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Abstract

To address rapid climate change, wind energy has been widely developed in China in the last two
decades. However, wind farm (WF) turbulence effects can change the local climate by redistributing
temperature, humidity, and heat fluxes. Previous studies indicate that WFs can significantly increase
nighttime land surface temperature (LST); however, their conclusions are mainly derived from
individual WFs and ignore heterogeneous impacts among multi-WFs in China. Another large source
of uncertainty is that the WFs used in previous studies are mainly located in croplands or grasslands,
which may obscure direct WF impacts because of the interactions between vegetation and the
atmosphere. In this study, we detect impacts with MODIS LST products during 2001-2018 at sixteen
WFs in the desert of northern China. The results suggest that the averaged warming impacts of WFs on
LST are similar between nighttime (0.237 °C) and daytime (0.250 °C). However, the uncertainty is
much greater for daytime (SD = 0.519 °C) than for nighttime (SD = 0.146 °C) due to spatially
heterogeneous impacts of desert WFs on LST. Optimal structural equation models suggest that wind
speed, precipitation, and distribution patterns of wind turbines mainly explain the spatial
heterogeneity of the desert WF impacts on nighttime LST. Given the rapid development of WFs
globally, the local warming impacts of WFs and their corresponding mechanisms should be
highlighted as a high priority in the fields of energy and climate.

1. Introduction

Wind energy plays a major role in renewable energy exploitation, which provides a massive amount of clean
energy and reduces greenhouse gas emissions by fossil fuels (Veers e al 2019). The World Wind Energy
Association reported that the sum of the global wind turbine capacity has been rapidly growing in the past two
decades. It reached approximately 600 Gigawatts by the end of 2018, which could cover 6% of the total human
electricity demand (World Wind Energy Association 2019). Moreover, there has been an exploding increase in
wind turbine installation in China since the beginning of the 21st century, accounting for approximately one-
third (210 Gigawatts) of the global wind energy by the end of 2018 (Chinese Wind Energy Association 2019).

In spite of the fact that the main purpose of rapid wind energy development is to reduce fossil fuel emissions
and mitigate global warming, environmental side effects have also appeared as the number of wind turbines have
largely expanded (Dai et al 2015, Tabassum et al 2014, Wang and Wang 2015). Wind turbines usually generate

© 2022 The Author(s). Published by IOP Publishing Ltd
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wake turbulence by the rotating blades, which can redistribute the surrounding temperature, humidity, and heat
fluxes (Roy and Traiteur 2010, Zhou et al 2012, Armstrong et al 2014). Therefore, the large-scale construction of
wind farms (WFs) may change the local climate, which depends on the stability of the atmospheric boundary
layer (ABL) (Armstrong et al 2014, Wu and Archer 2021). When the ABL is stable with cooler air near the ground
and warmer air in the upper layer, which is more probable to happen in the nighttime, the rotations of wind
turbine blades mix the warmer air layer and the air cooler near the surface and heat the land surface. However,
when the ABL is unstable, with warmer air near the surface and cooler air in the upper layer, the WF impact on
daytime LST is more complicated. Rotations of the wind turbine blades mix the cooler upper air and the warmer
near-surface air and cool down the land surface (Miller and Keith 2018, Zhou et al 2020, Qin et al 2022), solar
radiation heats the surface and creates upward convection. Besides, when the ABL is neutral, the temperatures of
upper and lower air layers are approximate and the heat convection is near zero. The rotation has little impact on
the surface. In addition to the ABL process, the conversion of the kinetic energy of the wind into the electric
power of the wind turbines also produces massive heat (Corten 2000, Nematollahi et al 2019), which may also
contribute to the warming effects.

Based on remote sensing time series, previous studies indicated that WFs can significantly increase nighttime
land surface temperature (LST) (Zhou et al 2013 2012, Slawsky et al 2015, Tang et al 2017), however, the impacts
on daytime LST are divergent (Zhou etal 2013 2012, Slawsky et al 2015, Tang et al 2017, Wu et al 2019).
According to multiple model simulations at different scales, a WF canlead to a0.2 °C-2.16 °C warming of local
temperature (Keith et al 2004, Vautard et al 2014, Xiaetal 2017, Lietal 2018, Pryor et al 2018), which suggests
large climatic impacts of WFs.

Although there are some preliminary conclusions in terms of the WF impacts on LST, two main aspects
should be further considered to obtain a clear picture of the driving processes. First, previous conclusions were
mainly derived from individual WFs in China, which ignored background environmental effects. For example,
the magnitude of the local wind speed may affect WF impacts by altering the speed of their wind blade rotation
(Abo-Khalil eral 2019, Tahir et al 2019). The other uncertainty source is that the WFs used in previous works
were mainly located in croplands and grasslands, which may obscure the direct WF impacts because of the
interactions between vegetation and the atmosphere (Feng et al 2016, Grossiord et al 2020). For example, human
irrigation in croplands can cool the air temperature by evapotranspiration (Payero et al 2008, Kurylyk e al 2014),
which will weaken the WF impacts on LST observed by remote sensing. To minimize the effects of vegetation-
atmosphere interactions, desert WFs with no vegetation cover are the optimal study areas for detecting the direct
WFimpacts on LST.

Considering the two main uncertainty sources, in this study, 16 desert WFs (with > 100 wind turbines in
each WF) were selected to evaluate the WF impacts on local LST in northern China. Based on a remote sensing
time series, we analyzed the WF impact on the local daytime and nighttime LST by comparing the WF areas and
their surrounding control areas (buffer). Then, the spatial distribution of the impact was evaluated at a grid scale
in both the WFs and buffers. Furthermore, based on the structural equation model, we ultimately detected the
possible environmental drivers of the spatial heterogeneity of desert WF impacts on daytime and
nighttime LSTs.

2. Materials and methods

2.1.Study area

In this study, we extract 7077 wind turbines distributed in 16 desert wind farms (WFs) through the deep learning
algorithm You Only Look Once (YOLO) (Zhang et al 2020) in 2018, which are the world’s largest desert WE
group. YOLO is a fast, high-efficient, and high-precision object detection approach based on a single neural
network (Redmon et al 2016). The number of wind turbines installed at the WFs vary from 100 to 1965

(figure 1(a) and table S1). Shuttle Radar Topography Mission (SRTM) datasets (Jarvis et al 2008) are used to
represent the elevation (figure S1). The mean annual Moderate Resolution Imaging Spectroradiometer
(MODIS) normalized difference vegetation index (NDVTI) of the 16 WFs is lower than 0.1 (table S1). Based on the
SoilGrids datasets (Hengl et al 2017), there are 4 soil types among the 16 WFs, and 12 WFs are covered by
gypsisols. The following analyses are based on 16 WFs, and further analyses have been made on 12 gypsisols WFs
to restrict the potential thermal property differences brought by soil components.

To detect the WF impact, a comparison strategy is widely used between WF pixels and their surrounding
control region (buffer) (Zhou et al 2012, Slawsky et al 2015, Tang et al 2017). The WF areas are extracted based on
1 km”™ 1 km pixels to ensure that every pixel contains at least one wind turbine. The buffer is builtas 1 km* 1 km
pixels 5 to 9 km outside the WF to avoid any air turbulence influence caused by wind turbines (figure 1(b)). The
wake effect of wind turbines generates turbulence that spreads for kilometers downwind, the buffer should be
outside the wake range. Meanwhile, the buffer should not be too far from the WF to share a similar climate

2



10P Publishing

Environ. Res. Commun. 4 (2022) 105006 N Liu etal

Size of WFs Land cover
O 100-300 4 [] Grassland

O 301-500 | Water
O 501-1000 Pl
O>1000 | gt . Wind farm

Barren
Snowaice Buffer

Forest

Figure 1. Distribution of the 16 WFs and the concept for the study area. (a) The spatial distribution of the 16 WFs, which are mainly
located in the Takla Makan and Gobi deserts. The WF sizes are represented by symbols of different magnitudes, and the base map is
the MODIS MCD12Q1 International Geosphere-Biosphere Programme (IGBP) land cover classification in 2018. (b) The concept for
the wind farm pixels (WFPs) and buffer pixels (BUPs).

background (Zhou et al 2012, Tang et al 2017, Qin et al 2022). The desert pixels are finally filtered by MCD12Q1
IGBP land cover data (figure S2), the filtered pixels are defined as wind farm pixels (WFPs) and buffer pixels
(BUPs) in the following text.

2.2. Datasets

2.2.1. Land surface temperature

To explore the spatial heterogeneity of WF impacts on desert LST, we use the Moderate Resolution Imaging
Spectroradiometer (MODIS) MOD11A2 Land Surface Temperature (LST) time series between 2001 and 2018.
The temporal resolution of MODIS LST is 8 days, and the spatial resolution is 1 km. Furthermore, MODIS
provides both daytime (10:30 AM) and nighttime (10:30 PM) LST products (Wan, Hook, and Hulley 2015),
which can help us better understand the WF impacts on the local climate. Further, we use MODIS Aqua LST
time series of MYD11A2 as a supplementary test, the spatial and temporal resolutions are the same as
MOD11A2, and the overpass time is 1:30 AM in the nighttime and 1:30 PM in the daytime.

2.2.2. Environmental factors

Four kinds of related environmental factors are used to explain the spatial heterogeneity of the WF impact on
desert LST. First, the WorldClim precipitation and Tropical Rainfall Measuring Mission (TRMM) 3B43
monthly precipitation datasets are used. The WorldClim precipitation datasets are downscaled from the
Climatic Research Unit (CRU), the spatial resolution is 2.5 arc minutes, and the temporal resolution is monthly
(Fick and Hijmans 2017). The TRMM precipitation product algorithmically merges microwave data from
multiple satellites. The spatial range is 50°S—-50°N globally with a spatial resolution of 0.25° *0.25° (Kummerow
etal 1998). Second, wind speed (50 m above ground) is derived from the Modern-Era Retrospective analysis for
Research and Applications Version 2 (MERRA-2) monthly datasets (Gelaro et al 2017), with a spatial resolution
0f0.625°0.5°. The height of the wind speed is close to the blades of the wind turbines. Third, topography
factors, including elevation and surface roughness, are used. The elevation is derived from the SRTM DEM
dataset with a spatial resolution of 90 m (Jarvis et al 2008). Surface roughness is provided by the Sentinel-1
Synthetic Aperture Radar (SAR) Ground Range Detected (GRD) dataset, which is updated daily at a spatial
resolution of 10 m and the preprocessing is already radiometric and terrain-corrected (Torres et al 2012).
Fourth, soil properties, including soil type and sand content, are obtained from the SoilGrids datasets (Hengl
etal 2017), which are modeled and fitted from more than 230000 soil profile observations at a spatial resolution
of 250 m.

2.2.3. Wind farm shape factors
In addition to environmental drivers, WF shape factors are also used to explain the different WF impacts on the
desert LST. The WF shape factors include the shape index, patch density, landscape division index, and mean
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Euclidean nearest-neighbor distance, which can be calculated via the Fragstates platform (version 4.2.1)
(McGarigal 1995). These factors describe the distribution of wind turbines within WF in different dimensions.

First, the shape index represents the ratio of the perimeter and area of patches in a WF, which can be
calculated as:

0254,
ai

where SI; is the shape index of the WF; i is the serial number of the WF; p; is the perimeter of the WF (m); and a;
is the area of the WF (m?). The shape index usually increases as the patches in a WF become more irregular and
fragmented.

Second, the patch density indicates the number of patches within 100 hectares, which can be calculated as:

SI; )]

pD; = M. 100, 10000 Q)
a;
where PD; is the patch density of the WF; i is the serial number of the WEF; N; is the number of patches in the WF;
and a; is the area of the WE (m?). The patch density increases when there are more patches in a WF. A patch is an
independent group of WFs pixels using the 8-neighbor rule in our study.
Third, the landscape division index is the divisive level of the WF, which can be calculated as:

0
LD =1- )Y | = 3)

j=1 a;

where LDI; is the landscape division index of the WF; i is the serial number of the WF; n is the number of patches
of WFs; a;; is the area of patch jin the WF (m%); and a; is the total area of the WF (m?). The landscape division
index is closer to 1 when the WF is more fragmented.

Fourth, the mean Euclidean nearest-neighbor distance is calculated as:

23;1 hij

n

MED; = 4)
where MED; is the mean Euclidean nearest-neighbor distance of the WF; 7 is the serial number of the WF; n is the
number of patch pairs of WFs; and h;; is the distance to the nearest neighboring patch (m). The mean Euclidean
nearest-neighbor distance increases when the nearest patches within the WF get further.

2.2.4. Soil thermal admittance
To explore the relationship between surface thermal properties and WFs LST impacts, we calculate thermal
admittance of 16 WFs as follows:

1= Tk )

where 11 is thermal admittance by Jm s~ /2K ™", C is heat capacity by J m > K, k is thermal conductivity by
Js'm™ 'K ! (Oke et al 1991, Runnalls and Oke 2000), heat capacity could be estimated by:

C:Zfs,-CSi_FfWCW_FfuCa (6)

where f, represent the volume fraction of solid, water, and gas components, and C, are heat capacity of each
component (Meyers 2002). The volume fractions of clay, silt, and sand are given by the SoilGrids dataset, while
water volume fractions are provided by climate change initiative (CCI) soil moisture with daily temporal and
0.25° spatial resolution (Dorigo et al 2017, Gruber et al 2019). The volume fraction of air is set to 0.25 in this
study. The heat capacity of clay, silt, sand, water, and air are 1.5, 1.5, 1.4, 4.2,and 0.0012 M] m  K!
(Pahud 2002).

The thermal conductivity could be calculated as:

k — (ksat - kdry)HSr
1+ (5 — 1S,

2

kdry (7)

where ki, and kg, are saturated and dry thermal conductivities of soil. S, is the degree of saturation, which is set
t0 0.7 in our study.  is the empirical fabric factor set to 3.55 (Coté and Konrad 2005). kg, and kg, could be
calculated by:

ksat = ks fskw Ju (8)
kdry =x x 107" ©)

where k and k,, are thermal conductivities of solid and water components (Barry-Macaulay et al 2015). The
thermal conductivities of clay, silt, sand, and water are 2.9, 2.9,5.5,and 0.6 ] s Im KL x and 7 are empirical
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Figure 2. Workflows of the set up of study areas, regional and grid scale analysis, and driving factors analysis in this study.

soil type parameters that account for particle shape effect, which are set to 0.75 and 1.2. nis porosity and set to
0.43 in this study (C6té and Konrad 2005).

2.3. Methods
2.3.1. Wind farm impacts on land surface temperature
The spatial distribution of the WFPs and BUPs is close (~5 km distance) for each WF (figure 1(b)). Because they
usually have similar regional background climate conditions, signals derived from the LST differences between
WEFPs and BUPs mainly represent the impacts of the WF (Zhou et al 2020). In this study, we used three different
methods to determine the desert WF impacts on LST. The methods and the workflows of this study are given in
figure 2.

The first method is the trend in the LST differences time series on regional scale, which can be expressed as:

ALST;; = LSTyrpsij — LSTsupsij (10)

where LSTyyrp;.i; is the mean annual LST in the WFPs in year j;  is the serial number of the WF; LSTgyps.; is the
mean annual LST in the BUPs in year j; and ALST;; is the LST difference between the WFPs and BUPs. The time
series of the ALST;; are constructed between 2001 and 2018 on the Google Earth Engine (Gorelick et al2017).
The trends in the ALST;; time-series are calculated via the slopes of ordinary least squares, and the significance
of the trend is tested on at alevel of 0.05. The impacts of WFs on LST (ALST) between 2001 and 2018 are the
results of slopes multiplied by the period length of 18 years.

The second method is calculating the ordinary least square slopes and then the ALST between 2001 and 2018
atagrid scale. Then, we compare the pixel trends of LST between the WFPs and BUPs using a two-sample t-test

5



10P Publishing

Environ. Res. Commun. 4 (2022) 105006 N Liuetal

atasignificance level of 0.05. If the ALST in the WFPs are significantly larger than those in BUPs, they could be
considered significant warming impacts of WE.

The third method is to compare the preconstruction and postconstruction periods of the WFs at a grid scale.
We define the postconstruction period as 2016—2018 and the preconstruction period as 2001-2003. Then, we
compare the ALST between the WFPs and BUPs using a two-sample t-test at a significance level of 0.05.

2.3.2. Driving factor analyses with structural equation modeling

To determine the possible driving processes of the spatial heterogeneity of the desert WFs on LST, we first build
linear relationships between the trends in the ALST (daytime and nighttime) and 15 environmental factors (i.e.,
climate, terrain, soil, and shape factors) among the 16 WFs. The coefficients of determination (R 2) are used to
evaluate the robustness of the relationships. Then, based on a priori knowledge, we use structural equation
modeling (SEM) to find the main driving factors of the spatial heterogeneity of the desert WFs on daytime and
nighttime LST. The SEM is a multivariate statistical model used for complex relationships between directly and
indirectly observed variables by multivariate statistical techniques of factor analysis and path analysis
(Maruyama 1997). During the model optimization, the individual path coefficients with p > 0.05 are removed
to obtain a minimum chi-square value ( °), Akaike information criterion (AIC), and maximum coefficient of
determination (R ). To eliminate the potential effects of soil properties, we also establish an SEM with the 12
WFs covered by gypsisols.

3. Results

3.1. Wind farm impacts on land surface temperature at a regional scale

Based on the MODIS LST time series from 2001 to 2018 in the 16 desert WFs, the results suggest that average
ALST between the WFPs and BUPs is significantly increasing for both daytime and nighttime, which indicates
that WFs increase the local temperature. The averaged warming impacts of WFs on LST are comparable between
nighttime (0.237 °C) and daytime (0.250 °C) (figures 3(a), (d)); however, the uncertainty is much larger for
daytime (SD = 0.519 °C) than for nighttime (SD = 0.146 °C). This suggests that the WF impacts on nighttime
LST are more consistent than those on daytime LST.

For daytime LST (figure 3(b), figure S3), 10 of the 16 WFs show warming impacts, and 5 of those are
significant (p < 0.05). The range of the WF warming impacts is between 0.368 °C at WF No. 3 and 1.456 °C at
WEF No. 13. However, 6 WFs suggest cooling impacts on LST, which range from —0.016 °C to —0.729 °C. In
contrast, the WF impacts on nighttime LST are more robust (figure 3(e), figure S4). Specifically, 14 of the 16 WFs
show warming impacts, and 10 WFs are significant (p < 0.05). The range of the WF warming impacts at
nighttime is between 0.181 °C at WF No. 3 and 0.543 °C at WF No. 11. Only two WFs (No. 2 and No. 4)
suggested nonsignificant cooling impacts on LST. Interestingly, the WFs with significant impacts on daytime
and nighttime LST are mainly located at the center of our study area (WF No. 5-WF No. 11).

In addition to the WF impacts at an annual scale, we also analyzed the WF impacts on daytime and nighttime
LST in different seasons (i.e., spring, summer, autumn, and winter). Similar to those at the annual scale, the WF
impacts on daytime LST are more divergent than those on nighttime LST (figure S5). For daytime, the average
ALST range from 0.063 °C in spring to 0.244 °C in winter. In contrast, for nighttime, the maximum impacts of
the WFs are in summer (0.285 °C) and the minimum impacts of the WFs are in autumn (0.188 °C).

3.2. Wind farm impacts on land surface temperature at the grid scale

In addition to the regional scale, the ALST are also applied at the grid scale to detect the WF impacts on LST
(see Methods). For daytime, LST in the WEPs rises 0.206 °C or 0.255 °C (23.28% or 25.71%) faster than the
BUPs between preconstruction (2001-2003) and postconstruction (2016-2018) or 18 years (2001-2018)
periods (figures S6(a)(c)). Among 16 WFs, the largest warming impacts occur at WF No. 13 with 1.434 °C
warmer in WFPs than BUPs in 18 years period (figure 4(m)). In contrast, WF No. 7 shows the most obvious
cooling effect of —0.749 °C (figure 4(g)).

For nighttime, the averaged ALST is 0.231 °C or 0.172 °C, which is 30.92% or 21.03% larger in the WFPs
than in the BUPs between preconstruction and postconstruction or 18 years periods (figures S6(b) (d)). The
largest warming impact occurs at WF No. 11, the LST in the WEPs gets warmer 0.555 °C faster than in the BUPs,
while in WF No. 2, WFPs get cooler by —0.037 °C (figure 5). Furthermore, the differences between the
preconstruction and postconstruction periods of the WFs at the grid scale also suggest similar patterns of the WF
impacts on daytime and nighttime LST (figures S7, S8).
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Figure 3. MODIS daytime and nighttime time-series ALST at 16 WFs from 2001 to 2018. (a), (d) averaged MODIS daytime and
nighttime ALST time-series in 16 desert WFs. The ALST and significances of the ALST trends are given. The shaded ranges are the
standard deviations of the average time series. (b), (e) the spatial distribution and significances of annual daytime and nighttime ALST
at the 16 WFs. (¢), (f) the distributions of the ALST values at the 16 WFs. The averaged ALST values and the significances of one-
sample t-tests are given.

3.3. Driving factors of wind farm impacts on land surface temperature

To understand the potential mechanisms behind the different WF impacts on annual mean daytime and
nighttime LST, linear regressions between the ALST and environmental factors are first established at the 16
WFs (figures S9, S10). For nighttime LST, the most robust relationship is found between the ALST and annual
precipitation (R* = 0.24). For daytime, the highest R* is observed between the ALST and the A surface
roughness (R*> = 0.21). For other factors, the results suggest that the relationships with the ALST are weak.
When we establish the relationships in the 12 WFs covered by gypsisols, the relationships become more robust,
which indicates that soil types might also affect the spatial heterogeneity of the desert WF impacts on daytime
and nighttime LST (figures S11, S12).

Based on a priori knowledge of WF affected LST, SEM is used to find the main driving factors for the spatial
heterogeneity of desert WFs on daytime and nighttime LST. After model optimization based on y , AIC, and
maximum R?, three factors, including the shape index, wind speed, and annual precipitation, explain 60% of the
variation in the WF impacts on nighttime LST (figure 6(a)). The path coefficients of the shape index (0.35,

p = 0.09) and wind speed (0.43, p < 0.05) are positive, while the path coefficient of the annual precipitation is
negative (—0.54,p < 0.05). However, the three factors only explain 9% of the variation in the WF impacts on
daytime LST (figure 6(b)). Furthermore, none of the three path coefficients are significant (p > 0.05), which also
implies that the processes of the WF impacts on daytime LST are more complex than those on nighttime LST.

To further remove the possible influences of different properties of soil types, we also use SEM based on the
12 WFs covered by gypsisols. The results suggest that the three factors can explain 76% of the variation in the WF
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Figure 4. MODIS daytime ALST from 2001 to 2018 in 16 WFs. (a)-(p) Spatial distributions of MODIS daytime ALST in 18 years
periods, respectively. The background images are STRM DEM hill shade images. The kernel density estimation (KDE) plots are the
distribution of image values within the WFPs (green) and BUPs (brown). The ALST and significance levels of the two-sample t-tests
between the image values within the WFPs and BUPs are shown in the KDE plots. Significant warming or cooling (p < 0.05) in the
WEPs is illustrated by the red or blue color, respectively, of the ALST text in the KDE plots.

impacts on nighttime LST (figure 6(c)), and the path coefficient of the shape index is also similar to the SEM
established with all the WFs. However, the SEM still could not adequately explain the variations in the WF
impacts on daytime LST, although the coefficients of determination increased (R* = 0.16, figure 6(d)).

In addition, we also apply the SEM in different seasons (figure S13). The results suggest that the three factors
can well explain the variations in the WF impacts on night LST in spring (R*> = 0.54), autumn (R* = 0.49), and
winter (R* = 0.54), but the results suggest alow explanation in summer (R*> = 0.13). The sign of the path
coefficients is the same as the results on the annual scale. In contrast, this factor is still unable to well explain the
variations in the WF impacts on daytime LST across the different seasons.

4. Discussion

4.1. Processes and magnitudes of wind farm impact on land surface temperature
Previous studies of WF impacts on LST in vegetated regions (grasslands and croplands) indicate that the ALST
in the nighttime range from —0.18 °C to 0.47 °C, while the ALST in the daytime range from —0.26 °Ct0 0.72 °C
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Figure 5. MODIS nighttime ALST from 2001 to 2018 at 16 WFs. (a)-(p) Spatial distributions of MODIS nighttime ALST of 18 years
periods, respectively. The background images are STRM DEM hill shade images. The kernel density estimation (KDE) plots are the
distributions of the image values within the WFPs (green) and BUPs (brown). The ALST and significance levels of the two-sample
t-tests between the image values within the WFPs and BUPs are shown in the KDE plots. Significant warming or cooling (p < 0.05) in
the WFPs is illustrated by the red or blue color, respectively, of the ALST text in the KDE plots.

(Zhouetal 2012 2013, Harris et al 2014, Slawsky et al 2015, Xiaetal 2016, Tang et al 2017, Miller and Keith 2018,
Wu et al 2019). In comparison, the impacts of desert WFs are more stable (—0.033 °C to 0.543 °C) in the
nighttime and more divergent (—0.729 °C to 1.456 °C) in the daytime. This phenomenon may be explained by
the interactions between different land cover types and the atmosphere. For example, potential
evapotranspiration in croplands and grasslands may increase under the warmer environment caused by WFs.
The cooling effects of increased evapotranspiration may ease the WF impacts on daytime LST observed by
remote sensing. The higher water contents of leaf and soil in grassland or cropland lead to slower land surface
cooling than desert soil (Ceccato et al 2001). It should be noted that the previous conclusions of WF impacts on
LST are derived from individual WFs with different climatic and environmental backgrounds. Therefore, the
background conditions should be considered when comparing the impacts of WFs on different land cover types
in the future. The warming impacts are higher in the nighttime in spring, summer, and autumn, but the opposite
in winter (figure S5). These might be because of the enhanced likelihood of turbulent induced warming by the
increase of ABL stability, which happens more likely in the nighttime. However, in winter, there is a higher
probability of inversions by changes in snow cover, and the surface thermal properties are altered by higher
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Figure 6. The MODIS daytime and nighttime ALST SEM results in 16 WFs and 12 WFs with gypsisols. (a), (b) The SEM relationship
between the nighttime and daytime ALST and the shape index, MEERA-2 wind speed 50 m above ground, and WorldClim annual
precipitation. (c), (d) The SEM relationship between the nighttime and daytime ALST and the shape index, wind speed, and
precipitation in the 12 WFs with gypsisols. The samples, degree of freedom (DF), Chi-square value (x *), Akaike information criterion
(AIC), coefficient of determination (R?) of the SEM, path coefficients, and significances (p) of each factor are given.

albedo and various thermal admittances of snow and ice as well (Oke et al 1991). In this study, there is no obvious
correlation between nighttime ALST and snow cover in winter, the winter ALST might be driven by other
factors (figure S14).

4.2, Spatial heterogeneity of wind farm impacts on land surface temperature
Based on the optimal structural equation model, annual precipitation, annual mean wind speed, and shape
index mainly explain the spatial heterogeneity of the WF impact on nighttime LST. First, the path coefficient of
annual precipitation is negative, which means that WFs located in wetter regions with relatively higher
evaporation levels may have weaker warming effects. In winter, the thermal properties of snow- and ice-covered
surfaces are variable. For instance, the thermal admittance of new snow is low and can support faster warming
than desert soil. However, after the snow turns into ice, the thermal admittance becomes higher than that of
desert soil, allowing more heat conduction and storage heat and mitigates the observed warming impacts
compared to that of the desert soil surface (Oke 2002). In our results, the 4 WFs (Nos. 1, 2, 3, and 4) with higher
precipitation (10.38 to 19.91 mm) in winter show weaker warming effects than the remaining 12 WFs (figure
S15). Second, the path coefficient of wind speed is positive, which means that WFs located in higher wind speed
regions may have stronger warming effects. A higher wind speed can increase the rotation speed of the wind
turbine’s blades before it meets the rated power (Ragheb and Ragheb 2011); therefore, it may increase the wake
turbulence by rotating the blades and then increasing the LST. Third, the path coefficient of the shape index is
positive, which means that the WF impacts on LST become more obvious when the WF shape becomes more
irregular and fragmentary. Meanwhile, the higher the shape index is, the more dispersed the wind turbines in
WE will be, which would help alleviate the wake effects of turbines and mitigate the wind speed loss (De-Prada-
Gil et al 2015), which might lead to a faster rotation speed. The path coefficients of the other three shape factors
are not as high as the shape index because it is the only factor that can indicate the shape complexity within a
single WF patch.

However, annual precipitation, annual mean wind speed and shape index cannot well explain the spatial
heterogeneity of WF impacts on daytime LST. The A surface roughness between the WFPs and BUPs negatively
correlates with the ALST, which implies that the WFs on surfaces with a lower surface roughness than buffer
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regions may cause stronger warming effects. The A surface roughness can explain 21% of the variations in all 16
WFs and 31% of the variations in the 12 WFs covered by gypsisols (figures S9(j), S11(j)). The relative surface
roughness between WFPs and BUPs might modify the convection of sensible heat between the two regions
(Zhao etal 2014, Manoli et al 2019). When the BUPs are relatively rougher, the heat generated by turbulence
effects in the WFPs might be restricted to diffuse into BUPs and could lead to more obvious warming effects.
Besides, higher surface roughness in the BUPs may lead to stronger verticle sensible heat flux and suppress
surface warming (Potter et al 1987), which could make more obvious relative warming in the WFPs. In the
nighttime, thermal admittance might affect ALST, the lower thermal admittance is in the BUPs, the higher
ALST is more likely to happen because of low thermal sensitivity match. Moreover, when the Athermal
admittance is higher between WFPs and BUPs, the ALST might be higher (Oke et al 1991). The relationships
between nighttime ALST and thermal admittance and Athermal admittance are weak in our study (figure S16),
which might be the result of two sources. The first source is the uncertainties brought by the parameters of
thermal admittance calculation, which are given by literatures without experiments. The second source might be
the uncertainty of SoilGrids datasets, which are rasterized by soil samples and machine learning algorithms. The
sparse desert soil samples in Northwestern China might lead to higher uncertainty than other soil types.

4.3. Uncertainties, implications, and future works

In this work, we use the latest remote sensing products to detect WF impacts on LST, but uncertainties still
remain that should be further studied in future research. First, all the wind turbines in each WF were built in the
last two decades. However, there are still no datasets on the construction period and operation time for each
wind turbine. Because the WF impacts on LST mainly occur when the wind turbines are running, lacking these
data obscures the quantification of the WF impacts on LST in our work. Second, wind turbines with higher rated
power may generate stronger weak turbulence than turbines with lower rated power (Fan and Zhu 2019).
Therefore, providing the rated power for each wind turbine can help us better understand the magnitudes of the
WEF impacts on LST. Third, there is no obvious averaged difference between MODIS Terra and Aqua ALST in
the nighttime (0.001 °C), while it is higher in the daytime (0.083 °C) (figure S17). The overpass time of satellite
might affect observed ALST due to the lower ABL stability in the daytime. Fourth, although long-term remote
sensing series are an optimal technological method for studying WF impacts, we still need in situ measurements
and field experiments to evaluate our results and discover the driving mechanisms.

In previous studies, researchers have simulated WFs with Weather Research and Forecasting (WRF) models
(Vautard et al 2014, Miller and Keith 2018, Pryor etal 2018, Sun et al 2018). The current WF module in WRF
mainly includes two processes: an elevated sink of momentum and a source of kinetic energy turbulence (Xia
etal2019 2017, Zhou et al 2020). Although it has been used to simulate WFs in croplands and grasslands, the
WRF model does not well consider the complex interactions between vegetation and the atmosphere (Chen et al
2016, Gao etal 2017). Given that there are marginal interactions between vegetation and the atmosphere in
desert WFs, the observation-based results in our study provide a good opportunity for improving the
parameterizations in the WRF model.

The terrain within WFs will influence the wind flow and shortwave radiation (Wood 2000), and further
affectlocal ABL stability. However, the coarse spatial resolution of the present MODIS LST datasets is a not good
match for analysis of terrain induced micro climate changes. Moreover, the ABL stability in complex terrain in
WFs remains uncertain (Kit et al 2017). In the future, the impact of terrain could be further discussed with finer
resolution datasets based on remote sensing or in situ measurement. The sky view factor might influence income
shortwave and longwave radiation and further affect ALST in WFs (Oke 1981). The sky view factor of WF could
be changed by terrain, turbine density, and turbine size, the effect of the sky view factor could be extracted in the
future with in situ measurements.

The main aim of wind energy is to provide clean electricity and replace fossil fuels to mitigate climate change.
However, WFs also increase the local LST based on our results and those of previous studies (Keith ef al 2004,
Zhouetal2012, Lietal 2018). Furthermore, large-scale WFs in vegetated regions may also affect ecosystem
dynamics (e.g., vegetation growth and soil carbon stability) by changing the local climate (Knapp et al 2002,
Armstrong et al 2014) and affect animal diversity (Marques et al 2014, Dai et al 2015, Smallwood and
Thelander 2008). The WFs reduce greenhouse gas emissions of fossil fuels and mitigate global warming trends
while having localized side effects on the environment. Although there might be some disadvantages of desert
WFs compared with those in grasslands or croplands, such as high electricity transport costs and potential
mechanical damage caused by sand storms (Fiore and Selig 2016, Li et al 2018), desert WFs can still yield global
energy profits by minimizing environmental costs. Therefore, the potential trade-offs in energy and ecosystems
of WFs should be further evaluated in the future to estimate the realistic efficiency of wind energy.
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5. Conclusion

Wind farms (WFs) can change the local land surface temperature (LST) through turbulence effects. In this study,
we detect the direct impacts on daytime and nighttime LST of 16 desert WFs. Although the averaged impacts of
daytime and nighttime LST are comparable, the impacts on nighttime LST are more convergent than those on
daytime LST. The spatial heterogeneity of the desert WF impacts on nighttime LST can mainly be explained by
environmental factors. However, the divergent impacts of desert WFs on daytime LST cannot be well explained
by environmental factors. Our study is the first to provide the spatial patterns of direct WF impacts on LST,
which greatly overcomes the potential uncertainties in previous studies induced by interactions between
vegetation and the atmosphere. In general, our results provide a benchmark for parameterizing Weather
Research and Forecasting (WRF) model processes. Given the rapid development of wind energy, quantifying
WEF impacts on the local environment besides LST should be considered a high priority in climate change
research.
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