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Abstract 36 

Background 37 

Aging is a multilevel process of gradual decline that predicts morbidity and mortality. 38 

Independent investigations have implicated senescence of brain and peripheral physiology in 39 

psychiatric risk, but it is unclear whether these effects stem from unique or shared 40 

mechanisms.  41 

Methods 42 

To address this question, we analyzed clinical, blood chemistry and resting state functional 43 

neuroimaging data in a healthy aging cohort (N= 427; age 36-100 years) and two disorder-44 

specific samples encompassing patients with early psychosis (100 patients, 16-35 years) and 45 

major depressive disorder (MDD) (104 patients, 20-76 years).  46 

Results 47 

We identified sex-dependent coupling between blood chemistry markers of metabolic 48 

senescence (i.e., homeostatic dysregulation), functional brain network aging, and psychiatric 49 

risk. In females, premature aging of frontoparietal and somatomotor networks was linked to 50 

greater homeostatic dysregulation. It also predicted the severity and treatment resistance of 51 

mood symptoms (depression/anxiety [all three samples], anhedonia [MDD]) and social 52 

withdrawal/behavioral inhibition (avoidant personality disorder [healthy aging]; negative 53 

symptoms [early psychosis]). In males, premature aging of the default mode, cingulo-54 

opercular, and visual networks was linked to reduced homeostatic dysregulation and 55 

predicted severity and treatment resistance of symptoms relevant to hostility/aggression 56 

(antisocial personality disorder [healthy aging]; mania/positive symptoms [early psychosis]), 57 

impaired thought processes (early psychosis, MDD) and somatic problems (healthy aging, 58 

MDD). 59 

Conclusions 60 
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Our findings identify sexually dimorphic relationships between brain dynamics, peripheral 61 

physiology, and risk for psychiatric illness, suggesting that the specificity of putative risk 62 

biomarkers and precision therapeutics may be improved by considering sex and other 63 

relevant personal characteristics. 64 

Keywords: cardiometabolic aging; functional brain network flexibility; sex differences; 65 

psychosis; major depressive disorder. 66 

 67 
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Aging is an intricate biological process of gradual decline that unfolds across multiple 68 

interconnected levels within a living organism (1, 2). Biological senescence can thus be 69 

measured at multiple scales, from cellular indices of altered gene expression to organism-70 

level biomarkers of cardiometabolic functioning (1, 3, 4). Although biological senescence 71 

tracks with chronological age, trajectories of decay show considerable inter-individual 72 

variability as a function of time since birth, with more advanced biological, relative to 73 

chronological, age emerging as a critical predictor of morbidity and mortality (4-6). 74 

A rapidly growing literature underscores the relevance of biological senescence to 75 

both physical and psychological health outcomes across the lifespan. For instance, genetic 76 

risk for metabolic dysfunction is linked to poorer cognitive performance in childhood (7), 77 

while lifestyle factors supportive of cardiometabolic health (e.g., exercise) alleviate cognitive 78 

and brain decline in older adulthood (7-10). The interdependence of these and other systems 79 

means that the combined use of physiological and brain indicators of aging yields the most 80 

accurate prediction of cognitive functioning from midlife onwards (5, 11-13).  81 

Differences in cardiometabolic and brain aging between neurotypical and psychiatric 82 

populations are gaining increasing attention as a potential gateway to understanding and 83 

treating mental ill-health. Extant evidence implicates premature cardiometabolic and 84 

structural brain aging in the pathophysiology of anxiety (14-17), major depressive disorder 85 

(MDD) (15, 16, 18) and psychosis spectrum disorders (19-23). Conversely, greater structural 86 

brain similarity to MDD and psychosis among healthy individuals is related to poorer 87 

cardiometabolic health and mental processing (24). 88 

The evidence reviewed above comes mainly from independent investigations of 89 

premature structural brain aging and cardiometabolic senescence. This work has linked brain 90 

aging to diagnoses of anxiety, MDD, and psychosis (16, 22), with cardiometabolic aging only 91 

linked to specific symptoms, such as anxious fatigue and blunted reward responsiveness in 92 
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MDD (25-28) or negative symptoms in psychosis (29). It is therefore unclear whether 93 

premature brain and cardiometabolic senescence have unique or shared connections with 94 

mental health, at the disorder and/or symptom level, and whether any such connections show 95 

continuity across the subclinical-to-clinical spectrum. It is also unclear whether the robustly 96 

documented sex differences in vulnerability to psychopathology (30-38) may (partially) stem 97 

from distinct patterns of overlap between sex-specific and cardiometabolic senescence-98 

related brain patterns (30-38). The answers to these questions have critical implications for 99 

the design of personalized psychiatry interventions targeting sub-optimal aging trajectories in 100 

a multilevel (i.e., psychological and physical health), domain-specific, and/or sex-differential 101 

manner. 102 

The present study focused on brain aging patterns correlated with cardiometabolic 103 

senescence and probed their relevance to mental well-being across the subclinical-to-clinical 104 

spectrum, including their power to explain sex differences in psychiatric risk (see Figure 1 for 105 

a schematic representation of our model). To this end, we analysed data from a healthy aging 106 

cohort (i.e., Human Connectome Project-Aging [HCP-A]) and two disorder-specific samples, 107 

encompassing early psychosis (i.e., HCP-EP) and MDD (i.e., Perturbation of the Depression 108 

Connectome [PDC]) patients. Our objectives were two-fold. First, among the HCP-A 109 

participants, we sought to identify how sexually dimorphic patterns of yoked cardiometabolic 110 

and brain aging are linked to subclinical variations in psychiatric symptoms. Given prior 111 

literature (25-28), we expected that premature brain and cardiometabolic senescence would 112 

be related to symptoms associated with internalizing disorders. Second, within each of our 113 

two psychiatric diagnosis-specific samples, we examined whether the neural aging patterns 114 

linked to cardiometabolic senescence and subclinical variations in disorder-specific 115 

symptoms in the HCP- A cohort predicted symptom severity and/or treatment-resistance in 116 

psychosis and/or MDD (25-29).  117 
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Methods and Materials 118 

Participants 119 

 Our analyses leveraged three publicly available datasets, the Human Connectome 120 

Project-Aging (HCP-A) (N = 427, 233 females, age range 36-100 years), Human 121 

Connectome Project-Early Psychosis (HCP-EP) (N = 77 non-affective [21 females] and 23 122 

affective [16 females] psychosis patients, age range 16-35 years) and Perturbation of the 123 

Depression Connectome (PDC) (N = 104 [59 females] severely depressed patients, age range 124 

20-76 years). All participants contributed complete data on all the scrutinised variables. 125 

Inclusion of data in the analyses was guided by the recommendations of the respective study 126 

teams. All three samples were predominantly White and right-handed (see Supplemental 127 

Information ([SI] A.1 for details). 128 

Cardiometabolic Aging  129 

 In the BioAge R software package (https://github.com/dayoonkwon/BioAge), aging-130 

related decline in cardiometabolic function within the HCP-A sample was quantified with 131 

three well-accepted and validated algorithms, Klemera-Doubal method (KDM, (39)), 132 

homeostatic dysregulation(3), and PhenoAge (40), whose outputs predict mortality, 133 

morbidity and healthspan in younger and older adults (3-6, 39, 40). The KDM algorithm uses 134 

linear regression to predict chronological age from a set of biomarkers within a reference 135 

group. An individual’s KDM biological age prediction corresponds to the chronological age 136 

at which their physiology would be normal in the reference group. The homeostatic 137 

dysregulation (thereafter dubbed “dyshomeostasis”) algorithm applies Mahalanobis distance 138 

to a biomarker set to estimate the dissimilarity between an individual’s physiology and the 139 

physiology of a healthy young adult (20-30 years) group. The PhenoAge algorithm uses an 140 

exponential function to predict mortality from a set of biomarkers in a reference group. An 141 

individual’s PhenoAge biological age prediction corresponds to the chronological age at 142 
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which their mortality risk would be normal in the reference group. To quantify premature 143 

aging, we computed the difference between an individual’s estimated age from each of KDM 144 

and PhenoAge algorithms and their chronological age (4, 41). Positive and negative values 145 

reflect premature and delayed cardiometabolic senescence, respectively. Due to the skewness 146 

of the raw dyshomeostasis score distribution, log-transformed scores outputted by the 147 

BioAge R package were used in all analyses. SI A.2 contains further details on the age 148 

prediction algorithms and the inputted biomarker set. 149 

Psychological Functioning 150 

 In the HCP-A sample, psychological functioning was assessed via participants’ 151 

responses on the DSM-oriented scales (Depression, Anxiety, Attention Deficit Hyperactivity 152 

Disorder [ADHD], Avoidant Personality, Antisocial Personality, Somatic Symptom 153 

Disorder) from the Achenbach Adult Self-Report (ASR) instrument for ages 18–59 (42). In 154 

the HCP-EP sample, positive, negative and cognitive psychotic symptoms were estimated 155 

based on Marder’s (43) five-factor taxonomy of the Positive and Negative Symptom Scale 156 

(PANSS, (44)), while depressive and manic symptoms were measured using the 157 

Montgomery-Asberg Depression Rating Scale (MADRS, (45)) and the Young Mania Rating 158 

Scale (YMRS, (46)), respectively. Among the PDC patients, pre- and post-treatment 159 

depressive symptom severity was assessed with the Hamilton Depression Rating Scale 160 

(HDRS) (47) with a focus on the following HDRS subscales: Depressed Mood, Psychic 161 

Anxiety, Somatic Anxiety, Feelings of Guilt, Hypochondrias, Loss of Appetite, Weight Loss, 162 

Retardation, Agitation, Work and Activities, Libido, and Suicidal Tendencies. Changes in 163 

symptom severity were operationalized as the difference between standardized post-treatment 164 

(electroconvulsive therapy [ECT]: post-full series completion; ketamine treatment [KET]: 24 165 

hours post-last infusion; total sleep deprivation [TSD]: immediately after the overnight 166 

session) and standardized pre-treatment scores on the same HDRS subscale (see SI A.3 and 167 
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Table S2). 168 

Dynamic Functional Brain Architecture Related to Premature Cardiometabolic Aging 169 

Functional connectivity and network-level analyses. We analyzed resting state data 170 

already preprocessed using nearly identical pipelines by the HCP-A, HCP-EP and PDC study 171 

teams, respectively (cf. (48, 49), SI A 4.2). The concatenated preprocessed resting state runs 172 

were broken down into 30-s (i.e., 38 volumes) long non-overlapping windows. Across the 173 

three samples, network analyses were conducted on the same number of windows (N = 25) 174 

matching the duration of the sample with the least available data (PDC) (cf. (50-52), SI A 175 

4.3-4.4). Pairwise Pearson correlations between regional time series extracted from the 176 

Schaefer 300 parcel/17-network functional atlas (53-55) within each window were computed 177 

separately in Matlab (version 2022a) and expressed as Fisher’s z-transformed scores. 178 

Negative scores were set to zero (cf. (56, 57), SI A 4.4). All the reported results were 179 

replicated with the Gordon atlas (58) (SI B).  180 

The network-level metrics were computed with the Network Community Toolbox 181 

((59)) (SI A 4.5). Window-specific community organisation was estimated with a multilayer 182 

generalized Louvain-like community detection algorithm (57, 60, 61). ROI-level variability 183 

in functional organisation was quantified using the “flexibility” function in the Network 184 

Community Toolbox as the number of times a given ROI changed functional communities 185 

between two consecutive windows. For each participant, the network analyses yielded a 186 

vector of 300 regional values indexing functional brain network flexibility (BNF). 187 

Disorder and symptom-related brain network flexibility (BNF) maps. 188 

All the partial correlation analyses described below controlled for age, average 189 

relative scan-to-scan displacement, gender, site, race, handedness, antipsychotic medication 190 

dosage (HCP-EP only), as well as treatment group and delay [in days] between the pre- and 191 

post-treatment assessments (PDC only) (SI A.5, 7). 192 
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HCP-A. BNF maps linked to psychiatric disorder scores were computed via partial 193 

Spearman’s correlations between ROI-specific BNF scores and scores on each of the six 194 

DSM-oriented scales from the ASR.  195 

HCP-EP. Symptom-specific BNF maps were estimated via Spearman’s partial 196 

correlation of ROI-specific network flexibility indices with the PANSS (positive, negative 197 

and cognitive) factors, YMRS mania and the MADRS depression scores across all 198 

participants. 199 

PDC. To characterise the BNF correlates of overall MDD symptom severity at each 200 

time point, as well as depressive symptom change, partial Spearman’s correlations were 201 

computed between the ROI-specific network flexibility and the HDRS scores at 202 

baseline/post-treatment, as well as the HDRS difference scores (post-treatment – pre-203 

treatment).  204 

Statistical Analysis 205 

A discovery partial least squares (PLS) correlation analysis (62) with 10-fold cross-206 

validation (SI A 6.1) identified BNF patterns related to sex and cardiometabolic senescence 207 

in the HCP-A sample. In this analysis, a robust correlation between the extracted BNF latent 208 

variable and sex/cardiometabolic senescence suggests that the former differs between males 209 

and females/depends on physiological aging measures. Conversely, the lack of a robust 210 

correlation implies that the BNF profile is common to males and females/unrelated to 211 

physiological aging measures. A robust correlation of the BNF latent variable with both sex 212 

and cardiometabolic senescence would indicate overlap between sex-specific and 213 

cardiometabolic senescence-related BNF patterns. The discovery PLS analysis was 214 

conducted on non-residualized data. However, the cross-validation partial correlation 215 

analyses linking the predicted values of the brain latent variable to sex, cardiometabolic 216 

senescence (Figure 2-B) or ROI-specific BNF scores (Figure 2-D) controlled for 217 
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chronological age in addition to site, race, handedness, and average relative scan-to-scan 218 

displacement (SI A.7). Because advancing age predicts greater cardiometabolic senescence 219 

(3, 4, 41) and BNF (63-66), a positive correlation between the cross-validated BNF latent 220 

variable and cardiometabolic senescence would imply that premature brain aging is linked to 221 

premature cardiometabolic senescence, whereas a negative correlation would imply that 222 

premature brain aging is linked to delayed cardiometabolic senescence (and vice versa). 223 

Canonical correlation analyses (CCA) (67) probed the relationship between the partial 224 

correlation BNF maps linked to sex-cardiometabolic senescence in the HCP-A (Figure 2-D) 225 

and the BNF maps tracking psychiatric disorder scores in the same HCP-A sample (CCA 1), 226 

symptom severity in early psychosis (CCA 2) or MDD (CCA 3), respectively.  227 

Results 228 

Associations between Dyshomeostasis and Brain Network Flexibility are Sex-Specific 229 

 The discovery PLS analysis conducted in the full HCP-A sample revealed a single 230 

latent variable pair (p = .0002, shared variance of 73.75%). The cross-validated latent 231 

variable pair (r = .30, permutation-based p = 10-5) identified sexually dimorphic associations 232 

between BNF and dyshomeostasis, but not KDM/PhenoAge (Figure 2-A). Thus, greater 233 

dyshomeostasis, particularly among females, was related to greater Control and SM network 234 

flexibility, whereas reduced dyshomeostasis, particularly among males, was yoked to greater 235 

DMN, SAL, VIS and DAN network flexibility (Figure 2-A, B). The unique, additive 236 

contributions of sex and dyshomeostasis to the extracted brain latent variable (Figure 2-B) 237 

were confirmed through a linear regression analysis predicting the cross-validated BNF latent 238 

variable scores from sex, dyshomeostasis and the confounders listed in SI A.7 (bs of 2.08, 239 

95% CI = [1.25; 2.91] and .70, 95% CI = [.27; 1.16] for sex and dyshomeostasis, 240 

respectively).  241 

In the following analyses, we examine the relevance of the cross-validated 242 
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dyshomeostasis-BNF profile (Figure 2-D) to BNF patterns tracking psychiatric symptoms in 243 

healthy aging, early psychosis and MDD. We predicted that the dyshomeostasis-BNF profile 244 

will correlate positively with symptoms mainly detected among females showing greater 245 

physiological aging (e.g., mood problems, anhedonia) (15, 20, 30, 33) and correlate 246 

negatively with symptoms primarily observed among physiologically “young” males (3) 247 

(e.g., aggressive behavior) (68). 248 

 249 

Sexually Dimorphic Associations Between Brain Network Flexibility and Subclinical 250 

Internalizing and Externalizing 251 

 A cross-validated CCA revealed a single statistically significant mode (r = .72, 252 

permutation-based p = 10-5, Figure 3-C) reflecting a positive association between BNF 253 

patterns linked to female dyshomeostasis and those tracking higher anxiety, avoidant 254 

personality, and depressive disorder scores across sexes (Figure 3-A, B) Conversely, there 255 

was a positive correlation between BNF patterns linked to reduced male dyshomeostasis and 256 

those related to higher antisocial and somatic personality disorder scores across sexes (Figure 257 

3-A, B).  258 

 259 

Dyshomeostasis-BNF Patterns are Related to Symptom Severity in Psychosis 260 

 We next used CCA to investigate whether the dyshomeostasis-BNF profile from the 261 

HCP-A sample would relate to depressive and negative psychotic symptom severity in the 262 

HCP-EP patient data (25, 27, 29). The resultant cross-validated CCA variate pair (r = .56, 263 

permutation-based p = 10-5, Figure 4-C) unveiled a positive relationship between BNF 264 

patterns linked to female dyshomeostasis and those linked to depressive as well as negative 265 

symptoms in the HCP-EP sample (Figure 4-A, B). The extracted CCA mode also revealed 266 

that BNF patterns associated with reduced male dyshomeostasis overlapped with those 267 
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tracking manic and positive symptom severity in the HCP-EP (Figure 4-B). 268 

 269 

Dyshomeostasis-BNF Patterns Are Related to Treatment-Resistant Anxiety and 270 

Anhedonia 271 

 Finally, we probed the relationship between the dyshomeostasis-BNF profile from 272 

HCP-A and BNF patterns correlated with overall MDD severity at each time point 273 

(longitudinal r of .18]), as well as MDD symptom resistance following treatment. The 274 

discovery CCAs unveiled a sole CCA variate pair, which was cross-validated across all 10 275 

test folds (r = .82, permutation-based p = 10-5, Figure 5-C). The identified mode positively 276 

linked BNF patterns associated with female dyshomeostasis to those associated with greater 277 

overall MDD severity after treatment, as well as treatment-resistant anhedonia (i.e., 278 

engagement with work and personal interests, libido), suicidal tendencies, agitation and 279 

psychic anxiety (Figure 5-B). A positive association also emerged between BNF patterns 280 

correlated with reduced male dyshomeostasis and those tracking treatment resistance in 281 

appetite and retardation (i.e., mental and physical slowness) (Figure 5-B). 282 

Discussion 283 

Prior research linked cardiometabolic aging to specific psychiatric symptoms and 284 

brain aging to specific diagnoses (16, 22, 25-29). The present study indicates that sex-285 

differential patterns of functional brain dynamics linked to metabolic senescence, specifically, 286 

dyshomeostasis (3), predict vulnerability to psychopathology in healthy aging, as well as the 287 

occurrence and treatment resistance of individual symptoms in two clinical groups. The 288 

identified neural profiles, suggestive of premature vs delayed functional aging (i.e., greater vs 289 

lower BNF, (63-66)) spanned networks implicated in psychopathology broadly (69), as well 290 

as those related specifically to the two disorders under scrutiny (70-77). The unique 291 

association between BNF patterns and dyshomeostasis, but not KDM or PhenoAge, indices 292 

Jo
urn

al 
Pre-

pro
of



of premature aging suggests that sex-dependent psychiatric vulnerability is related to absolute 293 

distance from the optimal “young adult” cardiometabolic profile rather than rate of decline 294 

relative to peers of the same chronological age. Whether the null effects observed for KDM 295 

and PhenoAge stem from the greater heterogeneity of the associated functional brain profiles 296 

is a question worth probing in the future. 297 

Recent studies have begun to unravel the sex-dependent molecular and functional 298 

brain pathways underpinning global psychopathology risk (37), and differential risk for 299 

externalizing vs internalizing problems (34). Complementing this work, we document the 300 

divergent, sex-dependent relationship of metabolic senescence and associated BNF patterns 301 

with risk for internalizing vs externalizing psychopathology in typical aging. Specifically, 302 

among the healthy adults from HCP-A, BNF patterns related to female dyshomeostasis (i.e., 303 

higher Control and SM, but lower DMN, SAL, DAN and VIS, BNF) overlapped those 304 

tracking depression, anxiety and avoidant personality disorder symptoms across sexes (see 305 

Figure 3-B). Complementarily, BNF patters linked to reduced male dyshomeostasis (i.e., 306 

greater DMN, SAL, DAN and VIS, but lower Control and SM BNF) overlapped those 307 

tracking antisocial personality and somatic disorder symptoms. Broadly, our results fit well 308 

with extant evidence and evolutionary theory connecting internalizing psychopathology to 309 

“diseased”-like states associated with high inflammation (78-80) and connecting 310 

externalizing behaviours to physical attributes and neuroendocrine responses that tend to 311 

typify younger males in good health (68). The sex-dependent association between premature 312 

metabolic senescence and depression/anxiety disorders further aligns with evidence that 313 

females show more intense and prolonged responses to stressors compared to males (30, 33, 314 

36). 315 

Premature female and delayed male senescence were linked to opposite patterns of 316 

DMN-SM functional stability (i.e., lower BNF), which accords with prior reports linking 317 
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older (relative to younger) adulthood to more dwell time in brain states dominated by internal 318 

mentation rather than sensory and SM networks (81). The link between depression/anxiety 319 

disorder scores and greater DMN (rather than Control or SM) stability is consonant with 320 

extant evidence that the severity of internalizing psychopathology tracks with relative DMN 321 

(over Control and SM) functional dominance (i.e., comparatively greater connectivity 322 

strength, as well as higher frequency and more time spent in DMN-dominated states) (82, 323 

83).  324 

The association between externalizing risk and lower functional stability in DMN and 325 

VIS, two networks involved in perceiving and creating mental representations of contextual 326 

information (84-86), resonates with recent proposals implicating deficient processing of 327 

contextual information in the pathology of antisocial personality disorders (87). Likewise, the 328 

correlation between predisposition towards externalizing disorders and greater BNF in SAL, 329 

a network linked to transdiagnostic deficits in cognitive control (69), is in line with extant 330 

theory and evidence on the importance of inhibitory resources in antisocial personality 331 

disorders (88, 89). 332 

Beyond disorder-level associations with internalizing vs externalizing risk, the sex-333 

dependent BNF profile linked to metabolic senescence also showed symptom-specific 334 

relationships. Thus, the brain patterns yoked to age-premature female dyshomeostasis, as 335 

well as depression, anxiety and avoidant personality disorders in HCP-A, were associated 336 

with BNF patterns tracking severity and treatment resistance of symptoms related to mood 337 

(depression [HCP-EP, PDC], anxiety [PDC], anhedonia [PDC]) and social 338 

withdrawal/behavioral inhibition (negative psychotic symptoms [HCP-EP]) (42, 43). These 339 

findings extend prior research linking cardiometabolic dysfunction and inflammation to 340 

negative and depressive symptoms in psychosis (29, 90), as well as anxious fatigue (28) and 341 

anhedonia (25) in MDD. Our results also could also advance existing efforts to differentiate 342 
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psychosis spectrum pathologies and predict responsiveness to treatment based on cellular 343 

senescence, as well as structural and functional brain indices associated with specific 344 

symptom types (91-93). The involvement of the BNF profile linked to female dyshomeostasis 345 

in negative symptoms dovetails nicely with reports of greater cellular senescence among 346 

females diagnosed with psychosis spectrum disorders (38). Its relevance to the post-treatment 347 

persistence of anhedonia further resonates with evidence on sex differences in the normative 348 

development of reward processing skills (31) and as observed in MDD (35). 349 

The BNF patterns linked to reduced male dyshomeostasis (i.e., greater DMN, SAL, 350 

DAN and VIS, but lower Control and SM, BNF), as well as antisocial personality and 351 

somatic problems in healthy aging, correlated positively with the severity of mania and 352 

positive psychotic symptoms, in which externalizing features, such as hostility and aggressive 353 

behaviour, are prominent (43, 46). This finding echoes prior reports linking familial risk for 354 

psychosis to delayed cellular senescence (94), as well as evidence implicating greater DMN 355 

(over SM) BNF (95) and atypical VIS network connectivity and processing in the pathology 356 

of psychosis disorders (96-98). The relationship between mania severity and BNF patterns 357 

linked to reduced male dyshomeostasis sheds further light on the proposed role of metabolic 358 

overdrive in the pathophysiology of manic episodes (99). Specifically, in younger patient 359 

samples such as the HCP-EP, the higher metabolic rate conducive to systemic dysregulation 360 

in the long run may lend the appearance of greater physiological youth, either directly or via 361 

associated behaviours, such as heightened physical activity levels (99).  362 

The brain patterns related to delayed male metabolic senescence further overlapped 363 

with those tracking treatment resistance for appetite and impaired/slowed thought processes 364 

in MDD. This association with appetite resonates with the relevance of the male homeostasis-365 

BNF profile to somatic symptoms in the HCP-A sample. Given the transdiagnostic relevance 366 

of impaired thought processes, likely linked to deficient cognitive control (69), the findings 367 
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involving the reduced male dyshomeostasis-BNF patterns in HCP-EP and PDC are consistent 368 

with reports that individuals at clinical risk for psychosis have multiple comorbidities (100), 369 

which is reflected in the substantial number of deficient brain pathways shared between 370 

psychosis and multiple psychiatric and neurological disorders (101). 371 

Limitations and Future Directions 372 

 Aging is a multilevel process (1) and investigations combining markers of cellular 373 

(e.g., DNAm, (102) and organism-level cardiometabolic senescence as those used here could 374 

improve measurement sensitivity and accuracy (14, 103-108). Moreover, structural and 375 

functional brain aging show distinguishable trajectories, which, in turn, are differentially 376 

associated with mood and psychotic pathology (18, 109-113). Future cross-species studies 377 

incorporating pharmacological and/or experimental manipulations of mood and psychotic 378 

symptoms while collecting (quasi-)contemporaneous assessments of multiple structural (e.g., 379 

neurogenesis rate, gray matter volume, white matter microstructure) and functional indices of 380 

brain aging, including behavioural and neural responses to clinically relevant task contexts 381 

(e.g., linked to impulsivity or reward sensitivity) could help provide a more comprehensive 382 

characterization of the effects herein reported. Such investigations could further shed light on 383 

the specific neurotransmitter systems and neuronal (inhibitory, excitatory) vs non-neuronal 384 

(e.g., astrocytes), cell types likely to bridge mental health, as well as cardiometabolic and 385 

brain senescence (21, 29, 104, 114, 115). Cellular and organism-level senescence can be 386 

accelerated by environmental adversity (107, 116-120) and maladaptive lifestyle choices 387 

(e.g., lack of regular exercise (9, 20), poor diet (121, 122)). Cross-species research which 388 

manipulates exposure to environmental adversity and lifestyle factors, such as aerobic 389 

exercise and diet, could help elucidate the “driver” behind the inter-relationships among sex-390 

differential patterns of cellular and organism-level senescence, structural/functional brain 391 

aging and vulnerability to internalizing/externalizing psychopathology.  392 
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Our analyses focused on blood-chemistry-derived measures of physiological aging as 393 

these are highly predictive of cardiometabolic outcomes (123). However, the development of 394 

DNA methylation (DNAm) aging algorithms, termed “clocks”, has much potential. While 395 

first-generation DNAm clocks were developed to predict chronological age and were less 396 

sensitive to cardiometabolic aging compared to blood-chemistry–derived measures (124), 397 

newer DNAm clocks, developed to predict mortality, could be fine-tuned to dissect 398 

multimorbidity within cardiometabolic diseases and the impact of different lifestyle factors. 399 

The predominantly cross-sectional design of our study limits causal inferences. The 400 

sample's demographic composition, being predominantly White and right-handed, may affect 401 

the generalizability of the findings. Longitudinal investigations with more diverse 402 

populations are needed to better understand the temporal dynamics and universality of brain-403 

metabolic aging associations. For instance, examination of cardiometabolic senescence in 404 

socioeconomically diverse samples of children and adolescents could be instrumental in 405 

identifying and facilitating early amelioration of suboptimal brain maturation trajectories 406 

likely to enhance vulnerability to psychopathology. Such work is well-justified considering 407 

evidence that the functional impact of modifiable risk factors (e.g., exercise, diet) is stronger 408 

in earlier life (125). Similarly, future research could extend our analyses on the independent 409 

additive contributions of sex and cardiometabolic senescence to brain network flexibility by 410 

directly testing for or using genetic strategies (e.g., Mendelian randomization, (126)) to parse 411 

causal interactions between these variables. 412 

We did not have sufficient statistical power to probe treatment-specific effects on the 413 

brain patterns associated with cardiometabolic senescence. Such research is worth pursuing 414 

since different treatments impact distinct physiological systems (127-132) and patterns of 415 

neuroplasticity (133, 134), which, in turn, are likely to show distinguishable associations with 416 

cellular and organism-level markers of senescence. The potential modulatory effects of 417 
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ongoing and lifetime psychotropic medication use on treatment response also warrant further 418 

study.  419 

We used three publicly available datasets (HCP-A, HCP-EP and PDC) to reveal 420 

convergent patterns of association between BNF profiles linked to physiological aging and 421 

psychiatric symptoms. While corresponding measures showed substantial conceptual overlap, 422 

further efforts should be made to harmonize data collection methods to improve the 423 

consistency and comparability of findings. 424 

Conclusions 425 

We identified a multimodal marker of metabolic and functional brain network 426 

senescence predictive of psychiatric disorder- and symptom-level vulnerability. By 427 

characterizing complementary, sex-dependent patterns of neurobiological aging that predict 428 

mental health outcomes, our investigation can act as a springboard for future research into the 429 

mechanisms underpinning sex differences in risk for internalizing vs externalizing disorders, 430 

as well as those accounting for sex differences in the burden of psychotic and depressive 431 

symptoms.  432 
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Figure Captions 451 

Figure 1. Schematic representation of our framework. Panel A: The KDM algorithm uses 452 

linear regression to predict chronological age from a set of biomarkers within a reference 453 

group. An individual’s KDM biological age prediction corresponds to the chronological age 454 

at which their physiology would be normal in the reference group. The PhenoAge algorithm 455 

uses an exponential function to predict mortality from a set of biomarkers in a reference 456 

group. An individual’s PhenoAge biological age prediction corresponds to the chronological 457 

age at which their mortality risk would be normal in the reference group. Indices of 458 

premature aging are computed by subtracting from an individual’s age estimate as outputted 459 

by the KDM and PhenoAge algorithms, respectively, from an individual’s chronological age. 460 

Positive and negative indices reflect premature and delayed cardiometabolic senescence, 461 

respectively. Panel (B): The homeostatic dysregulation algorithm applies Mahalanobis 462 

distance to a biomarker set in order to estimate the dissimilarity between an individual’s 463 

physiology and the physiology of a healthy (overall physically fit) young adult (20-30 years) 464 

group. Individuals with reduced homeostatic dysregulation (represented by the gray circle) 465 

have a physiological profile relatively more similar to that of the young adult reference 466 

group, whereas those with greater homeostatic dysregulation (represented by the red circle) 467 

have a physiological profile relatively more dissimilar to that of the young adult reference 468 

group. Panel (C): BNF was computed for each ROI in the Schaefer300-17 Networks atlas as 469 

the number of times it changed functional community affiliation (shown as differently 470 

coloured shades) between two consecutive non-overlapping time windows. For ease of 471 

interpretation, BNF scores are described in reference to the ROI’s network affiliation in the 472 

Schaefer atlas. The subnetworks from the Schaefer 17-network atlas (e.g., Control A/B/C) 473 

have been combined into one to increase comparability with the Gordon atlas. In panels (D)-474 

(F), disorders or symptoms expected to correlate with cardiometabolic and brain aging are in 475 
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black font, whereas those scrutinised on an exploratory basis and to establish the specificity 476 

of any observed effects are in grey font. Panel (F): Correlated patterns of change in BNF and 477 

clinical symptoms assessed before and after treatment with ECT, ketamine or sleep 478 

deprivation in a sample of MDD patients. Premature cardiometabolic aging, estimated in 479 

reference to one’s chronological age (A) or a healthy young adult sample (B) was posited to 480 

predict, in a sex-differential manner, patterns of functional brain network aging (i.e., BNF) 481 

(C). The latter were hypothesized to explain sex-differential subclinical variations 482 

internalizing vs externalizing disorder symptoms in healthy aging (D), as well as severity and 483 

treatment-resistance of specific symptoms along the internalizing/negative to positive 484 

symptom spectrum in early psychosis (E) and MDD (F), respectively. BNF = brain network 485 

flexibility. ROI = region-of-interest. ECT = electroconvulsive therapy. MDD = major 486 

depressive disorder. Schaefer networks: TP= temporo-parietal. SAL-VAN = salience/ventral 487 

attention. LB = limbic. DMN = default mode. DAN = dorsal attention. SM-A =somatomotor-488 

A. SM-B =somatomotor-B. VIS = visual. 489 

Figure 2. The brain latent variable from the behavioral-PLS analysis linking sex and 490 

cardiometabolic aging to BNF in the HCP-A sample. Panel (A) shows the correlations of the 491 

sex and cardiometabolic aging variables with the brain latent variable scores in the discovery 492 

PLS analysis. Panel (B) shows the correlations of the sex and homeostatic dysregulation 493 

variables with the predicted brain latent variable scores (based on the 10-fold cross-validation 494 

procedure). Error bars are the 95% bootstrapped confidence intervals (described in SI A 6.1), 495 

as conducted in the discovery (panel A) and cross-validation (panel B) PLS analyses. 496 

Confidence intervals that do not include zero reflect robust correlations between the 497 

respective behavioral variable and the discovery (panel A) or predicted (panel B) brain latent 498 

variable score across all participants. Panel (C) depicts the ROI-specific weights/loadings on 499 

the brain latent variable identified with the discovery PLS analysis with a bootstrap ratio 500 
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greater than 2 in absolute value (cf. (135, 136)). These weights reflect the within-sample 501 

unique association between an ROI and the extracted brain latent variable after controlling 502 

for the association of the brain latent variable with all the other ROIs from the Schaefer atlas. 503 

Panel (D) depicts the Schaefer ROIs robustly correlated (based on cross-validated 99.9% 504 

confidence intervals, as described in SI A 6.1) with the predicted value of the brain latent 505 

variable from the cross-validation procedure. These are partial correlations controlling for 506 

chronological age, race, testing site, handedness and average motion per participant, as 507 

described in the main text under “Statistical Analysis” (PLS analysis section). These partial 508 

correlation coefficients between an ROI and the predicted value of the brain latent variable do 509 

not control for the correlation between the brain latent variable and the remaining Schaefer 510 

ROIs entered in the analysis. To facilitate interpretation, panels (E) and (F) present Schaefer 511 

network-based distributions of PLS weights (panel E) or partial correlations (panel F) 512 

summarizing the ROI-specific results from panels (C) and (D), respectively. The subnetworks 513 

from the Schaefer 17-network atlas (e.g., Control A/B/C) have been combined into one to 514 

increase comparability with the Gordon atlas. Error bars represent standard deviations. KDM 515 

= Klemera-Doubal Method. PLS = partial least squares. BNF = brain network flexibility. ROI 516 

= region-of-interest. Schaefer networks: TP= temporo-parietal. SAL-VAN = salience/ventral 517 

attention. LB = limbic. DMN = default mode. DAN = dorsal attention. SM-A =somatomotor-518 

A. SM-B =somatomotor-B. VIS = visual. 519 

Figure 3. Psychiatric disorder-specific BNF patterns linked by CCA to the homeostatic 520 

dysregulation-BNF profile identified in the same HCP-A sample (cf. Figure 2). Panel (A) 521 

depicts the cross-validated BNF patterns associated with sex and homeostatic dysregulation 522 

in the PLS analysis (cf. Figure 2-B, D). Unlike the brain maps in Figure 2-D, which are 523 

thresholded based on cross-validated 99.9% confidence intervals, the brain maps in panel 524 

(A), same as the disorder-BNF maps, are not thresholded. The CCA’s were run on 525 
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unthresholded brain maps in order to avoid any bias introduced by applying (somewhat) 526 

arbitrary statistical thresholds. The circular graph in panel (B) contains the correlation 527 

coefficients describing the relationship between the observed disorder-specific BNF scores 528 

and the predicted value of their corresponding canonical variate across all test CCAs. The 529 

shaded areas correspond to robust correlations observed in cross-validated CCAs featuring 530 

both Schaefer and Gordon atlas-based homeostatic dysregulation-BNF scores (see SI A 6.2 531 

for details on the 99.9% bootstrapped confidence intervals). Panel (C) contains the scatter 532 

plot describing the linear relationship between the predicted values of the homeostatic 533 

dysregulation-BNF profile from the PLS analysis (Figure 2) and the predicted psychiatric 534 

disorder-BNF profile from the cross-validation of the CCA 1 results. BNF = brain network 535 

flexibility. ROI = region-of-interest.  Depress = Depression. ADHD = attention deficit 536 

hyperactivity disorder. Antisoc = antisocial personality disorder. Avoid = Avoidant 537 

personality disorder. Som = Somatic Disorder.  538 

Figure 4. Early psychosis symptom-specific BNF patterns linked by CCA to the homeostatic 539 

dysregulation-BNF profile identified in the HCP-A sample (cf. Figure 2). Panel (A) depicts 540 

the cross-validated BNF patterns associated with sex and homeostatic dysregulation in the 541 

PLS analysis (cf. Figure 2-B, D). Unlike the brain maps in Figure 2-D, which are thresholded 542 

based on cross-validated 99.9% confidence intervals, the brain maps in panel (A), same as the 543 

symptom-BNF maps, are not thresholded. The CCA’s were run on unthresholded brain maps 544 

in order to avoid any bias introduced by applying (somewhat) arbitrary statistical thresholds. 545 

The circular graph in panel (B) contains the correlation coefficients describing the 546 

relationship between the observed symptom-specific BNF scores and the predicted value of 547 

their corresponding canonical variate across all test CCAs. The shaded areas correspond to 548 

robust correlations observed in cross-validated CCAs based on both the Schaefer and Gordon 549 

atlas data (based on the bootstrapping-derived 99.9% confidence intervals). The shaded areas 550 
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on the brain images reflect the strength of the partial correlation between the BNF scores and 551 

psychotic symptoms (see the Method for the confounders controlled for in the partial 552 

correlation). Panel (C) contains the scatter plot describing the linear relationship between the 553 

predicted values of the homeostatic dysregulation-BNF profile from the PLS analysis (Figure 554 

2) and the predicted psychosis symptom-BNF profile from the cross-validation of the CCA 2 555 

results. PLS = partial least squares. CCA = canonical correlation analysis. BNF = brain 556 

network flexibility. ROI = region-of-interest.  557 

Figure 5. BNF change patterns corresponding to treatment-related symptom change in MDD 558 

linked by CCA to the homeostatic dysregulation-BNF profile identified in the HCP-A sample 559 

(cf. Figure 2). Panel (A) depicts the cross-validated BNF patterns associated with sex and 560 

homeostatic dysregulation in the PLS analysis (cf. Figure 2-B, D). Unlike the brain maps in 561 

Figure 2-D, which are thresholded based on cross-validated 99.9% confidence intervals, the 562 

brain maps in panel (A), same as the symptom-BNF maps, are not thresholded. The CCA’s 563 

were run on unthresholded brain maps in order to avoid any bias introduced by applying 564 

(somewhat) arbitrary statistical thresholds. The circular graph in panel (B) contains the 565 

correlation coefficients describing the relationship between the observed symptom-specific 566 

BNF (change) scores and the predicted value of their corresponding canonical variate across 567 

all test CCAs. The shaded areas correspond to robust correlations observed in cross-validated 568 

CCAs based on both the Schaefer and Gordon atlas data (based on the bootstrapping-derived 569 

99.9% confidence intervals). The shaded areas on the brain images reflect the strength of the 570 

partial correlation between pre-to-post treatment change in BNF and MDD symptoms (see 571 

the Method for the confounders controlled for in the partial correlation). Panel (C) contains 572 

the scatter plot describing the linear relationship between the predicted values of homeostatic 573 

dysregulation-BNF profile from the PLS analysis (Figure 2) and the MDD symptom 574 

(change)-BNF profile. PLS = partial least squares. CCA = canonical correlation analysis. 575 
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BNF = brain network flexibility. ROI = region-of-interest.  Depress_1 = total HDRS score 576 

(as described in the text) before treatment. Depress_2 = total HDRS score (as described in the 577 

text) after treatment. Agit = agitation. Anx = psychic anxiety. Sadness = depressed mood. 578 

Hypoch= hypochondriasis. Slowed = retardation (thought-related/motor). Som = somatic 579 

anxiety. Work/Int = work/interests. HDRS = Hamilton Depression Rating Scale. MDD = 580 

Major Depressive Disorder. 581 
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