiation (Wood 2000), and further
affect local ABL stability.However, the coarse spatial resolution of the presentMODIS LST datasets is a not good
match for analysis of terrain inducedmicro climate changes.Moreover, the ABL stability in complex terrain in
WFs remains uncertain (Kit et al 2017). In the future, the impact of terrain could be further discussedwithfiner
resolution datasets based on remote sensing or in situmeasurement. The sky view factormight influence income
shortwave and longwave radiation and further affectΔLST inWFs (Oke 1981). The sky view factor ofWF could
be changed by terrain, turbine density, and turbine size, the effect of the sky view factor could be extracted in the
futurewith in situmeasurements.

Themain aimof wind energy is to provide clean electricity and replace fossil fuels tomitigate climate change.
However,WFs also increase the local LST based on our results and those of previous studies (Keith et al 2004,
Zhou et al 2012, Li et al 2018). Furthermore, large-scaleWFs in vegetated regionsmay also affect ecosystem
dynamics (e.g., vegetation growth and soil carbon stability) by changing the local climate (Knapp et al 2002,
Armstrong et al 2014) and affect animal diversity (Marques et al 2014,Dai et al 2015, Smallwood and
Thelander 2008). TheWFs reduce greenhouse gas emissions of fossil fuels andmitigate global warming trends
while having localized side effects on the environment. Although theremight be some disadvantages of desert
WFs comparedwith those in grasslands or croplands, such as high electricity transport costs and potential
mechanical damage caused by sand storms (Fiore and Selig 2016, Li et al 2018), desertWFs can still yield global
energy profits byminimizing environmental costs. Therefore, the potential trade-offs in energy and ecosystems
ofWFs should be further evaluated in the future to estimate the realistic efficiency of wind energy.
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5. Conclusion

Wind farms (WFs) can change the local land surface temperature (LST) through turbulence effects. In this study,
we detect the direct impacts on daytime and nighttime LST of 16 desertWFs. Although the averaged impacts of
daytime and nighttime LST are comparable, the impacts on nighttime LST aremore convergent than those on
daytime LST. The spatial heterogeneity of the desertWF impacts on nighttime LST canmainly be explained by
environmental factors. However, the divergent impacts of desertWFs on daytime LST cannot bewell explained
by environmental factors. Our study is the first to provide the spatial patterns of directWF impacts on LST,
which greatly overcomes the potential uncertainties in previous studies induced by interactions between
vegetation and the atmosphere. In general, our results provide a benchmark for parameterizingWeather
Research and Forecasting (WRF)model processes. Given the rapid development of wind energy, quantifying
WF impacts on the local environment besides LST should be considered a high priority in climate change
research.
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