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Abstract
Pinnipeds have long, sensitive, moveable mystacial vibrissae. In other mammals, intrin-
sic muscles contribute to protracting the vibrissae. However, the mystacial muscles of 
pinnipeds have not yet been systematically described. Using traditional histological 
methods provides us with two-dimensional muscle images, but having the ability to 
visualise these structures in three dimensions would allow for a more comprehensive 
understanding of pinniped vibrissal anatomy, especially given the challenges posed by 
their large and extremely curved mystacial pad. We predicted that harbour seals would 
have large, regular intrinsic muscles due to their well-organised, moveable vibrissae. 
We adopted diffusible iodine contrast-enhanced computer tomography (diceCT) to 
describe, for the first time, the three-dimensional architecture of the mystacial vibris-
sal muscles found in harbour seals. Our observations show that their vibrissae are 
organised into grids within the mystacial pad. We identified both sling-shaped and 
oblique intrinsic muscles that connect one vibrissae to the next in the same row. We 
also identified extrinsic muscles, including the m. nasolabialis, m. maxillolabialis, m. 
levator nasolabialis and m. orbicularis oris. Contrary to our prediction, the intrinsic 
muscles were not very large, although they were regularly distributed throughout the 
pad. Rather, the extrinsic muscles, particularly the m. nasolabialis and m. maxillola-
bialis were large, deep and well-defined, running throughout the length of the mys-
tacial pad. Therefore, we suggest that these extrinsic muscles, the m. nasolabialis and 
m. maxillolabialis, are responsible for driving vibrissal protraction underwater. These 
findings demonstrate the importance of three-dimensional visualisation techniques in 
advancing our understanding of mystacial anatomy and function in pinnipeds.
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diffusible iodine contrast-enhanced computer tomography, extrinsic, harbour seal, intrinsic, 
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1  |  INTRODUC TION

Mystacial whiskers, or vibrissae, are specialised tactile hairs pres-
ent on the faces of many mammal species (Ahl, 1986) and can vary 
between species in terms of size, shape, number and arrangement 
(Brecht et  al.,  1997; Dehnhardt,  2002; Muchlinski et  al.,  2020; 
Woolsey et al., 1975). Mystacial vibrissae are arranged in rows and 
columns (Woolsey et al., 1975) and are long, ordered and regular 
in nocturnal, arboreal and aquatic mammals (Grant et  al.,  2016, 
2021; Muchlinski et  al.,  2020). Mystacial vibrissae guide be-
haviours, such as navigation, locomotion, exploration and hunting 
(Grant & Arkley, 2016; Grant et al., 2009, 2018). To do this, vibris-
sae are controlled and moved in complex patterns by facial mus-
cles, bringing about changes in position, speed and spread (Grant 
et al., 2009; Mitchinson et al., 2007).

The muscles of mammalian facial vibrissae comprise of intrinsic 
and extrinsic muscles, which have been described across numerous 
terrestrial mammals, including mice, Mus musculus (Dörfl,  1982), 
hamsters, Mesocricetus auratus, (Wineski,  1985), guinea pigs, 
Cavia porcellus (Grant et  al.,  2016), opossums, Monodelphis domes-
tica, (Grant et  al., 2013b), brown rats, Rattus norvegicus, (Haidarliu 
et  al.,  2010), shrews, Sorex unguiculatus (Yohro,  1977) and noctur-
nal primates (Muchlinski et al., 2013). Intrinsic muscles are attached 
within the mystacial pad (Bosman et al., 2011; Dörfl, 1982; Haidarliu 
et al., 2010), whereas extrinsic muscles have their insertion points 
outside the mystacial pad (Dörfl,  1982; Haidarliu et  al.,  2010; 
Wineski, 1985). Both extrinsic and intrinsic muscles vary between 
species, although extrinsic muscles are thought to vary the most 
(Grant et al., 2013a; Yohro, 1977). The size and regularity of intrinsic 
muscles also differ between species (Grant et al., 2013a; Muchlinski 
et  al., 2013). Nocturnal whisker specialists, such as mice and rats, 
have large, regular intrinsic muscles compared to more diurnal mam-
mals, such as guinea pigs and short-tailed opossums, which have 
smaller, less regular intrinsic muscles, that even cross between whis-
ker rows (Grant et al., 2013b, 2016).

Pinnipeds are a group of marine carnivorans, comprising of pho-
cids (true or earless seals), otariids (sea lions or eared seals) and odo-
benids (walruses). Pinnipeds are classed as whisker specialists due 
to the crucial role vibrissae play in their sensory ecology (Adachi 
et al., 2022; Dougill et al., 2020; Milne et al., 2020) and their vibris-
sae are highly sensitive (Dehnhardt et  al.,  1998; Hyvärinen,  1989; 
Hyvärinen & Katajisto,  1984; Marshall et  al.,  2006; McGovern 
et  al.,  2014). The most diverse vibrissae of any mammal are seen 
in pinnipeds (Dougill et  al.,  2020; Ginter et  al.,  2009), which vary 
between species, in terms of size, number, arrangement and shape, 
reflecting specialised adaptations for their aquatic lifestyles (Dougill 
et al., 2020; Ginter et al., 2009, 2012; Ling, 1977; Milne, et al., 2021a; 
Watkins & Wartzok,  1985). Distinctive vibrissal morphologies are 
notably different between the three families. Odobenids, otariids 
and three species of phocid—the bearded seal (Erignathus barbatus) 
and monk seals (Monachus monachus and Neomonachus spp.) possess 
smooth, vibrissae (Dehnhardt & Hanke, 2018); while all other phocid 
species have undulating vibrissae which are proposed to optimise 

underwater sensory perception by minimising signal-to-noise ratios 
during swimming (Hanke et al., 2010).

Phocid harbour seals (Phoca vitulina) have been extensively stud-
ied for their uniquely shaped undulating vibrissae and their role in 
sensory perception (Dehnhardt & Kaminski,  1995, 2001; Newby 
et al., 1970; Renouf, 1979a, 1979b; Wieskotten et al., 2010a, 2010b). 
Harbour seals have been shown to use their vibrissae to complete 
several discrimination tasks extremely quickly (<400 ms), detecting 
size differences down to 2 mm both on land and in water (Dehnhardt 
et al., 1995, 1998). In addition, harbour seals use their vibrissae for 
identifying different textures, being able to distinguish grooves with 
widths as small as 0.18 mm (Dehnhardt et al., 1998). Not only are har-
bour seal vibrissae well-equipped for active touch sensing and object 
discrimination tasks, (Dykes, 1975), but using their vibrissae, harbour 
seals can detect and follow water movements of hydrodynamic trails 
(Dehnhardt et al., 2001; Wieskotten et al., 2010a, 2010b). They can 
extract critical directional information from just a single vortex ring, 
within a hydrodynamic trail, enabling them to determine swimming 
direction and effectively track prey (Krüger et al., 2018).

Diverse facial musculature in mammals significantly influences 
vibrissal movements during sensory exploration with vibrissae ki-
nematics closely linked to facial musculature across various mam-
mals (Grant et  al.,  2013, 2016; Haidarliu et  al.,  2010; Muchlinski 
et al., 2020). Unfortunately, when it comes to pinniped facial muscu-
lature, data are lacking in comparison to terrestrial mammals. Most 
of the facial musculature of pinnipeds appears to be associated with 
the base of the follicles and, in some pinniped species, erector pili 
muscles have been reported; possibly related to vibrissal mobility 
(Hyvärinen et al., 2009; Ling, 1966; Marshall et al., 2006). A recent 
study by Kienle et  al.  (2022) described the general facial muscles 
of several pinnipeds. Exploring the facial expression and mastica-
tion muscles in harbour seals, they identified several facial muscles 
that are linked to vibrissal movements in terrestrial mammals, in-
cluding the caninus, orbicularis oris, levator nasolabialis and levator 
labii superioris, indicated by the purple sections in Figure 1, (Kienle 
et al., 2022). Dehnhardt and Hanke (2018) suggested that pinnipeds 
possess well-developed intrinsic muscles that assist in protractions 
underwater but have not yet been described within the literature. 
Although pinnipeds do not continuously and rhythmically move their 
vibrissae, known as whisking, recent studies indicate pinnipeds, in-
cluding harbour seals, can precisely control their vibrissae, suggest-
ing specialised musculature in this species (Grant et al., 2023; Milne 
et al., 2020; Nakhwa et al., 2024).

While histology provides valuable information on vibrissal muscu-
lature, it is limited to two dimensions (2D) and damages the specimens 
(Sutton et al., 2013). Given the extreme curvature and large size of 
pinniped mystacial pads, visualising their vibrissal musculature in three 
dimensions (3D) would allow for a more comprehensive understand-
ing of the pinniped vibrissal musculature anatomy required for vibris-
sal movements. Non-destructive imaging techniques like CT scanning 
have improved our ability to examine 3D anatomical structures. 
Diffusible iodine contrast-enhanced computer tomography (diceCT) 
enhances tissue contrast, offering high-resolution 3D imaging and 
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enabling precise digital segmentation for quantitative analysis, which 
is particularly useful for studying soft tissues like muscles (Gignac 
et al., 2014, 2016). Therefore, employing this technique would aid in 
describing the mystacial muscle architecture in pinnipeds, especially 
given the extreme curvature of their mystacial pads. The aim of this 
study is to describe, in 3D, the muscles within the mystacial pads of 
the harbour seal, enhancing our understanding of how pinnipeds con-
trol vibrissal movements. Other mammals with moveable and organ-
ised vibrissae have thicker and more regular intrinsic muscles (Grant 
et al., 2018; Muchlinski et al., 2020); therefore, we might expect that 
harbour seals will also have well-developed and ordered intrinsic mus-
cles within their mystacial pads, especially to overcome the drag asso-
ciated with moving their vibrissae underwater.

2  |  METHODS

2.1  |  Mystacial pad preparation

Four harbour seal mystacial pads were loaned by National Museums 
Scotland. These specimens were recovered from dead, stranded ani-
mals on beaches in Scotland. Since the specimens are cadavers, to 
ensure accurate data acquisition, the mystacial pads were thoroughly 
examined to confirm all vibrissae were intact and that there was no 
visible damage to the pads. To preserve all the mystacial pads, chemi-
cal fixation was employed by immersion and storage in formalin so-
lution (10%) at controlled temperatures (5–6°C). One specimen was 
removed from the fixing agent, rinsed in distilled water and stained 
using a buffered Lugol's iodine solution (2.5% concentration). The so-
lution was prepared by dissolving 2.5 g of iodine and 5 g of potassium 
iodide (KI) in 100 mL of distilled water, which was then scaled up as 

necessary to fully immerse the specimen within an amber jar, to mini-
mise the risk of staining agent degradation. The submersion period 
lasted for 28 days. Throughout the staining period, weekly monitoring 
of iodine levels facilitated precise control over the staining process and 
weekly preliminary tests were conducted to evaluate staining condi-
tions throughout the specimen, to ascertain readiness for data col-
lection. The preliminary tests on all mystacial pads consisted of fast, 
low-resolution micro-CT scans lasting <20 min, sufficient to deter-
mine if staining was constant throughout the mystacial pad, without 
shrinkage towards the pad exterior. All mystacial pads were allowed to 
equilibrate to room temperature overnight (approx. 12 h) before scan-
ning, minimising potential movements or distortions during scanning 
under gravity, due to changes in temperature. Florist foam, masking 
tape and a clear, cylindrical low-density plastic airtight container were 
used to house and support the mystacial pad while scanning. Once 
secured, mystacial pads were positioned in the scanner with the vi-
brissal area centred in the field of view, ensuring that the entire mys-
tacial pad remained in the field of view during rotation. Before scans 
commenced, a preliminary movement test confirmed setup stability, 
preventing displacement during the rotation of the imaging plate. 
Once the movement tests were completed, scans were initiated and 
ran. All samples were uniformly prepared and scanned, so one speci-
men was chosen as a representative example. The selected example 
consisted of two separately dissected mystacial pads derived from a 
single specimen. This was selected by manually inspecting the quality 
of the CT scan data after testing multiple CT scan settings (see Evans 
& Elder, 2024 for full methods). Dividing the muzzle into two separate 
pads (left and right-side cheeks) allowed for less digital pre-processing 
before analysing the muscle structures, compared to processing the 
entire muzzle as a whole. The remaining three mystacial pads served 
as comparative references to validate the findings throughout and can 

F I G U R E  1  Harbour seal facial muscles, as described by Kienle et al. (2022): Showing muscles used for vibrissae movements within the 
mystacial pad (purple sections).
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be seen in the Supplementary Material. All procedures were approved 
by the local ethics committee at Manchester Metropolitan University 
(ID: 57712).

2.2  |  diceCT scanning

CT scanning was conducted at the University of Manchester, using 
the Nikon 225 kV x-ray scanner called the ‘High Flux Bay’ at the 
Henry Moseley x-ray Imaging Facility. The system included a 225 kV 
static tungsten reflection target source with a minimum focal spot 
size of 3 μm (at low wattage) and a PerkinElmer 4096 × 4096 pixels 
16-bit amorphous silicon flat-panel detector, featuring a pixel pitch 
of 100 μm. A scanning protocol was employed, with various meth-
ods and techniques trialled and tested, as detailed in Evans and 
Elder  (2024). The optimised scan parameters for the one stained 
specimen were set as follows: Voltage at 140 KV, current at 260 μA, 
wattage at 36.4 W, detector size at 2024 × 2024, gain 5, exposure at 
1000 ms, number of projections at 3180, 4 frames per projection and 
voxel size at 38.56 μm. The scan duration averaged approximately 
7 h. The 3D volumes were reconstructed from projection data at full 
resolution as 16-bit TIFF stacks using Nikon's ‘CT Pro 3-D software’ 
(Nikon Metrology, Tring UK). Beam-hardening correction algorithms 
were applied during reconstruction to mitigate beam-hardening 
artefacts, and no additional filters were employed. Data were ex-
ported utilising the full greyscale histogram range to facilitate com-
prehensive analysis.

2.3  |  Data processing and image data analysis

Volume files for datasets were cropped using ImageJ/FIJI 
(Rasband  1997–2018), to remove extraneous material. Further 
processing, analysis and visualisation were conducted using Avizo 
(Thermo Scientific™) versions 2019 and 2020.2. All data were ana-
lysed in 16-bit greyscale to retain maximum image depth for seg-
mentation based on grayscale value (Evans & Elder, 2024). Despite 
enhanced tissue contrast from iodine staining, significant overlap 
persisted in the mystacial pad. Staining procedures were restricted 
to 28 days to mitigate shrinkage risk, necessitating a combination of 
segmentation approaches. To reduce data noise, a non-local means 
filter was applied to preserve edges and maintain boundaries (Gastal 
& Oliveiray,  2012). Manual and semi-manual segmentation tech-
niques were used to eliminate connected material (fur). The lasso 
(edge-tracing) tool was applied slice-wise for individual follicles, 
followed by interpolation, smoothing and comparisons with raw 
CT data. Major muscle groups, such as caninus muscle and levator 
nasolabialis (Figure 1), were approximated to represent general mus-
cle boundaries within the mystacial pad. This involved manual seg-
mentation of the linear trend on individual muscles every fifth slice 
in three orthogonal directions, followed by dilation, erosion, smooth-
ing and a final round of erosion of the labels. Finally, intrinsic mus-
cles were segmented using a histogram-based manual segmentation 

approach. Throughout the process, data were analysed with recur-
ring reference to the raw data and all mystacial pads for additional 
validation (Evans & Elder, 2024).

2.4  |  Second harmonic generation imaging

To confirm the presence of collagen within the harbour seal mystacial 
pads, two additional mystacial pads (M324/18 from Grant et al. (2023) 
and one unregistered) were loaned by National Museums Scotland, 
embedded in paraffin wax and sliced at 10 μm. Microscopy images were 
collected with a Leica SP8 TCS upright confocal microscope equipped 
with a HCX PL Fluotar 10× NA 0.3 objectives (Leica), 488 nm diode 
laser (Leica), MaiTai Deepsee multi-photon laser (Spectra Physics) con-
trolled by Leica LAS X software. Images were acquired in sequential 
mode. Second harmonic generation (SHG) imaging for collagen was 
excited with 880 nm line by multiphoton laser, and emissions were col-
lected with HyD detector from spectrum range 435–445 nm; autofluo-
rescence image was excited with the 488 nm line laser and emissions 
collected with PMT detector from spectrum range 500–600 nm. The 
image format was 1024 × 1024 pixels and for large-area scanning, tile 
scan feature was applied. The images were saved as Lieca image file 
(.lif) and processed in Fiji (ImageJ) software.

2.5  |  Descriptive definitions

To enable interspecific comparisons, we adopted terminology from 
previous mystacial muscle studies in terrestrial mammals (Haidarliu 
et  al.,  2010) and assigned them to similar structures seen in the 
Harbour Seal, aligning them with terms used by Kienle et al. (2022) 
for pinniped facial muscles (Figure 1).

3  |  RESULTS

3.1  |  Vibrissae and follicle arrangements

Harbour seal mystacial pads contained a mean of 45 vibrissae, ar-
ranged in a grid-like pattern (Figure 2 and Table S1, showing vibris-
sae counts for all mystacial pads). Typically, vibrissae were organised 
into seven rows on each side of the pad. For the stained specimen, 
row A contained a single vibrissa (A4), row B had four vibrissae 
(B3–B6) and row C consisted of six vibrissae (C2–C7). The three 
ventral rows (D–F) each contained nine vibrissae (1–9), while row 
G had seven vibrissae (G1–G7), totalling 45 vibrissae (Figure 2a and 
Table S1). The most caudal column of mystacial vibrissae, in some 
mammals, often displays follicles that straddle the vibrissal rows, 
referred to as a ‘Greek’ or ‘straddler’ arc, labelled with Greek let-
ters, (Grant et  al.,  2013b, 2016; Haidarliu et  al.,  2010). However, 
harbour seals do not possess these ‘straddler’ vibrissae within the 
most caudal vibrissae column. Therefore, to align with the whisker 
arrangements in Belli et al. (2018) and Graff et al. (2024) we assigned 
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the caudal-most column as number one, with the remaining columns 
numbered consecutively through to nine.

The follicle volume exhibited a tenfold increase from the rostral 
columns, with follicle volumes as small as 1.97 mm3, to the caudal 
columns, with follicle volumes as big as 101.97 mm3 (Figure  2a). 
The rostral vibrissae C7, D8, D9, E9 and F9 had the smallest folli-
cle volumes at <6 mm3. Indeed, rostral follicles were smaller com-
pared to those in the centre and more caudal regions of the pad 
(Figure  2a–c). While there was no significant difference between 
follicle rows (dorso-ventrally) (H (6) = 10.793, p = 0.09498), there 
was a significant difference between the follicle columns (rostro-
caudally) (H (9) = 42.304, p = <0.001). There was also a strong pos-
itive correlation between the follicle volume and the distance from 
the follicle to the nose tip (S = 482, p = <0.001), again suggesting 
that vibrissal follicles were smaller in the rostral area of the mysta-
cial pad and increased gradually throughout, with the largest folli-
cles towards the caudal area, shown in Figure 2. Follicles A4 and D9 
lacked connections with the lateral extrinsic muscles and intrinsic 
muscles within the mystacial pad. The fact that these vibrissae sit 
outside of the mystacial pad could suggest that they are not strictly 
mystacial vibrissae and may be more similar to micro-vibrissae 
(Figure 2a, yellow asterisk). Follicle B6 appears to point rostrally out 

of the mystacial pad (Figure 2c red asterisk). The vibrissal hair shaft 
in D9 appears absent in the superficial slices, suggesting possible 
shedding as it remains visible within the follicle when looking at the 
deeper data slices (Figure 2c, white asterisk).

3.2  |  Intrinsic muscles

We observed both types of intrinsic muscles within the harbour seal 
mystacial pad—sling-shaped and oblique intrinsic muscles. The sling-
shaped intrinsic muscles form a sling around the rostral area of each 
follicle and attach to the adjacent caudal follicle in the same row 
(Figure 3b and Figure S2 yellow arrows and Movie S1). These sling-
shaped intrinsic muscles can be clearly seen around all follicles in 
the pad, apart from A4 and D9 (Figure 2a, indicated by yellow aster-
isk), suggesting that these two follicles sit outside of the mystacial 
pad. By eye, the width of the sling-shaped intrinsic muscles appears 
reduced and less defined, particularly around the rostral follicles in 
follicles C7, D8 and E9, (Figure 3b, indicated by white asterisk). All 
the sling-shaped intrinsic muscles connect to individual vibrissae 
within the same row and can be seen clearly in all four mystacial 
pads (Figure S2, yellow arrows and Movie S1).

F I G U R E  2  Quantitative analysis of vibrissae follicle distribution and arrangement on the harbour seal (Phoca vitulina) mystacial pad: (a) 
Rostral to caudal gradient of follicle volumes and their position within the mystacial pad. The size of each bubble corresponds to the follicle 
volume (mm3), starting with the smallest follicles in the rostral area and larger follicles towards the caudal area indicated by follicle volume 
<6 mm indicated by pale blue dots, yellow asterisk represents vibrissae lacking sling-shaped intrinsic muscles, A4 and D9; (b) In the sagittal 
plane (from vibrissae tips to the interior of the mystacial pad cheek) (c) in the transverse plane (from the eyes down towards the chin), 
showing vibrissae and follicle arrangement, multicolours indicate separate follicles showing the organised grid-like pattern in, with the red 
asterisk showing follicle B6 pointing rostrally out of the mystacial pad and the white asterisk showing the vibrissal hair shaft in D9 visible 
only in the follicle. Letters on the blue axis represent the direction of mystacial pad with ‘R’ rostral and ‘D’ dorsal.
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Oblique intrinsic muscles were observed in the dorsal rows B and 
C of the harbour seal mystacial pads (Figure 3a and Figure S2, orange 
arrows). In contrast to the sling-shaped muscles, the oblique muscles 
connect the ventral capsular surface of the more rostral vibrissae 
follicles with the dorsal capsular surface of the more caudal vibrissae 
follicles in the same row. Figure 3a shows an oblique intrinsic muscle 
passing from the ventral part of B3 crossing to the dorsal part of B4 
(Figure 3a and Figure S2b,d,f,h, orange arrows).

3.3  |  Extrinsic muscles

The extrinsic muscles, m. nasolabialis (NL) and m. maxillolabialis (ML) il-
lustrated in Figure 4 (red arrows), can be clearly seen in all four harbour 
seal mystacial pads, (Figure 4 red arrows and Figures S1 and S2, red 

arrows). Within the pads, NL originates from the dorsal, caudal area of 
the pad and runs between the vibrissal rows before inserting deep into 
the mystacial pads fasciae. ML originates from the ventral caudal part 
of the mystacial pad and runs slightly deeper beneath NL (Figure 4e, red 
arrows), before running between each of the vibrissal rows. The NL and 
ML run dorsal to row A, between all rows, and are also found ventral to 
row, G (Figure 4a–e red arrows and Figures S1 and S2, red arrows and 
Movie S1). Their ends attach to the corium at the rostral border of the 
mystacial pad (Figure 4a,c,e, red arrows). Both these extrinsic muscles 
run via the corium and insert into the deeper layers of the mystacial pad 
into the fascia, between each vibrissal row (Figure 5a,b, red arrows). 
You can see from Figures 3e and 5a,b, that these extrinsic muscles run 
deeply beneath the vibrissal follicles within the pad.

Another extrinsic muscle identified in all four harbour seal 
mystacial pads was the m. levator nasolabialis (LeN). The LeN 

F I G U R E  3  Harbour seal mystacial pad showing the intrinsic muscles: (a) Orthoslice in sagittal plane (from vibrissae tips to interior of 
mystacial pad cheek) showing oblique intrinsic muscles (orange arrows) located between follicles (white arrows) of the same row in the 
dorsal rows; (b) Orthoslice in sagittal plane of the sling-shaped intrinsic muscles (yellow arrows) wrapped around the base of individual 
follicles, (white asterisk indicates less defined sling-shaped muscles within the more rostral follicles); (c) From the frontal plane (nose 
through to interior of mouth), the intrinsic muscles surrounding each individual vibrissae (blue arrows) and extrinsic muscles (red arrows); 
(d) Segmentation in the sagittal plane of the vibrissae, sling-shaped intrinsic muscles wrapped around the base of each individual vibrissal 
(yellow) and extrinsic muscles (red); (e) A close-up of a segmented vibrissae section, displaying muscles and follicle in their raw form. Letters 
on the white axis represent the direction of mystacial pad with ‘R’ rostral and ‘D’ dorsal.
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muscle runs dorsoventrally and was found especially in the rostral 
section of the pad (Figure 4c,d, pink arrows). The LeN inserts along 
the dorsal edge and is bordered ventrally by the caninus. Towards 
the ventral and caudal part of the LeN muscle, the m. orbicularis 
oris (OO) can be seen (Figure 4e,f, white arrows). The OO is a C-
shaped muscle, running along the ventral part of the pad, following 
the curve of the lip (Figure 4e,f). Bundles of the OO originate from 
within the fascia of the pad (Figure 4e,f). The presence of collagen 
was also confirmed throughout the mystacial pad. Collagen, which 

autofluorescences under SGH, was confirmed in the fascia, seen in 
Figure 5c,d.

4  |  DISCUSSION

We expected that harbour seals would possess large and organised 
intrinsic muscles, similar to those found in other whisker specialists, 
such as mice and rats; especially since harbour seal vibrissae need to 

F I G U R E  4  Harbour seal mystacial pad showcasing the extrinsic muscles: (a) Orthoslice in the sagittal plane (from vibrissal tips to interior 
of mystacial pad cheek) shows the extrinsic muscles m. nasolabialis (NL) and m. maxillolabialis (ML) (red arrows) located between the rows 
of vibrissae (blue arrows) and follicles (yellow arrows); (b) In the sagittal plane segmentation of the extrinsic muscles NL and ML (red) located 
between the rows of vibrissae white, follicles (yellow), surrounding individual vibrissae; (c) From the frontal plane (nose through to interior 
of mouth), we present the m. levator nasolabialis (LeN), (pink arrows), the extrinsic muscles NL and ML the vibrissae and follicles; (d) From 
the frontal plane segmentation of the extrinsic muscles NL and ML located between the rows of vibrissae, follicles surrounding individual 
vibrissae and vibrissae; (e) Image taken from a non-iodine stained harbour seal mystacial pad, displayed in the sagittal plane showing the 
overlap of the ML and NL towards the caudal region of the mystacial pad (red asterisks) and the m. orbicularis oris (OO), (white arrows); (f) 
In the transverse plane (from eyes down towards chin), the extrinsic muscle ML and OO within the mystacial pad. Letters on the white axis 
represent the direction of mystacial pad with ‘R’ rostral, ‘C’ caudal, ‘D’ dorsal and ‘V’ ventral.
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overcome water drag to protract forward, leading us to expect even 
larger intrinsic muscles to facilitate this movement. However, although 
the intrinsic muscles in harbour seals are present and organised, their 
intrinsic muscles are not particularly large. Rather, the extrinsic mus-
cles, particularly ML and NL, were extremely prominent, running be-
tween the vibrissal rows and follicles the whole rostro-caudal length of 
the pad. These extrinsic muscles are so well-defined; we suggest that 
they may play a crucial role in vibrissal movement and shaping the mys-
tacial pad, particularly coordinating vibrissal movements to overcome 
the challenges of vibrissal protraction while underwater.

4.1  |  Vibrissae and follicle arrangements

The mystacial pad of the harbour seal has a distinctive grid-like arrange-
ment, characterised by organised rows and columns. This arrangement 
is commonly observed in nocturnal, arboreal and aquatic mammals, 
contrasting with the less organised and fewer vibrissae typically 
found in diurnal terrestrial mammals (Grant et  al.,  2018; Muchlinski 

et al., 2013, 2020). The most caudal column of mystacial vibrissae is 
often referred to as the ‘straddler’ vibrissae. It is primarily found in ro-
dents and deviates from the regular grid pattern of mystacial vibris-
sae, appearing to ‘straddle’ the vibrissal rows, (Haidarliu et al., 2017). 
However, the harbour seal mystacial pad does not contain a distinct 
‘straddler’ arc. Looking to see whether the intrinsic muscles straddle 
the caudal column is not hugely clear, but it is our opinion that the in-
trinsics of the neighbouring whiskers do not straddle the most cau-
dal whiskers (Movie S2). Consistent with previous findings, our study 
confirms the presence of seven rows of vibrissae in the harbour seal 
mystacial pads (Dehnhardt & Kaminski, 1995; Jones & Marshall, 2019; 
Karpovich et al., 2022). Harbour seals possess a larger number of vi-
brissal rows compared to their terrestrial counterparts. For example, 
a rat has five vibrissal rows (Haidarliu et al., 2010). In our study, the 
number of vibrissae ranged from 42 to 47, with a mean of 45 vibrissae 
on each side of the mystacial pad (Table S1). This exceeds the range 
observed in terrestrial mammals, including the guinea pig, (23, Grant 
et al., 2016), opossum, (23, Grant et al., 2013a), hamster, (23, Haidarliu & 
Ahissar, 1997; Wineski, 1985), rat (30 Haidarliu et al., 2010), mouse (33, 

F I G U R E  5  Extrinsic muscles in the harbour seal mystacial pad: (a) Orthoslice from the frontal plane (nose through to interior of mouth), 
showing the deep extrinsic muscles, NL and ML (red arrow) beneath the follicle allowing for vibrissal protraction; (b) Segmented raw vibrissal 
follicle displaying deep extrinsic muscles, NL and ML, with a partially segmented intrinsic; (c) Second harmonic generation (SHG) imaging of 
collagen excited with 880 nm line by multiphoton laser and emissions collected with HyD detector from spectrum range 435–445 nm; (d) 
Autofluorescence image excited with the 488 nm line laser and emissions collected with PMT detector from spectrum range 500–600 nm; (e) 
Overlay of c and d.
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Dörfl, 1982) and shrews (40, Brecht et al., 2011). Although higher com-
pared to terrestrial mammals, the number of vibrissae in harbour seals 
is similar to other pinniped species, including, 38 in the California sea 
lion (Dehnhardt 1994), 42 in the elephant seal (Mirounga angustirostris), 
(Smodlaka et al., 2017) and 44 in the grey seal (Halichoerus grypus), with 
considerably more vibrissae (121) seen in the bearded seal (Erignathus 
barbatus), (Marshall et al., 2006) and the walrus (350–700, Ling, 1977). 
The high number of vibrissae seen in pinnipeds may be associated 
with their underwater lifestyle, since they rely on their vibrissae for 
navigation, hunting and foraging in environments with limited visibil-
ity. This abundance of vibrissae enables them to detect hydrodynamic 
trails, flow patterns and disturbances caused by objects underwater, 
facilitating the detection of changes in water pressure, velocity and 
turbulence required for prey capture (Dehnhardt et al., 2001; Krüger 
et al., 2018; Wieskotten et al., 2010a, 2010b).

The size of vibrissal follicles within the harbour seal mystacial pad 
varied depending on their column position, with rostral follicles being 
smaller and caudal columns being larger (Figure 5). Some small rostral 
vibrissae did not have intrinsic muscles (Figure 2) and sat outside of the 
extrinsic muscle arrangements (Figure 3), suggesting they may not be 
mystacial vibrissae and may serve a different function in harbour seals, 
perhaps more like the microvibrissae of rodents. Rodents use their mi-
crovibrissae for detailed tactile sensing, dabbing them onto surfaces 
during object contact to gather more information (Brecht et al., 1997; 
Grant et al., 2011; Hartmann, 2001). Harbour seals may employ these 
micro-vibrissae to detect small-scale differences when exploring ob-
jects, with their placement at the rostral area of the mystacial pad 
enhancing the likelihood of effectively gathering tactile information, 
which has been noted before in Grant et al., (2013b).

4.2  |  Musculature of the mystacial pad

Harbour seals had both types of intrinsic muscles, the sling-shaped 
and oblique. The presence of sling-shaped intrinsic muscles is rela-
tively unsurprising, as these are widespread among mammals with 
organised vibrissae and have been extensively documented across 
species, including in mice (Dörfl, 1982), hamsters (Wineski, 1985), 
guinea pigs (Haidarliu & Ahissar,  1997), opossums (Grant et  al., 
2013a), rats (Haidarliu et al., 2010), shrews (Yohro, 1977) and noctur-
nal primates (Muchlinski et al., 2013). Intrinsic muscles are primarily 
responsible for vibrissal protraction during exploratory behaviours 
in terrestrial mammals. Given that harbour seals have an organised 
layout of vibrissae, we anticipated that these seals would possess 
relatively large intrinsic muscles compared to the terrestrial whisk-
ered specialists, like rats and mice. Given the increased resistance 
of water compared to air, we predicted that larger intrinsic muscles 
would be needed to protract the vibrissae. However, contrary to our 
expectations, the harbour seals' sling-shaped intrinsic muscles had 
similar relative muscle widths (0.0002) to those seen in other mam-
mals, including rats (0.0006), mouse (0.0017), guinea pig (0.0002) 
and opossum (0.0008). This suggests that the harbour seals did not 
have larger intrinsic muscles to enable protractions underwater, and 

we suggest that large m. nasolabialis and m. maxillolabialis extrin-
sic muscles are more likely to facilitate efficient protraction of the 
vibrissae underwater (see Table S2). Oblique muscles, which have 
been observed in opossums (Grant et al., 2013a), guinea pigs (Grant 
et al., 2016) and both rats and mice (Haidarliu et al., 2024), were also 
present within the more dorsal rows of the harbour seal mystacial 
pad, (row B and C). Oblique intrinsic muscles aid torsional rotation 
of the vibrissae (Grant et  al., 2013a, 2016; Haidarliu et  al., 2017). 
Therefore, the placement and attachment of the oblique intrinsic 
muscles imply their potential involvement in inducing torsional rota-
tion of the dorsal vibrissae rows (B and C) during protraction. This 
would serve to orient the vibrissa, especially positioning the undula-
tions at efficient angles of attack to improve hydrodynamic sensing. 
This coordinated interaction between the sling-shaped and oblique 
intrinsic muscles ensures precise control of vibrissal movement, 
vital for effective tactile and hydrodynamic perception underwater 
(Dehnhardt, 2002; Milne et al., 2021b).

Several extrinsic muscles were identified in harbour seals, in-
cluding NL, ML, LeN and OO. In rats and mice, the NL and ML mus-
cles function as vibrissal retractors; they are positioned superficially 
and pull the mystacial pad corium and distal ends of the follicles 
caudally, leading to vibrissal retraction and a reduction in vibrissal 
spread (Haidarliu et al., 2010). Conversely, we observe here, in the 
harbour seal, that the ML and NL extrinsic muscles are large and 
well-defined. They appear to be deeper than those in rats and mice, 
as can clearly be seen in Figures 3e and 5a,b, where the fibres are 
deeper than the follicle base and extend up until around halfway up 
the follicle (Figure  3e). Therefore, we suggest that contraction of 
these muscles might cause protraction of the vibrissae. If this is the 
case, then we would expect several visible changes to occur when 
the muscles contract. Firstly, that the vibrissae would protract, the 
follicles would translate forwards and the pad would bulge around 
the snout. This can clearly be seen in Figure  6b,d, especially the 
bulging of the mystacial pad around the snout. This bulging of the 
pad observed here can be explained by hydrostatic deformation. In 
animal cells, changes in mechanical tension can lead to alterations 
in hydrostatic pressure, resulting in deformations that influence 
volume and shape (Chugh et  al.,  2022). This suggests that hydro-
static deformation seen in the pad could be a result of the coor-
dinated contraction of both the intrinsic and extrinsic muscles. As 
these muscles contract, they create internal pressure within the 
pad, leading to changes its shape and volume. This forces the pad 
to bulge outwards around the snout, as seen in Figure 6b,d. Such 
controlled deformation could allow harbour seals to precisely adjust 
their vibrissae, enhancing tactile exploration, and optimise sensory 
input within underwater environments. Such an observation has 
not been documented for ML and NL muscles before, since they 
are superficially positioned in rats and mice, and usually cause a 
flattening of the pad (Haidarliu et  al.,  2024). The deep retracting 
muscles (Pars interna profunda (PIP), Pars maxillaris profunda (MP) 
and Pars maxillaris superficialis (MS)) have a similar effect in rodents 
but cause a retraction movement of the vibrissae, rather than a 
protraction movement, since they originate at the rostral area of 
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the pad. Contraction of these deep retractors typically results in 
widening of the nostrils during retractions in rodents (Deschênes 
et  al.,  2015). We do not observe these muscles in our samples, 
and we also do observe changes in nostril opening coinciding with 
vibrissal movements (Figure 5), probably due to the deep ML and NL 
fibres originating from the caudal area of the pad, and not attaching 
to the nasal cartilage (unlike the deep retracting muscles in rodents). 
This is important, since harbour seals, like all pinnipeds, keep their 
nostrils naturally closed, preventing the incursion of water (Berta 
et al., 2006; Lilly, 1964). Overall, we think the presence and deep 
positioning of these well-defined ML and NL extrinsic muscles could 
compensate for the less-defined intrinsic muscles and may well be 
important in driving the protraction of the vibrissae underwater 
against drag and turbulence.

We also observed the extrinsic muscle OO, which plays sev-
eral roles, including assisting with feeding, facilitating facial ex-
pressions and contributing to vocalisations (Kienle et  al.,  2022). 
Additionally, the OO plays a crucial role in controlling vertical 
vibrissal spread in pinnipeds, typically, pulling the vibrissae in 
the ventral rows downward (Kienle et al., 2022), which provides 
a larger tactile area for pinnipeds to explore (Figures  5e,f and 
6d). However, Kienle et  al.  (2022) found that the OO muscle in 
harbour seals was not as well-defined as those observed in other 
pinnipeds, such as bearded seal and Weddell seal (Leptonychotes 
weddellii). In these species, the OO muscle is enlarged, possibly 
due to specialised feeding adaptations, specifically, the ability to 
suction feed. However, several species, despite lacking adapta-
tions for suction feeding, demonstrate proficiency in this strategy, 

F I G U R E  6  Visual representations of a harbour seal mystacial pad from relaxed to protraction of the vibrissae (a) Top-down view showing 
relaxed vibrissae and a slightly relaxed mystacial pad, showing a flat pad across the nose (white arrows); (b) Top-down view showing fully 
protracted vibrissae and a contracted mystacial pad indicated by the bulging cheek pads, especially around the nose (white arrows); (c) Top-
down view of relaxed vibrissae, showing a flattened pad while swimming and asymmetric whiskers (white arrows); (d) Frontal view of protracted 
vibrissae and increased vibrissal spread while exploring an object, with increase curvature and bulging of the cheeks and pad (white arrows).
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including harbour seals (Kienle et al., 2018; Marshall et al., 2014). 
Harbour seals have been shown to change their feeding strate-
gies when targeting different species of prey (Bowen et al., 2002). 
Therefore, having well-developed facial musculature, multiple 
feeding behaviours and variability within feeding strategies is ad-
vantageous under different foraging scenarios and prey resources.

4.3  |  Limitations

The utilisation of 3D visualisation techniques provides valuable in-
sights into mystacial anatomy. However, the application of diceCT 
scanning, while promising, is hindered by several limitations. This 
technique can give us insights into the musculature of pinnipeds and 
other vertebrates, yet it remains expensive and time-consuming. 
Machine-time expenses are substantial and larger samples require 
longer scan durations for high-quality imaging results. Financial con-
straints limit the number of specimens that can undergo imaging, 
impacting data robustness. Additionally, contrast limitations within 
CT data hinder fully automated segmentation methods, leading to 
the necessity of manual segmentation processes and reduced re-
peatability. Low-resolution scan configurations may compromise 
data quality, especially in capturing intricate structures. Challenges 
also persist in acquiring optimal carcasses for research purposes. 
Obtaining intact carcasses with preserved features (fully intact vi-
brissae) presents inherent difficulties and is particularly challenging 
due to numerous factors such as scavenging, post-mortem pro-
cedures and transportation expenses. In addition, establishing ap-
propriate staining protocols is crucial to preserve sample integrity, 
for example, preventing or reducing shrinkage, which is specifically 
important when looking at musculature. Despite these challenges, 
understanding musculature is essential for evolutionary and devel-
opmental insights. Thus, while complex and costly, addressing these 
limitations is crucial for advancing research in this field.

5  |  CONCLUSIONS

We describe details of the musculature throughout the mystacial 
pad in harbour seals using diceCT. Harbour seals possess ~45 vi-
brissae arranged in organised rows and columns, showing increas-
ing vibrissal follicle volume from the rostral to the caudal region. 
Contrary to our original prediction, we found that harbour seals did 
not have large intrinsic muscles. Rather, the extrinsic muscles were 
notably large and well-developed and may drive protraction move-
ments in underwater environments helping vibrissae to overcome 
the drag and turbulence created by moving water. Considering there 
are variations in vibrissal morphology between pinnipeds, exploring 
vibrissal musculature in other species is essential for future research. 
Comparative analyses with other pinniped families, such as otariids 
and odobenidae, which have smooth conical vibrissae, in contrast to 
the undulating vibrissae of the harbour seal, may provide additional 
insights into the evolution of vibrissal functionality. By laying the 
groundwork for future investigations into pinniped musculature and 

tactile sensory capabilities, this research significantly enhances our 
understanding of the sensory adaptations of pinnipeds.
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