
Please cite the Published Version

Chatterjee, Indranath and Baumgärtner, Lea (2024) Unveiling Functional Biomarkers in
Schizophrenia: Insights from Region of Interest Analysis Using Machine Learning. Journal of
Integrative Neuroscience, 23 (9). ISSN 1757-448X

DOI: https://doi.org/10.31083/j.jin2309179

Publisher: IMR Press

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/636008/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an open access article which first appeared in Journal of Integra-
tive Neuroscience

Data Access Statement: The MRI dataset utilized in this study is publicly available for down-
load from (http://schizconnect.org/). The data subset used in this research can be shared with
interested readers upon reasonable request. Requests for data access should be directed to the
corresponding author, who will facilitate the provision of the dataset, ensuring compliance with
ethical and legal requirements.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0001-9242-8888
https://doi.org/10.31083/j.jin2309179
https://e-space.mmu.ac.uk/636008/
https://creativecommons.org/licenses/by/4.0/
http://schizconnect.org/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


J. Integr. Neurosci. 2024; 23(9): 179
https://doi.org/10.31083/j.jin2309179

Copyright: © 2024 The Author(s). Published by IMR Press.
This is an open access article under the CC BY 4.0 license.

Publisher’s Note: IMR Press stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Original Research

Unveiling Functional Biomarkers in Schizophrenia: Insights from
Region of Interest Analysis Using Machine Learning
Indranath Chatterjee1,2,3,*, Lea Baumgärtner4

1Department of Computing and Mathematics, Manchester Metropolitan University, M1 5GD Manchester, UK
2School of Technology, Woxsen University, 502345 Hyderabad, India
3Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, 140401 Punjab, India
4Department of Media, Hochschule der Medien, University of Applied Science, 70569 Stuttgart, Germany
*Correspondence: i.chatterjee@mmu.ac.uk (Indranath Chatterjee)
Academic Editor: Imran Khan Niazi
Submitted: 28 April 2024 Revised: 11 July 2024 Accepted: 26 July 2024 Published: 24 September 2024

Abstract

Background: Schizophrenia is a complex and disabling mental disorder that represents one of the most important challenges for neu-
roimaging research. There were many attempts to understand these basic mechanisms behind the disorder, yet we know very little. By
employing machine learning techniques with age-matched samples from the auditory oddball task using multi-site functional magnetic
resonance imaging (fMRI) data, this study aims to address these challenges. Methods: The study employed a three-stage model to gain
a better understanding of the neurobiology underlying schizophrenia and techniques that could be applied for diagnosis. At first, we
constructed four-level hierarchical sets from each fMRI volume of 34 schizophrenia patients (SZ) and healthy controls (HC) individually
in terms of hemisphere, gyrus, lobes, and Brodmann areas. Second, we employed statistical methods, namely, t-tests and Pearson’s cor-
relation, to assess the group differences in cortical activation. Finally, we assessed the predictive power of the brain regions for machine
learning algorithms using K-nearest Neighbor (KNN), Naive Bayes, Decision Tree (DT), Random Forest (RF), Support Vector Machines
(SVMs), and Extreme Learning Machine (ELM). Results: Our investigation depicts promising results, obtaining an accuracy of up to
84% when applying Pearson’s correlation-selected features at lobes and Brodmann region level (81% for Gyrus), as well as Hemispheres
involving different stages. Thus, the results of our study were consistent with previous studies that have revealed some functional ab-
normalities in several brain regions. We also discovered the involvement of other brain regions which were never sufficiently studied
in previous literature, such as the posterior lobe (posterior cerebellum), Pyramis, and Brodmann Area 34. Conclusions: We present a
unique and comprehensive approach to investigating the neurological basis of schizophrenia in this study. By bridging the gap between
neuroimaging and computable analysis, we aim to improve diagnostic accuracy in patients with schizophrenia and identify potential
prognostic markers for disease progression.

Keywords: functional magnetic resonance imaging (fMRI); schizophrenia; feature selection; region of interest (ROI); machine learning

1. Introduction
Schizophrenia has a significant public health im-

pact, affecting 1 in every 100 people globally and posing
paramount challenges not only to individuals who are di-
agnosed but also to their families. Schizophrenia patients
usually display psychosis (hallucinations, delusions), as
well as reduced emotional expression and cognitive deficits
that impair memory and attention [1–3], thereby making
schizophrenia a leading cause of disability worldwide.

Despite extensive research, we still do not fully
understand the precise brain mechanisms underpinning
schizophrenia. The most consistent finding from structural
neuroimaging is that individuals with schizophrenia haved-
iminished brain volumes, yet the consensus on specific in-
volved regions remains narrow [4]. While functional mag-
netic resonance imaging (fMRI) has provided insights about
brain activity patterns in schizophrenia, no singlemodel can
explain all the outcome-related signals seen in fMRI [5].

Our study aims to address this existing inconsis-
tency in identifying localized brain abnormalities related to
schizophrenia. This proposed approach uses fMRI in com-
bination with cutting-edge machine learning techniques to
develop biomarkers identification and diagnostic tools. Our
research aims to precisely locate abnormal brain activity
patterns in people with schizophrenia and specifically target
the most important regions of their brains. We believe that
this strategy will validate previously reported areas and dis-
cover new regions involved in the disorder. We also antici-
pate that machine learning will greatly improve clinicians’
ability to distinguish schizophrenia patients from healthy
individuals.

In this paper, we seek to perform task-based fMRI data
analysis to meet these aims in cohorts of patients and con-
trol subjects. Employing voxel-wise analysis, we aim to
identify brain areas exhibiting differences in neuronal activ-
ity. Next, we use advanced statistical methods to identify
the most characteristic brain activation patterns related to
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schizophrenia [6]. We use these insights to develop com-
plex machine learning models that accurately predict the
characteristics of the illness and thereby distinguishing the
schizophrenia patients from healthy individuals.

By repurposing fMRI technology with state-of-the-art
machine learning algorithms, our research aims to advance
the understanding of schizophrenia. Our objective is to
identify novel brain regions associated with this disorder
and improve the existing diagnostic schemes, leading to im-
proved treatment strategies and better outcomes for suffer-
ers of this devastating condition.

2. Related Work
Despite decades of neurophysiological and neu-

roimaging investigations, the etiopathogenesis of
schizophrenia remains elusive. We have selected 48
studies out of hundreds of literature items on neuroimaging
in schizophrenia published over the past three decades,
which depict region-wise functional changes in schizophre-
nia. In this section, we will discuss some of the affected
brain areas obtained from the results of the initial research.
Table 1 (Ref. [7–42]) provides a comprehensive chrono-
logical overview of key studies that have investigated
brain regions affected in schizophrenia using various
neuroimaging techniques. Each entry includes the brain
region studied, the year of publication, the authors, and
the primary focus of the study. This table illustrates the
progression of research over the years and highlights the
diverse methodologies and focuses within the field. By
presenting this information, we aim to situate our study
within the broader context of existing literature and show
how our research builds on previous findings to deepen the
understanding of schizophrenia’s neural mechanisms.

The role of the dorsolateral prefrontal cortex (DLPFC)
in schizophrenia has been extensively investigated in previ-
ous studies [7,9–11,13,14,43]. For instance, Park and Holz-
man (1992) [7] analyzed the contribution of the DLFPC
to the schizophrenia phenotype by designing an ad-hoc
delayed-response paradigm. They investigated twelve
schizophrenia patients, twelve bipolar patients, and twelve
healthy controls. The results showed that schizophrenia
patients had significantly poorer performance in memory-
guided delayed responses compared to both control groups.
Furthermore, a deficit in smooth-pursuit eye movements
was also traced back to dorsolateral prefrontal dysfunction.

Jansma et al. (2004) [10] tested ten schizophrenia pa-
tients on atypical antipsychotic medication and ten healthy
controls. Schizophrenia patients showed increasingly poor
performance on the N-Back tasks, resulting in a peak acti-
vation of the working memory system at a lower load than
healthy controls. However, there was no evidence that the
shape of the load–response curve in DLPFC, as measured
via fMRI, was abnormal in schizophrenia. Based on this
observation, working memory dysfunction was traced back
to an impaired functional output of the entire workingmem-

ory system [10]. The impaired functionality of the DLPFC
in schizophrenia patients can also be seen in other studies
[44,45].

The ventrolateral prefrontal cortex (VLPFC) is a brain
area that has been extensively studied in schizophrenia
[9,11,23]. In a study by Schlösser et al. (2003) [9], fMRI
data from twelve schizophrenia patients (treated with ei-
ther typical or atypical antipsychotics) and six healthy sub-
jects were analyzed to examine the affected connectivity
in schizophrenia. The authors concluded that the cortical-
subcortical-cerebellar network exhibited effective connec-
tivity in all groups. However, using a path model, the
results revealed reduced connectivity strength in the left
prefrontal/right cerebellar network and inter-hemispheric
connections in patients treated with antipsychotics. Con-
versely, an increased connectivity strength was observed
in thalamo-prefrontal connections to the left VLPFC and
DLPFC. In comparison, atypically treated patients dis-
played a decreased connectivity strength from the left pre-
frontal to the right cerebellar and from the right prefrontal
to the left cerebellar, and from the right VLPFC to the right
DLPFC.

In addition to the DLPFC and VLPFC, other studies
have investigated the prefrontal cortex (PFC) and found it
to be affected in schizophrenia [11,12,15,22]. The cerebel-
lum, or cerebellar area, has also been evaluated as an af-
fected brain region in schizophrenia. Meyer-Lindenberg et
al. (2001) [8] investigated disturbed neural interactions by
evaluating cooperation action characteristics on the func-
tional connectivity systems level. The researchers applied
the N-Back working memory task on 13 schizophrenia pa-
tients and 13 healthy controls using positron emission to-
mography. A pattern showed differences in the cerebellar
and the inferotemporal parahippocampal loadings of the pa-
tients. Differences were also observed in the dorsolateral
prefrontal and anterior cingulate activity of the healthy con-
trol.

Furthermore, Guccione et al. (2013) [16] applied
Multiset Canonical Correlation Analysis (M-CCA) to an
fMRI dataset of nine schizophrenia patients and an equal
number of healthy controls. By using this multivariate tech-
nique, the authors identified specific brain areas related to
the working memory task. Their findings revealed that the
cerebellum seems to be a differentiating brain area for the
diagnosis of schizophrenia. Several other researchers have
also identified differences in functional activations in the
cerebellum region of schizophrenia patients compared to
healthy controls [5,17–19,46].

The thalamus is a region of active research in the field
of schizophrenia. Several studies have investigated the tha-
lamus and have found it to be an essential biomarker for the
disorder [17,19–21,25,46,47]. Manoach et al. (2000) [20]
analyzed fMRI data from an equal number of schizophre-
nia and healthy subjects to identify abnormalities in the
thalamus and basal ganglia, which are units of frontostri-
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Table 1. A chronological overview of literature identifying regions of interest and the corresponding studies.
Brain region Year Authors Study focus

Dorsolateral Prefrontal Cortex 1992 Park [7] Poor memory performance, eye movement deficits
2001 Meyer-Lindenberg et al. [8] Cerebellar, prefrontal differences
2003 Schlosser et al. [9] Reduced prefrontal-cerebellar connectivity
2004 Jansma et al. [10] N-Back task performance
2005 Tan et al. [11] Impaired functionality
2011 Costafreda et al. [12] Pattern recognition techniques
2022 Lalousis et al. [13] Trait-based abnormalities
2023 Smucny et al. [14] Advanced neuroimaging

Cerebellum 2001 Meyer-Lindenberg et al. [8] Working memory tasks
2003 Schlosser et al. [9] Connectivity alterations
2004 Takahashi et al. [15] Differential neural response
2013 Guccione et al. [16] Functional differentiation
2013 Yu et al. [17] Functional activation
2019 Yan et al. [18] Differentiation in activation
2020 Lavigne et al. [19] Activation differences

Thalamus 2000 Manoach et al. [20] Working memory performance
2004 Takahashi et al. [15] Emotional processing
2013 Yu et al. [17] Functional activation
2019 Yan et al. [18] Activation differences
2020 Lavigne et al. [19] Activation differences
2020 Bakshi and Kemether [21] Gene expression changes

Prefrontal Cortex 2003 Schlosser et al. [9] Reduced connectivity
2004 Takahashi et al. [15] Emotional processing
2005 Tan et al. [11] Impaired functionality
2011 Costafreda et al. [12] Pattern recognition techniques
2012 Deserno et al. [22] Reduced connectivity
2022 Zhang et al. [23] Prefrontal activation

Hippocampus 2001 Meyer-Lindenberg et al. [8] Emotional processing
2002 Ford et al. [24] Combined structural-functional classification
2004 Takahashi et al. [15] Emotional processing
2007 Kumari et al. [25] Affective processing
2023 Szymanski et al. [26] Hippocampal dysfunction

Midbrain 2005 Fahim et al. [27] Midbrain activity
2010 Romaniuk et al. [28] Emotional processing
2023 Fuentes-Claramonte et al. [29] Midbrain abnormalities

Subcallosal Gyrus 2008 Filbey et al. [30] Functional abnormalities
2021 Yang et al. [31] Structural changes

Brodmann Area 4 2004 Rogowska et al. [32] Sensorimotor processing
2005 Ford et al. [33] Activation patterns

Brodmann Area 11 2007 Zhou et al. [34] Orbitofrontal activity

Brodmann Area 25 2001 Stephan et al. [35] Cingulate cortex activity
2004 Haznedar et al. [36] Subgenual cingulate

Brodmann Area 36 2005 Katsel et al. [37] Perirhinal cortex
2011 Walther et al. [38] Resting-state activity

Brodmann Area 39 2006 Marjoram et al. [39] Parietal cortex
2007 Whalley et al. [40] Angular gyrus

Ventral Lateral Nucleus 2006 Clinton et al. [41] Striatal activation
2018 Giordano et al. [42] Functional connectivity

The table includes the year of publication, authors, sample sizes, and study focus.

atal circuity in working memory. After comparing working
memory task load conditions between the groups, the au-
thors found that schizophrenia patients exhibited a deficit
in working memory performance in the DLPFC, with ac-
tivity observed in the basal ganglia thalamus.

Furthermore, Bakshi et al. (2020) [21] investigated
gene expression changes and potential transcriptional tar-
gets in two thalamic regions using postmortem samples
from 11 schizophrenia subjects and healthy controls. The
authors identified the anterior thalamic nucleus as a region
affected by schizophrenia.
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The hippocampal region has also been identified as
another area affected by schizophrenia in several studies
[8,15,24]. Ford et al. (2002) [24] analyzed fMRI data from
15 schizophrenia patients and eight healthy controls and
found that the hippocampal region can be classified as a dis-
tinguished brain region affected by the disorder. Addition-
ally, Shi et al. (2007) [48] used multivariate pattern clas-
sification on fMRI data and anatomical templates to study
defective brain functionalities in 48 schizophrenia patients
and 35 healthy subjects. The authors claimed that their dis-
criminative model was able to identify abnormal brain re-
gions in schizophrenia patients, including ten distinguish-
able areas such as the hippocampus, pallidum, amygdala,
and cerebellum. Overall, these studies highlight the im-
portance of investigating the thalamus and hippocampal re-
gions in understanding the neurobiological mechanisms un-
derlying schizophrenia.

The Striatum has been implicated as another poten-
tially affected brain region in schizophrenia [18,49,50].
Previous research has shown functional changes in this re-
gion. Juckel et al. (2006) [49] analyzed the Blood Oxygen
Level Dependent (BOLD) response in the ventral Striatum
of medicated schizophrenia patients using fMRI data. The
researchers examined twenty schizophrenia patients and ten
healthy subjects, of which ten schizophrenia patients had
been treated with typical neuroleptics and the remaining
ten with atypical neuroleptics. The experiment results re-
vealed that the healthy subjects and the atypical neurolep-
tics treated schizophrenia patients displayed ventral striatal
activation. However, typical neuroleptics treated patients
did not show any differences. These patients had decreased
activation in the left ventral Striatum, which resulted in the
severity of negative symptoms. Zeng et al. (2018) [50] cre-
ated a deep discriminant autoencoder network using a large
fMRI dataset of 734 images, including 357 schizophrenia
patients. The authors found distinct abnormalities in the
cortical-striatal-cerebellar circuit in schizophrenia patients.

Takahashi et al. (2004) [15] investigated emotional
response and the neural basis of affected emotional process-
ing, comparing 15 schizophrenia patients and 15 healthy
subjects. The subjects were instructed to perform a task
while whole-brain activities were measured using fMRI.
When confronted with unpleasant pictures, control sub-
jects displayed activities in the amygdaloid–hippocampal
region, prefrontal cortex, thalamus, basal ganglia, cerebel-
lum, midbrain, and visual cortex. However, schizophre-
nia patients showed less activation in the neural circuit in
the right amygdala, bilateral hippocampal region, and me-
dial prefrontal cortex (MPFC). The authors identified func-
tional damage in emotional processing in schizophrenia, es-
pecially in the right amygdala and MPFC. Similar results
about the amygdala can be found in other literature [48].

As discussed earlier, the prefrontal cortex, the whole
frontal lobe, is another potential area that has been found
to be affected in several research studies [5,19,46,51,52].

Gold et al. (1997) [51] examined the neuropsychological
battery and the load of the working memory-letter-number
(LN) span of schizophrenia in 36 schizophrenia patients and
20 healthy controls. As impaired Wisconsin Card Sorting
Test (WCST) performance appears to be a factor of dys-
function in the frontal lobe, the researchers applied regres-
sion analyses on the LN performance of schizophrenic pa-
tients. The authors found that working memory might be a
possible determinant of one aspect of WCST performance
in schizophrenia, leading to an affected frontal lobe region.

Recent research has significantly advanced our under-
standing of schizophrenia through the use of fMRI com-
binedwith innovativemachine learning techniques. In a no-
table study, Zhang et al. (2024) [53] employed linear sup-
port vector machines (SVM) to differentiate schizophrenia
patients from controls using both static and dynamic brain
activity indices, achieving an area under the curve (AUC)
of 0.87 and an accuracy of 81.28%. This highlights the po-
tential of combining various brain activity measures for im-
proved diagnostic accuracy [53]. Building on the theme of
dynamic analysis, Zhu et al. (2024) [54] introduced the
Temporal Brain Category Graph Convolutional Network
(Temporal-BCGCN), which analyzed time-varying brain
connectivity. Their method not only provided deeper in-
sights into the brain’s functional dynamics but also achieved
impressive accuracies of 83.62% and 89.71% on distinct
datasets, underscoring the utility of graph-based models in
capturing complex brain patterns [54].

Furthermore, Wang et al. (2024) [55] explored the
efficiency of deep learning through a Multiple Sparsely
Connected Network (MSCN), which excelled in reduc-
ing redundancy in functional connectivity data. Their ap-
proach resulted in a high classification accuracy of 91.71%,
with a specificity of 94.99% and a sensitivity of 88.69%,
demonstrating the MSCN’s robustness in distinguishing
schizophrenia cases [55]. Wismüller et al. (2023) [56]
also contributed significantly to this field by implement-
ing Large-Scale Extended Granger Causality (lsXGC) to
analyze directed causal relationships in fMRI data. Their
innovative multivariate method achieved an F1 score of
87.40% and an AUC of 95.00%, significantly surpassing
traditional connectivity measures [56]. Additionally, Yang
et al. (2019) [57] refined the classification process using a
Multiple Feature Image Capsule Network Ensemble, inte-
grating diverse imaging features through deep learning to
handle the complexity of schizophrenia’s functional brain
patterns. This integrated approach markedly improved di-
agnostic accuracy, showcasing the strength of deep cap-
sule networks in medical imaging analysis [57]. Lastly,
Zeng et al. (2018) [50] addressed cross-site diagnostic
challenges using a discriminant deep learning model that
learned shared functional connectivity features across mul-
tiple sites. This model effectively demonstrated the po-
tential for widespread clinical application with accuracies
around 85.0% in multi-site pooling classifications [50]. Th-
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Table 2. Summary of demographic and clinical characteristics of study participants.

Subject Samples Size
Age Group Sex Handedness Age of Onset Smoking

Treatment Status
Medication Clinical Characteristics

(years) (M/F) (R/L) (years (median)) (Yes/No) (Yes/No) Depression Level Severity Level Cognitive Impairment Level

Healthy 34 38.24 ± 11.17 24/10 30/4 NA 10/24 NA NA NA NA NA

Schizophrenia 34 40.35 ± 8.58 27/7 28/7 22 25/9 Inpatient: 15 Yes: 24 Mild: 22 Mild: 12 Mild: 21
Outpatient: 19 No: 10 Moderate: 8 Moderate: 16 Moderate: 11

Severe: 4 Severe: 6 Severe: 2
Note: Participant IDs for Healthy subjects include: 001063297025, 001012753423, ..., 001012126889.
Participant IDs for Schizophrenia subjects include: 000998241845, 001084262659, ..., 001096709026.
Detailed mapping of IDs to specific data is available upon request.NA, Not Applicable.
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-ese studies collectively underline the significant advance-
ments in using machine learning to interpret fMRI data for
schizophrenia, offering promising directions for future re-
search and potential clinical applications.

We can see that numerous studies have explored the
functional changes in various brain regions in schizophre-
nia using fMRI data. These investigations enhance our un-
derstanding of the neural mechanisms behind schizophrenia
and show the potential of combining neuroimaging with ad-
vanced statistical and machine learning techniques to im-
prove diagnostic accuracy. This ongoing research signif-
icantly contributes to the field of schizophrenia, provid-
ing valuable insights that pave the way for future studies
and potential therapeutic advancements for better treatment
plans.

3. Materials
3.1 Dataset

The fMRI dataset utilized in this study is pub-
licly available for download from (http://schizconnect.org
/). This dataset includes data from two distinct acqui-
sition sites, identified as site 0009 and site 0010. Both
sites employed 1.5 T MRI scanners, which were used to
acquire fMRI data, ensuring uniformity in data collection
techniques across the sites. The dataset comprised 34 in-
dividuals diagnosed with schizophrenia, with 21 from site
0009 and 13 from site 0010, and 34 healthy control sub-
jects, evenly split with 17 from each site. All participants
underwent fMRI scanning while performing the same cog-
nitive task—the auditory oddball task—to maintain consis-
tency in the task paradigm across both groups. Each subject
contributed data from four runs of each scan, enhancing the
robustness and replicability of the research findings.

Table 2 presents the demographic characteristics of
the participants. It is essential to acknowledge potential
chances of variations between the two sites in acquisition
parameters, including the MR machine utilized. Although
the information provided by the fBIRN repository states
that the pulse sequence parameters were closely aligned,
as determined through pilot studies conducted by the re-
search team. These parameters encompassed an orientation
of the anterior-commissure posterior-commissure line, 27
slices with a thickness of 4 mm, a repetition time (TR) of 2
seconds, a time to echo of 40ms for 1.5 T scanners, a matrix
size of 64 × 64, a field of view of 22 cm, and a flip angle
of 90 degrees.

3.1.1 Task Details
Our study used the fMRI dataset of subjects perform-

ing the standard auditory oddball (AUD) task. The odd-
ball paradigm, which is well-known in schizophrenia re-
search, accurately generates a particular pattern of brain
activity linked with the condition. The simplicity of the
AUD task along with positive tolerance among people with
schizophrenia renders it an intriguing option for studies.

Table 3. Summary of statistical tests for age and gender
differences between healthy and schizophrenia patients.

t-statistic p-value

Age Difference –1.03 0.31
Gender Difference (Male) –1.40 0.17
Gender Difference (Female) 0.82 0.43

While the oddball paradigm may only provide light on
specific aspects of schizophrenia pathology, it remains an
effective tool for identifying potential functional imaging
biomarkers. Consequently, the selection of the oddball
paradigm to identify a representative schizophrenia marker
stands as both scientifically valid and technically robust.

Throughout the task, a continuous sound beam played
as subjects listened attentively, discerning any deviant
(oddball) tone from the standard tone. The task duration
spanned 280 seconds. Subjects fixated on a gray screen
bearing a black cross; upon detecting a deviant tone, they
promptly pressed the ‘1’ button, succeeded by a sequence
of standard tones (duration = 100 ms). Deviant tones (du-
ration = 100 ms) occurred every 6 to 15 seconds. Each task
run concluded with a 15-second silent interval. Within each
run, a total of 140 brain images were acquired, with a TR
of 2 seconds.

3.1.2 Participant Criteria
While there may have been minor differences in data

collecting settings between the two study sites, all individ-
uals were subjected to the same task paradigm (the audi-
tory oddball task) and scanning techniques to ensure sample
homogeneity. Furthermore, the research design included
a variety of measures to reduce potential confounding fac-
tors. These measures encompassed the exclusion of healthy
controls with present or past head trauma or medical condi-
tions, while exclusively enrolling subjects diagnosed with
schizophrenia disorder meeting Diagnostic and Statistical
Manual of Mental Disorders, 4th ed. (DSM-IV) criteria.
The dataset comprised subjects from two distinct recording
sites. Specifically, both sites enrolled an equal number of
healthy individuals (17 from each site), but differed in the
number of subjects with schizophrenia, with 21 from Site
0009 and 13 from Site 0010, thus ensuring a balanced and
robust dataset for comparative analysis.

We performed a set of separate statistical analyses to
determine any potential disparities in age and gender be-
tween healthy subjects and schizophrenia patients. To eval-
uate the age differences, we have conducted a two-sample
t-test to compare the mean age across both groups. The ob-
tained results, as shown in Table 3, yielded a t-statistic of
–1.03 and a corresponding p-value of 0.31. We can con-
clude that these findings indicate a lack of statistically sig-
nificant variance in mean age between healthy subjects and
schizophrenia patients.
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Similarly, we have also investigated the gender dispar-
ities by stratifying each cohort into male and female sub-
groups, followed by performing individual two-sample t-
tests for each subgroup. As shown in Table 3, the t-statistic
for the male subgroup comparison stood at –1.40, yielding a
p-value of 0.17, while the t-statistic for the female subgroup
comparison was 0.82, yielding a p-value of 0.43. These
outcomes underscore the absence of statistically significant
gender discrepancies between healthy individuals and those
with schizophrenia. The analyses reveal that age and gen-
der differences between healthy and schizophrenia subjects
are not statistically significant. It suggests that age and gen-
der do not influence our results. Thus, we can conclude that
the slight differences between the two subgroups (male and
female) are likely due to the disease itself.

3.2 Data Preprocessing
In this study, we preprocessed the raw dataset us-

ing the Statistical Parametric Mapping toolbox version
12 (SPM12, https://www.fil.ion.ucl.ac.uk/spm/software/s
pm12/) in MATLAB [58], which is widely used for ana-
lyzing neuroimaging data. We acquired the raw scans with
a voxel size of 3.4 × 3.4 × 4 mm. To correct head motion
artifacts, we realigned them with the first scan as a refer-
ence. Additionally, we applied a slice timing correction to
address potential errors caused by temporal variations dur-
ing the fMRI data acquisition.

Next, we normalized the fMRI scans into the standard
Montreal Neurological Institute (MNI) space by using an
EPI template in SPM12. This transformation changed the
initial voxel size to 3× 3× 3 mm3 and resulted in volumes
of 53 × 63 × 46 voxels. Finally, we performed a spatial
smoothing step using a 9 × 9 × 9 mm3 full width at half
maximum (FWHM) Gaussian kernel. This step helps re-
duce the impact of noise and improves the signal-to-noise
ratio [5].

4. Methods
4.1 General Linear Model Analysis

The preprocessing of the fMRI data analysis resulted
in the generation of 4 dimensional (4D) images for each
partaker which we later analyzed using the General Linear
Model (GLM). The GLM is an important tool when analyz-
ing fMRI data because it allows us to analyze the relation-
ship between observed ‘neural activity’ and ‘experimental
conditions’. With the help of GLM, one can indicate the
specific zones of the brain that demonstrate considerable
fluctuations in their activity concerning some stimuli or ac-
tions.

Specifically, within the GLM framework, we esti-
mated a condition pair that involved the comparison of the
deviant tone to the standard tone. This comparison aids us
in obtaining a 3D spatial map referred to as a contrast map
that demonstrates voxel activation in the two contrast con-
ditions. The voxels with the value ‘0’ indicate no activa-

tion during the task and hence are useful for comparison
with other conditions. The GLM analysis was conducted
for each of the participants and each of the four runs and
therefore, was very specific.

Subsequently, we averaged the four contrast maps in
each participant to obtain an average 3D contrast map. This
step is essential as it brings down the feature vector size
and enables us to handle the large dimensionality of fMRI
data. However, even with this reduction, the number of
dimensions is still large and presents difficulties in accu-
rately distinguishing the two classes of interest, which are
schizophrenia patients and healthy controls. There were
several reasons behind our choice of the GLM. First, the
GLM assists us with a reasonable estimation of the brain’s
response to specific tasks, which is critical for detecting
patterns related to schizophrenia. Second, by taking the
average of the contrast maps, we are increasing the speci-
ficity and thus the signal-to-noise ratio which is important
in the detection of changes in brain activity. Finally, this
method is beneficial in preparing for subsequent phases
of analysis that include the use of these contrast maps to
build and enhance the models used in the machine learning
system. These models will also assist in the classification
of people according to brain activity patterns and, in gen-
eral, contribute towards the enhancement of knowledge of
schizophrenia’s neural foundation.

4.2 Segmentation of Regions of Interest (ROI)

In the next step of our method, we divided brain data
into four levels based on Talairach’s space atlas, using the
WFU Pickatlas software (version 3.0.5, https://www.nitrc.
org/projects/wfu_pickatlas/) for automatic brain region la-
beling [59]. Each subject’s brain data was split our prede-
termined regions of interests (ROI) into the following four
levels: Hemisphere, Gyrus, Lobe, and Cell type (Brodmann
Areas).

Firstly, we divided the brain data at the Hemisphere
level, distinguishing between the left and right hemispheres.
This step allows us to see how schizophrenia might affect
each side of the brain differently. Then, we segmented the
brain data at the Gyrus level, which involves dividing the
brain into various gyri. This finer segmentation helps us ex-
amine more specific regions within each hemisphere. Mov-
ing on to the Lobe level, we categorized the brain data into
the frontal, parietal, temporal, and occipital lobes. Since
each lobe has distinct functions, this step helps us identify
which lobes are more involved in schizophrenia. Lastly,
we used Brodmann Areas, which are regions of the cere-
bral cortex defined based on cell organization. This level
provides a very detailed view of the brain down to the spe-
cific types of cell organization.

This methodology was necessary because schizophre-
nia is a complex disorder that likely impacts multiple brain
regions in different ways. By segmenting the brain into hi-
erarchical levels, we can analyze the specific involvement

7

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.nitrc.org/projects/wfu_pickatlas/
https://www.nitrc.org/projects/wfu_pickatlas/
https://www.imrpress.com


of each region more precisely. This approach allows us to
identify subtle differences in brain activity that might be
overlooked with a more generalized analysis. Furthermore,
it helps us correlate specific brain areas with the symptoms
and severity of schizophrenia, leading to a better under-
standing of its neural mechanisms.

After segmenting the brain data, we analyzed each
section separately, focusing on the brain regions identified
in both existing studies and our ROI. This method enabled
us to study the activity of specific brain areas related to
schizophrenia, enhancing our understanding of the disor-
der’s neural mechanisms.

4.3 Statistical Feature Selection
In this stage, we used statistical feature selection tech-

niques to find differences in brain activity between individ-
uals with schizophrenia and healthy subjects. We applied
these techniques on fMRI data obtained after the GLManal-
ysis and the parcellation of brain regions according to our
ROIs.

We used filter-based feature selection methods to re-
duce the data to a significant subset of features. Onemethod
was the Pearson correlation coefficient, which measures the
correlation between two variables. The coefficient ranges
between +1 and –1, where a value of 0 indicates no corre-
lation. The formula for calculating the Pearson correlation
coefficient is:

r =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

To determine the statistical significance of the differ-
ences in brain activity, we applied the Student’s paired t-
test. We used this method to find significant voxels between
the two groups of population, schizophrenia and healthy
controls. We assumed the null hypothesis (H0) that there
was no difference between the group means and used a sig-
nificance level (α) of 0.05. The p-values were calculated
using the t-test, and significant voxels were identified:

t =
(xi − yi)√

s2
(

1
n1

+ 1
n2

)
The t-statistic value is calculated between the dataset

of x and y, where s represents the pooled standard error
of the two datasets, and n1 and n2 are the frequencies of
specific observations in the data.

We applied both the Pearson correlation and t-test to
test the groups for statistical inference. A smaller p-value
indicates a more significant difference between the two
groups. We selected significant voxels based on their p-
values, representing functional differences in brain regions.

To ensure reliability and validity, we applied the Pear-
son correlation and t-test on each level of brain regions

(Hemisphere, Lobes, Gyrus, and Brodmann Areas). For the
t-test, we selected features with a p-value lower than 0.05.
For the Pearson correlation, we selected features where the
R2 value, calculated from the correlation coefficient, lay
between R2 > 0.001 and R2 < 0.002.

To identify the threshold for R2 we estimated R2 of
all the voxels and based on this distribution we arrived at
the threshold value. We performed test analyses using pilot
study on initial classification models while altering the R2

criterion to determine the impact on classification efficacy.
The threshold range was selected to avoid discarding many
features important for classification while at the same time
excluding noise. To further confirm the appropriateness of
this threshold we applied cross-validation in order to check
adequacy of the threshold for the correct classification of
the two groups. The current approach enabled the differ-
entiation with respect to functionality of various regions of
the brain.

Apart from the statistical feature selection techniques
described above, we also employed a classification-guided
feature selection approach. This approach was based on
the outcomes of preceding classification exercises, aim-
ing to identify the most discriminant features. However,
we specifically utilized features that consistently improved
classification accuracy across various classifiers for sub-
sequent analysis. Our proposed iterative feature selec-
tion approach also assessed the practical significance of
the selected features, ensuring that the differences between
schizophrenia patients and healthy controls were statisti-
cally significant.

4.4 Classification

After performing statistical feature selection on the
data, we used the features selected from the results of the t-
test and Pearson’s correlation as input for various machine
learning classifiers. To classify schizophrenia and healthy
subjects in this study, we employed several well-known
machine learning algorithms, including K-nearest neighbor
(KNN), Decision Tree (DT), Random Forest, Naive Bayes
(NB), SVM, and Extreme Learning Machines (ELM) [60].

K-nearest Neighbor (K-NN) is a supervised machine
learning algorithm widely used for classification tasks.
Unlike probabilistic calculations, K-NN employs distance
metrics to cluster the given data. Distance metrics such
as Minkowski, Manhattan, Cosine, and Euclidean Distance
can be used depending on the dataset and study objective.
Minkowski distance calculates real-valued vector spaces,
requiring a normed vector space. The Manhattan distance
metric computes the distance between points in space based
on the sum of differences in the data coordinates and is
referred to as city block distance. The Cosine distance
measures the similarity between two given vectors and is
primarily used for text analysis. The Euclidean distance
metric, commonly used in K-NN classifications, calculates
the straight distance between two coordinates in Euclidean
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Fig. 1. The entire workflow diagram of our proposed approach. fMRI, functional magnetic resonance imaging; SPM, Statistical
Parametric Mapping; GLM, General Linear Model; ROI, regions of interests.

space. For this study, we opted for the Euclidean distance
metric as it was the most suitable and best-performing dis-
tance metric for our research goal and dataset. After exper-
imenting with values ranging from 1 to 4, we selected a k
value of 2.

Furthermore, we utilized the Decision Tree (DT) al-
gorithm, a supervised method for classification and regres-
sion. The DT algorithm predicts the value of a variable by
learning decision rules inferred from data features. These
decision rules are represented as a tree, where branches
depict decisions based on learned attributes and input tar-
get values. DT decisions are usually transparent and inter-
pretable since they can be visualized. However, DTs tend to
overfit quickly when there is a large number of features in-
fluencing the decision. Therefore, pruning can be applied
to set the maximum depth of a DT. The number of splits
in DTs determines the possible decisions on the node and
whether the target variable is categorical or numeric. In this

study, given our categorical classification problem, we set
the number of splits (nSplit) as 2 for decision tree building.

In our research, we applied the Random Forest (RF)
algorithm, a supervised learningmethod used for regression
and classification in fMRI studies of schizophrenia. The RF
algorithm comprises several decision trees that collaborate
to improve the output and stabilize the decision. While de-
cision trees in RFs determine the outcome of the prediction,
only a subset of the data is used to train each DT, leading
to a variety of differently trained models working together
to achieve a better-generalized outcome. This technique,
known as bagging, is utilized. To implement the RF algo-
rithm, the number of bags containing an ensemble of DTs
must be determined. After experimenting with various pa-
rameters for the number of bags, we found that setting 10
bags for the RF algorithm yielded the best performance in
our study.
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Another classifier used in this study is the Naive Bayes
(NB) classifier, a machine learning technique based on
Bayes’ theorem. The NB classifier calculates the probabil-
ity of A under a given event B. It is termed naive since two
assumptions are applied to the dataset: all features are in-
dependent and equal in importance. However, it is crucial
to determine a good approximation of the probability dis-
tribution to improve the prediction. This can be achieved
through feature engineering or assuming a normal distribu-
tion. Nonetheless, incorrect assumptions can bias the out-
come. Therefore, we utilized Kernel Density Estimation
(KDE), which defines the density around the features and
enhances the result [61].

SVM serve as another supervised machine learning
classifier employed in this study. This algorithm enhances
the class separation of the data by transforming the training
dataset into a higher dimensional dataset through the appli-
cation of boundaries in space, termed hyperplanes. These
hyperplanes are calculated using notable data points known
as support vectors, delineating the separated areas repre-
senting different classes. SVM utilizes the kernel function
to determine Gram matrix elements’ computation, present-
ing a table of vectors. The selection of the kernel function
provides efficient methods for transforming the data into
higher dimensions. Various kernel functions, such as Gaus-
sian or Radial Basis Function (RBF) kernel, are employed
for one-class learning. The polynomial kernel facilitates
non-linear models linear function, which is the default used
for two-class learning and thus applied in this study.

The final classifier employed in our experiments is
the Extreme Learning Machines (ELM) algorithm. Unlike
standard Neural Networks, which use backpropagation to
recalculate the neurons’ weights, ELM utilizes the Moore-
Penrose generalized inverse method for weight calculation.
The Moore-Penrose inverse, known as a generalization of
the inverse matrix, is employed for this purpose. In this
study, we conducted hyperparameter optimization for the
ELM algorithm by experimenting with various combina-
tions of parameters. Different applicable activation func-
tions, including sigmoidal, sine, hardline, triangular, and
radial basis functions, were explored. We adopted an au-
tomated approach to determine the best combination of pa-
rameters, considering different numbers of hidden neurons
ranging from 300 to 10,000 and various numbers of training
iterations ranging from 50 to 2000.

We utilized the features obtained through filter-based
statistical feature selection methods for each of the brain
map hierarchies in the classification using the aforemen-
tioned classifiers. For all classifiers, we applied Leave-
One-Out Cross-Validation (LOOCV) technique. Although
LOOCV entails computational expenses, it ensures reli-
able and unbiased evaluation of the model performance,
particularly beneficial for smaller datasets. LOOCV finds
widespread application in the classification of neuroimag-
ing studies. We meticulously tuned the parameters in each

classifier to achieve the highest accuracy. To offer a clearer
understanding of our proposed approach, we depicted the
process in the form of a flow diagram, as illustrated in
Fig. 1. Alongside the detailed diagram, we have also for-
mulated an algorithm (as stated in Algorithm 1) for the re-
producibility of our proposed methodology.

Algorithm 1 Classification-guided feature selection
1: Input: X ∈ Rn×p (fMRI data matrix), y ∈ {0, 1}n
(binary label vector)

2: Output: S′ (refined set of selected features)
3: Initialization: S ← ∅
4: Initial feature selection:
5: for j = 1 to p do
6: tj =

X1,j−X0,j√
s2
1,j
n1

+
s2
0,j
n0

7: rj =
∑n

i=1(Xi,j−Xj)(yi−y)√∑n
i=1(Xi,j−Xj)2

∑n
i=1(yi−y)2

8: R2 = r2j
9: if 0.001 < R2 < 0.002 or p-value from t-test <

0.05 then
10: S ← S ∪ {j}
11: end if
12: end for
13: Initial classification: Train classifiers using S
14: Feature importance ranking:
15: for j ∈ S do
16: Ij =

1
T

∑T
t=1 I

(t)
j

17: end for
18: Feature selection:
19: Rank features by Ij
20: S′ ← {j1, j2, . . . , jk} where Ij1 > Ij2 > . . . > Ijk
21: Iterative refinement:
22: repeat
23: Retrain classifiers using S′

24: Cross-validation (e.g., Leave-One-Out Cross-
Validation, LOOCV)

25: if performance not satisfactory then
26: Refine S′

27: end if
28: until satisfactory performance
29: Return S′

4.5 Visualization

In this study, we first tried to utilize a systematic theo-
retical framework to map out the brain regions to facilitate
comparisons between regions that are more, less, or simi-
larly activated in schizophrenic subjects. Secondly, the fi-
nal set of features is the criterion to analyze the specific
voxels or brain regions that contributed to the classification
of schizophrenia patients. These voxels were then anatom-
ically aligned into a Cartesian coordinate system which is
normally used in image processing. After that, the Carte-
sian coordinates of these voxels are also mapped into the
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Table 4. Comparison of classification accuracy across four levels of brain mapping using six different classifiers and selected
features obtained by t-test and Pearson’s correlation coefficient.

No. of Selected Features
Hemisphere Level Lobe Level Gyrus Level Brodmann Area Level

8613 (t-test) 3971 (PC) 8578 (t-test) 3929 (PC) 8214 (t-test) 3869 (PC) 4855 (t-test) 2064 (PC)

K-NN 77.94% 77.94% 77.94% 83.82% 76.47% 80.88% 77.94% 83.82%
NB 52.94% 52.94% 52.94% 73.53% 54.41% 51.47% 67.65% 73.53%
DT 48.53% 80.88% 48.53% 64.71% 48.53% 80.88% 55.88% 80.88%
SVM 72.06% 63.24% 72.06% 66.18% 70.59% 63.24% 64.70% 64.71%
RF 57.35% 60.29% 57.35% 54.41% 52.94% 57.34% 64.70% 51.47%
ELM 64.26% 62.06% 63.85% 62.15% 65.59% 62.38% 61.44% 62.12%
K-NN, K-nearest Neighbor; NB, Naive Bayes; DT, Decision Tree; SVM, Support Vector Machine; RF, Random Forest; ELM, Extreme
Learning Machine; PC, Pearson’s Correlation.

MNI space applying the simplest transformation equation.
This transformation step is essential for aligning data ac-
quired across subjects and studies because the MNI space
is one of the stereotactic reference systems most commonly
used in neuroimaging research. These coordinates are later
transformed into Talairach space. Talairach coordinates can
give the exact locations of the voxels in the equivalent brain
areas. This conversion was accomplished using Talairach’s
Daemon, which is a program that labels voxels by their
corresponding brain region according to their Talairach co-
ordinate. The tool provides names of brain regions cate-
gorized into four hierarchical levels: hemisphere, gyrus,
lobes, and Brodmann’s areas. Finally, the MANGO tool-
box (https://mangoviewer.com/mango.html) was utilized to
visualize the identified brain regions. These tools allow im-
plicated brain areas to be mapped onto a typical functional
image, providing an enhanced and comprehensive view of
the regions of interest. Therefore, following this systematic
approach, it was possible to pinpoint and differentiate cer-
tain brain areas that show altered functional connectivity in
schizophrenia patients.

5. Results
In this study, we extracted features from each hierar-

chy level that achieved the highest classification accuracy
using our proposed classification-guided filter-based fea-
ture selection techniques. The summarized results are pre-
sented in Table 4.

When we fed the selected significant features into var-
ious classifiers as an input, we achieved a maximum clas-
sification accuracy of approximately 84% across multiple
hierarchy levels: hemispheric, gyrus, lobes, and Brodmann
areas. The K-NN algorithm consistently delivered promis-
ing results, demonstrating the highest classification accu-
racy in most scenarios. For features selected via Pearson’s
correlation, we attained the highest accuracy of around 84%
for the Lobes and Brodmann area, and approximately 81%
for the gyrus level using K-NN. At the hemisphere level, we
obtained an accuracy of approximately 81% with the deci-
sion tree algorithm.

When utilizing the t-test selected features as input for
the classifiers, we achieved an accuracy of around 78% at
the hemisphere, lobe, and Brodmann area levels, and ap-
proximately 77% at the gyrus level, all using the K-NN al-
gorithm.

Among the chosen machine learning techniques, the
K-NN algorithm demonstrated themost robust performance
in distinguishing between the two groups. Additionally, the
decision tree algorithm exhibited exceptional performance
compared to other classifiers (see Table 4).

Following feature selection, we identified significant
voxels and visualized them on a brain image to highlight
the areas most relevant for distinguishing schizophrenia pa-
tients from healthy controls. At the hemisphere level, both
the left and right cerebellum displayed voxels with distinct
activities in schizophrenia patients compared to healthy
controls. Furthermore, we observed subtle yet significant
changes in functional activation in the left and right brain-
stem. An overview of the affected areas at the hemisphere
level is presented in Fig. 2.

On the lobe level, the frontal lobe exhibited the most
significant voxels, followed by the temporal lobe, sub-lobar
regions, limbic region, parietal lobe, and occipital lobe. We
also noted minor functional alterations in the anterior and
posterior lobes, with slight differences in functional activa-
tion observed in the midbrain. Fig. 3 illustrates the affected
brain areas according to the lobe level.

At the gyrus level, several pertinent brain regions
showed dysfunction, with the superior frontal, middle
frontal, and superior temporal gyrus displaying distinc-
tive features, followed by the medial frontal and middle
temporal gyrus. Additionally, the precuneus, cingulate
gyrus, precentral gyrus, and inferior frontal gyrus exhib-
ited distinguishable voxels, further supporting the differ-
entiation between schizophrenia patients and healthy con-
trols. Minimal changes in functional activation were ob-
served in other regions such as the caudate, postcentral
gyrus, cuneus, culmen, insula, parahippocampal gyrus, an-
terior cingulate, lentiform nucleus, inferior parietal lobule,
declive, lingual gyrus, thalamus, middle occipital gyrus,
claustrum, fusiform gyrus, posterior cingulate, sub-gyral
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Fig. 2. The distribution of voxels identified in different brain regions at the Hemisphere level, expressed as a percentage.

Fig. 3. The distribution of voxels identified in different brain regions at the Lobe level, expressed as a percentage.

areas, superior parietal lobule, cerebellar tonsil, inferior
temporal gyrus, paracentral lobule, and inferior occipital
gyrus. Additionally, we detected minor yet significant
functional changes in regions including the transverse tem-
poral gyrus, tuber, uncus, uvula, pyramis, rectal gyrus, sub-
callosal gyrus, and superior occipital gyrus. Fig. 4 provides
a visualization of the affected brain regions at the gyrus
level.

Our investigation explored the functional alterations
occurring within multiple Brodmann Areas (BAs) and their
associated regions in individuals with schizophrenia, using
fMRI data. Notable deviations in brain function were dis-
cerned across an array of BAs, including BA 6, BA 10, BA
18, BA 7, BA 19, BA 40, BA 21, BA 8, BA 24, BA 22,
BA 32, BA 13, BA 9, BA 11, BA 39, BA 37, BA 31, and
BA 47, with BA 6 exhibiting the most prominent changes,
followed by other BAs.
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Fig. 4. The distribution of voxels identified in different brain regions at the Gyrus level, expressed as a percentage.

Furthermore, our analysis pinpointed discernible al-
terations in functional activations within regions such as the
Putamen, Caudate body, BA 20, BA 38, BA 4, BA 41, BA
30, BA 17, BA 29, BA 45, BA 4, and the Caudate head,
albeit to a slightly lesser degree compared to the highly af-
fected BAs. Additionally, significant functional shifts were
noted in select areas, such as BA 23, BA 43, BA 36, BA
46, BA 44, BA 42, BA 25, BA 34, Pulvinar, Lateral Globus
Pallidus, andVentral Lateral Nucleus, albeit with attenuated
magnitudes.

To validate our findings, statistical analyses were con-
ducted for each ROI, yielding p-values below 0.05, signify-
ing statistical significance across all acquired regions. Fur-
ther, T-statistics values were calculated for each ROI, elu-
cidating the significance levels of the affected regions. Ad-
ditionally, the percentage of voxel-space covered by signif-
icantly affected voxels within each ROI was determined,
providing further insights into the extent of alterations. A
concise summary of our statistical results is presented in
Table 5.

Finally, the affected brain regions at the Brodmann
Area level were visualized, as illustrated in Fig. 5. Our
study thus furnishes a comprehensive comprehension of the
functional aberrations across diverse BAs and their asso-
ciated regions in individuals with schizophrenia, offering
valuable insights for enhancing the diagnosis and treatment
paradigms for this severe disorder.

6. Discussion
The etiology of schizophrenia remains elusive, with

multiple factors implicated in its onset [62]. Brain struc-
ture and function contribute significantly to schizophre-
nia’s pathogenesis, as research has explored differences in
brain connectomes, volumetric alterations in brain regions
[47], and neurotransmitter interactions between schizophre-
nia patients and healthy controls. Identifying affected brain
regions can aid in diagnosing patients and devising targeted
therapeutic interventions.

Our use of the auditory oddball paradigm is signifi-
cant because it engages neural circuits involved in atten-
tion and auditory processing, often disrupted in schizophre-
nia. Task-based fMRI findings, such as those from the
oddball paradigm, can provide a deeper understanding of
functional abnormalities associated with the disorder com-
pared to resting-state fMRI, despite potential confound-
ing effects due to task complexity. Notably, Javitt et al.
(2000) [63] highlight the paradigm’s utility in identifying
deficits in auditory context processing in schizophrenia,
while Umbricht and Krljes (2005) [64] provide a compre-
hensive meta-analysis on mismatch negativity, further vali-
dating its effectiveness in exploring auditory processing ab-
normalities.

Our study identified significant brain areas exhibit-
ing differential activity between schizophrenia patients and
healthy individuals, potentially uncovering previously un-
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Table 5. Results showing T-stat values and p-values for each of the regions identified by our proposed approach.
Hierarchy Level Percentage of Voxel (in %) T Stat Mean p value

Hemisphere
1. Right Cerebrum 13 2.54 0.021
2. Left Cerebrum 13 2.52 0.021
3. Left Cerebellum 6 2.25 0.031
4. Right Cerebellum 7 2.34 0.028

Lobe
1. Frontal Lobe 9 2.44 0.024
2. Temporal Lobe 10 2.60 0.020
3. Sub-Lobar 14 2.49 0.022
4. Limbic Lobe 20 2.62 0.018
5. Parietal Lobe 23 2.59 0.019
6. Occipital Lobe 13 2.45 0.022

Gyrus
1. Superior Frontal Gyrus 11 2.49 0.022
2. Middle Frontal Gyrus 10 2.42 0.024
3. Superior Temporal Gyrus 14 2.71 0.017
4. Medial Frontal Gyrus 23 2.58 0.020
5. Middle Temporal Gyrus 13 2.62 0.019
6. Precuneus 25 2.52 0.021
7. Cingulate Gyrus 26 2.60 0.019
8. Inferior Frontal Gyrus 9 2.43 0.024
9. Caudate 10 2.44 0.023
10. Subcallosal Gyrus 18 2.57 0.018

Brodmann Area
1. BA 4 10 2.53 0.021
2. BA 6 9 2.53 0.020
3. BA 7 12 2.48 0.022
4. BA 8 13 2.51 0.021
5. BA 10 11 2.54 0.021
6. BA 11 12 2.44 0.023
7. BA 13 12 2.57 0.020
8. BA 18 12 2.59 0.020
9. BA 19 10 2.45 0.023
10. BA 21 14 2.53 0.020
11. BA 22 13 2.55 0.020
12. BA 24 10 2.53 0.022
13. BA 25 16 2.72 0.016
14. BA 32 16 2.54 0.019
15. BA 34 17 2.63 0.016
16. BA 36 17 2.51 0.020
17. BA 39 14 2.66 0.016
18. BA 40 16 2.79 0.012
19. Ventral Lateral Nucleus 12 2.54 0.020

It also shows the percentage of voxels that is found to be significant among the whole region.

recognized regions. Notably, we identified the cerebellum
as a highly significant brain region at the hemisphere level,
as depicted in Fig. 2. This finding aligns with previous re-
search [8,9,16–19,50].

A fMRI study in schizophrenia have centered on ar-
eas associated with working memory [65] or analyzed brain
gray matter densities [47]. Some studies focused on medi-
cated patients [66] or those experiencing their first episode

[34]. Our findings on the relatively minor involvement of
the brainstem in schizophrenia align with select fMRI stud-
ies [67,68].

We highlighted the frontal lobe as the most signifi-
cant brain region in schizophrenia patients, consistent with
prior research [19,46,51]. We also observed subtle func-
tional changes in the temporal lobe [40]. Alterations in the
sub-lobar region have primarily been reported in studies fo-
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Fig. 5. Visualization of the most significant brain regions as obtained by our proposed approach. BA6, supplementary motor area;
BA43, cerebral cortex; BA36, perirhinal cortex; BA34, hippocampus and neocortex; BA25, amygdala-related region.

Fig. 6. The distribution of voxels identified in different brain regions at the Cell level, expressed as a percentage.
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cusing on gray matter [69] or brain network functionalities
[70], with limited exploration into brain activities in these
areas. We found significant changes in the limbic lobe [66],
whereas the midbrain exhibited the smallest percentage of
distinguishable activities. Previous studies identified the
midbrain as an affected area in schizophrenia [28,29], and
our study provides unique insights due to its experimental
methods. Additionally, we found alterations in the poste-
rior lobe, a novel finding warranting further investigation.

At the gyrus level, the superior and middle frontal
gyrus emerged as the most significantly affected brain re-
gions in schizophrenia patients [71]. Differences in thala-
mus activation were also observed [19,21,46]. The Insula, a
gyrus-level brain region implicated in schizophrenia, exhib-
ited a small percentage of affected brain voxels, consistent
with previous findings [72,73]. The Pyramis showed rela-
tively minor involvement, aligning with gray matter analy-
ses [74,75], with limited exploration in fMRI studies except
in subjects with substance abuse history [76]. Furthermore,
we identified the subcallosal gyrus as a less significantly
affected brain region, a finding supported by only one pre-
vious study [30].

Our study aligns with earlier research, corroborating
established knowledge while unveiling novel insights into
unexplored brain areas. Our investigation at the lobe and
gyrus levels underscores the importance of the frontal lobe
and the involvement of the superior and middle frontal
gyrus in schizophrenia. We also highlighted other affected
brain regions, including the Insula, Pyramis, and subcal-
losal gyrus. These regions play crucial roles in emotional
regulation, memory processing, and sensory integration,
with dysfunction associated with schizophrenia symptoms
like social withdrawal, auditory hallucinations, and delu-
sions.

At the Brodmann area level, we identified several
brain regions with altered activity patterns in schizophre-
nia patients. The supplementary motor area (BA 6) within
the frontal cortex, as illustrated in Fig. 6, showed the high-
est percentage of altered brain activity compared to healthy
controls, consistent with prior research [32,77]. Significant
alterations in the postcentral region of the cerebral cortex
(BA 43) align with previous study focusing on visual or
auditory stimuli [78]. These findings further support the
involvement of these brain regions in schizophrenia patho-
physiology.

We noted altered brain activity in the perirhinal cortex
(BA 36), a region previously implicated in schizophrenia by
a few studies [37,38]. These studies did not use fMRI data,
making our observation of altered brain activity in BA 36
using fMRI data a novel contribution. Similarly, we de-
tected altered brain activity in the amygdala-related region
(BA 25), linked to schizophrenia in certain non-fMRI study
[36]. Our finding supports the involvement of this region
in schizophrenia, particularly given our use of fMRI data.

Brodmann Area 4, located in the posterior portion of
the frontal lobe, has only been sporadically implicated in
schizophrenia, primarily in studies focusing on gray matter
analysis. We also identified the orbitofrontal cortex (BA
11) as a region with altered brain activity in schizophrenia,
consistent with findings from a few fMRI studies using dif-
ferent experimental conditions [79,80]. These findings add
to the body of evidence supporting the involvement of these
regions in schizophrenia pathology.

We found the angular gyrus within the parietal cortex
(BA 39) significantly affected in schizophrenia, a finding
reported in only a limited number of studies [39,81]. This
highlights the importance of further research to elucidate
the role of BA 39 in schizophrenia pathophysiology.

We also noted subtle changes in functional activations
in the ventral lateral nucleus, previously identified as rel-
evant in schizophrenia across studies with varied method-
ologies [41,42,82]. Our findings provide additional support
for the involvement of this region in schizophrenia, partic-
ularly given our use of fMRI data.

Lastly, we identified the region between the hip-
pocampus and neocortex (BA 34) as significantly affected
in schizophrenia patients, a finding not previously reported
in the literature [26,83]. This discovery represents a novel
contribution to the field and emphasizes the importance of
further exploration into the role of this region in schizophre-
nia pathology.

The study of the areas of the brain that are involved
in schizophrenia also holds effective information that can
change the way this disorder is dealt with. The areas of
the brain that we identified include the superior and middle
frontal gyrus, Insula, Pyramis, and subcallosal gyrus, and
hence our research presents a more complex neural archi-
tecture of schizophrenia.

Our study contributes to expanding the knowledge
about the multiple aspects of schizophrenia, including emo-
tion, memory, and particularly, sensory processing. Fur-
thermore, by highlighting the supplementary motor area
and identifying the postcentral region, we contribute to
the literature that confirms that these regions are involved
in motor and sensory states that are characteristic of
schizophrenic patients. Besides, the fact that we identified
the changes in the perirhinal cortex and the region related to
the amygdala bears witness to the importance of these areas
in the manifestation of the disorder.

However, we have to point out some limitations of this
research that are as follows: Possible limitations include a
limited sample size, which might compromise study valid-
ity. Our proposed method indeed provided high classifica-
tion accuracy, therefore additional research with larger and
different samples of patients and healthy controls is needed
to confirm the obtained findings. Secondly, our experiment
concerned task-based fMRI only and, in particular, auditory
odd-ball tasks. Presumably, further studies of different cog-
nitive tasks and the brain areas involved in schizophrenia
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might provide a more comprehensive understanding of the
disorder. At the same time, it is crucial to acknowledge that
the results of neuroimaging studies, including fMRI, do not
establish causality and should be interpreted with caution.
Apart from this, it is acknowledged that the modification
of classifiers with the help of hyperparameter tuning in a
trial-and-error manner is also disadvantageous because it
may contribute to the increased accuracy rate. Moreover,
we have explored several strategies concerning the ways
to avoid this problem. The common method that we used
in the experiments is cross-validation to make sure that the
models are well trained. There was certainly an emphasis
placed on the various performancemeasures and themodels
were later regularized to mitigate chances of overfitting.

Nevertheless, these outcomes portray the need for fu-
ture investigations to develop individualized interventions
to improve the quality of life and manage symptoms of
schizophrenia. The findings provide potential directions for
creating more targeted interventions. While our findings
provide significant insight into the neural underpinnings of
schizophrenia, our study focuses on the functional anoma-
lies found by fMRI, which should be evaluated in the con-
text of this form of imaging. Future research should include
genetic aspects and biomarkers to provide a deeper under-
standing of the condition and its underlying causes.

7. Conclusions
This study presents an innovative and thorough

method for analyzing schizophrenia disorder using the
fMRI data. Our multi-stage feature selection model,
which combines filter-based statistical methods and ma-
chine learning algorithms, achieved high classification ac-
curacy and revealed significant differences in brain acti-
vation patterns between schizophrenia patients and healthy
controls. Furthermore, we found additional brain areas that
had not previously been mentioned in fMRI research on
schizophrenia, which advanced our understanding of the
disorder’s neurological underpinnings. These discoveries
have far-reaching consequences, opening up new avenues
for study and the creation of more effective diagnostic and
therapeutic methods. By exposing previously undiscovered
brain areas and functional differences, our research pro-
vides a pathway for customized treatment options to address
these particular neurological disorders. This study under-
scores the importance of advanced technologies in fMRI
analysis to get significant insights into the complicated na-
ture of schizophrenia.
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