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Abstract
IdiopathicNormal PressureHydrocephalus (iNPH) is a progressive neurologic disorder (fluid build-
up in the brain) that affects 0.2%–5%of theUKpopulation aged over 65.Mobility problems, dementia
and urinary incontinence are symptoms of iNPHbut often these are not properly evaluated, and
patients receive thewrong diagnosis. Here, we describe the development and testing offirmware
embedded in awearable device in conjunctionwith a user-based software system that records and
analyses a patient’s gait. Themovement patterns, expressed as quantitative data, allow clinicians to
improve the non-invasive assessment of iNPH aswell asmonitor themanagement of patients
undergoing treatment. Thewearable sensor system comprises aminiature electronic unit that attaches
to one ankle of the patient via a simple Velcro strapwhichwas designed for this application. The unit
monitors acceleration along three axes with a sample rate of 60Hz and transmits the data via a
Bluetooth communication link to a tablet or smart phone running theAndroid and the iOS operating
systems. The software package extracts statistics based on stride length, stride height, distancewalked
and speed. Analysis confirmed that the system achieved an average accuracy of at least 98% for gait
tests conducted over distances 9m. This device has been developed to assist in themanagement and
treatment of older adults diagnosedwith iNPH.

1. Introduction

Idiopathic Normal Pressure Hydrocephalus (iNPH) is
a potentially reversible neurodegenerative disease due
to fluid build-up in the brain ventricles. The preva-
lence in the general population is still unclear but
seems to affect 0.2%–5% of the UK population aged
over 65 [1, 2]. NHS HES data show that the UK treats
approximately 400 iNPH patients per annum, yet it is
estimated that 40,000 patients are undiagnosed.
iNPH is commonly characterised by a triad of
cognitive decline, urinary incontinence and gait dis-
turbance. iNPH currently is one of the only reversible
forms of dementia so an accurate diagnosis is impera-
tive in itsmanagement.

Advancements in diagnosis and treatment have
aided in properly identifying and improving symptoms
in patients [3]. However, a large proportion of

iNPH patients remain either undiagnosed or mis-
diagnosed as Alzheimer’s, Parkinson’s or Creutzfeldt–
Jakob disease. Studies have found that up to 80%
of patients improve with surgical insertion of a ven-
triculoperitoneal shunt [4, 5]. However, the outcome of
shunt surgery worsens with the progression of the dis-
ease, highlighting the importance of early diagnosis.

However, diagnosis usually requires invasive inves-
tigations such as brain CT scan, lumbar puncture for
cerebrospinal fluid, or drainage and infusion tests
[6–12]. The triad linked with iNPH usually begins with
symmetrical gait dysfunction characterised by broad
based, small-stepped instability and difficulty initiating
movements. There are known scales to objectify
iNPH gait symptoms, but these do not measure gait in
real time. The objective assessment of these latter symp-
toms, often characterised by a shuffling or unstable gait,
are addressed in this study. We report a technological

OPEN ACCESS

RECEIVED

9May 2023

REVISED

27 January 2024

ACCEPTED FOR PUBLICATION

16 February 2024

PUBLISHED

14October 2024

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 4.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2024TheAuthor(s). Published by IOPPublishing Ltd

https://doi.org/10.1088/2057-1976/ad2a1a
https://orcid.org/0000-0002-1196-8397
https://orcid.org/0000-0002-1196-8397
mailto:erdem.atbas@manchester.ac.uk
mailto:patrick.gaydecki@manchester.ac.uk
mailto:michael.callaghan@mmu.ac.uk
https://crossmark.crossref.org/dialog/?doi=10.1088/2057-1976/ad2a1a&domain=pdf&date_stamp=2024-10-14
https://crossmark.crossref.org/dialog/?doi=10.1088/2057-1976/ad2a1a&domain=pdf&date_stamp=2024-10-14
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0


solution that enables non-invasive remote sensing of a
patient’s gait by means of a wearable device that tracks
movement patterns. These datamay be easily accessible
by clinicians to improve the diagnosis of iNPH, as well
as monitor the management of patients undergoing
treatment to reverse the condition. Better diagnosis and
management of iNPH would improve treatment and
management of this condition, deliver social and eco-
nomic benefits and, in addition, alleviate stresses on
public health services. Although there is available awide
range of full-body gait analysis systems intended for
clinical use, these are often expensive, video-based
instruments that require careful calibration and exper-
tise in deployment [13–15].

As far as the authors are aware, the system descri-
bed here is not duplicated elsewhere, is cheap, simple
to configure and may be used in either a clinical or
domestic environment.We emphasise that the novelty
of this method does not reside within the miniature
wearable device—such commercial systems are widely
available—but on the embedded firmware and user-
software that performs the acquisition, transmission,
analysis and statistical treatment of the data. As far as
we are able to ascertain from a review of the literature,
no comparable wearable system is currently available
for this specific purpose [16]. The wearable system
described here, together with its firmware and soft-
ware, is not primarily intended for the diagnosis of
iNPH (although it can assist with this). Rather, it is pri-
marily a tool to assess changes in the gait of patients
already diagnosed with this disease, for example, in
response to the insertion of a shunt. From this per-
spective, it is a management aid, for both the patient
and the clinician.

2.Methodology

2.1. Sensor system
There is available a wide range of wearable consumer
electronic devices for the recording of physical activity.
The growth in this market has been fuelled by rapid
advances in microelectromechanical systems (MEMS),
which allow force sensors such as accelerometers and
gyroscopes to be encapsulated in miniature form.
Further, low power wireless communication systems
such as Bluetooth and ZigBee provide a means of
conveniently transmitting information without the
requirement for cables that may interfere with motion
being studied. The system described here employs a
commercial wearable device motion-tracking sensor,
the Movella DOT [17], (formerly Xsens DOT), shown
in figure 1, that is equipped with a triaxial acceler-
ometer, gyroscope, and magnetometer. Only informa-
tion from the accelerometer and gyroscopewere used in
this application; data from the magnetometer were
redundant and therefore discarded. The integrated
sensor employs a wireless communication module
designed for short-range data transmission, Bluetooth

Low Energy (BLE). It is compatible with various smart
devices such as android phones, tablets, iPhones and
iPads. When the sensor is synchronised with a smart
device using BLE, it is possible to stream 3-axis
acceleration to the connected smart device for further
data analysis.

2.2. Step data acquisition
Software in the form of a mobile app was developed
for both Android and iOS operating systems to
calculate stride length, foot height, speed and distance.
The app allows data to be acquired at a sample rate of
60 samples per second for each axis, plotted and also
transferred to a computer for further analysis
(described in detail in section 3). Since acceleration
describes the rate of change in velocity, it is possible to
reconstruct the speed and the distance travelled by
integrating the acceleration data once or twice respec-
tively. To do this, it is important to accurately identify
the samples between foot lifts and heel strikes and
integrate over those data points. The sensor is attached
to the patient’s ankle (either left or right) using a
Velcro strap designed for this research programme,
with the logo on the wearable facing forwards, as
shown in figure 2(a). In detail, the placement of the
device is on the frontal planewithin 10 cmof the ankle,
allowing for it to be attached to either ankle. Securing
the device in its position is crucial to prevent slippage
along other axes. Additionally, the device should be
positioned perpendicular to any of the axes, since this
guarantees the accurate measurement of gravity,
registering values within the range of−9.81 to+9.81.
This is therefore necessary for the algorithm to
calculate correctly. This orientation is convenient
since the major (length) dimension of the sensor is
aligned vertically with the patient’s shin. Note that in
this orientation, the axes with respect to the acceler-
ometers are now rearranged, with the x-axis aligned
vertically, the y-axis aligned horizontally and orthogo-
nal to the direction of motion, and the z-axis aligned
parallel to the direction of motion, as depicted in
figure 2(b).

Under static conditions, i.e. when there is no
movement of the ankle, the acceleration along the x-
axis is a constant 9.81 ms−2 due to gravity and the
accelerations along the other two axes are zero. From

Figure 1.Themovella DOT, shownwith its holder.
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figure 2(a), acceleration along the y-axis provides
information on left or right sway, whereas the z-axis
component is used to determine forward acceleration.
This configuration always yields accurate quantitative
measurement of walking motion. Although under
movement, the gravitational force will partially affect
the z-axis accelerometer (due to the upswing), and
similarly, the forward acceleration will influence the
x-axis accelerometer, these artefacts areminor and can
be eliminated using high pass filtering. This method
was used in the initial analysis; however, after further
testing, it was found that if Reimann’s integral method
is applied it is possible to ignore the effect of gravity
[18]. Figure 3(a) shows z-axis accelerometer data in
which foot lift and heel strike are indicated; figure 3(b)
shows the same activity but uses data from all three
axes in vectorised form (hence the trace shows only
positive values).

Since filtering is a compute intensive process,
employing this technique on handheld devices is not
advised. Because Reimann’s integral operates on the
differences between the number rather than the area
under the graph, it is possible to ignore the effects of
the gravity if the data are vectorised. As shown in

figure 3, it is straightforward to determine by manual
inspection both foot lift and heel strike; however, this
process must be performed automatically by the soft-
ware to ensure convenience, ease of use and
repeatability.

2.3. Automation of step analysis
As given in figure 3, the foot lift and heel strike are
characterised as two peaks with a short interval
between them. This interval is clearly inversely pro-
portional to the speed of walking. Automated analysis
requires an adaptive algorithm that can quickly
determine when the foot is lifted, and the heel struck.
To achieve this, the following steps are applied:

• Vectorisation. The vector sum Accv for each datum
point is calculated, i.e.

( )Acc Acc Acc Acc 1v x y z
2 2 22= + +

• Artefactual data generated during system initializa-
tion is stripped from the array to ensure that the
readings consist only of the patients’ movement

Figure 2. Showing (a) sensor attachment and (b) alignment of axes.

Figure 3. Showing (a) z-axis data and (b) vectoriseddata for gait fragment.Green circles denote foot lift and red circles denote heel strike.
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patterns. During initialization, the Movella DOT
populates the buffers that capture data from the
accelerometers with values of zero until the device
records data. Thus, captured acceleration data
contains one or more zero values. Additionally, in
cases where the device fails to provide a sample
while sampling at a rate of 60 frames per second, a
zero value is provided.

• Data are then analysed for rates of change using a
9-point moving averaging filter. The averaged data
AccAvg is calculated as:

[ ] ( )Acc Acc i
1

9
n 2Avg

i
v

0

8

å= -
=

• The rate of change is compared between the
samples. If a sudden increase is observed within this
average, that sample is selected to be a candidate
indicating foot lift or heel strike. Amplitudes are
compared adaptivelywith every other samplewithin
their region to acquire the best matched foot lift and
strike pairs. The comparison process involves eval-
uating the instantaneous change in gravity, denoted
as Acc ,g and oriented in this instance in the negative
x direction. In addition, the raw magnitude of the
current data is compared to that of the previous
sample using an adaptive ratio to determine if it
represents a local maximum. The process of selec-
tion can be broken down into the following steps.
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• The selected step regions are integrated with a
modified Riemann integral to convert the accelera-
tion data, which is in ms 2- to m, cm, and ms .1-

This conversion is then applied to calculate the
stride length of each step, average walking speed,
total travelled distance, and the foot height in each
step. The Riemann integral is defined as:
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f
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=

where Lf denotes denotes foot lifting, Sh heel strike, t
detonates time, and ∆i denotes the width of each
sample interval, here equal to 1/60s. The entire
algorithmic process is depicted infigure 4.

3.Mobile app development

To deploy any app developed for the Movella DOT, it
is necessary that the host smart device supports the
BLE protocol. Movella provides development frame-
works for a range of operating systems, but here we
focus on the apps that we have developed for both
Android and iOS. The Android appwaswritten in Java
and developed using Android Studio; the iOS version
was written in Objective-C using XCode. Both apps
have the same functionality, so below we limit our
description to the Android version. The program
comprises three softwaremodules: scan,measurement
and analysis. The scan module is responsible for
scanning and connecting to the sensor; the measure-
ment module handles the acquisition and the storage
of the data from the sensor to the smart device;
the analysis module oversees the analysis of the
acquired data.

3.1. Scanmodule
The scan module is the first screen that the user sees
when the app is opened, figure 5(a). When the user
clicks the Scan button, the program starts to scan for
available Bluetooth devices and identifies the Movella
Dot sensor if powered on. The user may now select the
sensor to initiate a connection. To ensure seamless
data gathering, the app will automatically reconnect to
it in the event of a temporary loss of communication.
The app also has the ability to connect to multiple
sensors simultaneously; whenever a new Movella
DOT device is detected, it automatically creates all the
subsequent handlers, and upon its connection, all
those handlers are activated automatically. (Note that
the Android operating system only permits support
for seven Bluetooth connections.) The scan module
includes a renaming feature, allowing a particular
sensor to be associated with the name of a patient or

Figure 4. Flowchart of the algorithm.
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his or her unique ID. This feature is selected by tapping
on theRename button in the top right corner. The user
will be prompted by a pop-up screen where in which
the user enters a name or ID of up to sixteen
characters, figure 5(b).

3.2.Measurementmodule
The measurement module, figure 6(a), handles the
reception and storage of the foot motion information
transmitted by the sensor. When the user clicks the
Start Measuring button, the code first performs a
communication integrity check with the sensor. Prior
to each test initiation, the device undergoes an
automatic calibration process facilitated by the con-
nected mobile device. This calibration procedure,
which typically lasts approximately 30 seconds, is an
integral part of the Movella DOT’s proprietary soft-
ware. This calibration uses the acceleration due to
gravity and is therefore independent of other sources
of reference. It is imperative to note that bypassing this
stage is not feasible within the device’s functionality. If
this check fails, the program shows a warning alert.
Once the check is successful, the program synchro-
nises with the Movella DOT. It then shows a notifica-
tion thatmeasurement will commence in five seconds,
after which it performs data acquisition for 60 seconds;
the Stop Measuring button allows the user to halt

recording at any stage during this period. During the
measurement process, two charts of live data are
displayed for each sensor: orientation and acceleration
respectively; further, each chart comprises three plots
for the x, y and z-axes, as shown in figure 6(b). Data are
saved on the smart device in CSV format, as well as to
the memory of the sensor for diagnostic purposes.
Once the user exits the measure module, to maintain
confidentiality, the charts are destroyed. If the user
decides to re-enter the measurement module, all
stored data are cleared.

3.3. Analysismodule
Thismodule performs an analysis of the acquired data,
generating statistics from the CSV file stored on the
smart device. These statistics comprise:

• Minimum,maximumand average stride length

• Minimum,maximumand average stride height

• Average speed

• Distancewalked

The analysis is selected simply by touching the
Analyse button; a typical results screen is shown in
figure 7.

Figure 5. Showing (a) the scanmodule on start-up and (b) the renaming feature.
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4. Results

4.1. Foot lift and heel strike validation
The algorithm’s ability to identify the points in the
data sequence corresponding to foot lift and heel strike
were compared against manual visual assessment of
the trace data; under repeated tests, the algorithm
performed reliably and accurately. This was impor-
tant, since the foot lift and heel strike measurements
are used subsequently by the algorithm to calculate
stride length, stride height, distance walked and speed.
Tests were conducted on three healthy subjects, S1 to
S3. Most of the tests were conducted using subject S1,
with the smaller data sets collected from S2 and S3
used to corroborate thefindings.

The foot lift and heel strike validation comprised
five walking exercises, each of which included seven
episodes conducted over 5 m, 12 m, 50 m, 100 m,
250 m, 500 m and 1000 m. Hence the total test dis-
tance was 9585m. The total number of steps was 9351,
yielding amean stride length of 1.03m. Although hun-
dreds of comparisons were made, for the sake of brev-
ity table 1 includes only ten examples taken from a test
conducted over 12 m for volunteer V1. As indicated,
there was zero error between visual assessment and the
algorithm’s estimation. Although this might at first
appear unrealistic, the method employed by the

machine algorithm was based upon a quantitative
equivalent of that used for visual scrutiny; it is not sur-
prising, therefore, that there is a perfect agreement
between the two.

4.2.Walking test assessments, subject S1
To verify the accuracy of the algorithms, four walking
tests were conducted by healthy volunteers from the
research team and aged between 23–28 years.

The assessments:

• were conducted for the purposes of evaluation only,

• did not collect or access personally identifiable
information,

• did not gather information that could be considered
sensitive or personal,

• did not involve volunteers from vulnerable or
dependant groups,

• did not risk disclosure of illegal or unprofessional
conduct.

For these reasons, our institution’s Ethics Decision
Tool software determined that ethical approval was
not required for these assessments.

Figure 6. Showing (a) themeasuremodule on start-up and (b) the live recording stage, which charts both orientation and acceleration
for x, y and z-axes.
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The results used are summarised in table 2. Each
test was conducted over two distances of 5 m and
12 m, along a corridor with a hard, smooth surface
(concrete base with laminate flooring); at an average
walking speed of 1.5 ms−1, tests over 5 m took 3.3 s
and tests over 12 m took 8 s; figure 8 shows a full pos-
ture image of a subject taken during a test, with the
walkway used.

Each test was repeated 100 times; further, 50 tests
started with the foot wearing the sensor and 50 with-
out. This test protocol is summarised in table 2. The
accuracies were established by comparing the stride
lengths returned by the algorithm to those measured
manually; using a tape measure, the distances of 5 m
and 12 m were marked out, and the number of steps
counted during each test. This gave a mean stride
length for each test. Table 3 shows the statistics for
sensor accuracy.

Tests over 5 m. If the participant commenced
walking using the foot to which the sensor was
attached, the accuracy of the measurements varied

Figure 7.Results from the analysis section displayed by the app.

Table 1.Human versus automatic detection, subject S1.

Foot lift Heel strike

Sample no. Visual Algorithm Visual Algorithm

1 142 142 176 176

2 217 217 248 248

3 285 285 314 314

4 353 353 382 382

5 421 421 449 449

6 488 488 512 512

7 553 553 581 581

8 618 618 647 647

9 684 684 713 713

10 754 754 778 778

Table 2.Testing regime for stride accuracy determination,
subject S1.

Test

distance

(m)

No. trials,

starting with

sensor foot

No. trials,

starting without

sensor foot

Total

distance (m)

5 50 50 500

12 50 50 1200

Overall distance (m) 1700
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between 62.6% to 99.8%, with an average of 87.5%
and an SD of 10.5%. However, if the tests commenced
with the foot not wearing the sensor, the accuracy of
the measurements improved, with a range of 77.5% to
99.9%, an average of and a smaller SD of 6.8%.

Tests over 12m. If the participant commenced
walking using the foot above which the sensor was
attached, the accuracy of the measurements varied
between 83.1% to 99.8%, with an average of 94% and
an SD of 7.3%. If the tests commenced with the foot
not wearing the sensor, the accuracy of the measure-
ments once again improved, with a range of 84% to
99.5%, an average of 96% and a SDof 3.5%.

From a statistical perspective, the a priori assump-
tion is that the distribution of the distance measure-
ments conforms to the central limit theorem (CLT).
Formally, the central limit theorem states that for a ran-
dom sample of size n, where n is sufficiently large, the
distribution of those sample means will be approxi-
mately normal (i.e. follows a Gaussian distribution),
regardless of the shape of the original population dis-
tribution. The approximation becomes more accurate
as the sample size increases. The CLT assumes

independence of the random variables, identical dis-
tribution, and a sufficiently large sample size. Violations
of these assumptions can affect the validity of the theo-
rem. In this case, the distribution of the distance mea-
surements is also affected by the test distance, with
smaller errors associated with longer distances. This is
confirmed by figures 9(a) and (b), which show the dis-
tribution of distance measurements over 50 right foot
tests taken over 5 m and 12 m respectively. Figure 9(a)
shows a close approximation to a normal distribution;
counterintuitively, figure 9(b) displays a greater devia-
tion from this distribution. However, this is because the
errors are much smaller (note the range of distance
across the x-axis) relative to the distance (12 m as
opposed to 5 m) and the resolution of the histogram is
constrainedby thenumber of tests.

4.3.Walking test assessments, subject S2
A small systematic error was discoveredwith the above
tests; there was a slight inconsistency with the starting
and end locations of the toe positions with respect to
the demarked lines. Walking tests were therefore

Figure 8. (a) Subject during ameasurement test; (b)Walkway used in tests.

Table 3. Sensor accuracy of distancemeasurement, subject S1. Sensor on left foot, total of 200 trials.

Distance,m No. trials Starting foot Absolutemean Mean%Error SD

5 50 Left 4.38 12.5 10.5

5 50 Right 4.76 4.9 6.8

12 50 Left 11.28 6.0 7.3

12 50 Right 11.52 4.0 3.5
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repeatedwith subjects S2 and S3,with careful attention
paid to the toe positions at the start and end of each
walking episode. The data are given in table 4. Each test
was conducted over 9 m, with the sensor again
attached above the left foot in all cases. The results
confirm a higher level of accuracy, with slightly better
precision returned when the first stride was taken by
the foot not wearing the sensor. It is worthy of note
that thewalking test assessments establish the accuracy
of the algorithm, not the accuracy of how the subject
(or patient) covers a specific distance.

5.Discussion

This study has investigated the role of a non-invasive
wearable device to assist in the assessment of patients
with a diagnosis of iNPH, and in particular, to quantify
the benefits conferred by the insertion of a shunt.
Remote clinical monitoring and telemedicine and
rehabilitation have increased in popularity [19] and
have proven benefits with respect to economic costs,
the patient experience and convenience for healthcare
professionals and patients alike. They are still areas
which need continuing research [20]. It is important to
note that the diagnosis of iNPH can be challenging due
to overlapping symptoms with other conditions, such
as Parkinson’s disease or normal aging. Therefore, an
interdisciplinary approach involving neurologists, neu-
rosurgeons, and neuropsychologists is often necessary

to make an accurate diagnosis [3]. It typically involves a
range of testswhichmay include:

1. Medical history and physical examination: The
clinician will review the medical history of the
patient and conduct a thorough physical examina-
tion, including a neurological assessment, and
enquire about the symptoms and their progression
over time.

2. Symptom evaluation: iNPH is characterized by a
triad of symptoms, including gait disturbance
(difficulty walking), cognitive impairment (mem-
ory and thinking problems), and urinary incon-
tinence. The presence and severity of these
symptomswill be evaluated.

3. Lumbar puncture (spinal tap): This procedure
involves inserting a needle into the lower back to
collect a sample of cerebrospinal fluid (CSF) for
analysis. In iNPH, the CSF pressure is typically
within the normal range, but drainage of a small
amount of fluid may temporarily relieve symp-
toms, confirming the potential for improvement
with treatment.

4. Brain imaging: Imaging tests are crucial in diagnos-
ing iNPH and to exclude other conditions. Techni-
ques commonly used include:

a. Magnetic Resonance Imaging (MRI). This is used
to visualise the brain structure and identify any

Figure 9.Distribution of distancemeasurements for right foot tests conducted over (a) 5mand (b) 12m.

Table 4. Sensor accuracy of distancemeasurement, subjects S2 and S3. Sensor on left foot, total of 40 trials.

Distance,m Subject No. trials Starting foot AbsoluteMean Mean%Error SD

9 S2 10 Left 8.82 2.0 0.3

9 S2 10 Right 8.97 0.3 0.1

9 S3 10 Left 8.99 0.1 0.3

9 S3 10 Right 9.00 0.0 0.1
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abnormalities, such as enlarged ventricles (the
fluid-filled spaces in the brain), which are often
observed in iNPH.

b. Positron emission tomography (PET). These stu-
dies evaluate blood flow in the brain and can help
determine if impaired blood flow is contributing to
the symptoms.

c. Computed Tomography (CT): Such scans provide
detailed images of the brain and detect any structural
abnormalities or ventricular enlargement.

Despite the range of tests available, iNPH is often
misdiagnosed due to lack of clinical awareness. The
above tests are often conducted in specialist centres
but lack of capacity within some hospital setting con-
tributes to the low diagnoses and impacts themonitor-
ing and treatment of patients. This wearable device
acts in complement to diagnostic tools, since it tracks
movement patterns, providing data that are non-inva-
sive, readily accessible to clinicians to improve assess-
ment of iNPH, as well as monitoring the management
of patients undergoing treatment. (It may assist in
diagnosis, respecting symptom evaluation, above).
The device requires less than oneminute to attach, and
its use in combination with a smart phone allows test-
ing to be conducted within either a clinical setting or
remotely in a patient’s home. In the latter setting, the
data can be transferred automatically to a secure server
or a cloud-based site for subsequent analysis [21].

Improvement in the assessment accuracy and the
management of iNPH would reduce the cost of care
for this population and improve overall patients’
health, social and economic outcomes. For example,
the average annual care cost for dementia in the UK is
£32,250 per person. Currently 39% of dementia
patients live in care homes. Using remote assessment,
this device could enable 429 people to stay in their own
home saving up to £14M per year, a number that will
grow each year as additional patients are treated [22].

It is emphasised that thus far, the effort has focused
on the engineering development, with an emphasis on
accuracy of performance and ease of use. Hospital-
based clinical trials are now being arranged, the results
fromwhichwill be reported in a later publication.

6. Conclusion

The main purpose of this study was to assess a novel
wearable device to assist in the accurate non-invasive
diagnosis of iNPH. The proven capability allows the
device to be studied inmonitoring disease progression
and to assess the efficacy of treatment. Tests confirm
that the device generates quantitative information
which is accurate and reliable.
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