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Graph attention automatic encoder based
on contrastive learning for domain
recognition of spatial transcriptomics
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Tianqi Wang1,6, Huitong Zhu 1,6, Yunlan Zhou2, Weihong Ding3, Weichao Ding 1 , Liangxiu Han 4 &
Xueqin Zhang 1,5

Spatial transcriptomics is an emerging technology that enables the profiling of gene expression in
tissues while preserving spatial location information. This innovative approach is anticipated to
provide a comprehensive understanding of the spatial distribution of different cells within tissues and
facilitate in-depth analysis of tissue structure. To accurately recognize spatial domains from spatial
transcriptomics, we have introduced a generalized deep learning method called GAAEST (Graph
Attention-based Autoencoder for Spatial Transcriptomics). Our proposed approach effectively
integrates both spatial location information and gene expression data from spatial transcriptomics.
Specifically, it leverages spatial location details to construct a neighborhood graph and employs a
graph attention network-based encoder to embed gene expression information into a spatially
informed space. At the same time, to further optimize the learned potential embedding, self-
supervisedcontrastive learning is introduced to capture spatial information at three levels: local, global
and contextual feature of spots. Finally, the decoder reconstructs gene expressions, which are then
clustered to identify spatial domains with similar expression patterns and spatial proximity. Based on
our experiments conducted onmultiple datasets, GAAESTconsistently outperforms existing state-of-
the-art methods. The proposed GAAEST demonstrates excellent capabilities in spatial domain
recognition, positioning it as an ideal tool for advancing spatial transcriptomics research.

The organization of a multicellular organism is characterized by the pre-
sence of physically clustered cells that share similar characteristics and
perform specific functions. These cells communicate with each other
through intricate signaling mechanisms. They exhibit spatially coordinated
patterns of gene expression and histology, giving rise to distinct spatial
domains. By linking the gene expression profiling of cells to their spatial
localization and visualizing the spatial distribution of different cell types
within tissues, we can gain deeper insights into the spatial organization of
cellular tissues and the progression of diseases. The recent advancements in
spatial transcriptomics (ST) technology offer a new approach to integrating
cellular spatial informationwith gene expression. This approach enables the
characterization of gene expression patterns in relation to spatial informa-
tion, which was previously not achievable with traditional non-spatial sin-
gle-cell RNA sequencing (scRNA-seq) techniques. At present, the existing
ST techniques are broadly divided into two categories: in situ hybridization

(ISH)-based and in situ capture sequencing-based1–3. ISH-based methods
include MERFISH4 and seqFISH5, in situ capture sequencing-based meth-
ods include Visium6, Slide-seq7, and Stereo-seq8. The mRNA transcripts
captured with these methods will be referred to as spots in the following.

Deciphering spatial domains is a critical challenge in the field of ST.
Currently, there are two main classes of methods used for spatial domain
recognition: non-spatial clustering and spatial clustering. Representative
classical non-spatial clustering methods, such as K-means, Louvain9, and
Seurat10, usually utilize gene expression data as input to cluster spots into
different regions.While thesemethods are capable of identifying segmented
andhierarchical spatial domains for various types of STdata, the results they
generate are oftenunstable and exhibit significant variability.Toaddress this
limitation, researchers have proposed incorporating spatial information to
enhance spatial domain recognition. For instance, Giotto11 simulates gene
expression inneighboring cells by implementingaHiddenMarkovRandom
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Field (HMRF), allowing for the identification of spatial domains with
expressive similarity. stLearn12 homogenizes gene expression data using
neighborhood information and morphological distances, and then per-
formsunsupervised clustering of similar spots in tissues. SEDR13 learns gene
representationswith adeepauto-encodernetwork anduses variogramauto-
encoders to simultaneously embed spatial information. SpaGCN14 takes
into account both spatial location and histological information and iden-
tifies spatial domains by aggregating gene expression at neighboring spots
via a graph convolutional network (GCN).RESEPT15 defines spatial domain
identification as an image segmentationproblem,where 3Dembeddings are
mapped to RGB channels by a spatial retention map auto-encoder, and the
embeddings are treated as 3D images. STAGATE16 combines gene
expression and spatial information to learn a low-dimensional embedding,
and introduces a graph attention mechanism to detect spatial domains.
BANKSY17 takes into account both the cell’s own transcriptome and its local
microenvironment, and by balancing the contributions of the cell’s intrinsic
gene expression and the expression matrix of neighboring cells, it achieves
theproblemofdomain segmentationwithin amachine learning framework.
NeST18 employs co-expression hotspots to mine nested structures in spatial
data by computing single-gene hotspots, constructing hotspot networks,
and extracting communities from the networks. All of the above methods
have shown their superiority in spatial domain recognition compared to the
previous baseline models. However, since these spatial domain recognition
methods use unsupervised learning, the recognized domain boundaries are
often uneven and do not match the annotations well.

Recently, several studies have adopted self-supervised learning tech-
nology to recognize spatial domains. For example, MUSE19 reveals the
heterogeneity of organization and structure in tissues by utilizing the het-
erogeneity of transcriptomic and morphological data, capturing and pre-
serving information from each modality through self-reconstruction and
self-supervision loss functions. However, self-supervised learning has lim-
itations in coping with complex input data. In contrast, self-supervised
contrastive learning has achieved breakthroughs in several tasks. It can
further improve the richness and robustness of features by mining the
internal information of data. Self-supervised contrastive learning frames the
problem as a pretext task. In the context of spatial transcriptomics, recog-
nizing spatial domains can also serve as pretext tasks. These tasks provide a
structured learning framework for the model and help to learn meaningful
feature representations by constructing positive and negative sample pairs,
bringing similar samples closer and dissimilar samples farther apart. For
instance, SpaceFlow20 leverages a two-layer GCN to integrate gene expres-
sion data and spatial localization information, using contrastive learning
and regularization techniques for optimization. GraphST21 employs GCN
and self-supervised contrastive learning to fully utilize ST data, enhancing
the learning of latent representations and clustering of spatial information.
These methods have obtained good clustering results on some datasets.
However, GCNmodels exhibit limitations in dealing with graph structures
characterized by long-distance dependencies and in dynamically learning
the significance of inter-node connections. In addition, these methods have
not comprehensively considered multi-level features in the contrastive
learning process, resulting in them being proven insufficient in capturing
the importance of spatial information.

To address the aforementioned challenges and achieve improved
accuracy in spatial domain recognition, we propose an innovative gen-
eralized framework named GAAEST. The main contributions of this study
are as follows:

In the construction of an autoencoder, considering that spatial tran-
scriptome data usually contains multiple different cell types or has multiple
gene expression features with significant local structural differences, we
propose using GAT to construct the encoder. GAT has the ability to assign
different weights to different adjacent nodes, overcome the interference of
noise on gene expression features, and effectively capture long-distance
dependency relationships between nodes. Specifically, we use two GATs
that can extract multi-level feature representations of nodes, further
improving the accuracy of gene expression features. The decoder uses two

FCNs, which help to reducemodel resource consumption and training time
while maintaining good performance.

In order to further enrich the representation extracted from the auto-
encoder, and enhance the latent embeddings at different hierarchy levels, we
design three contrastive learning mechanisms in GAAEST. Global feature-
based contrastive learning improves the mutual information between the
embedding of a single spot and the global embedding of the entire graph,
thus endowing the network with the ability to learn global structures and
have stronger robustness against neighboring noise. Context feature-based
contrastive learning further promotes the network to learn the embedding
of hierarchical structures by maximizing the mutual information between
spot attributes and total cluster features. Especially, we introduce a local
location-based supervised contrastive learning mechanism, which prompts
the network to concentrate more on single-spot representations and
emphasize spatial location-relatedproperties in spot attributes.Wecombine
these three types of contrastive learning to jointly promote the optimization
of the feature extraction process.

We design multiple experiments on five data sets, including spatial
domain identification, gene expression pattern analysis, and functional
analysis, across a variety of datasets, such as the human dorsolateral pre-
frontal cortex (DLPFC) dataset, mouse embryo E9.5 dataset, human breast
cancer dataset, the mouse brain anterior dataset, and de novo neuroendo-
crine prostate cancer (NEPC) coexisting with androgen receptor pathway
prostate cancer (ARPC) dataset. These experiments validate the effective-
ness of the GAAEST. The results not only reveal potential biological prin-
ciples and mechanisms to some extent, but also provide important
references for defining disease-specific biomarkers, exploring therapeutic
targets, and formulating personalized treatment strategies.

Results
Overview of GAAEST
For STdata, gene expression information plays a crucial role in determining
biological characteristics, and spatial location information includes the
spatial coordinates of spots within the tissue structure. To maximize the
utilization of both types of information for spatial domain recognition, we
propose a deep learning-basedmethodnamedGAAEST tomine the hidden
relationships between them. The established framework is shown in Fig. 1.

In GAAEST, there are five main components, namely data pre-pro-
cessing, neighbor graph construction anddata augmentation, auto-encoder,
self-supervised contrastive learning for embedding refinement, and spatial
clustering. Specifically, GAAEST takes ST data as input, which consists of a
gene expressionmatrix and spatial location information of spots. Firstly, we
apply a filtering process to eliminate genes with low variability from the raw
gene expression matrix (Fig. 1a). Next, a neighbor graph is constructed to
serve as the input for the auto-encoder. This graph captures the spatial
neighborhood relationships through edges, while the spots’ gene expression
vectors are attached to the nodes. Additionally, a data augmentation tech-
nique is performed to construct a permuted neighbor graph (Fig. 1b). Then,
a two-layer GAT is adapted to encode the input graph into a low-
dimensional embedding, and the decoderwith two linear layers is utilized to
reconstruct the gene expression matrix (Fig.1c). To further optimize the
low-dimensional embedding, the self-supervised contrastive learning canbe
employed to capture the spatial context information (Fig. 1d). The local
location-based contrastive learning is designed for making network place
more emphasis on the representation of a single spot and enhancing the
network’s attention towards properties related to spatial location in spot
attributes. Global feature-based contrastive learning improves the mutual
information between the embedding of a single spot and the global
embedding of the entire graph, thus endowing the network with the ability
to learn global structures and have stronger robustness against neighboring
noise. Context feature-based contrastive learning further promotes the
network to learn the embedding of hierarchical structures by maximizing
the mutual information between spot attributes and total cluster features.
These three contrastive learnings form a complementary relationship with
each other and jointly promote the optimization of representation. Finally,
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the reconstructed gene expression data are clustered byMclust22 method to
achieve the recognitionof spatial domain in STdata (Fig. 1e).Weperformed
comprehensive testing andcomparisonsondifferent STdatasets, suchas the
human dorsolateral prefrontal cortex (DLPFC) dataset,mouse embryo E9.5
dataset, human breast cancer dataset, the mouse brain anterior dataset and
de novo neuroendocrine prostate cancer (NEPC) coexisting with androgen
receptor pathway prostate cancer (ARPC) dataset. The clustering results
obtained from these experiments clearly demonstrate the advantages of
GAAEST in spatial domain recognition.

GAAEST improves theclusteringaccuracy inhumandorsolateral
prefrontal cortex dataset (DLPFC)
In the DLPFC dataset, Maynard et al. manually annotated the white matter
(WM) and cortical layers (L1–L6) in 12 slices using gene markers and
cellular structure23. To evaluate the performance of GAAEST in recognizing
spatial domains, we compared it with six existing state-of-the-art methods,
namely stLearn, SpaGCN, SEDR, STAGETE, SpaceFlow, and GraphST.
Among these methods, stLearn and SpaGCN utilized histological images,
while SEDR, STAGETE, SpaceFlow, and GraphST did not rely on histo-
logical images.The clustering results of the sevenmethodswere illustrated in
Fig. 2A. Itwas apparent from the values that across all 12 slices in theDLPFC
dataset, GAAEST achieved the highest median ARI score among all
methods, GraphST and STAGETE closely followed in performance, while

the remainingmethods had lower ARI values. These findings demonstrated
that the spatial domains identified by GAAEST exhibited the highest
similarity with the manual annotation and aligned with the established
understanding of cortical stratification in neuroscience.

Furthermore, we generated visualizations of themanual annotation and
clustering results for each method on 151,673 slices, which were shown in
Figs. 2B and 2C. Upon examination, it was evident that SpaceFlow struggled
to adequatelydistinguish the seven layers. SpaGCNand stLearnonly partially
separated the hierarchical structure, falling short of accurately replicating the
manual annotation. SEDRandSTAGATEsucceeded inclearly separating the
seven layers, however, the boundaries appeared blurred, and there was
noticeable noise interference. GraphST and GAAEST exhibited better
layering results, but there were challenges with layer 3 and layer 4 in the
manual annotationbeing appropriately representedby the pink and red areas
in GraphST. Additionally, layer 2 was not well recognized by GraphST. In
contrast, GAAEST successfully corresponded well with the manual annota-
tion forall layers,with the exceptionof layer4. Since layer4occupieda smaller
area in the entire image, it had less influence on the ARI value.

Additionally, we conducted a differential expression analysis to sub-
stantiate the biological significance of the spatial domains identified through
GAAEST. In this analysis, we employed the identified clusters as a foun-
dation for identifying genes exhibiting differential expression within each
spatial domain. The detected differentially expressed genes (DEGs)

Fig. 1 | Overview of GAAEST. a GAAEST takes in the gene expression matrix and
spatial location information in ST data and performs data pre-processing. b A
neighbor graph is constructed with spatial location information and data aug-
mentation is employed to construct a permuted neighbor graph. cA two-layer GAT
encodes the input into a low-dimensional embedding, and a linear layer-based
decoder reconstructs the gene expression matrix. d The embedding is optimized by

using three-level self-supervised contrastive learning: local location-based con-
trastive learning (LLCL), global feature-based contrastive learning (GFCL), and
context feature-based contrastive learning (CFCL). e After training, the recon-
structed gene expression data are clustered to achieve the recognition of the spatial
domain of ST data.
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Fig. 2 | Experimental results of GAAEST on the DLPFC dataset. A Box plots of
ARI values for GAAEST and six comparative methods on 12 slices. In the boxplot,
the center line represents themedian quartile, the box limits represent the upper and
lower quartiles, and the whiskers denote the 1.5× interquartile range. BManual
annotation results on 151,673 slices. CVisualization of the spatial clustering results

for GAAEST and six comparative methods on the 151,673 slice.D Visualization of
gene expression for layer-specific genes in slide 151,673. E The enrichment analysis
of GO for differentially expressed genes (25 genes) in domain 2 (orange layer in the
result).
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exhibited discernible expression patterns, as depicted in Fig. 2D. Notably,
among these genes, PCP4 emerged as a well-establishedmarker gene in the
prefrontal cortex24. Furthermore, we performed Gene Ontology (GO)
analysis on the detected 25 DEGs in region 2, characterized by a significant
p-value of less than 0.01, and the results were presented in Fig. 2E. Based on
it, several gene pathways associated with negative regulation of protein
metabolismandprotein dephosphorylationwere identified in the examined
region. Significant gene expression patterns related to neuronal migration,
cardiac morphogenesis, and nervous system development were observed.
Furthermore, cell chemotaxis, proteolytic regulation, and cell growth
emerged as prominent factors influencing gene expression in this region.
Notably, these findings aligned with the functional characteristics of the
marker genes for cluster 2, namelyENC1 andHOPX.ENC1andHOPXwere

known to be involved in nervous system development and cell migration,
whichwas consistentwith thepreviously identified “Neuronmigration” and
“Nervous systemdevelopment” gene pathways.Moreover,HOPX exhibited
an association with “Heart Morphogenesis” as well.

GAAESTrefines the identificationofknownregionsonthemouse
embryo E9.5 dataset
In this experiment, we utilized the mouse embryos E9.5 dataset, which
included tissue domain annotations as shown in Fig. 3A. Initially, we set the
number of clusters to 12, corresponding to the original annotation with 12
clusters. The results of all methods were presented in Supplementary Fig. 1,
where GAAEST demonstrated the most favorable outcomes compared to
other methods. To achieve a more detailed tissue segmentation with higher

Fig. 3 | Experimental results of GAAEST on mouse embryo E9.5 dataset. A Tissue domain annotation of mouse embryo E9.5 data obtained from the original Stereo-seq
study. B The value of ARI, NMI, AMI, and FMI for GAAEST and comparative methods. C Spatial clustering visualization of GAAEST and six comparative methods.
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resolution, we incrementally increased the number of clusters. Supple-
mentary Fig. 2 showcased the results of regional segmentation as the
number of clusters progressively increased from 12 to 24. Through rigorous
evaluation, we determined that a final number of 20 clusters yielded the
highest evaluation index.

In the case of 20 clusters, we evaluated the spatial domain recognition
performance of GAAEST and six comparative methods on the mouse
embryo E9.5 dataset, as depicted in Fig. 3B. This analysis demonstrated that
GAAEST reached the highest value of ARI, NMI, AMI, and FMI among all
methods. The spatial clustering visualization results of each method are
shown inFig. 3C.Upon observation, itwas apparent that the contours of the
domains recognized by stLearnwere not clear enough, and the continuity of
the domains was poor. Also, STAGATE and SpaceFlow could not fully
recognize the Mesenchyme region. SpaGCN and GraphST were unable to
identify the liver region. STAGATE, SEDR, GraphST, and Spaceflow all
struggled with Heart recognition. In contrast, the domain recognition
results of GAAEST aligned better with the annotations, and the contour
segmentation was clear.

To facilitate a more intuitive comparison between the domain recog-
nition results of GAAEST and the annotation results, we drew the visuali-
zation diagram showcasing the specific spatial domain identified by
GAAEST clustering alongside domain-specificmarker gene expressions. As
depicted in Fig. 4, the clusters of GAAEST could bettermatch the annotated
domains.More importantly, they exhibited a strong agreement with known
marker genes associated with major organs. For instance, the liver region

was marked by Afp, Fgb, Alb, Itih2, mesenchyme by Meox1,Meox2, Pcp4,
dermomyotome by Myog, head mesenchyme by Crym, Six2, Alx4, Scler-
otome by Pax1, Pax9, Meox1, Meox2, heart by Myl2, Myl7, Nppa, Myh6,
Myh7,Tnni3,Ttn, and connective tissue by Postn. The gene expression heat
maps of these marker genes corresponded well with the specific domains
identified by GAAEST.

GAAEST reveals the finer organization of the human breast
cancer dataset
As shown in Fig. 5A, the human breast cancer data were mainly classified
into four morphotypes: ductal carcinoma in situ/lobular carcinoma in situ
(DCIS/LCIS), invasive ductal carcinoma (IDC), healthy tissue (Healthy),
and tumor surrounding edge (Tumor edge). Clearly, the DCIS/LCIS
domainswere surrounded by IDCorTumor edge. According to Fig. 5B, the
annotated data weremanually segmented into 20 domains, which consisted
of 2 Healthy, 5 DCIS/LCIS, 7 IDC, and 6 Tumor edge domains.

Referring to literature25, wefirst designated the number of clusters to 10
and evaluated the spatial domain recognition performance of GAAEST and
six comparative methods. The results were presented in Fig. 5C. It was
observable that the ARI scores of stLearn, SpaGCN, and STAGATE ranged
from 0.49 to 0.57, while the values of SEDR, SpaceFlow, GraphST, and
GAAEST were all above 0.59. Particularly, GAAEST achieved the highest
ARI score of 0.68. Also, in terms ofNMI,AMI, and FMI, onlyGAAESThad
values exceeding 0.7. These findings were reflected in the clustering visua-
lization diagram, as depicted in Fig. 5D. The clustering results obtained by

Fig. 4 | Visualization of specific spatial domain
obtained from GAAEST clustering and domain-
specific marker gene expression. The gene
expression heatmaps of domain-specific marker
genes correspond well with the specific domains
identified byGAAEST. The liver region ismarked by
Afp, Fgb, Alb, Itih2, mesenchyme byMeox1,Meox2,
Pcp4, dermomyotome byMyog, head mesenchyme
by Crym, Six2, Alx4, Sclerotome by Pax1, Pax9,
Meox1, Meox2, heart by Myl2,Myl7, Nppa,Myh6,
Myh7, Tnni3, Ttn, and connective tissue by Postn.
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Fig. 5 | Experimental results of GAAEST on human breast cancer. A Spatial
transcriptomic data of human breast cancer sample annotated by pathologists.
B Themanual annotation of 20 domains in human breast cancer data.CARI, NMI,
AMI, and FMI for GAAEST and comparative methods (cluster number = 10).
D The clustering visualization of GAAEST and six comparative methods (cluster

number = 10). EARI, NMI, AMI, and FMI for GAAEST and comparative methods
(cluster number = 20). F The clustering visualization of GAAEST and six com-
parative methods (cluster number = 20).GThe clustering visualization of GAAEST
with cluster numbers ranging from 10 to 20.
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stLearn, SpaGCN, and STAGATE appeared segmented and discontinuous,
differing significantly from the manual annotation. Conversely, the clus-
tered regions produced by SEDR, SpaceFlow, GraphST, and GAAEST
exhibited continuity. Among them, the domains recognized by GAASET
had a high degree of overlap with themanually annotated domains, namely
domains 0–7 corresponded to IDC_4, IDC_5, healthy_1, IDC_2,
Tumor_edge_2, DCIS/LCIS_3, DCIS/LCIS_1, and DCIS/LCIS_4, respec-
tively. In order to achieve higher resolution in domain recognition, we
increased the number of clusters to 20, and the results are presented in
Fig. 5E. Overall, the evaluation values of all methods decreased compared to
the previous experiment, but GAAEST still achieved the highest ARI, NMI,
AMI, and FMI values. Obviously, the ARI values of SpaceFlow, STAGATE,
and SEDRdropped below0.5, whichwas quite a large decrease compared to
previous results. The visualization results in Fig. 5F further supported this
observation, as the clustering results of these three methods appeared less
similar to the manual annotation displayed in Fig. 5B.

With the purpose of observing the impact of different cluster numbers,
we drew the cluster visualization diagram of GAAEST, as shown in Fig. 5G.
The number of clusters was 10 for the left image and 20 for the right. As
observed from thefigure, regardless of the clustering number being 10 or 20,

GAAEST outperformed other methods in terms of recognizing domains
with higher regional continuity and less noise. As the number of clusters
increased, the spatial domains with high heterogeneity, such as the tumor
regions, becamefiner and thinner.Meanwhile, the spatial domainswith low
heterogeneity, such as healthy regions, still remained consistent. This
observation indicated thatGAAEST exhibited good robustness in capturing
both fine-grained and homogeneous spatial domains.

So as to better compare with ground truth, we conducted the analysis
belowwith a cluster number of 20.Utilizing the proximity informationderived
fromthe spatial connectivitygraphof theclusters,wecalculated theenrichment
score for neighbor enrichment analysis26. The neighborhood enrichment heat
maps of ground truth andGAAEST clustering results were depicted in Fig. 6A
and Fig. 6B, respectively. In these heatmaps, each block represented the
enrichment score between two domains, with a higher score indicating a
stronger correlation between them. For example, in Fig. 6A, two black circles
indicated that Tumor_ Edge_ 3 was in close proximity to DCIS/LCIS_ 1, and
Tumor_ Edge_ 4 surrounded DCIS/LCIS_ 2. Similarly, in Fig. 6B, when
GAAEST was applied for spatial domain recognition, three red circles high-
lighted the proximity relationships between Domain 5 and Domain 10,
Domain 13 and Domain 19, and Domain 19 and Domain 20. These

Fig. 6 | Statistical analysis of clustering results of human breast cancer data by
GAAEST. A Neighbor enrichment heatmap of ground truth. BNeighbor enrichment
heatmap of GAAEST clustering results.CThe co-occurrence score of domain 3 and all

other domains in GAAEST. D The co-occurrence score of domain 7 and all other
domains in GAAEST.
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observations were consistent with the annotated domains in Fig. 5B, namely,
Tumor_Edge_4 surroundedDCIS/LCIS_2,Tumor_Edge_5nearedTumor_
Edge_ 3, Tumor_ Edge_ 3 being close to DCIS/LCIS_ 1. Such analysis out-
comes served as further evidence to support the clustering accuracy of the
proposedGAAEST framework. For a specific domain, the co-occurrence score
can reflect the degree of proximity between the two domains26. Figure 6C, D
showed the co-occurrence scores for domains 3 and 7 in the GAAEST clus-
tering results. From the figure, we observed that Domain 3 is the neighbor of
Domains 1 and 4, whileDomain 7was adjacent toDomains 16, 15, and 9. The
relationship of these domains could be confirmed in Fig. 5E, and it was also
consistentwith thedistributionof annotateddomains inFig. 5B, namelyDCIS/
LCIS_ 3 was the neighbor of Tumor_ Edge_ 2 and IDC_6, IDC_ 4 neared
Tumor_ Edge_ 2, DCIS/LCIS_ 4 and IDC_ 3.

GAAESTmore precisely describes relevant tissue regions on the
mouse brain anterior dataset
In this experiment, we evaluated the spatial domain identification perfor-
mance of GAAEST on the mouse brain anterior dataset. The manual
annotation provided 52 labeled regions, as illustrated in Fig. 7A. To align
with this annotation,we set thenumber of clusters to 52. Figure 7Bdisplayed
histograms depicting the values of ARI, NMI, AMI, and FMI for GAAEST
and six other comparativemethods. As seen in the figure, it was evident that
GAAEST achieved the highest clustering accuracy, while GraphST and
stLearn exhibited minor differences in the three evaluation metrics but
performed suboptimally compared toGAAEST. STAGATE and SpaceFlow
demonstrated similar NMI and AMI values to GAAEST but showcased
lower ARI and FMI scores. SEDR and SpaGCN exhibited the lowest clus-
tering scores among the methods evaluated. Figure 7C illustrates the clus-
tering visualization results of the seven methods. It was evident that
SpaGCN and SEDR exhibited poor clustering performance, with different
clusters mixing together and rough, indistinct boundaries between the
clusters. SpaceFlow and STAGATE showcased clearer cluster boundaries,
but many of the identified clusters did not align well with the manual
annotations. The clusters generated by stlearn were closer to annotations,
however, some clusters were mixed with others, and the cluster boundaries
appeared relatively messy. In contrast, GraphST and GAAEST demon-
strated the ability to capture the 52 clusters in the mouse brain anterior
dataset more clearly, with distinct and well-defined boundaries.

Additionally, we further identifiedmarker genes in themajor regions of
the mouse frontal brain. As shown in Fig. 7D, in our study, we detected the
marker gene GPR88 with the highest expression intensity in region 43
(striatum). This is consistent with the known literature27, stating that “GPR88
is highly and almost exclusively expressed in the striatum”. Studies have
shown that GPR88 is involved in regulating various neurotransmission
processes, such as dopaminergic neurotransmission, mental activity, and
motor control28. It has the potential to serve as a beneficial target for the
treatment of Parkinson’s disease, schizophrenia, and other neurological and
mental disorders. Similarly, we detected the potential marker gene Doc2b
(double C2, gamma) in the Juxtaglomerular granule cells (GR) of region 4 of
themainolfactorybulb (MOB).Wevalidated thisfindingbasedon thewidely
accepted database Allen Brain Atlas (https://portal.brain-map.org/, experi-
ment ID: 69174316). Related studies have shown that theDoc2b gene plays a
crucial role in the insulin releaseprocess, potentially providing insights for the
research and treatmentof diabetes and relateddiseases29. In region7 (primary
olfactory cortex,MO), we detected the critical marker gene Scn1b, which has
also been verified in the Allen Brain Atlas. Currently, there are therapeutic
strategies that targetScn1bgene and its related channels, attempting to restore
normal sodium channel function to inhibit epileptic seizures30.

GAAEST performs domain recognition and spatial gene expres-
sion analysis on the de novo neuroendocrine prostate cancer
coexisting with androgen receptor pathway prostate cancer
dataset
In this experiment, we evaluated the domain recognition performance of
GAAEST on the human prostate cancer dataset. Usually, the occurrence of

simultaneous de novo neuroendocrine prostate cancer (NEPC) and
androgen receptor pathway prostate cancer (ARPC) within the same tissue
is exceedingly rare. However, in a recent report by Ryuta Watanabe et al.31,
spatial gene expression analysis was performed on a 78-year-old man with
coexisting metastatic de novo NEPC and ARPC. The Fig. 8A displayed a
part of their findings, HE image revealed the separation of the NEPC region
from the ARPC region, with intercalated noncancerous tissue between
them, indicating the simultaneous and ectopic occurrence of ARPC and de
novo NEPC within the same prostate. Spatial gene expression analysis
utilizing CytAssist Visium classified the cells within the prostate tissue into
12 distinct clusters. Cluster 8 corresponded to the ARPC region, while
Cluster 3 represented theNEPC region. Based on these findings, this dataset
was further applied to GAAEST and other methods, with the number of
clusters set to 12, yielding the region segmentation outcomes presented in
Fig. 8B. Since a clear ground truth reference was unavailable for the dataset,
we introduced two additional evaluation metrics, namely the Silhouette
Coefficient score and the Davies-Bouldin score. Among all comparative
methods, GAAEST demonstrated the most favorable evaluation index
values, with its SC value about 11%higher than the second-bestmethod and
a DB value 0.8% lower. To facilitate a more distinct comparison, we gen-
erated separate visualizations for cluster 0 and cluster 4, which were
obtained from theGAAESTclustering algorithm, as illustrated inFig. 8C,D.
Specifically, cluster 4 was found to correspond to the ARPC region, and
cluster 0 represented theNEPCregion. In comparison, althoughSTAGETE,
SpaGCN, and stLearn achieved some success in segmenting theNEPC area,
they faced certain challenges in differentiating theARPCarea. The accuracy
of other methods in dividing NEPC and ARPC areas was relatively low.
These results further confirm GAAEST’s strong performance and dis-
criminative ability.

Furthermore, to ascertain the biological relevance of the identified
domains through GAAEST, a comprehensive analysis of differential gene
expression was performed. Figure 8E, F displayed the 4 differentially
expressed genes specific to cluster 0 and cluster 4 regions, respectively.
Remarkably, differentially expressed gene maps of these two regions cor-
responded well with the NEPC and de novo ARPC regions depicted in
Fig. 8A. In Fig. 8E, it was observed that the expression levels of NEPC
signature genes, such as TKTL1, CNN3, and LRMP, were higher in the de
novo NEPC region compared to the ARPC region. Studies showed that in
metastatic prostate cancer, TKTL1 average expression was significantly
elevated. The high expression of TKTL1 in the NEPC area was consistent
with the fact that NEPC was a more invasive and aggressive subtype of
prostate cancer. Moreover, the high expression of CNN3 suggested that
NEPC tissue might have a greater invasive capability and metastatic
potential. The high expression of LRMP might impact immune system
responses, leading to NEPC immune escape or immunosuppression,
thereby increasing the risk of tumor progression. In Fig. 8F, the expression
levels of ARPC signature genes, including KLK2, KLK3, and ACPP, were
higher in the ARPC region than in the de novo NEPC region. The KLK2,
KLK3, andACPP geneswere reported tobe regulated by androgen receptors
in ARPC, and their protein products played an important role in the
development of prostate cancer. These observations provided cues for a
deeper exploration of the mechanisms of prostate cancer development and
helped provide more precise treatment strategies for specific subtypes of
patients.

GAAEST’ s ablation and comparative experiments confirm the
effectiveness of each module
To demonstrate the necessity and effectiveness of eachmodule inGAAEST,
we conducted an ablation experiment on the human breast cancer dataset.
We used the same experimental parameters as mentioned earlier, with
cluster numbers set to 10 and 20, respectively. The experimental results are
shown in Supplementary Table 2. It could be seen that all three types of
contrastive learning were favorable for feature embedding learning. Among
them, the global feature-based contrastive learning had themost significant
impact on performance improvement, and the ARI was reduced by 14%
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when the global featurewasnot considered.The reconstructionoperationof
the gene expression matrix also played a crucial role, as evidenced by a
reduction in ARI of up to 65% when feature reconstruction was not
incorporated. GAAEST achieved the best performance when all four

moduleswere used together. It was concluded that through the utilization of
three-level contrastive learning and auto-encodermodules, GAAEST could
effectively extract crucial features and achieve superior spatial clustering
results. We visualized the state of the three modules in capturing spatial

Fig. 7 | GAAEST optimizes the identification of known tissue structures in the
mouse brain anterior. A Structural annotations of the brain anterior from the adult
mouse. B The value of ARI, NMI, AMI, and FMI for GAAEST and comparative

methods. C Clustering visualization of GAAEST and six comparative methods.
DVisualization of gene expression for differentially expressed genes in regions 43, 4,
and 7.
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Fig. 8 | GAAEST perform domain recognition and spatial gene expression ana-
lysis on de novo neuroendocrine prostate cancer coexisting with androgen
receptor pathway prostate cancer dataset. A Spatial gene expression analysis
(CytAssist Visium) results provided by Ryuta Watanabe et al. B Clustering visua-
lization of GAAEST and six comparativemethods.CVisualization of specific cluster

0 obtained from GAAEST clustering. D Visualization of specific cluster 4 obtained
from GAAEST clustering. E Spatial analysis of gene expression of four differentially
expressed genes in NEPC region. F Spatial analysis of gene expression of 4 differ-
entially expressed genes in ARPC region.
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relationships when clustering is 10, as illustrated in Fig. 9. When removing
CFCL, as shown in Fig. 9B, we can observe that the tumor boundary region
within the redcircle in thefigure is identified as twoparts, suggesting that the
modelmay not accurately reflect the similarity between samples of the same
tissue type. When removing LLCL, as shown in Fig. 9C, the gray region
within the red circle, which should be divided into Healthy and IDC two
regions, is instead classified as a single region, implying that the model may
not have captured the local feature differences of the spotswithin the region.
When removing the GFCL, as presented in Fig. 9D, the IDC region in the
red box cannot be identified, and the IDC region in the yellowbox is divided
into two parts, indicating that the embedding may be less effective in pre-
serving the global summary of the entire graph. By observing these results,
we demonstrate that these threemodules play unique and important roles in
the model. Each module is indispensable for its contribution to repre-
sentation learning and spatial relationship recognition.

We also conducted a comparative experiment to demonstrate the
effectiveness of employing a GAT-based encoder and an FCN-based
decoder in our GAAEST model. In this experiment, we replaced the auto-
encoder structure in GAAEST with those used in STAGATE (2022) and
GraphST (2023), while keeping the other structures unchanged. The dataset
and parameters utilizedwere consistentwith those employed in the ablation
study, and the resultswerepresented inSupplementaryTable 3.As shown in
the table, GAAEST’s auto-encoder achieved the best performance, exhi-
biting an average improvement of 6% in terms of clustering accuracy
compared to the sub-optimal method. This highlighted the superiority of
GAAEST’s auto-encoder in capturing and representing the underlying
features in the gene expression matrix, leading to more effective spatial
domain recognition.

Discussion
Accurately identifying spatial domains is critical for comprehending tissue
structure and biological functions. In order to uncover spatial domains with
well-defined boundaries and minimal noise from spatial transcriptomic
data, we propose a deep learning-based framework named GAAEST. This
framework integrates the spatial location information and gene expression
of spots to construct a neighborhood graph and uses a two-layer graph
attention-based encoder to extract features and embed gene expression into
the latent space.The local location-based, global featured-based, and context
feature-based self-supervised contrastive learning are then employed to
capture spatial information at three different levels. Meanwhile, by con-
structing these three loss functions, the learned potential embeddings are
made to contain more informative and discriminative features. Finally, the
gene expressions are reconstructed by the decoder, and a clustering algo-
rithm is adopted to identify spatial domains with similar expressions. Based
on extensive experiments conducted on multiple datasets, GAAEST

consistently outperforms existing state-of-the-art methods in spatial
domain recognition tasks. These results highlight the unique advantages of
GAAEST, showcasing its effectiveness in accurately identifying spatial
domains and providing valuable insights into tissue organization and bio-
logical functions.

In the study, we conducted several experiments to evaluate the per-
formance of GAAEST on different datasets. When applied to the human
dorsolateral prefrontal cortex, GAAEST accurately revealed the laminar
organization of the DLPFC, achieving an 8% improvement in clustering
accuracy compared to the suboptimal method. Furthermore, GAAEST
demonstrated superior performance in identifying known organizational
structures in the mouse brain anterior dataset, outperforming the second-
best solution by 9% in terms of accuracy. These results highlighted the
excellence of GAAEST in depicting fine structures and its potential for
uncovering intricate organizational patterns in complex brain datasets. In
the mouse embryo dataset, the identified domains displayed a strong
agreement with known marker genes associated with major organs, pro-
viding support for the effectiveness of GAAEST in capturing essential
biological information.Moreover, in experiments conducted on the human
breast cancer dataset, GAAEST consistently outperformed other methods
across all evaluation metrics. Even when the number of clusters was
increased to allow for more detailed segmentation, GAAEST still achieved
an average 6% improvement compared to less effective techniques. This
indicated that GAAEST offered a valuable approach to studying tumor
evolution and investigating the interactions between tumor micro-
environments. In the de novo NEPC coexisting with the ARPC dataset,
GAAEST effectively identified the de novo NEPC region and ARPC region
compared to other methods. The additional gene expression analysis was
expected tohelpwith thedevelopment of treatments forNEPCand improve
the prognosis of patients with castration-resistant prostate cancer.

Theprimary feature ofGAAEST lies in its utilizationof graph attention
networks and self-supervised contrastive learning to acquire latent
embeddings. Similarly, STAGATE also employs graph attention networks
to capture both gene expression and the spatial context of spots. However,
the key distinction between them is that GAAEST incorporates graph self-
supervised contrastive learning mechanisms to enhance features by lever-
aging spatialmutual information at three different levels. Furthermore, both
SpaceFlow and GraphST also employ graph contrastive learning for spatial
clustering. However, GAAEST demonstrates a significant performance
advantage over these two methods due to its more rational definition of
positive/negative pairs, objective function, and contrastive loss. These dif-
ferences contribute to GAAEST’s superior performance in spatial domain
recognition tasks compared to SpaceFlow and GraphST. To validate the
effectiveness of each of these differences, we conducted ablation experi-
ments, which confirmed that the integration of gene expression and spatial

Fig. 9 | Visualization results of GAAEST ablation experiment in human breast
cancer dataset (Clustering number= 10). A Clustering results of GAAEST on
human breast cancer dataset.BClustering results of GAAESTw/o CFCL on human

breast cancer dataset. C Clustering results of GAAEST w/o LLCL on human breast
cancer dataset.DClustering results of GAAEST w/o GFCL on human breast cancer
dataset.
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information with these improvements led to enhanced clustering perfor-
mance in GAAEST.

Currently, spatial transcriptomics offers the possibility of studying
gene expression and spatial information in the initial state of cells. However,
there are also issues with low sensitivity or limited gene flux in transcrip-
tional detection. To overcome these challenges and enhance spatial reso-
lution, the integration of ST data with snRNA-seq data becomes essential to
enhance spatial resolution and uncover the finer spatial structures and
microenvironments of tissues. In our future work, we will focus on
advancing these research directions to further improve the scalability of
GAAEST.Additionally, we plan to investigate the behavior and associations
of cellular tissues in a spatial context, enabling a deeper understanding of the
intricate relationships within tissues.

Methods
With the aim of fully utilizing the available information for spatial domain
recognition, we propose a deep learning-based method named GAAEST,
which aims touncover thehidden relationship betweengene expression and
spatial location. An overview of our spatial domain recognition method is
shown in Fig. 1. GAAEST consists of five main components: data pre-
processing, neighbor graph construction, data augmentation, auto-encoder,
self-supervised contrastive learning for embedding refinement, and spatial
clustering. We provide a detailed description of each part below.

Data pre-processing
Data pre-processing operation canprovide high-quality data for subsequent
GAAEST models. For GAAEST, the inputs are the gene expression matrix
and spatial location information of spots. For the purpose of decreasing the
difference between high and low expression genes and reducing the impact
of noise data, we first perform a logarithmic transformation on the raw gene
expression matrix and standardize it to library size. Then, the standardized
gene expressionmatrix is scaled to unit variance and zeromean.At the same
time, in order to focus more on genes that contribute significantly to cell
changes, we select the first 3000 highly variable genes (HVGs) as input
samples, which can effectively reduce dimensions and improve the effi-
ciency of subsequent analysis.

After pre-processing, the gene expression matrix is set as X = {x1,x2,…
xN}⊆RN × F, where N represents the total number of spots, F represents the
feature dimension of a spot.

Neighbor graph construction and data augmentation
The spatial location information within ST data is valuable for assessing the
similarity between spots, which helps to recognize spatial domains. In order
to effectively utilize this information, we first construct a neighbor graph.

To convert the spatial location information of spots into a neighbor
graph G = (V, E), the k-nearest neighbor algorithm is adopted. Here, V
represents the set of spots, E represents the set of edges connecting the spots
and k is the number of neighbors. Concretely, for a specific spot i∈V, we
calculate the euclidean distance between this spot and all other spots, and
choose the k-closest spots as its neighbors. By analogy, the adjacency rela-
tionships between all spots are obtained, and an adjacency matrix A∈ RN×N

is used to denote the adjacency relationships of all spots in the neighbor
graph G. If spot j∈V is the k-closest neighbor of spot i, then Aij = 1,
otherwise 0. To address disparities in spot degrees and ensure that all spots
have a more equal influence in calculations, we need to regularize the
adjacency matrix A. Let ~A 2 RN ×N be the adjacency matrix after regular-
ization, then

~A ¼ �A×A× �A ð1Þ

�A ¼ diag power
XN
j

Aj; �0:5

 ! !
ð2Þ

where (×) is themeaning of cross product, diagmeans creating or extracting
the diagonal matrix, and power represents the exponentiation.

After constructing the neighborhood graph, we use a regularized
adjacency matrix ~A and a preprocessed gene expression matrix X to
represent the adjacency relationship and gene expression information of
spots in the neighbor graph, respectively.

Meanwhile, we conduct data augmentation operations to generate
positive and negative samples for the subsequent self-supervised contrastive
learning task. Specifically, given theneighbor graphG = (V,E),weperforma
randompermutationof the gene expressionvectors betweeneach spotwhile
maintaining the original graph structure to obtain a permuted neighbor
graph G′ = (V′, E′). At this time, for graph G′, the adjacency relationship of
the spots remains unchanged, that is, the adjacency matrix still is ~A, but the
gene expression matrix changes from X to X0 ¼ fx01; x02; . . . x0Ng � RN × F .

Autoencoder
In order to effectively integrate gene expression information and spatial
location information inSTdata, and to removeunnecessarynoise fromgene
expression information, we use an auto-encoder framework to learn the
feature embedding and reconstruct gene expression matrix. The designed
auto-encoder includes two parts: an encoder Ew and a decoder Dw′.

We employ a two-layer graph attention network (GAT)32 as the
encoder Ew′. GAT network can utilize an attention mechanism to assign
weights to the input data,which enables themodel to emphasizekey features
and reduce attention to irrelevant ones. Encoder Ew takes the regularized
adjacency matrix ~A and the preprocessed gene expression matrix X as
inputs, and outputs the low-dimensional embedding Z ¼ EwðX; ~AÞ,
Z ¼ fz1; z2; :::zNg � RN × F0, where F′ represents the potential embedding
dimension of spots. The specific formula of Ew is as follows:

Xi ¼
ELUðBatchNormðGATðKÞ

i ðXi�1; ~AÞÞÞ if i ¼ 1

ELUðBatchNormðGATðKÞ
i ðELUðXi�1Þ; ~AÞÞÞ if 1 < i < L

GATðKÞ
i ðELUðXi�1Þ; ~AÞ if i ¼ L

8>><
>>:

ð3Þ

whereXi represents the ith layer’s output,GAT
ðKÞ
i denotes the ithGAT layer

with K heads. Then Z =XL, L signifies the total number of GAT layers in
encoder.

The decoder Dw0 takes Z as input and outputs the reconstructed gene
expression matrix H ¼ Dw0ðZÞ,H ¼ fh1; h2; :::hNg � RN × F . Since the
primary objective of decoderDw0 is to reconstruct the original data, it does
not focus on feature selection and extraction in the data. Therefore, we
directly use two fully connected layers in the decoder, deviating from the
GAT structure used in the encoder structure. In Dw0, the ELU activation
function and batch normalization operation are applied to all the hidden
layers except the bottleneck layer.

Finally, in the auto-encoder module, we adopt the mean square error
loss function to calculate the reconstruction loss LRECON of the gene
expression matrix, which can be expressed as follows:

LRECON ¼
XN
i¼1

kxi � hik ð4Þ

where xi and hi are the original and reconstructed gene expression vectors of
spot i, respectively.

Self-supervised contrastive learning
Self-supervised contrastive learning is a trainingmethod that eliminates the
need for annotated labels and is employed to learn meaningful feature
representations from data. By comparing various views or transformations
of the same sample, self-supervised contrastive learning enables the model
to learn to group similar samples together and differentiate dissimilar
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samples. To enhance the informativeness of embeddingZobtained from the
encoderEw, we further refine it through self-supervised contrastive learning
across three dimensions: local location based, global feature based, and
context feature based contrastive learning.

Local location-based contrastive learning (LLCL). Spatial location
information in spatial transcriptome data can help to identify differences
in gene expression between different tissue structures, thereby facilitating
the recognition of spatial domain within spatial transcriptomics. Local
location based contrastive learning is specifically designed to enhance the
network’ s attention towards properties related to spatial location in spot
attributes, so we use it to more accurately distinguish a specific spot from
other spots in different locations.

For spots in the neighbor graphG, we designate the feature embedding
derived from the encoder Ew to be Z ¼ EwðX;AÞ,
Z ¼ fz1; z2; :::zNg � RN × F0. Similarly, for spots in the permuted neighbor
graph G′, we set it to be Z0 ¼ EwðX0;AÞ, Z0 ¼ fz01; z02; :::z0Ng � RN × F0.
Then, for a specific spot i, we set its feature embedding zi as an anchor, its
positive pair is ðzi; z0iÞ, its negative pairs are ðzi; z0jÞi≠j. We utilize cosine
similarity function to measure the similarity of feature expression between
two spots as follows:

simða; bÞ ¼ pðaÞ � pðbÞ
kpðaÞk � kpðbÞk ð5Þ

where the function pð�Þ represents a projection operation that is constructed
using a two-layer multiple-layer perceptron (MLP). Thus, the loss function
can be given as follows:

L1ðzi; z0iÞ ¼ log
XN
j¼1

A½j≠i� expðsimðzi; z0jÞÞ
 !

� log½expðsimðzi; z0iÞ=τÞ�

ð6Þ

where τ is the temperature hyperparameter, A½j≠i� � f0; 1g is the indicator
function.

Considering the neighbor graph G and the permuted neighbor graph
G′ are equally important,we alsoneed to set z0i as anchor to calculate the loss
L1ðz0i; ziÞ, so the total local location-based contrastive learning lossLLLCL can
be expressed as:

LLLCL ¼
1
2N

XN
i¼1

½L1ðzi; z0iÞ; L1ðz0i; ziÞ� ð7Þ

Global feature-based contrastive learning (GFCL). In addition to
considering local location information, we also need to establish a certain
relationship between local and global features. This is because the local
properties of individual spots are inherently consistent with the global
properties when they are obtained from the identical part of the same
organism. As a result, we improve the mutual information between the
feature representations of every single spot and the global summary of the
whole graph, thus allowing the network to cover both local and global-
level features.

We employ a method resembling local location-based contrastive
learning. Firstly, an average aggregation function R : ZðZ0Þ � RN × F0 !
sðs0Þ � RF0 is utilized to get the global summary s or s′ of the graph:

s ¼ RðEwðX; ~AÞÞ ð8Þ

s0 ¼ RðEwðX0; ~AÞÞ ð9Þ
Also, for spot i, we set its feature embedding zi as an anchor. Then its

positive sample pair is (zi, s), and its negative sample pair is (zi, s′). A bilinear
transformation layer-baseddiscriminatorDc : R

F0 ×RF0 ! R is designed to
give a higher probability score to positive pair than the negative pair.Weuse

the Jensen-Shannon-based binary cross entropy loss to construct the loss
L2ðzi; s; s0Þ:

L2ðzi; s; s0Þ ¼
XN
i¼1

½logDCðzi; sÞ þ logð1� DCðzi; s0ÞÞ� ð10Þ

Since the importance of neighbor graphG and the permuted neighbor
graph G′ are equal, we also need to set z0i as anchor to calculate the loss
L2ðz0i; s0; sÞ:

L2ðz0i; s0; sÞ ¼
XN
i¼1

½logDGðz0i; s0Þ þ logð1� DGðz0i; sÞÞ� ð11Þ

Therefore, the total global feature-based contrastive learning lossLGFCL
is calculated as:

LGFCL ¼
1
2N

ðL2ðzi; s; s0Þ þ L2ðz0i; s0; sÞÞ ð12Þ

Context feature-based contrastive learning (CFCL). Inspired by
literature33, we know that pots within the same tissue type tend to exhibit
similarities in terms of marker genes and morphological structures.
Building upon this knowledge, in addition to global and local level
attributes, we further try to learn the embedding with context feature by
maximizing the mutual information between the individual spot repre-
sentation and the cluster-level summary.

We apply the K-means clustering algorithm on Z and acquireK initial
clusters. Then, the centroid of each cluster ϕk � R1× F’ is iteratively updated
as follows:

ϕk ¼
P

irikziP
irik

; with rik ¼
expð�γsimðϕk; ziÞÞP
k expð�γsimðϕk; ziÞÞ

ð13Þ

where k = 1, 2, …, K, and γ represent an inverse-temperature
hyperparameter. For every individual spot in neighbor graph G, we aim
to maximize the mutual information between its feature embedding zi and
corresponding cluster-level summary ci, the value of ci can be calculated as:

ci ¼ σ
XK
k¼1

rikϕk

 !
ð14Þ

where rik represents the likelihood of assigning spot i to cluster k
and

PK
k¼1rik ¼ 1.

In line with the global feature-based contrastive learning, we design
another bilinear transformation layer-based discriminator DG :
RF0 ×RF0 ! R to assign a higher score to the positive pair (zi, ci) than the
negative pair ðz0i; ciÞ. Then, we construct the context feature-based con-
trastive learning loss LCFCL using the Jensen–Shannon-based binary cross-
entropy loss, which is defined as follows:

LCFCL ¼
XN
i¼1

EðX;~AÞ½logDGðci; ziÞ� þ
XN
i¼1

EðX0;~AÞ½logð1� DGðci; z0iÞÞ�

ð15Þ

weighted by λi, the total contrastive learning loss LCL can be given as:

LCL ¼ λ1LLLCL þ λ2LGFCL þ λ3LCFCL ð16Þ

Total model loss
With the LRECON obtained in the Autoencoder section and LCL obtained in
the self-supervised contrastive learning section, we calculate the total loss
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function LTOTAL of the GAAEST model as follows:

LTOTAL ¼ αLCL þ βLRECON ð17Þ

where α and β are both weight parameters. GAAEST obtains better-
reconstructed gene expression H by minimizing the total loss.

Throughout the learning process in GAAEST, we construct the
reconstruction loss for gene expression and the contrastive learning loss for
embedding optimization. The former aims to capture informative features
from both spatial location and gene expression, while the latter helps to
refine the potential embeddings from three different levels and enable a
more comprehensive and discriminative representation.

Spatial clustering
After the training process, we obtain the optimized reconstructed gene
expression matrix H. In order to distinguish domains that exhibit similar
gene expression and spatial proximity, it is essential to perform spatial
clustering operation. In this case, we use the non-spatial allocation algo-
rithm Mclust to assign spots into different spatial domains.

Mclust is a clustering method based on the maximum expectation
algorithm. It assumes that the data come from the mixed Gaussian dis-
tribution, and determines the best model and clustering result by the
maximum likelihood function. Each cluster in the clustering results is
considered as a spatial domain, encompassing spots that demonstrate
similar gene expression profiles and spatial proximity.

To adjust the clustering results further, we design an optional opti-
mization step. For a given spot i, we take the neighboring spots within a
radius r as its neighbors, and then the labels assigned to these neighbor spots
are queried. If more than 50% of the neighbors are assigned to label n,
GAAESTwill reassign the label n to spot i. The settings for r vary depending
on the data type.

GAAEST spatial domain identification algorithm
The GAAEST spatial domain identification algorithm is described as
follows:

Algorithm. GAAEST
Input: Gene expression matrix, Spatial location matrix
Number of iteration T, Encoder Ew, Decoder Dw′

Output: Spatial domain recognition results
1: Get preprocessed gene expression X
2: Construct neighbor graph G and permuted graph G'
3: For t = 0 to T-1 do
4: Get feature embeddings Z = Ew (G), Z’ = Ew (G’)
5: Get reconstructed feature H =Dw′ (Z)
6: Calculate reconstruction loss LRECON by Eq. 4
7: Calculate contrastive learning loss LCL by Eq. 16
8: Get total loss LTOTAL = LRECON+ LCL
9: Update the parameters of Ew and Dw′ by minimizing the total loss

LTOTAL
10: End for
11: H =Dw′ (Ew (G))
12: Apply Mclust to H
13: Return the clustering results, in which each cluster is considered a
spatial domain

Experimental details
In experiments, we set k = 3 for constructing the neighbor graph. The input,
hidden, and output dimensions of the encoder are set to 3000, 256, and 64,
respectively. Also, these parameters of the decoder are set to 64, 256, and
3000, respectively. In the contrastive learning module, the temperature
hyperparameter is set to 0.5. In the spatial clusteringmodule, the settings for
optimization radius r vary depending on the datasets. For the DLPFC and
Humanbreast cancerdataset, the value is 35. For the remaining datasets, the
optional clustering optimization step is not needed as they all have fine-

grained domains, so the value is set to 0; During the training process, the
total loss function is optimized by the Adam optimizer34 with an initial
learning rate of 0.001, weight decay of 0, and a total number of training
rounds of 600.

GAAEST is trained on GeForce RTX A4000 Ti GPU with 16 GB of
video memory, 6 x E5-2680 v4 CPU, 28 GB of RAM, and implemented by
Python and PyTorch_pyG35. The training time varies from 30 s to 3min on
different datasets.

Evaluated metrics and criteria
For the spatial domain identification task of spatial transcriptome data, the
adjusted rand index (ARI), normalizedmutual information (NMI), adjusted
mutual information (AMI), and Fowlkes–Mallows index (FMI) are
employed as evaluation metrics if ground truth exists in the dataset. Sil-
houette coefficient (SC) score and Davies–Bouldin (DB) score are intro-
ducedwhen the ground truth doesn’t exist. Thesemetrics arewidely utilized
to assess the effectiveness of spatial domain identification models.

Adjusted rand index (ARI): the ARImeasures the degree of agreement
between the clustering results and the ground truth by comparing the
consistency between all pairs of samples in their clusters. Assuming that
U ¼ fU1;U2; :::UCg andV ¼ fV1;V2; :::VCg are two clustered label sets,
the ARI value is calculated by the formula:

ARI ¼
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where ni., n.j is the number of spots belonging to Ui and Vj, respectively, nij
denotes the number of spots corresponding to Ui and Vj.

Normalized Mutual Information (NMI): NMI measures the mutual
information between two sets. The NMI between U and V is calculated as:

NMIðU;VÞ ¼ MIðU ;VÞ
meanðHðUÞ;HðVÞÞ ð19Þ

whereMI is the mutual information betweenU andV, andH(U) andH(V)
are the entropy of the clustering labels, the specific formulas are as follows:

MIðU;VÞ ¼
XjUj

i¼1

XjVj
j¼1

Pði; jÞ logð pði; jÞ
pðiÞp0ðjÞÞ ð20Þ

HðUÞ ¼ �
XjUj

i¼1

PðiÞ logðPðiÞÞ ð21Þ

HðVÞ ¼ �
XjU j

j¼1

P0ðjÞ logðP0ðjÞÞ ð22Þ

where PðiÞ ¼ jUij=N and P0ðjÞ ¼ jVjj=N are the probabilities of the
selected spot falling into Ui or Vj.

Adjusted mutual information (AMI): AMI is a measure that incor-
porates the baseline of stochastic consistency and is an improvement over
the ARI. The formula for AMI is as follows:

AMIðU;VÞ ¼ MIðU;VÞ � EfMIðU;VÞg
maxfHðUÞ;HðVÞg � EfMIðU;VÞg ð23Þ

Fowlkes–Mallows Index (FMI): For the paired samples of the same
category, the Fowlkes–Mallows indexmeasures the degree offit between the
clustering results and the ground truth by calculating their similarity. The
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formula for calculating the FMI is as follows:

FMI ¼ TPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞ

p ð24Þ

where TP and FP denote the number of samples that are correctly or
incorrectly clustered in the ground truth, respectively. FN denotes the
number of positively clustered samples that are not correctly identified.

Silhouette coefficient (SC) score: SC is computed by evaluating the
mean intra-cluster distance (a) and themeannearest-cluster distance (b) for
each sample. The SC score for a sample is calculated as (b− a)/max(a, b),
and the optimal SC score is 1, indicating well-separated and compact
clusters, while the worst score is −1, indicating poor clustering.

Davies–Bouldin (DB) score: DB score provides an assessment of
clustering quality by considering the average similarity between each cluster
and its most similar cluster. Similarity is measured based on the ratio of
within-cluster distances to between-cluster distances. A lower DB score
indicates better clustering, with a minimum score of zero.

Methods used for comparison
To demonstrate the effectiveness of GAAEST in spatial domain identifi-
cation, we compare GAAEST with six state-of-the-art methods, including
SEDR13, stLearn12, SpaGCN14, SpaceFlow20, STAGATE16, and GraphST21.
Tooffer a comparative analysis of thesemethods,wepresent Supplementary
Table 1, providing a summarized overview of some approaches, which are
the state-of-the-artmethodsusing feature extractionor contrastive learning.
For each dataset, the number of target clusters set by the six comparison
methods is the same. For SEDR, STAGATE, and GraphST, all parameters
are kept at their default settings. For stLearn, in order to get better clustering
results, we assign distinct weight values for each dataset within its SME_-
normalize function. Specifically, In the case of DLPFC, mouse embryo and
human breast cancer data, weights = “physical_distance”. In the case of
mouse brain anterior data, weights = “weights_matrix_pd_md “. For
SpaGCN, we set the parameter about “Histology” to “False” if no histology
image exists in the dataset. For SpaceFlow, we adjust the resolution in
clustering to get the target number of clusters, and the other parameters are
default. The results of all comparison methods in the experiments are
reproduced by us under the same experimental environment.

Statistics and reproducibility
Nostatisticalmethodwasused topredetermine the sample size.All collected
data were included in the analyses without exclusion. The experiments were
not randomized. The investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All datasets analyzed in this paper can be downloaded in raw form from the
original publication. Specifically, the first dataset is human dorsolateral
prefrontal cortex data36 captured using 10× Visium technology and can be
downloaded fromhttp://research.libd.org/spatialLIBD/. The second dataset
is the mouse embryo E9.5 spatial transcriptomic data37 obtained with
Stereo-seq technology and can be downloaded from https://db.cngb.org/
stomics/mosta/. The third dataset is human breast cancer data obtained
from the public 10× Genomics database and can be downloaded from
https://www.10xgenomics.com/resources/datasets/humanbreast-cancer-
block-a-section-1-1-standard-1-1-0. The fourth dataset is mouse brain tis-
sue data obtained from the public 10×Genomics database.Themouse brain
tissue contains anterior and posterior regions. Here, we use mouse brain
anterior data, which can be downloaded from https://www.10xg-enomics.
com/resources/datasets. The last dataset is de novoNEPC andARPC data31

obtained fromthepublic 10×Genomicsdatabase,which canbedownloaded

from https://db.cngb.org/stomics/datasets/STDS0000227. The data used in
this study have been uploaded to Zenodo and is freely available at: https://
zenodo.org/records/13731512. All source data underlying the graphs and
charts are presented in Supplementary Data.

Code availability
An open-source Python implementation of the GAAEST toolkit is acces-
sible at https://github.com/tqwang743/GAAEST-main.
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