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Abstract: Microbial pathogens and their virulence factors like biofilms are one of the major factors
which influence the disease process and its outcomes. Biofilms are a complex microbial network that is
produced by bacteria on any devices and/or biotic surfaces to escape harsh environmental conditions
and antimicrobial effects. Due to the natural protective nature of biofilms and the associated multidrug
resistance issues, researchers evaluated several natural anti-biofilm agents, including bacteriophages
and their derivatives, honey, plant extracts, and surfactants for better destruction of biofilm and
planktonic cells. This review discusses some of these natural agents that are being put into practice to
prevent biofilm formation. In addition, we highlight bacterial biofilm formation and the mechanism
of resistance to antibiotics.

Keywords: antibiofilm; bacteriophages; biofilm; essential oils; honey; surfactants

1. Introduction

In 1971, Marshall et al. were the first to develop the concept of bacterial biofilms that
was later described by Characklis, Fletcher, and Costerton as “ a unique growth pattern and
strong association among microbes that provide specific assets in their life cycle” [1–5]. A
more comprehensive explanation of biofilm was provided by Flemming and Wuertz, who
defined biofilm as groups of microbes with a distinct multicellular life cycle that undergo
division and form clusters, microcolonies, and larger groups [5]. A biofilm can be formed
on every surface of higher eukaryotes, including humans [6]. The best example of biofilms
that occur in eukaryotic habitats are biofilms that exist as dental plaques, and on skin and
guts. In addition, biofilms are formed on different medical devices used in a variety of
clinical settings, which act as a vehicle for the transmission of infections [7]. The cells
found in biofilms resist adverse environmental conditions as they are encapsulated within
a protective hard shell called extracellular polymeric substances (EPS) [8,9]. EPS are made
up of polysaccharides, lipids, proteins, and extracellular DNA (eDNA) and play a crucial
role in the pathogenesis of several bacterial infections [10].

Biofilms are formed and developed in a complex process involving multiple stages.
These stages might be the potential sites for natural antibiofilm agents in tackling biofilm
formation and enabling the deep penetration of microbes into the biofilm. Due to the
rise in antimicrobial resistance associated with biofilms and the inefficacy of conventional
antibiotic therapies, researchers have been evaluating several types of natural compounds
to prevent and eliminate the formation of biofilms [10,11].
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Bacteriophages (phages) are naturally occurring antibiofilm agents that have shown
promising inhibitory and protective effects against the biofilms of several pathogenic
bacterial strains [12]. Phages could be applied either individually, as a monophage therapy,
or in a group known as a phage cocktail against biofilms [12]. Current studies suggested
that the antibiofilm effect of phages is not limited to the parent phage rather, it involves
enzymes such as endolysin and depolymerase enzymes which are encoded by the genome
of the parent phages. In some cases, these enzymes displayed superior potential compared
to the individual phage treatment [13,14]. In addition, genetically engineered phages are
also designed to encode antibiofilm enzymes that can be released during infection.

Apart from phages, other naturally occurring agents such as honey, plant extracts, es-
sential oils, and biosurfactants are known for their potential effect against biofilms produced
by several bacterial pathogens [13,15–17]. These antibiofilm agents exert their mechanism
through their peptides, proteins, or other substances that can disrupt the structural organi-
zation of the biofilm and/or directly affect the viability of the cellular constituents of the
biofilm [18]. This review provides an overview of the role of bacteriophages and natural
antibiofilm agents in destroying biofilm formation. In addition, it highlights the process of
bacterial biofilm formation and the mechanisms of antibiotic resistance that occurred in
the biofilm.

2. Bacterial Biofilms

Biofilms are an integrated mass of bacterial cells surrounded by EPS which are related
to adherence to both abiotic and biotic surfaces [19]. EPS is composed of lipids (1–40%), ex-
tracellular nucleic acids (1–10%), extracellular polysaccharides (40–95%), proteins (1–60%),
microbial cells (2–5%), and other substances [20]. Approximately 90% of the total biofilm
mass is composed of a matrix, while less than 10% is composed of microorganisms [21,22].
Obviously, differences exist in the chemical and physical components of biofilm among
different bacterial species depending on the availability of nutrients, stress levels, type of
microorganisms, and host environment [23].

The matrix of a biofilm provides structural support and stability and safeguards the
microbial communities from physical and chemical hazards. In addition, the extracellular
matrix performs alternative functions, including mediation of migration and colonization,
providing signal targets, capturing of cations, and facilitating genetic exchange [24]. Chan-
nels and pores within the biofilm help in the circulation of water, gases, nutrients, and other
essential chemicals within the matrix and among the different biomasses of biofilm and the
exterior environment. It has been known that water (97%) is the principal constituent of
the matrix which bathes the functional and architectural units of the matrix [19]. In general,
biofilm-forming bacteria can resist the inconducive surrounding environment and survive
exposure to both physical and chemical treatments.

2.1. Bacterial Biofilm Formation

Bacterial biofilms are produced in a multi-step process that involves physical inter-
actions and chemical signaling among cells and within the same cell. This cell-to-cell
interaction involves crosstalk among two-component systems (TCS), quorum sensing (QS)
systems, and diguanylate cyclase (DGC) [25]. The TCS, composed of response regulators
and histidine sensor kinase, controls signal transduction via a secondary messenger, cyclic
di-GMP (c-di-GMP), or phosphorylation, which enables the modulation of gene expression
at specific DNA binding sites. As part of the TCS system, the c-di-GMP level depends
on phosphodiesterase activities and cytoplasmic or membrane DGC. c-di-GMP-based
signal transduction involves an allosteric modification of enzymes, riboswitches, transcrip-
tion factor interactions, and alteration in post-translational and transcriptional pathways
within the cell. These c-di-GMP activities lead to a shift of bacteria from a free-living to a
biofilm state [25].

The QS state comprises two principal components, the receptor and the autoinducer
(AI). AIs are small signaling diffusible molecules synthesized by bacteria that are sensed by
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receptors once they reach a certain concentration [26]. Gram-positive and Gram-negative
bacteria produce oligopeptides (AIP) and N-acyl homoserine lactones (AHL) as signaling
autoinducer molecules, respectively [26,27]. By attaching to their receptors, AIs activate
specific genes, such as those responsible for antibiotic resistance and biofilm formation [25].
Biofilms produced by bacteria within the same species or upon the interaction of different
species or inter-kingdom signal among fungi, plants, and host cells, indicating that bacterial
cells in a biofilm interact by crosstalk, self-communication, and receiving signals from
each other [28]. Biofilm production proceeds in four steps: (1) attachment (adhesion),
(2) microcolony formation, (3) maturation, and (4) dispersion (Figure 1).
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Figure 1. Schematic diagram of the stepwise process of biofilm formation and antibiofilm strategies.
Possible antibiofilm strategies: (1) Surface modification and antimicrobial coating; (2) Modulating
cell adhesion genes and inhibiting matrix (EPS) formation; (3) Preventing expression of efflux pump;
(4) Inhibition of quorum sensing.

2.1.1. Adhesion

Bacterial adhesion to biotic or abiotic surfaces is the initial step of biofilm formation.
The process of adhesion can be either reversible or irreversible [26]. Reversible attachment
is a temporary adhesion of the planktonic bacterial cell onto a substratum with weak
nonspecific bonds such as electrostatic, van der Waal’s, or Lewis’s acid-based electronic
forces [29]. On the other hand, irreversible attachment is a permanent adhesion, which
results in the firm adhesion of bacteria onto a substratum, facilitated by flagella and pili
(fimbriae). Bacterial attachment is influenced by the nature of the substratum, EPS com-
position, substratum hydrophobicity, and flagella–fimbriae coordination. In comparison
with smooth surfaces, a higher adhesion is generated on rough surfaces. Similarly, due
to the reduction in repulsion forces between the surface and bacterial cell, surfaces with
hydrophobic properties, such as plastic and Teflon, offer a stronger adhesion than surfaces
with polar properties, such as glasses and metals [27,29].

2.1.2. Microcolony Formation

Following the attachment of planktonic cells on the surface of a substratum, bacterial
cells multiply and divide to produce three-dimensional (3D) aggregates and clusters called
microcolonies. The proliferation of microcolonies results in the development of an EPS
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matrix, aggregation, and adherence of cells, microcolonies protection, and stabilization of
the 3D architecture [30]. The EPS is structurally composed of carbohydrates, proteins, and
eDNA which shields the microcolonies from adverse conditions including the host immune
response, metallic cations, antimicrobials, oxidation, and mechanical removal with greater
drug tolerance.

As a physical barrier, the EPS can trap or sequester essential substances to produce a
nutritional gradient for the proper diffusion of metabolites, oxygen, signaling molecules,
inorganic ions, and other factors across the 3D structure of a biofilm [31]. Microcolonies
usually consist of diverse types of micro-communities that organize with each other for
metabolic product diffusion, exchange of substrates, and excretion of metabolic waste
products. The EPS of Gram-negative and positive bacteria is polyanionic or neutral and
cationic, respectively [27].

2.1.3. Maturation

The microcolonies’ formation from small clusters and layered cells leads to the syn-
thesis of a thin film that initiates the maturation process, with the development of an EPS
matrix. The bundles of microcolonies result in macrocolonies with the substratum cells
displacement to form voids and channels which support the exchange of waste products
and nutrients by infiltrating fluid into the biofilm [31]. The core of the matrix is made from
polysaccharides whereas eDNA participates in horizontal gene transfer. The maturation
of biofilms via signaling molecules results in conformational changes and changes in the
genetic expression coding for several virulence factors. Maturation is characterized by a
loss of cellular components which are used for motility by expressing flagella-free pheno-
types, decrease in phospholipase C and protease synthesis, reduction in the production and
eviction of toxins, and synthesis of rough (occasionally mucus-type) polysaccharides [25].

2.1.4. Dispersion

Dispersion is the last stage of the biofilm formation, which causes the cells in the
biofilm to shift into a planktonic growth phase to occupy new surfaces and establish a new
set of biofilms. Dispersion is an active event of biofilm formation that is triggered or induced
by self-produced signaling molecules like fatty acids, and certain environmental factors
such as oxygen depletion, shortage of nutrients (starvation), iron, and nitric oxide, which
finally lead to a decrease in c-di-GMP levels through a post-transcriptional modification
cascade [32]. Low levels of c-di-GMP cause the upregulation of genes that participated in
the motility of the cell, including the synthesis of flagella or chemotaxis, and genes and
enzymes involved in EPS matrix degradation, such as endA, an endonuclease enzyme that
disintegrates DNA found in the matrix, and glycoside hydrolases such as pelA and pslG
which cleave the polysaccharides of the EPS matrix (i.e., Psl and Pel). Concomitantly, genes
involved in EPS or polysaccharide synthesis and fimbriae synthesis are downregulated [32].

2.2. Antibiotic Resistance in Bacterial Biofilms

The formation of biofilms poses a serious threat to human health throughout the world.
Infections caused by bacteria living inside protected biofilm communities are often resistant
to antibiotics and such resistance is associated with the structural and functional features
of a biofilm (Figure 2). According to the literature, the susceptibility of bacteria in biofilms
to antibiotics is about 1000-fold lower than that of planktonic bacteria [33,34].

Infectious diseases associated with biofilms are believed to account for over 80% of
chronic diseases, and conventional antibiotics are ineffective in eliminating these infec-
tions [35–37]. Irrespective of the location of the biofilm, bacteria found on them are resistant
or tolerant to the response of the host immune system, antiseptic agents, antibiotic therapy,
germicides, and disinfectants [38].
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The resistance of bacteria to antimicrobial agents is multifaceted, and it is related to
different molecular defense mechanisms used to protect them from the hostile environments
in which they exist. A variety of intrinsic and acquired resistance mechanisms play a role
in creating difficulties in controlling biofilm formation. It has been reported that microbes
in biofilms are resistant to antibiotics via one of the following mechanisms: (i) the contact
between antibiotics and the biofilm matrix which adversely affects its activities, (ii) slow
bacterial growth rate, (iii) hiding the target sites or genetically modifying the target cells,
(iv) the action of modifying enzymes, (v) the formation of persister cells that are tolerant to
antibiotics, (v) modulating the chemical microenvironment, (vii) involvement of multiple
species of bacteria, and (viii) the biofilm age (Figure 2). Thus, the antimicrobial tolerance
and multifactorial characteristics of bacterial biofilms are a serious challenge for the use of
conventional antibiofilm therapeutic approaches [38,39].

A bacterial EPS encamps bacterial communities together, which results in a multicellu-
lar structure. This multicellular structure is controlled by a phenomenon termed quorum
sensing, which allows bacteria to communicate with each other and protect themselves
from adverse extrinsic and intrinsic factors, including antimicrobial compounds [40]. As
far as P. aeruginosa biofilms are involved, Chua et al. reported that colistin-tolerant subpop-
ulations developed during the course of the infection. The cells tolerant to colistin migrated
via type IV pili toward microcolonies which became dead due to antibiotic-treated biofilms.
These cells initiated the formation of new biofilms via QS [41]. The QS components of
E. fecalis and other species have been recognized as factors that determine the development
of biofilms in the presence of antimicrobial agents [40]. Interference with the QS system
increases the susceptibility of S. aureus biofilms to different antibiotic classes [42]. Multicel-
lular behaviors such as cell-to-cell signaling, and cellular migration contribute significantly
to the formation of biofilms and resistance to antimicrobial agents. A high-density EPS ma-
trix and its ability to bind antimicrobial agents to form an effective barrier that can prevent
antibiotics from reaching the various layers of the biofilm [43]. Furthermore, antimicrobial
compounds and their toxic derivatives can bind to this matrix and decrease its activity via
the enzymatic system or antibiotic chelation [44]. For instance, exopolysaccharides could
protect P. aeruginosa biofilms from aminoglycosides by directly binding them [45].

Persister cells are a small population of bacteria (0.1–10% of the entire population) that
grow slowly or are arrested in their growth. A lack of diffusion of nutrients and oxygen
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into the periphery of the biofilm contributes to their presence inside the biofilm structure.
A fascinating feature of persister cells is their high tolerance to antibiotics. This form of
resistance is not associated with genetic factors [46]. These cells can resist 1000-fold the
minimum inhibitory concentration of various antibiotics [47]. As a result, persister cells
seem to be responsible for the inability of antibiotics to treat chronic infections [48].

Bacterial cells in biofilms encode antibiotic resistance enzymes, such as aminoglycoside
adenylyl transferases, which can inactivate or modify antibiotics. Such enzymes are pro-
duced and diffused into the matrix of a biofilm to prevent the antibiotics from accessing the
nonresistant cells [49]. As an example, a β-lactamase produced by K. pneumoniae biofilms
effectively degrades ampicillin and prevents it from reaching other susceptible cells [49,50].

Antibiotic tolerance in bacterial biofilms may also be associated with the oxygen
gradient across the mass of a biofilm. The antibiotic resistance associated with this gra-
dient is most likely due to the slow metabolic activity of bacterial cells in an anaerobic
condition which in turn prevents cellular adhesion and alters the mechanism of action of
antibiotics [51]. Moreover, the diffusion of nutrients into the biofilm will affect the density
of the cells in the biofilm. Metabolic dormancy has been observed at the bottom surface of
bacterial biofilm. Such metabolically inactive cells could be resistant to antibiotics as has
been reported in the biofilms of P. aeruginosa [52].

Most of the biofilm communities comprised a diverse type of bacterial species. Due
to the strong correlation among the various cellular components, the multispecies nature
of biofilms may result in greater tolerance to extrinsic factors, including disinfectants and
antibiotics. This feature of a biofilm is partly due to the size of the biomass and/or the
composition of the EPS matrix [53,54].

The age of the biofilm is one factor that influences the activity and effectiveness of
antibiotics. Several communities of biofilms enter the stationary phase with time, indicating
that older biofilms display resistance to antibiotics. Chen and coworkers reported that the
mature biofilms formed by S. aureus or P. aeruginosa were more challenging to eliminate by
using conventional antibiotics. This is mainly because of differences in the structure of the
biofilm and differences in the composition and/ or function of the EPS matrix [49,55].

2.3. Antibiofilm Activities of Phages

The resistance of bacterial biofilms to host immunity and antibiotics has led to the
search for alternative approaches for the efficient elimination of bacteria in the buildup of
the biofilms and antimicrobial-resistant mutants. Phages and their derivatives have been
reported as powerful alternative agents in treating and preventing infections associated
with biofilm formation (Figure 3). However, to establish successful phage-based treatments,
we need a comprehensive understanding of phage resistance and its mechanisms and the
evolutionary relationships between these two biological entities. Different phage-based
preparations including mono phages, a cocktail of phages, genetically modified phages,
and phages encoding enzymes could be used to destroy bacterial biofilms [56–58].

2.3.1. Application of Mono Phages

Mono phages which are used on bacterial biofilm should be obligatory lytic and
devoid of genes encoding bacterial toxins, virulence, and antimicrobial resistance (AMR).
Moreover, the phage genome should not harbor lysogenic genes that mediate horizontal
gene transfer. Individual phages commonly have a narrow spectrum of activity as they
are limited to a specific strain of the same bacterial species. Their use as biocontrol and
therapeutic agents in veterinary, clinical, food, and environmental isolates is immense and
inspiring [59]. For instance, phages PSTCR6 and PSTCR4 showed effective reduction of
Providencia stuartii biofilms developed in catheter models [60].

The human saliva phage, SMHBZ8, showed antibiofilm activity against the biofilm
produced by S. mutans in a cariogenic dentin model [61]. In the same study, sewage phage
isolates inhibited the formation of S. mutans biofilm (around 97% of the total mass) by
inhibiting the activity and expression of genes which participated in biofilm formation [62].
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These two studies indicated that mono-phage preparations could play a vital role in treating
dental caries. In a different study, a small concentration of phages pSp-S and pSp-J inhibited
biofilm formed by methicillin-resistant S. pseudintermedius isolated from veterinary workers
and canines [63]. Several mono phages have been utilized to reduce or inhibit viable
bacterial cells in biofilms with minimal toxicity to mammalian cells. Research findings
have indicated that the concentration of phages is one factor that determines the activity of
mono phages. High phage concentrations result in the obliteration of biofilm, while low
dose application of phages may not be efficient to penetrate and destroy the biofilm. Hence,
the time of exposure of the biofilm to the treatment is the main factor for the disruption of
the biofilm in comparison with the concentration of phages [63].
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Figure 3. Schematic illustration of the different types of phage preparations (formulations) that can
be used against biofilm formation and/or preformed biofilm (i.e., monophage therapy, phage cocktail,
genetically engineered phage, depolymerase enzyme and phage lytic enzymes). The blue big mass
represents the mature bacterial biofilm.

The phenotypic properties of some temperate phages may make them useful in remov-
ing biofilms. This phage can be transformed into a lytic phage through genetic engineering.
Scientists, for instance, modified the E. fecalis lysogenic phage ΦEf11 by removing all genes
associated with lysogeny, to reduce the biomass developed by vancomycin-sensitive and
resistant E. fecalis isolates [64].

2.3.2. Application of Phage Cocktails

A mixture of phages (phage cocktail) is developed by combining two or more lytic
phages targeting one or several bacterial pathogens. The rationale behind phage cocktails
is to simultaneously target bacterial receptors in diverse antibacterial pathways. This
will effectively reduce the bacterial burden, improve host range coverage, enhance lysis
potential, and prevent the development of phage-resistant strains [65]. In comparison to
mono phage therapy, phage cocktail preparations, as reported in several study models,
showed superior efficacy in biofilm elimination [63,66].
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A recent study showed that a cocktail comprised of four phages efficiently suppressed
the growth of MDR E. coli and halted biofilm formation. Nearly 87% of the formed biofilm
had been destroyed [67]. To enhance the efficacy and broaden the lytic spectrum of phage
cocktails, polysaccharide-degrading enzymes, and the associated phage-encoded enzymes
can be included in the preparation. According to a study, a cocktail of four phages lysed
all the tested K. pneumoniae strains, although one phage lacked depolymerase enzyme
encoding genes that are involved in biofilm degradation [68]. Similarly, a cocktail of three
phages (ΦKpnM-vB3, ΦKpnP-vB2, and ΦKpnM-vB1) showed significant antibiofilm activ-
ity against K. pneumoniae biofilm and was lytic towards the tested E. coil and K. pneumoniae
strains [69].

A cocktail of phages is primarily composed of lytic phages, but temperate phages can
also be used alone or in combination with lytic phages to develop a cocktail for therapeutic
and or biocontrol uses. A cocktail of four temperate phages, Trsa220, Trsa222, Trsa205,
and Trsa207, was able to remove 65% of the biofilms formed by S. aureus as well as lyse
two-thirds of the isolates [70]. Phage cocktails have wide host coverage, making them
superior to monophage preparations in reducing the biomass of mixed species biofilms.
Mixing phage cocktails AB-PA01 and AB-SA01, which target P. aeruginosa and S. aureus,
respectively, significantly reduced mixed-species biofilm biomass compared with their
corresponding individual treatments [71]. A cocktail of a couple of phages, philPLA-
C1C, and philPLA-RODI, displayed a decrease in the concentration of adherent bacterial
cells to approximately 2 log units in the biofilm of S. epidermidis and/or S. aureus [72].
According to these studies, phage cocktails are superior to individual phages in destroying
bacterial biofilms.

2.3.3. Genetically Engineered Phages

Phages that are devoid of genes that encode essential enzymes can be genetically
modified to produce biofilm-attacking enzymes for proper attachment and deep penetra-
tion of the phages via the EPS matrix, which in turn leads to the destruction of mature
biofilms [73]. For instance, a modified E. coli phage, T7DspB, was designed to release an
intracellular hydrolase during infection. The release of this hydrolase enzyme enhances the
degradation of biofilms in the extracellular matrix. The biofilm dispersing (DspB) enzyme,
when expressed efficiently following the application of T7DspB on E. coli biofilms, degraded
almost the whole biofilm (99.997%) and the viable cell count was reduced by 4.5 orders
of magnitude, which was approximately 100 times greater than the parent T7 phage [20].
Similarly, an engineered phage, T4 Rnl1, showed higher antibiofilm efficacy instead of lytic
activity against S. mutans [74]. Currently, some lysogenic phages which lack some lytic
enzymes were converted to lytic phages by removing harmful genes and incorporating
endolysin-encoded genes which are crucial for biofilm destruction and elimination [75].

2.3.4. Antibiofilm Activities of Phage-Derived Enzymes

Some bacteriophages encoded enzymes in their genome that have shown superior
potential against bacterial pathogens and their biofilms. Two major phage degradation
enzymes are used to attack bacterial biofilms: depolymerases and lysins.

(i) Lysins

Lysins (endolysins) are murein hydrolases or phage-encoded hydrolytic enzymes
which cleave bacterial cell walls during the last stage of the replication cycle. It includes
amidase, muramidase, glucosaminidase, transglycosylase, and endopeptidase. Due to
a protective outer membrane layer, endolysins are less efficient against Gram-negative
bacteria; however, the use of membrane permeabilizers significantly improved their effec-
tiveness [76,77]. Recent genetic engineering techniques have enabled researchers to develop
lysin/cationic peptide combinations called Artilysins: bacteriocin–lysin combinations to
generate Lysocins, and a combination of lysin and receptor-binding proteins of phages to
produce Innolysins [78]. Phage endolysins have been studied for their antibiofilm activities
for the past few decades and potential results were obtained. Some of these findings are
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discussed below and the rest are presented in Table 1. A virulent phage phiIPLA-RODI
known to produce an endolysin is called CHAPSH3b [79] and such a combination will
lead to a synergistic effect in the eradication of S. aureus biofilms, with a significant reduc-
tion in the concentration of viable cells in contrast to using either the phage or endolysin
alone. Confocal microscopy and time–kill curves indicated that CHAPSH3b decreased
the bacterial load up to 7 h following administration, which consequently prevented the
regrowth of phage-resistant mutants [79]. The amidase compartment of the vB_LmoS_293
phage showed inhibitory activity against L. monocytogenes biofilms on abiotic surfaces.
It has been shown that S. pyogenes biofilms, which are unresponsive to antibiotics, were
efficiently demolished by PlyC endolysin with minimum eradication of concentration
compared to standard antibiotics [80]. Lysin CF-301 eliminated S. aureus and mixed-species
biofilms on food cutting boards, knives, polystyrene, and surgical and catheter surfaces,
with a greater antibiofilm effect when pooled with lysostaphin, a cell wall hydrolase [81].
Similarly, endolysin LysCSA13 displayed a significant effect in removing biofilms (80–90%)
produced by Staphylococcal strains on several surfaces including polystyrene, stainless
steel, and glass [82]. In a different study, endolysin Abtn-4, the endolysin of A. baumannii
bacteriophage D2, was reported to have wide bactericidal activity against Enterococcus,
MDR S. aureus, K. pneumoniae, P. aeruginosa, and Salmonella spp. Abtn-4 had the potential to
prevent biofilm formation and possessed lytic activity against phage-resistant strains of the
tested pathogens [83].

(ii) Depolymerases

Table 1. List of phage endolysins and their source and antibiofilm activities.

Phage (Endolysin) Host Bacterium Antibiofilm Activity Reference

PA26 (LysPA26) P. aeruginosa
Reduced the cells in the P. aeruginosa
biofilm by 1- to 2-log CFU and
destroyed the biofilm matrix.

[84]

phi68 (Lys68) Salmonella Reduced biofilms when coupled with
malic or citric acid. [85]

C1(PlyC) Streptococcus pyogenes Degraded biofilm matrix. [80]

SMP (LysSMP) Streptococcus suis
Efficient towards 32 biofilm-forming
strains and >80% destruction of
biofilms resulted

[86]

CSA13
(LysCSA13) Staphylococcus

Destroyed the Staphylococcus biofilms
on glass, stainless steel, and
polystyrene surfaces. The mass of the
biofilms was reduced by about 80–90%.

[82]

GRCS (PlyGRCS) Staphylococcus Active against planktonic and biofilm
forms of MRSA. [87]

Phi SAP-2 and 11 (LysSAP-2
and LysPhi11) Staphylococcus Eliminated whole biofilms created on

polystyrene surfaces. [88,89]

Phi84 (Lys84) S. aureus Approximately 90% of the biofilms of S.
aureus were destroyed. [90]

ClyR (LysClyR) S. sobrinus and S. mutans

Reduced the viable cell counts in 72 h
aged S. sobrinus and S. mutans biofilms
following treatment at a concentration
of 50 µg/mL, for 5 min.

[91]

ECD7 (LysECD7) E. coli

Showed antibiofilm activity towards a
wide range of bacterial biofilms
including biofilms of K. pneumoniae Ts
141-14 clinical isolate.

[92]
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Phage-encoded depolymerase enzymes are proteins that specifically adhere to bacterial
EPS compounds and digest them, which disrupts the functional and structural integrity
of the biofilm [93,94]. In culture, upon lysis of infected cells, the depolymerase enzyme
is emitted as a free enzyme. Under favorable conditions, phages expressing this enzyme
will diffuse out on the culture dish (Figure 4) and the size of the zone may increase
over time [95]. Several in vitro and in vivo studies indicated that these enzymes showed
antibiofilm activity against pathogenic bacterial strains [72,94,96].
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In a study conducted by Gutiérrez et al., a depolymerase enzyme, Dpo7, generated
from the vB_SepiS-phiIPLA7 phage was evaluated against Staphylococcal biofilms. The
results revealed that over 90% of the Staphylococcus biofilms were removed by Dpo7 except
for the polysaccharide-independent S. aureus V329 biofilm. Moreover, the pre-treatment
of polystyrene surfaces with Dpo7 resulted in a substantial decline in the biomass of the
biofilms (53–85%). This enzyme has the potential to inhibit and disperse S. aureus and
S. epidermidis biofilms [72].

Currently, it has been reported that the TSP depolymerase enzyme of phage ΦAB6
degraded A. baumannii biofilm and revealed substantial inhibition of biofilm production
and destruction of already-formed biofilms. Furthermore, TSP reduced the inhabitation of
the surfaces of catheters by A. baumannii, suggesting that it can be utilized to prevent the
development of A. baumannii biofilms on the surface of medical devices [96]. In a different
study, the SH-KP152226 phage-derived recombinant tail fiber protein Dep42 exhibited
specific catalytic actions in the depolymerization of the K. pneumoniae capsule (K47) and
prevented the formation of a biofilm and/or degraded the existing biofilms. The study
also indicated that the combination of Dep42 and antibiotics improved polymyxin activity
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towards K. pneumoniae biofilms, suggesting that the cocktail of phage depolymerases
and antibiotics may result in significant positive outcomes in treating MDR and biofilm-
associated infections [94].

A combination of depolymerase and lysin produced efficient activity in removing
biofilms. In a study by Olsen et al. on the efficacy of endolysin LysK and depolymerase
DA7 against Staphylococcal biofilms, LysK and DA7 eliminated biofilms from glass and
polystyrene surfaces at low concentrations. The combination therapy of these two enzy-
biotics diminished the concentration of viable cells in comparison to individual enzyme
treatments [97]. Some of the depolymerase enzymes that showed antibiofilm activities
toward different pathogenic bacterial strains are summarized in Table 2.

Table 2. List of depolymerase enzymes encoded by different phages and their antibiofilm activities.

Phages Family Depolymerase
Enzyme

Targeted Species for Antibiofilm
Activity Reference

vB_EcoM_ECOO78 Myoviridae Dpo42 E. coli (Clinical isolate) [98]

PHB19 (T7-like phage) NA Dep6 Shiga toxin-producing E. coli (STEC) [55]

Petty Podoviridae Dpo1 A. nosocomialis and A. baumannii [99]

IME180 Zobellviridae NA P. aeruginosa [100]

Phage P560 Podoviridae P560dep KL47 type K. pneumoniae [101]

vB_PmiS_PM-CJR Siphoviridae NA P. mirabilis BB2000 [102]

ΦK64-1 Myoviridae Multiple
depolymerases Klebsiella capsular types [103]

KP34 Podoviridae KP34p57 K. pneumoniae [104]

NA NA
Aeromonas

punctata-derived
depolymerase

K. pneumoniae [105]

ISTD and NOVI Myoviridae NA

ISTD resulted in a 2- and 3.5-log
decline in planktonic and viable
bacterial cells in the biofilm and

planktonic cells, respectively.

[56]

NA—not available.

2.4. Other Natural Antibiofilm Agents
2.4.1. Plant Extracts

Plants have been found to contain many compounds that are reported to have antimi-
crobial properties [106,107], thus becoming an important resource for useful and novel an-
timicrobial compounds including flavonoids, terpenoids, alkaloids, peptides and polypep-
tides, tannins, saponins, anthocyanins, quinones, phenolic acids, and simple phenols [108]
(Figure 5). It has been recognized that natural products from plants may provide the
foundation for discovering new antimicrobial substances with a broad range of bactericidal
activities [108]. Accumulating evidence has indicated thatbioactive extracts of several
medicinal herbs have the potential to kill pathogenic bacterial strains and destroy the
biofilms produced by them [109,110].

A wide variety of plant extracts and their derivatives have been tested for their effec-
tiveness in eradicating bacterial biofilms [109,110]. Some of the recently reported extracts
and their antimicrobial and antibiofilm activities are discussed below and summarized in
Table 3, which showed that, out of the 119 plant extracts evaluated for antibiofilm activity,
five (Rhodiola crenulata, Malus pumila, Dolichos lablab, Polygonum cuspidatum, and Epimedium
brevicornum) exhibited strong antibiofilm activities against E. coli biofilms. Among these,
E. brevicornum, Polygonum cuspidatum, and their derivatives (i.e., icartin and resveratrol)
showed antibiofilm activity even at concentrations lower than the minimum inhibitory
concentration (MIC). The extract of Melia dubia was assessed at 30 mg/mL [111]. In addi-
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tion, these extracts displayed inhibition of swarming motility, hemolysis, hydrophobicity,
and E. coli biofilm formation. A group of researchers also reported related findings using
the extract obtained from Capparis spinosa (caper bush). The extract inhibited EPS and
biofilm synthesis associated with Serratia marcescens, P. aeruginosa, E. coli, and P. mirabilis at
2 mg/mL concentrations [112].
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One study found that the fruit extract of the medically significant plant ‘Lagerstroemia
speciosa’, typically found in Southeast Asia, inhibited the ‘P. aeruginosa’ PAO1 biofilm at a
concentration of 10 mg/mL [113]. In a different study, fresh garlic (Allium sativum) extract
(FGE) showed inhibitory activity against P. aeruginosa biofilms [114]. A group of researchers
also reported the antibiofilm activity of four plant extracts of Hippophae rhamnoides, Vac-
cinium oxycoccos, Juglans regia, and Azadirachta indica, and among these, Azadirachta indica
(also called Neem) displayed superior potential in lowering and eliminating M. smegmatis
biofilms [115].

Croton nepetaefolius plant extract (casbane diterpene) was studied for its antibiofilm
activity and showed inhibitory activity against five Gram-negative pathogenic bacterial
species (P. aeruginosa, E. coli, K. pneumoniae, Klebsiella oxytoca, and Pseudomonas fluorescens),
two Gram-positive bacterial species (S. aureus and S. epidermidis), and three yeast species
(Candida tropicalis, Candida glabrata, and C. albicans) [115]. In another study, the biofilms
formed by Candida spp. was significantly reduced by Boesenbergia pandurata (“finger root
oil”) by nearly 63–98% at 4 to 32 µL/mL MIC levels [116].

In a recent study, the antibiofilm activities of two plant extracts, green tea (Camellia
sinensis) and Dandasa (Juglans regia) were investigated against Streptococcus mutans and
E. coli, and the results indicated that both showed antibiofilm effects at 6.2 and 12.5 mg/mL
and 12.5 and 3.1 mg/mL concentrations for S. mutans and E. coli, respectively [117].
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Table 3. Recent reports on some of the plant extracts and their antibiofilm activities.

Plants Extract Type Target Bacterium Antibiofilm Effects MIC Reference

Piper betle leaf Ethanol extract
E. coli ATCC25922,
MRSA, S. aureus
ATCC25923,

Inhibited biofilm
production and promoted
its eradication

0.31–2.5 mg/mL [118]

Dried ground
materials of
Camellia japonica
and Thuja orientalis

Methanol extracts S. mutans and
C. albicans

Showed bactericidal
activity and inhibited
biofilm formation

0.5 mg/mL [119]

Leaves of the
Myrtaceae family

Acetone crude leaf
extracts

Bacillus cereus, E.
fecalis, S. aureus, E.
coli, P. aeruginosa, S.
Typhimurium

Destroyed pre-formed
biofilms and halted
formation of biofilms

0.04–0.08 mg/mL [109]

Dried plant
material of Prosopis
laevigata, Opuntia
ficus-indica, and
Gutierrezia
microcephala

Methanol extracts

Nosocomial
microorganisms
(K. pneumoniae, E.
fecalis, E. coli,
Stenotrophomonas
maltophilia, S. aureus)

Showed both
antimicrobial and
antibiofilm activity against
the tested strains

0.7 mg/mL [120]

Leaf extract of
Pongamia pinnata Methanol extract Bacillus cereus,

B. licheniformis
Showed antibiofilm
activity NA [121]

Cladodes of
Opuntia
ficus-indica

Polyphenolic
extracts S. aureus Prevent in vitro and

in vivo biofilm formation 2000 µg/mL [122]

Leaves of
Syncarpia hillii Methanol extract Staphylococcal species

Enhanced antibacterial
and antibiofilm activities
were observed

0.63 mg/mL [123]

Leaf extracts of
Glochidion
lanceolarium,
Semecarpus
anacardium, and
Bridelia retusa

Phenolic extracts P. aeruginosa, E. coli,
and S. aureus

Inhibited biofilm
formation NA [124]

Myrtus communis
(Myrtenol) Ethanol extract S. aureus

It had antibiofilm activity
and in silico results
indicated a good
pharmacokinetic profile

128 µg/mL [125]

Leaf extracts of
Ocimum
gratissimum,
Alchornea laxiflora,
Morinda lucida,
Ficus exasperata,
Jatropha
gossypiifolia, and
Acalypha wilkesiana

Acetone, methanol,
and ethanol
extracts

S. aureus, E. fecalis,
Salmonella spp., E.
coli, Campylobacter
spp., and fungal
species (Aspergillus
fumigatus, Aspergillus
flavus, and C. albicans

Showed good antibiofilm
activity (>50%) against at
least one organism

0.03–0.15 mg/mL [13]

Buds of Populus
alba and Populus
nigra extracts

Methanol, ethanol,
and ethyl acetate
extracts

S. aureus, E. fecalis,
Bacillus subtilis,
Listeria innocua, E.
coli, P. aeruginosa, C.
albicans,
Saccharomyces
cerevisiae

Showed antimicrobial and
antibiofilm activities
against the tested species

NA [126]

NA—not available.
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2.4.2. Honey

Honey is a nutritious natural product prepared from the nectar of melliferous plants by
bees [127]. Honey is a common and widely used product that can be used to heal wounds,
counter inflammation, fight bacteria, and protect against oxidative damage [127]. The
antibiofilm potential of different types of honey has been reported [128,129]. A relatively
low concentration of honey can prevent microbes from transferring virulence genes and
expressing curling QS, which contributes to biofilm formation. The antimicrobial proper-
ties of honey may also prevent bacteria from adhering and forming biofilms. Despite its
antibacterial activity, honey also prevents the formation of biofilms with its antibacterial
agents such as bee defensin 1 [130]. This and other peptides directly attack the viability of
biofilm-producing microbial agents which indirectly halts the formation of biofilms [128].
Different types of honey of Korean and American origins have been shown to downregu-
late the expression of multiple genes [ycfR (BhsA), csgA, yifo (bsmA)] involved in biofilm
formation [131].

Previous studies on honey demonstrated that it has antibiofilm activity against the
biofilms of K. pneumoniae and P. aeruginosa [132], oral Streptococci [133,134], Proteus mirabilis
(P. mirabilis), and Enterobacter cloacae (E. cloacae) [134]. Among the monofloral types, manuka
honey is one of the most studied, and researchers have demonstrated its ability to inhibit
the biofilm formation of Clostridium difficile [135], S. aureus [136], and C. albicans [137].
In a recent study by Lu et al., manuka honey inhibited the formation of P. aeruginosa
biofilms, halted the growth of the planktonic cells, and eradicated established (pre-formed)
biofilms at a concentration of 8–32% [95]. Similarly, Balázs and colleagues investigated
the antibiofilm and antibacterial effects of Hungarian locust, black, sunflower, and linden
honey towards selected biofilm-forming respiratory tract bacteria (P. aeruginosa, Hemophilus
spp., and Streptococcus pneumoniae). The results indicated that all four honey samples
suppressed the growth of the tested strains and inhibited the formation of biofilms [138].

Apart from the above-mentioned reports, several other studies evaluated the an-
tibiofilm effects of different types of honey; however, some of these studies did not char-
acterize the chemical composition and the concentration of the principal antibacterial
components such as antimicrobial peptides, hydrogen peroxide, phenolics, or methyl-
glyoxal, which vary based on the geographical origin of the honey and its floral base
as well [139].

2.4.3. Essential Oils (EOs)

Since ancient times, humans have used essential oils as aromatic extracts and for
culinary purposes, as well as in folk medicine, due to their wide range of pharmaco-
logical properties including antiseptic, anti-inflammatory, and analgesic properties [140].
Several pathogenic microbial strains have shown susceptibility to certain EOs and their
components [140,141]. Unlike Gram-negative bacteria, Gram-positive bacteria lack an
outer membrane which makes them more susceptible to EOs. The cell wall and inner
membrane of Gram-positive bacteria are hydrophobic, allowing hydrophobic molecules
to easily penetrate. The effect of phenolic compounds varies with concentration. At low
concentrations, the compounds interfere with enzymes that produce energy, while at high
concentrations the compounds denature proteins [142,143].

EOs are composed of a wide variety of volatile biomolecules [144], with many of
them containing over 300 different compounds. The broad spectrum activity of EOs is
associated with the chemical reactions of alcohols, esters, ethers, amides, amines, terpenes,
heterocycles, aldehydes, and phenolic compounds synthesized from secondary metabolism
in different parts of the plants [145]. EOs work by interacting with the cell membrane and,
as a result, disrupt the integrity of the microbial cell, which leads to cell death [143]. The
bioactive components of EOs may have several cellular targets including inhibition of ATP
production, cell wall and cell membrane damage, cytoplasmic coagulation, and alteration
of ion transport [146] (Figure 6).
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EOs are naturally occurring volatile substances derived from plants. These natural
products are effective and preferred by the food industry because of their antibacterial
and preservative properties. A wide variety of pathogenic microorganisms have been
successfully treated with these essential oils since ancient times. EOs have antimicrobial
properties, which can destroy microbes by attacking their cell walls. Furthermore, these
oils appear to be effective at inactivating many microbes without causing resistance to
antimicrobials [147]. Its low toxicity to mammalian cells, quick environmental decompo-
sition, and the availability of diversified essential oils make them potential antibiofilm
agents [148–150]. Some of the recently reported essential oils and their antibiofilm activi-
ties against different pathogenic microbial strains are discussed below and summarized
in Table 4.

Cuminum cyminum also known as cumin oil is one of the EOs which is derived from
aromatic medicinal plants of the “Apiaceae” family and has an astringent effect on the
digestive system. In addition to its use as a carminative and eupeptic, it has also been
used as an analgesic for acute gastric diseases. In a study performed on K. pneumoniae
strains, cumin seeds showed decreased biofilm activity while improving ciprofloxacin
efficiency [151].

Cinnamon oil is an example of EOs which is produced from the bark of the cinnamon
tree “Cinnamomum zeylanicum” and cinnamon bush “Cinnamomum cassia” and is used in the
food industry for its distinctive fragrance. Studies have indicated that this oil can inhibit
S. mutans, Lactobacillus plantarum, S. epidermidis, and S. mutans biofilms [152].

According to a study, oregano essential oil has antimicrobial properties against
S. hemolyticus, S. aureus, S. sciuri, E. coli, and S. lugdunensis and could prevent biofilm
formation. Moreover, it also attacks mature biofilm formation even at exceptionally low
MICs. A Brazilian nut oil named Bertholletia excelsa (a vegetable oil) was also tested for its
ability to inhibit dental biofilm formation on commercially available dentifrice. By adding
this vegetable oil to commercially available dentifrice, scientists were able to inhibit the
formation of dental biofilms and control periodontal disease [153].

Research groups assessed the synergistic effect of Melaleuca alternifolia (tea tree oil
(TTO) essential oils and ciprofloxacin against P. aeruginosa biofilms. According to the results,
the combined effect of ciprofloxacin and TTO resulted in a significant reduction in biomass
of the biofilms by more than 70% and reduced the number of cells even at the lowest
concentration of ciprofloxacin (1.25 g/mL) [154]. In a different study, the effects of thymol
and oregano oil, extracted from cinnamon (Cinnamomum verum), were investigated for their



Life 2023, 13, 503 16 of 26

effects on the formation of biofilms in three biofilm-forming bacterial strains, Acinetobacter,
staenotrophomonas, and Sphingomonas. It was shown that two out of the three strains were
resistant to biofilm formation at MICs. Additionally, among the tested oils, “thyme oil” was
more efficient and displayed inhibitory effects even at sub-lethal concentrations of 0.001%
(w/v) [153].

Table 4. Recent reports on the antibiofilm activity of different types of essential oils.

Source of Essential Oils Active Components Antibiofilm Activities MIC Reference

Clove Eugenol
L. monocytogenes and S. Enteritidis biofilms
were reduced by 30.2% and 20.3%,
respectively.

NA [155]

Lemongrass
(Cymbopogon flexuosus) Citral

Bactericidal against S. aureus and Candida
spp. and the biomass of their biofilms was
reduced following treatment.

NA [156]

Cymbopogon nardus
and Geraniol NA

S. aureus biofilm biomass was reduced up
to 100% at 0.5–4 mg/mL concentrations.
Number of viable cells was reduced at 0.25
and 1 mg/mL concentrations of EOCN and
geraniol, respectively.

0.5 and 0.25 mg/mL [157]

Lippia origanoides Thymol, carvacrol,
phellandrene

Showed antibiofilm activity against the
biofilms produced by E. coli O157:H7 and
methicillin-resistant Staphylococcus aureus
(MRSA).

0.4–1.6 mg/mL [158]

Lippia alba Carvona, citral E. coli O157:H7 and methicillin-resistant
Staphylococcus aureus (MRSA). >3 mg/mL [158]

Satureja Montana Carvacrol

P. aeruginosa, Streptococcus pyogenes, S.
mutans, Streptococcus sanguis, Streptococcus
salivarius, and E. feacalis Lactobacillus
acidophilus.

15.28 µg/mL–125.00
± 8.66 µg/mL [159]

Cinnamomum zeylanicum Eugenol

Antibiofilm activity against the biofilms
produced by Acinetobacter, K. pneumoniae, P.
vulgaris, E. fecalis, S. aureus, and
S. epidermidis.

0.5–8 mg/mL [160]

Rosmarinus officinalis
1,8-cineole, α-pinene,
borneol, camphor,
βmyrcene

Showed antibiofilm activity towards S.
epidermidis S61 and S. aureus ATCC 9144
biofilms.

0.312–0.625 µL and
1.25–2.5 mL−1,
respectively

[161]

Elletaria cardamomum
1,8-cineole,
linalool acetate, α-terpinyl
acetate, sabinene,

Different concentrations of this essential oil
prevented biofilm formation by E. coli
O157:H7 and S. Typhimurium JSG 1748 at
different rates.

1% [150]

Cinnamon (Cinnamomum
verum) bark

Caryophyllene, β-thujene,
3-allyl-6-methoxyphenol,
acetic acid cinnamyl ester,
o-cymene, and
α-phellandrene

Antibiofilm activity against maturation of
oral biofilms (multi-species). NA [161]

Thyme plant Thymol

4096 and 2048 µg/mL concentration of this
oil effectively inactivated an E. fecalis
population in mature fecal biofilms by 7.20
and 5.75 log CFU/mL, respectively, at 30
min post-treatment.

128 and 256 µg/mL [39]

Clove essential oil (CEO)
and oregano essential oil
(OEO)

Eugenol, eugenol acetate,
beta-caryophyllene
alpha-humulene

Showed antibiofilm activity against
Salmonella Derby biofilms. 1/8 MIC [162]

Laurelia sempervirens
(Chilean laurel)

Safrol, methyl
eugenol

Showed high antibiofilm activity against S.
aureus biofilms at a concentration of 128
µgmL−1.

64 µg mL−1 [163]

NA—not available; ATCC—American Type Culture Collection, MIC—minimum inhibitory concentration.
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2.4.4. Biosurfactants

Biosurfactants (BS) are microbial amphiphilic compounds which are either secreted
outside or act on the surface of the host cell [164]. It is used by pesticide, cosmetic, biodegra-
dation, agriculture, oil, food, and pharmaceutical companies. BS displayed strong anti-
adhesive and antimicrobial characteristics, making them effective against pathogenic bacte-
rial strains and their biofilms [164]. BS prevented the formation of biofilms by altering the
cell adhesion effect via lowering cell surface hydrophobicity, inhibiting the electron trans-
port chain, and membrane disruption thus limiting the demand for cellular energy [165]
(Figure 7).
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Different types of biosurfactants are produced by several microorganisms that showed
antifungal, antibacterial, and antibiofilm actions [166]. For instance, the activity of biosur-
factants generated from Pediococcus acidilactici and Lactobacillus plantarum on QS signaling
molecules and expression of biofilm-associated genes in S. aureus were assessed [167] and
the results indicated that biosurfactants reduced the formation of S. aureus by regulating
biofilm-associated gene (icaA, dltB, cidA) expression. Lactobacillus plantarum BS lowered
expression of the cidA gene at 12.5 mg/mL [167]. Pediococcus acidilactici-derived BS reduced
the gene expression of accessory gene regulator (agr A), autoinducer-2 (AI-2) signaling
molecules, and staphylococcal accessory regulatory (sar A) at 50 mg/mL [168]. It has
previously been shown that Lactobacillus-derived BS-loaded liposomes exhibit greater
antibiofilm activity than free BS, inhibiting MRSA biofilm formation and lowering the
severity of the infection [169]. For more information, the details about the antibiofilm
activity of different types of BS have been previously reviewed in [170].

2.4.5. Maggot (Fly Larval) Therapy

Maggot (fly larval) therapy with the larvae of Lucilia sericata is an effective and simple
method for cleaning infected and necrotic wounds [171,172]. The use of this therapy dates
back to the beginning of civilization, and it became globally prevalent and popular for
the treatment of infected or chronic wounds during the 1930s [173]. In the 1940s with
the introduction of antibiotics, however, the interest in this natural surgery unfortunately
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disappeared. However, in the 1990s, the emergency of antibiotic resistance resulted in the
revival of maggot therapy. To date, maggot therapy, despite its repeated fall from favor as
well as the continued public disdain that hampers its acceptance, is on the rise because of
its effectiveness, simplicity, and safety [174].

Maggot excretions and secretions (ES) have been investigated both for their potential
to inhibit bacteria from forming biofilms and to disrupt pre-formed biofilms. A preliminary
investigation into the effects of maggot ES on biofilms found that different types of bacteria
responded differently to maggot ES in terms of bacterial biofilms [175].

Freeze-dried ES inhibited the formation of S aureus biofilms, while maggot ES induced
the formation of P. aeruginosa biofilms until 10 h following application. ES were able to
degrade S. aureus pre-formed biofilm, whilst over a 10-fold concentration was required to
degrade P. aeruginosa pre-formed biofilms [175]. Such species-based differences were also
observed in a subsequent investigation. Maggot ES significantly reduced the formation of
biofilms by E. cloacae and S. aureus, while the development and growth of P. mirabilis were
not affected [176]. These findings indicated that maggot ES may act specifically against
different strains, instead of showing a broad spectrum of activities.

It has been also observed that maggot ES inhibited the development of biofilm for-
mation associated with two Staphylococcus epidermidis strains (1457 and 5179-r1) that dis-
played different mechanisms of action, thus suggesting that there may be more than one
biomolecule or mechanism of action involved in the antibiofilm or antibacterial activities of
maggot ES [177].

In a separate investigation, maggot ES showed a preventive role in the formation
of biofilms and disrupt the pre-formed P. aeruginosa biofilms on the surfaces of medical
devices. According to the report, these results could be associated with the accumulation of
ES which was generated from third-cycle maggots. In addition, the authors also observed
the antibiofilm activity of ES against S. epidermidis and S. aureus [178]. Additionally, dried
L. sericata larvae-derived fatty acids were found to have antibiofilm formation activity
against Streptococcus pneumonia and S. aureus [179]. Moreover, a purified DNase extracted
from maggot ES was found to degrade extracellular bacterial DNA in Pseudomonas biofilms.
Bacteria need extracellular bacterial DNA (their own DNA or other bacterial DNA) to build
up a biofilm; therefore, the maggot DNase capable of degrading all extracellular DNA
suppressed the process of biofilm formation [180].

Studies on biofilms have shown that, although maggot ES can degrade and disintegrate
biofilms of different species, the bacteria released by these biofilms are not destroyed [176].
This was investigated further by Van der Plas et al. who indicated that biofilms resisted
antibiotics alone, but the combination of antibiotics and maggot secretion (daptomycin,
vancomycin, or clindamycin) caused the destruction of S. aureus biofilms and the eradication
of the bacteria found in the biofilms [181]. This introduces a strategic approach to the
treatment of biofilm-associated infections, whereby the use of a combination of maggot
ES and antibiotics could generate more successful therapeutic outcomes than the use of
either one of these methods alone [182]. For instance, a study conducted by Arora and
colleagues indicated that the combined use of maggot ES with ciprofloxacin displayed
higher antimicrobial activity in comparison to the individual application [183]. Two other
antibiotics, flucloxacillin and gentamicin, also showed higher synergistic antibacterial
activity with maggot ES than either one of these individually [184].

3. Conclusions

Due to the emergence of biofilm-producing, antimicrobial-resistant pathogens, alter-
native (natural) antibiofilm agents are urgently needed and have been sought to tackle
biofilm-associated infections more than ever before. As shown above, phage and phage-
derived antibiofilm agents have shown promising efficacy towards biofilms of different
bacterial species regardless of some limitations. In addition, other naturally occurring
antibiofilm agents including honey, plant extracts, essential oils, and surfactants have
shown promising antibiofilm activities against the biofilms produced by different bacterial
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pathogens. However, in some cases, the antibiofilm efficacy needs to be enhanced by
emulsifying or combined each other or with other related antibiofilm agents for better
clearance of the biofilm. Hence, further research is needed in combination therapy and
much work is needed to discover new natural antibiofilm agents.
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