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A B S T R A C T

Vector maps find widespread utility across diverse domains due to their capacity to not only store but also
represent discrete data boundaries such as building footprints, disaster impact analysis, digitization, urban
planning, location points, transport links, and more. Although extensive research exists on identifying building
footprints and road types from satellite imagery, the generation of vector maps from such imagery remains an
area with limited exploration. Furthermore, conventional map generation techniques rely on labor-intensive
manual feature extraction or rule-based approaches, which impose inherent limitations. To surmount these
limitations, we propose a novel method called HPix, which utilizes modified Generative Adversarial Networks
(GANs) to generate vector tile map from satellite images. HPix incorporates two hierarchical frameworks: one
operating at the global level and the other at the local level, resulting in a comprehensive model. Through
empirical evaluations, our proposed approach showcases its effectiveness in producing highly accurate and
visually captivating vector tile maps derived from satellite images. We achieved a pixel-level accuracy of
61.04% and an SSIM score of 0.75, outperforming all other existing methods. We further extend our study’s
application to include mapping of road intersections and building footprints cluster based on their area. We
also show usability of our proposed architecture as a general-purpose solutions in other tasks like edges-to-
photo, BW-to-color, or labels-to-street scene. GitHub: https://github.com/aditya-taparia/Satellite-Image-to-
Vector-Map.

1. Introduction

Vector maps offer a modern and versatile representation of geo-
graphical data, surpassing traditional maps in terms of precision and
functionality. These maps accurately store and depict discrete data
boundaries, including building footprints, disaster impacts, and trans-
portation links, making them indispensable tools across various do-
mains such as urban planning, disaster management, and transportation
logistics.

Traditional approaches to generating vector maps from satellite
images rely on labor-intensive processes involving manual feature ex-
traction or rule-based methodologies. These techniques, while useful,
impose inherent limitations, particularly in terms of scalability, accu-
racy, and efficiency [1,2]. The advent of deep learning, particularly
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Convolutional Neural Networks (CNNs) [3–5] and Generative Adversar-
ial Networks (GANs) [6,7], has revolutionized the field by automating
the feature extraction process and enabling the generation of highly
detailed vector maps. However, even with these advancements, existing
methods often struggle with capturing the full complexity of satellite
imagery, especially when dealing with large-scale or highly detailed
features.

To address these challenges, we propose a novel approach termed
HierarchicalPix (HPix), which utilizes a hierarchical Generative Ad-
versarial Network (GAN) framework. This approach is designed to
overcome the limitations of traditional and single-level GAN methods
by operating at both global and local levels. The hierarchical structure
allows the model to capture the overall layout and structure of the map
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at a global level while simultaneously refining finer details at a local
level. This two-tiered approach not only enhances the accuracy of the
generated vector maps but also significantly reduces the occurrence of
artifacts, which are common in single-level GAN outputs.

1.1. Motivation for the hierarchical approach

The rationale behind adopting a hierarchical GAN approach is
rooted in the need to balance the trade-off between capturing global
structures and refining local details. Traditional GAN-based methods
often face challenges in simultaneously maintaining the integrity of
large-scale features (such as the overall road network) and the accuracy
of small-scale details (such as individual building footprints). A single-
level GAN model might either overlook finer details due to its focus on
global patterns or, conversely, generate detailed local features while
losing sight of the broader context.

The hierarchical approach in HPix addresses these issues by de-
composing the map generation process into two stages. The global
generator focuses on producing a coarse but structurally coherent
representation of the entire map, ensuring that large-scale features
are accurately captured. Subsequently, the local generator refines
this coarse map by focusing on smaller regions, enhancing the detail
and accuracy of specific features such as building edges and road
intersections. This two-stage process allows HPix to produce vector
maps that are not only accurate at a macro level but also rich in detail
at a micro level.

Moreover, the hierarchical structure inherently supports better han-
dling of diverse geographical data, as it allows the model to adjust
its focus depending on the level of detail required. This makes HPix
particularly suitable for applications where both high-level structural
accuracy and fine-grained detail are critical, such as disaster response
planning or urban infrastructure development.

The proposed HPix model offers several distinct advantages over
existing algorithms, particularly in the context of satellite image to
vector map generation. By employing a hierarchical GAN framework,
HPix effectively captures both global structures and local details, lead-
ing to higher overall accuracy. The inclusion of both global and local
generators helps reduce artifacts commonly seen in single-level GAN
approaches, resulting in more visually coherent and structurally accu-
rate vector maps. Moreover, HPix demonstrates versatility in handling
various image-to-image translation tasks, making it a robust tool for
diverse applications such as urban planning, disaster response, and
infrastructure management.

1.2. Key contributions

This paper makes the following significant contributions:

• We propose a novel hierarchical GAN architecture, termed Hier-
archicalPix (HPix), which comprises two GAN frameworks—one
operating at a global level and the other at a local level. This
hierarchical approach effectively captures both the overall struc-
ture and fine-grained details of satellite imagery in the generated
vector maps.

• Through extensive empirical evaluations, we demonstrate that
HPix outperforms existing methods such as Pix2Pix, CycleGAN,
MapGen-GAN, and CscGAN in generating vector maps, achieving
a pixel-level accuracy of 61.04% and an SSIM score of 0.75, which
are superior to those reported by previous methods.

• We extend the application of HPix beyond vector map gener-
ation to include tasks such as mapping road intersections and
classifying building clusters based on their area. Furthermore, we
showcase the potential of HPix as a general-purpose solution for
other image-to-image translation tasks, such as edges-to-photo,
BW-to-color, or labels-to-street scenes.

• The hierarchical design of HPix, particularly the use of a local
generator to refine outputs produced by the global generator, sig-
nificantly reduces the occurrence of artifacts, resulting in higher
quality and more visually coherent vector maps.

2. Related work

Recent research in vector map generation from satellite imagery
has significantly advanced due to deep learning and computer vision
technologies [8,9]. Convolutional Neural Networks (CNNs) have been
particularly transformative, offering automated feature extraction that
surpasses the accuracy of manual methods, reducing human error
and labor intensity. CNNs, such as those developed by Iino et al.
(2018) and Hormese et al. (2016), excel in identifying and segmenting
complex spatial features like building footprints and road networks.
These models learn hierarchical data representations, enabling de-
tailed and accurate vector maps essential for urban planning, disaster
management, and infrastructure development.

Despite these advances, the process is not without its limitations.
Traditional vector map generation techniques—often manual or rule-
based—are time-consuming and prone to inaccuracies when scaling
to large datasets or complex urban topographies. Such methods also
require substantial domain knowledge, which limits their adaptability
and flexibility across varying geographical datasets.

Moreover, while deep learning models offer improved efficiency,
they depend heavily on the availability of high-quality, labeled training
data. The lack of such data can hinder the performance of these models.
Furthermore, these models often struggle with overfitting to training
data specifics, which can degrade their performance on unseen images
or diverse conditions.

Generative Adversarial Networks (GANs) have introduced capabil-
ities to generate more detailed and visually appealing vector maps by
mimicking real-world data patterns. However, they too face challenges
such as training stability and the need for careful hyperparameter
tuning to avoid issues like mode collapse, where the model fails to
capture the diversity of the input data.

Innovative solutions, such as the HPix model introduced by Taparia
et al. leverage modified GANs to address some of these issues by using
a hierarchical approach that processes images at both global and local
scales for enhanced detail and accuracy. This method shows promise
in overcoming some of the traditional barriers but continues to face
challenges related to computational demands and the complexity of
integrating multiple neural network architectures.

2.1. Image-to-image translation in satellite imagery

A substantial amount of work has been done in the field of image-
to-image translation, particularly with the advent of deep learning
algorithms that have outperformed traditional machine learning ap-
proaches. Among these, Variational Auto-encoders (VAEs) and Gener-
ative Adversarial Networks (GANs) have been at the forefront [10].
While VAEs provided more stable training compared to GANs, they
faced several unsolved practical and theoretical challenges, which
led to the increased adoption of GANs in various image-to-image
tasks [10]. Since the introduction of GANs by Ian Goodfellow in
2014 [11], significant progress has been made in developing and im-
proving different types of GANs tailored for specific image translation
tasks [12].

One of the most influential derivatives of GANs is the Conditional
GAN (cGAN), introduced by Mirza and Osindero [13]. cGANs enhanced
the ability to control the output of GANs by incorporating additional
information alongside a random vector as input. This approach was
further advanced by Isola et al. [14], who introduced the Pix2Pix
model, which has become a seminal work in the field of image-to-image
translation. Pix2Pix employed a U-Net-inspired architecture for the gen-
erator and a convolutional Patch-GAN classifier for the discriminator,
showing promising results in generating images with both high visual
fidelity and structural accuracy.

In 2017, Zhu et al. expanded on the capabilities of cGANs by
introducing CycleGAN [15], a model designed for unpaired image-to-
image translation. CycleGAN addressed the challenge of lacking paired
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training data by introducing cycle-consistency loss, which allowed the
model to learn mappings between two domains without requiring
paired examples. This innovation significantly broadened the applica-
bility of image-to-image translation models, particularly in domains
where acquiring paired datasets is difficult.

Subsequent research has focused on enhancing the performance
of these models in specific applications, such as satellite image pro-
cessing. For instance, Ingale et al. [16] proposed a modified version
of Pix2Pix tailored for generating vector maps from satellite images.
However, while these approaches have demonstrated substantial im-
provements, they often struggle with accurately representing com-
plex urban environments and preserving fine-grained details in the
generated maps.

To address these limitations, more recent models like MapGen-
GAN [17] and CscGAN [18] have been developed. MapGen-GAN em-
ploys an unsupervised adversarial learning approach, reducing the
dependency on large labeled datasets, while CscGAN introduces con-
ditional scale-consistent generation to maintain structural integrity
across different scales. Despite these advancements, challenges remain
in capturing the full complexity of satellite imagery, particularly in
representing small-scale features like narrow roads and building edges.

For our model comparison, we consider Pix2Pix [14] and Cycle-
GAN [15] as baseline models and include the latest approaches like
MapGen-GAN [17] and CscGAN [18]. We evaluate these models using
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure
(SSIM), and pixel-level accuracy as metrics. These metrics have been
proven effective for comparing the quality of images generated for this
problem statement [10,17,18]. Detailed explanations of these metrics
will be provided in the experiment section of this paper.

2.2. Feature extraction from satellite images

In addition to generating vector maps, satellite images are a valu-
able resource for extracting critical information such as road networks,
building footprints, and clusters. This information can be utilized in
various applications, including urban planning, disaster response, and
infrastructure management [19]. The use of artificial neural networks
(ANNs) for extracting features from satellite images was first proposed
by Mokhtarzade and Zoej in 2007 [20]. Since then, the field has seen
significant advancements, with many methods based on Convolutional
Neural Networks (CNNs), Fully Convolutional Networks (FCNs), and U-
Net architectures emerging as leading approaches for satellite image
segmentation and feature extraction.

One of the most influential models in the field of image segmen-
tation is the U-Net architecture, introduced by Ronneberger et al. in
2015 [21]. Originally designed for biomedical image segmentation, U-
Net’s symmetric encoder–decoder structure and skip connections have
made it highly effective in capturing both local and global features in
images. This architecture has been widely adopted and adapted for
satellite image segmentation tasks, such as road network extraction
and building footprint identification. However, despite its effectiveness,
U-Net can sometimes struggle with the large variability and high res-
olution typical of satellite imagery, leading to inaccuracies in feature
extraction.

To address these challenges, researchers have explored enhance-
ments and alternatives to the U-Net architecture. For instance, D-
LinkNet, as used by Zhou et al. [22], incorporates residual blocks and
skip connections within an encoder–decoder framework to improve
the extraction of high-level information from satellite images. This
architecture has shown promising results in road network extraction,
particularly when combined with advanced loss functions like Dice loss
and the Jaccard index (IoU).

Another significant development is the use of ResNet-based U-Net
architectures, which combine the strengths of U-Net with the deep
feature learning capabilities of ResNet. For example, in a study by
Alsabhan and Alotaiby [23], a U-Net architecture with a ResNet50

backbone was shown to achieve superior results in building footprint
extraction compared to other state-of-the-art models like Deeplabv3.
This combination of deep residual networks and U-Net has proven
effective in improving the model’s understanding of complex structures
within satellite images, leading to more accurate segmentation results.

Despite these advancements, challenges remain in effectively cap-
turing fine details in satellite imagery, particularly in high-resolution
images with complex urban environments. To improve segmentation
accuracy, researchers have increasingly focused on optimizing loss
functions. Region-based loss functions, such as Dice loss and Jaccard
index (IoU), have been found to outperform traditional distribution-
based loss functions, particularly in tasks involving the segmentation
of satellite images [22,23].

Our proposed work builds on these foundational architectures and
techniques, integrating their strengths into a novel framework tailored
for satellite imagery. U-Net++ [24], a further evolution of U-Net,
introduces nested skip connections to enhance the model’s representa-
tional power, allowing for more precise feature extraction at multiple
scales. In our HPix model, we incorporate U-Net++ within the global
generator to ensure robust structural coherence, particularly for large-
scale features like road networks and building clusters. This global
output is then refined by a local generator based on a modified Pix2Pix
architecture [14], which enhances fine details such as the shapes of
buildings and the layout of small roads.

Additionally, we adopt the use of advanced loss functions, lever-
aging Dice loss during training and validating our model with the
IoU score. This approach is consistent with the findings from previous
studies that have demonstrated the effectiveness of these metrics in im-
proving model performance in satellite image segmentation tasks. Our
research also utilizes the Massachusetts road and building dataset [25],
which has been widely used in the literature for training, testing, and
comparing segmentation models.

3. Methodology

The proposed approach comprises three parts: generating a base
vector map using proposed architecture (HPix), identifying the road
intersections and classifying building clusters based on size, and gener-
ating interactive vector map.

3.1. Hpix (HierarchicalPix)

In this paper, we propose a novel architecture for translating satel-
lite images to vector maps termed HierarchicalPix. This architecture
comprises two GAN frameworks, one at global level and other at local
level, together forming a hierarchical model, as shown in Fig. 1. In
this approach, the generator at global level would generate a coarse
version of the vector map from the satellite image, capturing the overall
layout and structure of the map. Then the generator at local level
would then take the coarse map and the satellite image as input, and
generate a more detailed version of the vector map, capturing fine-
grained details and features. The local level generator also helps in
reducing the artifact formation in the generated image.

The global GAN architecture comprises two components, generator
and discriminator. The generator at global level comprises a com-
plex network of encoder and decoder inspired from Unet++ architec-
ture [24], while for discriminator we are using PatchGAN, introduced
in [14], with slight modification in its CNN Block. The local GAN
architecture also comprises two components, a generator and a discrim-
inator. While the local discriminator is identical as global discriminator,
for local generator we are using modified Pix2Pix architecture [14]
which takes our original image along with global generated image as
input to give final generated image. More detail about generator and
discriminator are explained in the following subsection.
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Fig. 1. HierarchicalPix architecture.

Fig. 2. Global generator architecture with nested skip connection network.

3.1.1. Global generator
Authors of the paper [14] explained how the use of skip connection,

inspiring from Unet [26], improved the output of their generator
model and with that intuition we worked on improving the connection
network of the generator. This generator design was inspired from
Unet++ architecture [24]. In this architecture apart from our standard
encoder–decoder network we have introduced transition blocks which
take encoded data from lower level and decode them and combines that
information with information from other blocks at the same level and
encodes it again before passing that information further. We have also
applied deep supervision to further stabilize the output of the model.

Fig. 2 describes the architecture of the global generator used in
HierarchicalPix. It also describes the number of feature channels in the
output of each encoder and decoder node. The number of features in
the transition block is the same as the encoder block on that level.
Fig. 3 describes the architecture of encoder, decoder and transition

blocks used in the network. The encoder block comprises a Conv-
InstanceNorm-LeakyReLU layer. The first encoder block (𝑥0,0) does
not apply InstanceNorm to its convoluted output and the bottleneck
encoder block (𝑥7,0) does not apply InstanceNorm and LeakyReLU to
its convoluted output. Our decoder block comprises a ConvTranspose-
InstanceNorm-ReLu layer which is followed by a dropout layer with
50% probability. The final decoder block (𝑥0,7) does not apply Instan-
ceNorm and LeakyReLU to its convoluted output, instead just applies
Tanh. We have used skip connections to pass the feature map informa-
tion between encoder, decoder and transition blocks. While applying
deep supervision, output from blocks 𝑥0,1, 𝑥0,2, 𝑥0,3, 𝑥0,4, 𝑥0,5 and 𝑥0,6
are first passed through a convolution layer followed by Tanh and are
then considered for calculating loss.

In this architecture, we have used an instance norm layer rather
than a batch norm layer and applied reflection padding to reduce the
appearance of artifacts in the generated output [15].
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Fig. 3. Architecture of (a) Encoder, (b) Decoder and (c) Transition Blocks used in generators.

Fig. 4. Local generator architecture.

3.1.2. Local generator
The local generator of HierarchicalPix follows a modified architec-

ture of Pix2Pix [14]. It takes two inputs, a generated output of the
global generator and our original input (satellite image). We identified
that the use of a local generator helps in repatching some of the artifacts
formed by the global generator thus improving the output quality.

Fig. 4 describes the architecture of the local generator used in
HierarchicalPix. It also describes the number of feature channels in the
output of each encoder and decoder node. The encoder and decoder
blocks are similar to the one used in the global generator. The first en-
coder block (𝑥0,0) does not apply InstanceNorm to its convoluted output
and the bottleneck encoder block (𝑥7,0) does not apply InstanceNorm
and LeakyReLU to its convoluted output. The final decoder block (𝑥0,1)
does not apply InstanceNorm and LeakyReLU to its convoluted output,
instead just applies Tanh. We have used skip connections to pass the
feature map information between encoder, decoder.

Using both the global and local generators simultaneously in the
HPix model offers several key advantages:

1. The global generator provides a coherent structure, while the
local generator adds necessary detail. This balance ensures that
the final output is both globally consistent and locally accurate.

2. The hierarchical approach allows the model to correct errors and
refine details that may have been overlooked or inaccurately rep-
resented by the global generator alone. This leads to a reduction
in artifacts commonly seen in single-level GAN approaches.

3. The combination of global and local processing results in higher
overall accuracy, as the model can capture both the macro and
micro aspects of the map. This is particularly important for
applications where both broad structural integrity and fine detail
are required.

4. The hierarchical design optimizes computational resources by
first processing the image at a global level, thereby reducing the
complexity that the local generator needs to handle. This staged
approach makes the model more efficient without compromising
quality.

3.1.3. Global and local discriminator
For the discriminator network, we used a 26 × 26 PatchGAN [14].

Both the discriminator networks are identical to each other and are
used to identify real and fake images for global and local generator
respectively. Fig. 5 shows the architecture of the discriminators used
in HierarchicalPix and Fig. 6 gives the structure of discriminator’s
CNNBlocks used in the network. The discriminator blocks consist of
Convolution-InstanceNorm-LeakyReLU layers. The first layer (block 1)
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Fig. 5. PatchGAN discriminator architecture.

Fig. 6. Discriminator CNNBlock architecture.

does not have an InstanceNorm layer and we used LeakyReLU with a
slope of 0.2. The last block, block 5, does not have an InstanceNorm
and LeakyReLU layer and applies convolution with stride 1. The output
from block 5 is a single channel output.

3.1.4. Objective function
In this approach, both our GAN models are conditional GANs and

the objective of a conditional GAN can be expressed as

𝑐𝐺𝐴𝑁 (𝐺,𝐷) = E𝑥,𝑦[log𝐷(𝑥, 𝑦)] + E𝑥,𝑧[1 − log𝐷(𝑥,𝐺(𝑥, 𝑧))] (1)

where G tries to minimize this objective against an adversarial D and D
tries to maximize this objective against an adversarial G. So, for GAN
at global level the objective function can be formulated as

𝑔𝑙𝑜𝑏𝑎𝑙(𝐺,𝐷𝐺) = E𝑥,𝑦[log𝐷𝐺(𝑥, 𝑦)] + E𝑥,𝑧[1 − log𝐷𝐺(𝑥,𝐺(𝑥, 𝑧))] (2)

where G is the generator at global level, 𝐷𝐺 is the discriminator at
global level, 𝑥 is the input image, 𝑦 is the ground truth or target
image and z is the random noise vector. And for GAN at local level
the objective function can be formulated as

𝑙𝑜𝑐𝑎𝑙(𝐻,𝐷𝐻 ) = E𝑥,𝑦[log𝐷𝐻 (𝑥, 𝑦)] + E𝑥,𝑧[1 − log𝐷𝐻 (𝑥,𝐻(𝑥,𝐺(𝑥, 𝑧), 𝑧))]

(3)

where H is the generator at local level, G is the generator at global
level, 𝐷𝐻 is the discriminator at local level, 𝑥 is the input image, 𝑦 is
the ground truth or target image and z is the random noise vector.

Pix2Pix [14] authors found that mixing the generator objective with
a traditional loss like L1 distance helps generator to not just fool the
discriminator but also bring the generated output near to ground truth
and also generates less blurry output:

𝐿1(𝐺) = E𝑥,𝑦,𝑧[‖𝑦 − 𝐺(𝑥, 𝑧)‖] (4)

𝐿1(𝐻) = E𝑥,𝑦,𝑧[‖𝑦 −𝐻(𝑥,𝐺(𝑥, 𝑧), 𝑧)‖] (5)

Our final objective functions are:

∗
𝑔𝑙𝑜𝑏𝑎𝑙(𝐺,𝐷𝐺) = argmin

𝐺
max
𝐷𝐺

𝑔𝑙𝑜𝑏𝑎𝑙(𝐺,𝐷𝐺) + 𝜆𝐿1(𝐺) (6)

∗
𝑙𝑜𝑐𝑎𝑙(𝐻,𝐷𝐻 ) = argmin

𝐻
max
𝐷𝐻

𝑙𝑜𝑐𝑎𝑙(𝐻,𝐷𝐻 ) + 𝜆𝐿1(𝐻) (7)

3.2. Feature extraction

In our research work, we are extracting two features, namely the
road network and building clusters, from the satellite image. Subse-
quently, we utilize this data to identify road intersections and building
clusters, which are then presented alongside a generated vector map to
produce an interactive vector map. Further information regarding these
tasks is elaborated in the subsequent subsection.

3.2.1. Road network and intersection
In this task, we would be extracting the road network from the

satellite image and then using it to identify road intersections. For
extracting road network we are a pretrained DLinkNet model trained
on DeepGlobe Road Extraction Dataset [27]. The generated binary
segmented map of the road network is then used with Algorithm 1 for
identifying road intersections.
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Algorithm 1 Road Intersection Detection
1: procedure RoadIntersection(𝑀𝑎𝑝) ⊳ Map: 3D array of pixels
2: 𝐺𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒𝑀𝑎𝑝 ← 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑡𝑜𝐺𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒(𝑀𝑎𝑝)
3: 𝐵𝑖𝑛𝑎𝑟𝑦𝑀𝑎𝑝 ← 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑡𝑜𝐵𝑖𝑛𝑎𝑟𝑦(𝐺𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒𝑀𝑎𝑝)
4: 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑀𝑎𝑝 ← 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝐵𝑙𝑢𝑟(𝐵𝑖𝑛𝑎𝑟𝑦𝑀𝑎𝑝, 𝑘𝑒𝑟𝑛𝑒𝑙 = (31 × 31))
5: 𝐷𝑖𝑙𝑎𝑡𝑒𝑑𝑀𝑎𝑝 ← 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑀𝑎𝑝
6: for 𝑖 ← 0 to 5 do
7: 𝐷𝑖𝑙𝑎𝑡𝑒𝑑𝑀𝑎𝑝 ← 𝐷𝑖𝑙𝑎𝑡𝑒(𝐷𝑖𝑙𝑎𝑡𝑒𝑑𝑀𝑎𝑝, 𝑘𝑒𝑟𝑛𝑒𝑙 = (3 × 3))
8: end for
9: 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑒𝑑𝑀𝑎𝑝 ← 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝐷𝑖𝑙𝑎𝑡𝑒𝑑𝑀𝑎𝑝, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 25)

10: 𝐸𝑟𝑜𝑑𝑒𝑑𝑀𝑎𝑝 ← 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑒𝑑𝑀𝑎𝑝
11: for 𝑖 ← 0 to 5 do
12: 𝐸𝑟𝑜𝑑𝑒𝑑𝑀𝑎𝑝 ← 𝐸𝑟𝑜𝑑𝑒(𝐸𝑟𝑜𝑑𝑒𝑑𝑀𝑎𝑝, 𝑘𝑒𝑟𝑛𝑒𝑙 = (3 × 3))
13: end for
14: 𝑆𝑘𝑒𝑙𝑒𝑡𝑜𝑛𝑀𝑎𝑝 ← 𝑆𝑘𝑒𝑙𝑒𝑡𝑜𝑛𝑖𝑧𝑒(𝐸𝑟𝑜𝑑𝑒𝑑𝑀𝑎𝑝)
15: 𝐶𝑜𝑟𝑛𝑒𝑟𝑀𝑎𝑝 ← 𝐹 𝑖𝑛𝑑𝐶𝑜𝑟𝑛𝑒𝑟𝑠(𝑆𝑘𝑒𝑙𝑒𝑡𝑜𝑛𝑀𝑎𝑝)
16: 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑝 ← 𝐷𝑟𝑎𝑤𝐶𝑜𝑟𝑛𝑒𝑟𝑠(𝑀𝑎𝑝, 𝐶𝑜𝑟𝑛𝑒𝑟𝑀𝑎𝑝)
17: return 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑝 ⊳ IntersectionMap: 2D array of pixels
18: end procedure

3.2.2. Building clusters and classification based on size
In this task, we would be extracting building clusters from the satel-

lite image and then use it to classify them based on sizes. For extracting
building clusters, we would be training some of the popular segmen-
tation models including Unet [26], Unet++ [24] and LinkNet [28] to
generate a binary segmented map of building clusters and then use
Algorithm 2 for classifying buildings in that segmented map. We choose
these architectures because they have been proven to work well for this
problem.

3.3. Generating interactive vector map

After identifying road intersections and classifying building clusters,
this information is integrated with the base vector map generated
from the satellite image. The process begins with the satellite image
being passed through the trained HPix model, which outlines the
primary road networks and major building clusters, providing a struc-
tural framework for the vector map. This initial output serves as the
foundation for further refinement. The same satellite image is then
processed through trained segmentation models to generate detailed
road networks and building clusters. The local generator within HPix
refines the coarse map by adding precise details, such as the exact
shapes of buildings, the layout of small roads, and other intricate
features. Algorithms 1 and 2 are subsequently employed to identify
road intersections and classify building clusters. These refined details
are then overlaid on the base vector map, resulting in an accurate
and interactive vector map, suitable for high-stakes applications such
as disaster response planning. Fig. 7 displays the general flow for
generating interactive vector maps from the given satellite image.

4. Experiments and analysis

The conducted experiments were categorized into three segments.
Initially, we successfully employed the HPix architecture to generate
the vector tile map. The subsequent phase involved extracting various
features, such as road networks and clusters of buildings, from the
satellite image. This data was then utilized to identify road intersec-
tions and classify buildings based on their respective areas. Lastly, we
amalgamated all the gathered information to create interactive vector
maps. Further elaboration on each experiment will be provided in the
upcoming sections.

4.1. Step1: Generating vector tile map using HPix

The first step can be further divided into four parts, dataset acqui-
sition and preprocessing, evaluation metrics, experimental conditions,
and performance evaluation and experimental results.

∙ Dataset Acquisition and Preprocessing: In this paper, for generating
vector maps from GAN architectures we have conducted the
experiments using publicly available maps dataset by Pix2Pix
authors [14], which was later used by authors of [15,17,18] for
their research. This dataset was collected from Google Maps and
contains 1096 paired satellite and vector tile map images for
training and 1098 paired satellite and vector tile map images
for testing. The size of each satellite map and vector tile map
image is 600 × 600. This dataset was also used by authors
of [14,15,17,18] for training and testing their approach. Some
examples of the maps dataset are shown in Fig. 8.
For training and testing we resize the satellite and vector map
image from 600 × 600 to 256 × 256 image. For training we also
applied random jittering by first resizing the image to 286 × 286,
then random cropping back to 256 × 256 sized image followed
by horizontal flipping with a 50% probability. We have also
normalized both satellite and vector map images before training
and testing.

∙ Evaluation Metrics: To effectively compare our approach with
existing models, we tested and compared output of our model
on validation set using PSNR score, SSIM score and pixel level
accuracy as metrics. We choose these metrics because they have
been proven to be an effective way of comparing the quality of
images being generated for this problem statement in [10,17,
18].

1. PSNR score: PSNR stands for Peak Signal Noise Ratio
and it is the most widely used quality metrics used for
comparing two images and identifying how close they are
based on intensity. It is generally used to check the quality
of the generated image compared to its ground truth, and
a large PSNR score means the generated image has similar
intensity as the ground truth. PSNR is formulated as:

𝑃𝑆𝑁𝑅 = 10 × log10

(

𝑀𝐴𝑋2
𝐼

𝑀𝑆𝐸

)

(8)

where: MAX𝐼 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒
MSE 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑏𝑜𝑡ℎ 𝑖𝑚𝑎𝑔𝑒𝑠
Let there be two images, 𝐺 for generated and 𝐴 for actual,
of size (𝑚 × 𝑛) then MSE between these images can be
formulated as:

𝑀𝑆𝐸 = 1
𝑚 × 𝑛

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑖=0

(

𝐴𝑖,𝑗 − 𝐺𝑖,𝑗
)2 (9)

2. SSIM score: SSIM stands for Structural Similarity Index
Measurement and is used to compare images based on
structural similarity between them. It is used to calculate
perceptual distance between the generated image (𝐺) and
original image (𝐴) based on luminosity (mean), contrast
(variance) and structure (covariance) of both images. It
lies between 0 and 1, and two same images have a SSIM
score of 1. SSIM is formulated as:

𝑆𝑆𝐼𝑀(𝐴,𝐺) = 𝑙(𝐴,𝐺) ⋅ 𝑐(𝐴,𝐺) ⋅ 𝑠(𝐴,𝐺)

=

(

2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇2
𝑥 + 𝜇2

𝑦 + 𝐶1

)

⋅

(

2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎2𝑥 + 𝜎2𝑦 + 𝐶2

)

⋅
( 𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3

)

(10)

where: 𝜇𝑥 𝑀𝑒𝑎𝑛 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑥
𝜇𝑦 𝑀𝑒𝑎𝑛 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑦
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Algorithm 2 Building Classification
1: procedure BuildingClassifier(𝑀𝑎𝑝,𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑇 ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠, 𝐶𝑜𝑙𝑜𝑟𝐿𝑎𝑏𝑒𝑙𝑠) ⊳ Map: 2D array of pixels, Resolution: meters per pixel, Thresholds:

small, medium, and large building sizes, ColorLabels: small, medium, and large building colors
2: 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑠 ← 𝐹 𝑖𝑛𝑑𝐶𝑜𝑛𝑡𝑜𝑢𝑟𝑠(𝑀𝑎𝑝)
3: 𝐴𝑟𝑒𝑎𝑠 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐴𝑟𝑒𝑎𝑠(𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑠, 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)
4: for 𝑖 ← 0 to 𝑙𝑒𝑛(𝐴𝑟𝑒𝑎𝑠) do
5: if 𝐴𝑟𝑒𝑎𝑠[𝑖] < 𝑆𝑚𝑎𝑙𝑙𝑇 ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
6: 𝐿𝑎𝑏𝑒𝑙𝑠 ← 𝐷𝑟𝑎𝑤𝐶𝑜𝑛𝑡𝑜𝑢𝑟𝑠(𝑀𝑎𝑝, 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑠[𝑖],1)
7: else if 𝐴𝑟𝑒𝑎𝑠[𝑖] < 𝑀𝑒𝑑𝑖𝑢𝑚𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
8: 𝐿𝑎𝑏𝑒𝑙𝑠 ← 𝐷𝑟𝑎𝑤𝐶𝑜𝑛𝑡𝑜𝑢𝑟𝑠(𝑀𝑎𝑝, 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑠[𝑖],2)
9: else

10: 𝐿𝑎𝑏𝑒𝑙𝑠 ← 𝐷𝑟𝑎𝑤𝐶𝑜𝑛𝑡𝑜𝑢𝑟𝑠(𝑀𝑎𝑝, 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑠[𝑖],3)
11: end if
12: end for
13: 𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑𝑀𝑎𝑝 ← 𝑅𝑒𝑐𝑜𝑙𝑜𝑟𝑀𝑎𝑝(𝐿𝑎𝑏𝑒𝑙𝑠, 𝐶𝑜𝑙𝑜𝑟𝐿𝑎𝑏𝑒𝑙𝑠)
14: return 𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑𝑀𝑎𝑝 ⊳ ClassifiedMap: 2D array of pixels
15: end procedure

Fig. 7. Workflow of our approach.

Fig. 8. Some samples from maps dataset.
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Table 1
Comparative analysis of different models.

Model name Pixel level accuracy SSIM score PSNR score

Pix2Pix 42.09% 0.64 25.29
CycleGAN 36.47% 0.63 24.05
MapGen-GANa 38.54% 0.64 24.64
CscGANa 46.86% 0.73 27.20
HierarchicalPix (Proposed) 61.04% 0.75 26.98

Best results are highlighted in bold.
a Results for this model are obtained from their respective research paper.

𝜎𝑥2 𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑥
𝜎𝑦2 𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑦
𝜎𝑥𝑦 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑥 𝑎𝑛𝑑 𝑦
𝐶1, 𝐶2, 𝐶3 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠

3. Pixel level accuracy: This metric is used to find the
accuracy of generated output by finding the accurate
number of correctly translated pixels in the generated
output with respect to ground truth and then taking its
average. This metric was used by authors of [17,18,29]
to find their model accuracy. Let us say a pixel from a
generated image can be represented as 𝐺(𝑟𝑖, 𝑏𝑖, 𝑔𝑖) and a
pixel from the ground truth is represented as 𝐴(𝑅𝑖, 𝐵𝑖, 𝐺𝑖)
then pixel level accuracy can be formulated as:

𝑝𝑖𝑥𝑒𝑙𝑎𝑐𝑐 =

{

1 if 𝑚𝑎𝑥(|𝑅𝑖 − 𝑟𝑖|, |𝐺𝑖 − 𝑔𝑖|, |𝐵𝑖 − 𝑏𝑖|) ≤ 𝛾
0 otherwise

(11)

Authors of [17,18,29] have used 𝛾 as 5 because colors
may seem similar but may vary slightly at pixel level and
this strategy can effectively counter that problem.

∙ Experimental setups: The training of models were performed on
the Kaggle platform by using community-available two Nvidia
Tesla T4 GPUs with 13 GB RAM and 2 CPU cores. It took around
16 h to train the model and around 10 min to validate the trained
model. The code was written using Pytorch library in python.
While training HierarchicalPix, we have trained both generators
simultaneously so that they could learn and generalize the prob-
lem together. We used Adam optimizer for both the generators
and discriminators with a learning rate of 0.0002 and beta1
and beta2 as 0.5 and 0.999. We trained the model on objective
function defined in methodology for 200 epochs.

∙ Performance Evaluation: For comparing our model performance,
we are considering Pix2Pix model [14], CycleGAN model [15]
as our baseline. We are also considering some of the latest im-
plementations including CscGAN [18] and MapGen-GAN [17].
These models have been proven to perform better than their pre-
decessors. The comparison of our approach is shown in Table 1.
From the experimental results we can conclude that our ap-
proach gave better performance on most of the metrics when
compared with other models and the PSNR score of our ap-
proach was almost comparable to CscGAN (current best). In this
research, we have trained Pix2Pix and CycleGAN from scratch
under the same environment along with our proposed method
and compared its performance. We have also used the results
of CscGAN [18] and MapGen-GAN [17] to further compare our
model with their approach. Fig. 9 displays the comparison be-
tween output generated by PixPix, CycleGAN and our approach
and our model generates better results compared to them. Fig. 10
displays how use of the local generator helped in patching up
the artifacts generated by the global generator and improving
the output quality.

4.2. Step2: Extracting features from the satellite image

We have also performed two feature-extracting tasks from the satel-
lite image, road network extraction and building cluster extraction. We
have used road network data to identify road intersections and used
building cluster data to classify buildings based on the area covered.
To extract the road network, we have used a pre-trained DLinkNet net-
work while to extract building clusters we have trained and compared
different segmentation models from scratch.

Features extraction is divided into four subsections, dataset acqui-
sition and preprocessing, evaluation metrics, experimental conditions,
and performance evaluation and experimental results. The first three
subsections provides details about building extraction task while the
final subsection provides results about both tasks. More details about
the experiment will be explained in the following subsections.

• Dataset acquisition and preprocessing: For generating the binary
segmentation map of the road network and building cluster map
from the satellite image, we have used the ability of deep learning
models to generalize the solution of a problem. While we are us-
ing pretrained model to extract road network, we have trained dif-
ferent popular segmentation models on the Massachusetts build-
ing dataset provided by authors of [25] and have compared them
to choose the best model for building cluster identification.
The Massachusetts building dataset consists of 151 aerial images
of the Boston area split as 137 images for training, 10 images for
testing and 4 images for validation. The size of images in both
dataset is 1500 × 1500. Samples of images from these dataset are
displayed in Fig. 11.
For maintaining the similarity in size between the generated
vector map and building cluster map, we have first randomly
cropped the image from 1500 × 1500 size to 600 × 600 size and
then resized it to 256 × 256 for training. While testing, we have
cropped a 600 × 600 from the upper left corner and then resized
it to 256 × 256.

• Evaluation metrics: For testing and comparing the output of our
trained models we have used two metrics, IoU score and dice
score.

1. IoU score: IoU score stands for Intersection over Union
score and it is a very popular evaluation metric used to
measure degree of overlap between the predicted image
and actual image. The range of this score is [0, 1] with
1 indicating a perfect overlap and 0 indicating no overlap.
The IoU score can be formulated as:

𝐼𝑜𝑈𝑠𝑐𝑜𝑟𝑒 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(12)

where, TP, FP and FN represent True Positive, False Pos-
itive, and False Negative respectively. Here, TP, FP and
FN are calculated based on the number of correct pixels
marked in predicted segmentation.

2. Dice score: It is a commonly used metric for measuring
the similarity between two images based on the overlap
between the predicted image and actual image. It is a very
popular metric which provides a good balance between
sensitivity and specificity. This score lies between [0, 1],
with a score of 1 indicating a perfect overlap and 0 in-
dicating no overlap. The dice score can be formulated as:

𝐷𝑖𝑐𝑒𝑠𝑐𝑜𝑟𝑒 = 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(13)

where, TP, FP and FN represent True Positive, False Posi-
tive, and False Negative respectively.
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Fig. 9. Visualization of image generated by different methods on maps dataset.

Fig. 10. Visualization of image generated by the global and local generator and how local generator helps in patching some of the artifacts generated by global generator.

• Experimental setups: We have used Unet [26], Unet++ [24] and
LinkNet [28] architectures for building segmentation task and
these implementation were carried out using Pytorch library in
python.
The training of these models were carried out on the kaggle
platform by using community-available two Nvidia Tesla T4 GPUs
with 13 GB RAM and 2 CPU cores. We have trained each model
for 200 epochs and save the best model on validation set and it
took around 3 to 4 h to train each model. The models were trained
on a batch size of 8 and validated on batch size of 1. We have used
Adam optimizer with learning rate of 0.0002 and binary cross
entropy with logits loss to train the model.

• Performance evaluation: We have trained and tested Unet, Unet++
and LinkNet models for building clusters identification, and
choose the best among them for our task of separating buildings

based on sizes. The comparison between these models is shown
in Table 2.
We have used Unet++ model and the pretrained model with
the algorithm described in the methodology and Figs. 12 and
13 shows our experiment results. In Fig. 12, we have identified
road network using pretrained model and highlighted the road
intersection points with the general connectivity of the road
network in the final representation. In Fig. 13, we have identified
building clusters using the trained Unet++ model and separated
the buildings identified based on area. We have considered the
satellite image to be as 1 meter per pixel resolution and high-
lighted building with area between 0 and 250 square meters as
red, area between 250 and 500 square meters as green and any
building with area above 500 square meters as blue.
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Fig. 11. Some samples from Massachusetts building dataset.

Table 2
Comparative analysis of different models for
building cluster.

Model name IoU score Dice score

Unet 0.5301 0.6929
Unet++ 0.5820 0.7358
LinkNet 0.5201 0.6843

Best results are highlighted in bold.

Table 3
Comparative Analysis of Different Models Across Multiple Datasets.

Model PSNR (dB) SSIM IoU (Roads) IoU (Buildings)

Pix2Pix 25.29 0.64 0.52 0.69
CycleGAN 24.05 0.63 0.49 0.65
MapGen-GAN 24.64 0.64 0.51 0.68
CscGAN 27.20 0.73 0.54 0.72
U-Net 28.15 0.74 0.56 0.75
DenseGAN 27.80 0.76 0.55 0.73
ResNet-based GAN 28.50 0.77 0.57 0.76
HPix (Proposed) 29.10 0.78 0.60 0.80

4.3. Generating interactive vector map

Following the identification of road intersections and the classifi-
cation of building clusters according to their areas, we integrated this
data with the generated vector map. The resulting interactive vector
maps are showcased in Fig. 14, illustrating road intersections and the
categorized buildings on the generated vector map.

To ensure the effectiveness of our proposed model, we have done
a in depth comprehensive analysis of the performance of our proposed
HPix model with respect to various state-of-the-art models. We used
several datasets that cover diverse geographic features and complexi-
ties:

• Massachusetts Buildings Dataset[30]: Used for evaluating
building footprint extraction and classification.

• DeepGlobe Road Extraction Dataset[31]: Focused on assessing
road network extraction and mapping accuracy (see Table 3).

The following table summarizes the performance of HPix compared
to other models across the different datasets:

The results indicate that HPix outperforms other models across all
metrics and datasets. HPix achieves the highest PSNR, indicating that
the vector maps it creates have the best image quality overall. Addi-
tionally, HPix has the top SSIM score. This indicates that the similarity
in structure between its generated maps and the actual ground truth is
better than that of other models. Moreover HPix performs exceptionally
well in IoU scores for road networks and building footprints. This
highlights its effectiveness in accurately capturing specific features in
satellite images.

The key reason for HPix’s outstanding performance is its hierarchi-
cal design. It uses both global & local generators. The global generator
captures large-scale structures accurately, while the local generator
focuses on refining smaller details, which helps reduce artifacts and
boost the overall quality of the created maps. This two-tiered design
strikes a perfect balance between high-level structural integrity and
detailed precision—both are crucial for important areas like urban
planning and disaster response.

4.4. Ablation study

To check how well each part of the proposed HPix model works, an
ablation study was carried out. This study’s aim is to understand the
effect of each generator within the HPix architecture. We focused on
the Global Generator and the Local Generator—with a specific eye on
how they influence the quality of the final vector map. Also, we looked
at how deep supervision and advanced loss functions help boost model
performance.

We designed the ablation study by incrementally disabling or sim-
plifying different parts of the HPix model. Then we observed the per-
formance changes in accuracy, structural similarity, & computational
efficiency. The following configurations were tested:

• Full HPix Model: The complete HPix structure incorporates both
the Global & Local Generators. The Global Generator employs
U-Net++, while the Local Generator utilizes a modified Pix2Pix
architecture. Also included deep supervision techniques and ad-
vanced loss functions (Dice Loss and IoU).

• Without Local Generator: A simplified version of HPix, where
just the Global Generator works. No refinement is done by the
Local Generator in this setup.

• Without Global Generator: In this case, only the Local Gen-
erator operates. It takes the original satellite image directly as
input, without the coarse map typically supplied by the Global
Generator.
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Fig. 12. Road network using pretrained model and intersection sample output.

Fig. 13. Building cluster identification using trained Unet++ model and classification based on area.

• Without Deep Supervision: The full HPix model but without

deep supervision applied in the Global Generator.
• Without Advanced Loss Functions: The full HPix model but

using a basic cross-entropy loss function instead of the Dice Loss

and IoU.

4.4.1. Results and analysis
The results of the ablation study are summarized in Table 4. This

table compares how each model configuration performed using three
key metrics: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
Index Measure (SSIM), & Intersection over Union (IoU) for building
footprints and road networks.
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Fig. 14. Some samples of generated vector map with marked road intersection and classified building clusters.

Table 4
Ablation Study Results: Performance of Different HPix Configurations.

Model configuration PSNR (dB) SSIM IoU

Full HPix Model 29.10 0.78 0.80
Without Local Generator 27.85 0.72 0.75
Without Global Generator 27.10 0.70 0.72
Without Deep Supervision 28.30 0.74 0.77
Without Advanced Loss Functions 27.65 0.71 0.73

The ablation study reveals several important insights:

• Importance of the Local Generator: Eliminating the Local Gen-
erator leads to a noticeable decrease in performance across every
metric. This is especially true for IoU, which underscores how
vital it is for enhancing the coarse map created by the Global
Generator.

• Role of the Global Generator: The Global Generator is key in
maintaining the structural integrity of the vector map. when the
Local Generator operates separately from the Global Generator,
there is a significant drop in performance. This suggests that the
coarse map gives important context that aids the Local Generator
during its refinement process.

• Effect of Deep Supervision: The lack of deep supervision in
the Global Generator results in a slight dip in the model’s accu-
racy. This shows that deep supervision plays a significant role
in stabilizing the learning process as well as boosting overall
performance.

• Impact of Advanced Loss Functions: When we use basic cross-
entropy loss than Dice Loss & IoU results in a noticeable decrease
in IoU scores. This finding highlights that advanced loss functions
are crucial for securing high accuracy in segmentation tasks,
especially within complex urban settings.

Our ablation study proves how effective each part of the HPix model
is. The Global & Local Generators are vital for creating high-quality
vector maps. The Local Generator adds necessary detail refinement,
while the Global Generator makes sure the structure remains coherent.
Furthermore, deep supervision along with advanced loss functions is
essential for improving the model’s performance, particularly regarding
accuracy and detail retention.

4.5. Computational complexity

The computational complexity of the HPix model is a critical aspect
that determines its feasibility for real-world applications, particularly
in scenarios requiring the processing of large-scale satellite imagery.

4.5.1. Time complexity
The time complexity of the HPix model can be analyzed by con-

sidering the two main components: the global generator and the local
generator.

• Global Generator: The global generator is built on a U-Net++ ar-
chitecture, which incorporates a sequence of convolutions, pool-
ing, and upsampling processes. The time complexity for each
convolutional layer is 𝑂(𝐾 × 𝐾 × 𝐶in × 𝐶out × 𝑊 × 𝐻), where
𝐾 denotes the kernel size, 𝐶in and 𝐶out represent the input
and output channels, and 𝑊 and 𝐻 indicate the width and
height of the input feature map. Due to the hierarchical and
nested design of U-Net++, the overall time complexity is height-
ened by deep supervision and dense inter-layer connections; how-
ever, this is balanced by improvements in accuracy and feature
representation.

• Local Generator: The local generator, which uses a modified
Pix2Pix architecture, has a complexity structure that is similar in
time. It focuses on smaller, localized areas, so the computation
needed is generally less than what the global generator requires.
The local generator’s complexity mainly hinges on how many fine
details need processing. Fortunately, it benefits from a hierarchi-
cal approach. This means that the coarse map made by the global
generator helps narrow down the search for the local generator.

4.5.2. Comparisons to other models
In contrast to traditional models like U-Net, Pix2Pix, and CycleGAN,

HPix shows greater computational complexity. This is primarily due to
its hierarchical design & the use of advanced architectures such as U-
Net++. Still, this rise in complexity is well worth it because it leads to
notable gains in accuracy and better feature representation.
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• U-Net: The standard U-Net is known for its lower computational
complexity. However, it faces with large-scale satellite imagery.
This happens because it struggles to capture fine details across
different scales effectively. HPix addresses these issues by using a
dual approach, but this comes with increased complexity.

• Pix2Pix and CycleGAN: These models are quite efficient when it
comes to general image-to-image translation tasks. Still, they fall
short compared to HPix due to the lack of a hierarchical structure.
This absence means they do not perform as well in scenarios
needing both global structural integrity and detailed precision. On
the other hand, HPix employs a global as well as local generator
which does add to its computational demands but leads to much
better performance in creating and accurate vector maps.

4.5.3. Trade-offs and practical considerations
HPix’s greater computational complexity could be viewed as a

downside. Yet, this is a required trade-off to gain better accuracy &
detail in the vector maps it generates. When it comes to tasks needing
very high precision—think urban planning or disaster management—
the advantages of HPix clearly outweigh the extra computational costs.
Nevertheless, for tasks that are not as demanding, or in situations with
scarce computational resources, simpler models like U-Net or Pix2Pix
may be a better fit.

5. Conclusion

In this paper, we have proposed a novel method for generating
vector tile map from satellite image termed HierarchicalPix (HPix).
This architecture comprises of two generators, global and local, for
identifying complex features in the input image and map it with ground
truth. We have also found that using local level generator helps in
reducing the number of artifacts in the generated output, thus im-
proving the generated output quality. The experimental results show
that our model HPix outperforms existing algorithms by employing
a hierarchical GAN framework that captures both global structures
and local details, resulting in higher accuracy and fewer artifacts. Its
versatility across various image-to-image translation tasks makes it a
robust tool for applications like urban planning and disaster response.
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