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Ali Kashif Bashir, Senior Member, IEEE, Marwan Omar

Abstract—The Internet of Medical Things (IoMT) and Ar-
tificial Intelligence (AI) models have transformed healthcare
by enabling wireless communication for Remote Patient Health
Monitoring (RPHM) services. Wireless technologies such as Wi-Fi
and 6G support reliable and low-latency communication between
AI models and IoMT devices. IoMT devices allow individuals to
monitor their health remotely, reducing the need for hospital
visits. Integrating IoMT with AI and 6G enables automated
diagnostics and personalized care with reduced data transmission
among involved entities. It also helps data-intensive applications
achieve higher performance levels regarding throughput, reli-
ability, low latency, and energy-efficient communication for AI-
driven RPHM system. However, exchanging sensitive information
over public channels makes IoMT vulnerable to potential security
attacks. Designing effective and secure mutual authentication and
key agreement scheme for RPHM has been challenging due to
privacy and security concerns. Moreover, there is also a demand
for reliable and low-latency communication for AI-driven RPHM
systems. Many existing authentication schemes have limitations,
including susceptibility to machine learning attacks and high
latency rates. To overcome these issues, we present a machine-
learning attack-resilient and low-latency authentication scheme
for AI-driven RPHM. The proposed scheme utilizes a three-
factor approach based on elliptic curve cryptography (ECC).
It employs a one-time physical unclonable function (OPUF)
to resist machine learning attacks on medical sensing devices.
The scheme’s security is evaluated through informal and formal
analysis, demonstrating its security strength and persistence.
Additionally, the scheme’s performance is assessed using various
metrics, confirming its superiority over related schemes and
achieving a low latency rate.
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I. INTRODUCTION

With the rapid progress in miniature wearable biosensors
and connected devices to the Internet, Remote Patient Health
Monitoring (RPHM) has gained substantial attention for offer-
ing lower-cost and more effective delivery of remote healthcare
services [1], [2]. The RPHM encompasses a wide range
of Artificial Intelligence (AI) algorithms, including big data
analytics, deep learning, and machine learning, to bridge the
gap between conventional healthcare and on-time delivery of
medical services. The AI-driven RPHM proactively monitors
the patient’s health status through various wearable biosen-
sors, such as electrocardiograms, gyroscopes, photoplethysmo-
grams, etc., to estimate potential healthcare issues through AI-
driven algorithms and generate actionable insights before the
condition escalates [3]. Such algorithms are adaptive in nature
and improve their accuracy over time, leading to enhanced
effectiveness in remote patient health monitoring.

The aid of AI in RPHM has significantly offloaded the
burden on healthcare resources, lowering hospital emergency
and readmission department visits. It has extended healthcare
services to geographically remote areas and underserved pop-
ulations. It is projected to have a significant economic impact
of 3-6 trillion dollars annually, with AI-driven RPHM services
contributing 1–2.5 trillion by 2025 [4]. The AI-driven RPHM
leverages ML algorithms that facilitate powerful processing
and storage support for biosensors beyond their limits to offer
real-time decision-making. It also leads to automated diag-
nostics and personalized care and accomplishes ultra-reliable
and low-latency communications among involved entities.
However, the intrinsic importance of transmitting healthcare
data over public channels (i.e., the Internet) accentuated its
vulnerability to numerous security susceptibilities and risks.
To this end, it is essential to concentrate on safeguarding the
integrity and confidentiality of such sensitive data while offer-
ing robust security against well-known attacks simultaneously
[5], [6].

Over the past few years, privacy-preserving authentica-
tion mechanisms have been considered as one of the con-
crete security solutions for any network scenario. Various
researchers have presented valuable and innovative research in
the domain of RPHM. However, most of the presented work
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TABLE I: Comparative Analysis of Existing Work

Schemes Year Development Techniques Benefits Drawbacks/Flaws
Sharif et al. [7] 2019 * ECC * Offers Mutual Authentication * Fails to resist Impersonation attack

* Hash Function * Resists Desynchronization Attack * Vulnerable to password guessing and secret key leakage attack
Li et al. [8] 2020 * ECC * Provides Mutual authentication * Violates user anonymity

* Three Factor * Resists User Impersonation attack * Prone to sensor impersonation attack
Wang et al. [9] 2021 * PUF * Resists Impersonation Attack * Vulnerable to machine learning attack

* Block-chain * Ensures Perfect Forward Secrecy * Susceptible to a Man-in-the-Middle attack
* Resists Stolen Mobile device attack * Prone to Session key Disclosure attack

Li et al. [4] 2021 * Hash Function * Resists server impersonation * Vulnerable to sensor masquerading attack
* XoR Operation * Resists offline password guessing attack * Prone to Stolen verifier attack

* Resists stolen smart card attacks * Vulnerable to Desynchronization attack
* Susceptible or machine learning or modeling attack

Masud et al. [10] 2021 * Hash Function * Resists gateway impersonation * Susceptible to offline password guessing attack
* Resists Replay attack * Violates User Anonymity
* Provides Mutual Authentication * Susceptible to User Masquerading and privileged insider attack

Yu et al. [11] 2022 * PUF * Resists Man-in-the middle attack * Vulnerable to sensor impersonation attack
* Blockchain * Resists offline password guessing attack * Prone to Stolen verifier attack

* Vulnerable to Machine Learning or modeling attack
* Susceptible to ESL Attack

Shihab et al. [12] 2023 * Hash Function * Resists Desynchronization attack * Vulnerable to Physical capturing attack
* Resists Replay attack * Prone to User masquerading attack
* Resists stolen device attacks * Vulnerable to Stolen verifier attack

* Susceptible or machine learning or modeling attack

either suffers from computational inadequacies or is exposed
to known security threats [13]. In Table I, we summarize
the struggles encountered by researchers in related studies,
along with their cryptographic techniques, advantages, and
disadvantages. These schemes aim to tackle security chal-
lenges related to communication among participating entities.
They employ various techniques like hash functions, elliptic
curve cryptography, chaotic maps, and physical uncloneable
functions (PUF) to achieve authentication, conditional privacy,
message security, and confidentiality. However, most of these
schemes exhibit weaknesses, such as susceptibility to machine
learning or modeling attacks and the requirement of a trusted
authority for authentication, which may increase the risk of
insider attacks and make them vulnerable to physical attacks.
Furthermore, these weaknesses enable attackers to tamper with
mobile sensing devices, thus compromising user safety and
privacy.

A. Motivation and Contributions
In a remote patient health monitoring environment, entities

like Medical Gateway (MGWc), Medical Sensor (Sj), and
User (Ui) exchange real-time data over public channels, pos-
ing security risks including machine learning attacks. There
are several schemes that have been developed to ensure
secure communication among these entities. However, these
schemes are prone to several attacks, as mentioned in Table
I. This article aims to address these issues by proposing
a privacy-preserving and anonymous authentication scheme.
The devised scheme utilizes OPUF and ECC. The OPUF
ensures resistance to unauthorized access by changing the
scheme’s behavior after each session. The proposed scheme
safeguards the remote patient health monitoring environment,
defending against physical attacks, man-in-the-middle attacks,
masquerading, denial of service, and machine learning attacks.
The following points highlight the notable contributions of the
proposed scheme.

1) We introduce an ECC-based authentication scheme en-
hancing data privacy and anonymity between medical
devices and servers. This approach bolsters communi-
cation trustworthiness and propels advancements in AI-
driven RPHM privacy-preserving technologies.

2) The proposed scheme leverages OPUF to defend phys-
ical, modelling, and machine learning attacks by taking
advantage of their random nature. Moreover, the dy-
namic design of our scheme ensures that its operational
behavior is unique to each session, effectively introduc-
ing an additional layer of security.

3) We thoroughly examine the devised scheme’s security
through informal and formal analysis, showcasing its
correctness, effectiveness, and resilience against poten-
tial threats.

4) We analyze the performance of the devised scheme,
comparing it to existing approaches. The evaluation
highlights the superior security features of the sug-
gested scheme, including computation and communi-
cation overheads. The proposed scheme promises an
average 34.75% reduction in computation overhead.

B. Road map of Article

The rest of this article is organized as follows: Section II
presents preliminaries used to develop the scheme, Section
III presents the proposed access control scheme, Section IV
demonstrates its security, and Section V evaluates its perfor-
mance. Finally, we conclude this article in Section VI.

II. PRELIMINARIES

This section describes the research methodology, architec-
ture, and adversarial model. Assumptions in the adversar-
ial model define adversary capabilities and limitations. This
overview establishes the groundwork for a clear comprehen-
sion of the following sections.

A. Research Methodology

The research methodology in designing the authentication
scheme for the AI-driven RPHM network model is structured
with several significant presuppositions to shape a theoret-
ical approach. This involves defining a network model to
identify the communicants in the target environment while
understanding their relationship in a broader sense, which is
how the study unfolds. Then, we assessed the potential security
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risks against well-known security attack modules, including
scenarios like impersonation, privileged insider, and sensor
node capture attacks. Considering these security risks, se-
lecting countermeasures (i.e., the design of the authentication
scheme), ranging from cryptographic methods to biometrics,
adds a layer of security. We present a detailed discussion of
our proposed solution outlining its key phases of the scheme,
including setup and the registration process, contributing to a
comprehensive and structured approach. We then provide an
insight into the security strength of our solution by employ-
ing rigorous formal and informal analysis. Additionally, the
scheme’s performance is assessed using various metrics that
enhance clarity and underscore the scheme’s effectiveness and
reliability within the IoT context.

B. Architecture for Remote Patient Health Monitoring System

The remote patient healthcare model proposed in this article
consists of three key components: Sj , Ui, and the MGWc.
These components are illustrated in Fig. 1.

1) Medical Sensor: In a given deployed environment, vari-
ous sensors are placed on patients’ bodies. These sensors
have a function to collect and sense data continuously
and transmit the collected data to the MGWc. To ensure
secure communication among users, the Sj registers with
MGWc, which generates a session key (SK).

2) User: To collect the data sensed by the sensor node,
they must be registered by MGWc and receive a smart
card to use for authentication with the sensor node. The
medical terminal serves as a means of authentication by
verifying the smart card and grants access to medical
data.

3) Medical Gateway: MGWc plays a critical role in the
remote patient health monitoring network, as it is a
trusted party that possesses the actual identities of both
the Sj and the Ui. MGWc is responsible for facilitating
mutual authentication between Sj and Ui. The sensor
node and Ui then register with MGWc to obtain their
secret information before negotiating a session key. This
session key encrypts data collected by the sensor node,
which is then transmitted to the MGWc and made
accessible to the Ui via the medical terminal. Fig. 1
depicts a remote patient health monitoring system.

C. Adversary model

This section explains the adversary’s capabilities as defined
in the DY [14] and CK [15] adversarial model. Within this
model, an adversary (Ad) possesses significant control over
communication carried out via the public channel. The ad-
versary model encompasses two distinct types of adversaries:
passive and active. We will now delve into a detailed discus-
sion of each type.

1) A passive Ad is capable of monitoring the communica-
tion channel among MGWc, Sj , and Ui in an attempt
to acquire the messages exchanged. This type of Ad

can launch various attacks, such as offline password-
guessing, man-in-the-middle, denial-of-service attacks,
and temporary information attacks.

2) An active Ad can manipulate the exchanged messages,
including forging, deleting, and modifying them, to
obtain the secret information and identity of the parties
involved. This type of adversary can launch various at-
tacks, including reply, impersonation, stolen smart card,
modification, MGWc bypassing, sensor node capture,
and insider attacks.

III. THE PROPOSED SCHEME

The present section aims to construct an access control
scheme for AI-driven remote patient health monitoring, lever-
aging the security offered by ECC and OPUF to establish re-
silience against diverse forms of known attacks. Our proposed
scheme’s registration and authentication phases are expounded
in subsequent subsections.

A. Registration Phase

The registration phase involves a prescribed set of proce-
dures wherein each Ui validate their legitimacy and autho-
rization. The Ui inserts his credentials, generating a random
value and a corresponding hash. This Ui-provided information
is then transmitted to the MGWc. On getting the message, the
MGWc, acting as the trusted authority, executes computations,
selects a unique string, and sends the computed values back to
the Ui. Subsequently, the Ui performs additional computations
and stores the resulting information in memory. Simultane-
ously, the MGWc manages the registration of Sj within the
AI-drive remote patient health monitoring system. Sensors,
undergo secure registration under the medical gateway’s super-
vision, utilizing private communication channels. Each sensor
is assigned a unique identity; MGWc generates challenge-
response pairs and computes using a specific process involving
the sensor’s identity and a master secret key. The resulting
information is retained by the MGWc for each pseudo-
identity, thereby completing the secure registration process.
This integrated approach ensures both the secure validation of
Ui and the registration of Sj in the AI-drive remote patient
health monitoring system.

B. Authentication and Key Agreement Phase

The login and authentication phase involving Ui, Sj and
MGWc that communicates over an open or insecure channel.
The goal is to establish a session key among three entities.
Initially, Ui inputs his secret credentials, determines additional
values, generates a login request message, and transmits it to
MGWc via the insecure channel. Upon receiving the login
request message, MGWc performs computations and retrieves
information associated with the specific sensor, crafting a
response message sent to Sj . Moreover, Sj processes the
response message, determining the challenge-response pair
and other values. Sj then generates a message and transmits
back to MGWc. Subsequently, MGWc computes various
parameters and sends a response message to the Ui. Finally, Ui

processes information from the received message and verifies
the authenticity, ultimately establishing the shared session key
among all entities. This process ensures secure authentication
within the AI-drive remote patient health monitoring system.
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Fig. 1: AI-drive Remote Patient-health Monitoring System

IV. SECURITY EVALUATION

This section presents a comprehensive security analysis
of the devised authentication scheme, utilizing the informal
security evaluation is also employed to demonstrate that the
suggested scheme is secure against all potential security at-
tacks.

A. Informal Security Evaluation

The proposed authentication scheme has undergone a thor-
ough informal analysis, and its significance lies in its ability to
resist various attacks. This analysis revealed that the suggested
scheme protects Sj , Ui, and MGWc from unauthorized access
to Ad. Additionally, the scheme incorporates various authen-
tication measures to accomplish the intended goal of resisting
diverse attacks.

1) Mutual Authentication: In the devised scheme, MGWc

legitimizes Ui by checking the legitimacy of values with the
help of equality comparison. Similarly, Ui confirms MGWc

authenticity by comparing a set of values. Additionally,
MGWc authenticates the Sj using a similar method of com-
paring specific values against a combination of session key
and unique identifiers. These verification processes ensure
that each party is legitimate and authenticated. It is to be
eminent that Ui, MGWc and Sj will only negotiate and
accept the session key if these authentication checks hold
true. Consequently, the proposed scheme offers robust mutual
authentication among involved entities.

2) Device Tampering Attack Resistance: Let us take the
scenario where an Ad attempts to manipulate Sj using mod-
eling or machine learning-based attacks to compromise its
integrity. However, such repeated tampering attempts by Ad

result in a sudden and noticeable alteration in the behavior
of the embedded OPUF within Sj . Consequently, the OPUF
ceases to provide its intended functionality, leading to a failure
in generating the desired output during the execution attempt
by Ad. Hence, any endeavors by Ad to tamper with or
compromise Sj can be readily detected by the monitoring
entity MGWc. Furthermore, due to the inherent resistance

to cloning and replicating the OPUF, the proposed scheme
effectively resists physical attacks based on machine learning
techniques.

3) Masquerading Attacks Resistance: A masquerading at-
tack refers to the deceptive actions undertaken by an Ad who
assumes the identity of an authorized Ui within a registered
system. The primary objective behind such fraudulent behavior
is to illicitly acquire access to confidential data or engage
in harmful actions. The proposed scheme exhibits robustness
against various impersonation attacks, which are elucidated as
follows.

• Ui Masquerading Attack Resistance: Let’s assume that
Ad attempts to develop publicly transmitted values to
impersonate a legitimate Ui within our scheme. The
calculation of these values necessitates knowledge of Ui’s
confidential credentials. Consequently, Ad will be unable
to produce valid messages as it requires the original
identity and pseudo-identity of Ui. As a result, our
scheme exhibits resilience against masquerading attacks
from unauthorized Ui.

• MGWc Masquerading Attack Resistance: Let us consider
a scenario where an Ad intercepts the challenge message
that is originally intended for the legitimate Sj and ini-
tiated by MGWc. The objective of Ad is to impersonate
the genuine MGWc. To determine a valid challenge
message, Ad needs to compute the valid values. However,
the computation of those values requires pseudo-identity,
which further includes the private key of MGWc. As
Ad does not possess the private key, they are unable to
determine pseudo-identity. Consequently, Ad will not be
able to develop a valid message on behalf of MGWc.
Therefore, the devised scheme ensures security against
masquerading attacks targeting MGWc.

• Sj Masquerading Attack Resistance: In our suggested
scheme, if Ad tries to send a valid challenge message
on behalf of legal Sj , Ad must calculate the legitimate
value correctly. So, for the computation of that specific
value, Ad must have the private key. Ad cannot get
MGWc’s private key. Therefore, our proposed scheme
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ensures that it provides resilience against sensing device
impersonation attacks.

4) Session Key Leakage Attack: Our scheme utilizes a
session key SK that relies on confidential values. These values
are not transmitted publicly, and the hash function applied after
concatenation prevents the determination or guessing of the
actual values. As a result, our scheme demonstrates robustness
against session-key attacks.

5) Ephemeral Secret Leakage (ESL) Attack: Our frame-
work combines long-term pseudo-identity and confidential
ephemeral secrets to ensure the confidentiality of the session
key. These secrets remain undisclosed and inviolable, pre-
venting adversaries from deducing the session key. Even if
the session key is compromised, the integrity of previously
generated keys remains intact, maintaining perfect forward
secrecy. Consequently, our scheme upholds the property of
perfect forward secrecy.

6) Resistance Against Machine Learning Attacks: Conven-
tionally, the PUF uses a static set of CRPs to verify the
legitimacy of Sj . An Ad can easily predict the possible out-
come (i.e., response) of PUF through ML or modeling attacks.
However, in our scheme, we exploit OPUF, which uses a
dynamic set of CRPS for each session of the authentication
round. It is worth noticing that after the successful completion
of each authentication round, OPUF updates its state and
resets its configuration [16]. Therefore, the outcome of OPUF
after reconfiguration is difficult to revert and uncontrollable
through invasive methods. At the same time, the change in the
configuration of PUF does not affect its security properties.
To this end, OPUF preserves the backward and forward
unpredictability of PUF outcomes. Hence, it becomes difficult
for an Ad to predict the possible outcome of PUF performing
any ML or modeling attacks.

7) Provides Perfect Forward and Backward Secrecy: In the
devised scheme, the symmetric session key is derived with the
combination of pseudo-identity and ephemeral secrets, which
are selected by Sj and Ui. In this session key, ephemeral
secrets are specific for each session. Even if the long-term
secrets of Ui, MGWc and Sj are exposed, it is infeasible for
Ad to recover the previous and future SK since Ad resolves
the intractable elliptic curve discrete logarithmic problem to
obtain aP and cP. So, it is impossible to determine the previous
and future SK. Therefore, the devised scheme offers perfect
forward and backward secrecy.

V. COMPARATIVE EVALUATION

In this section, we present a detailed comparative analysis of
our access control scheme along with other relevant schemes
[4], [8], [11], [12]. Our analysis specifically focuses on evalu-
ating these schemes’ security functionalities, communication,
and computation costs.

A. Implementation Setup

The proposed and related schemes comprise three entities,
including MGWc, Sj , and Ui. To get the experimental results,
we implemented the key cryptographic operations of Ui, Sj
and MGWc, on mobile device, Arduino, and desktop system,

respectively. The specifications of these devices are as follows:
The operating system used for desktop and mobile devices
is Windows 11 Home and Android 12, respectively. The
RAM utilized at Arduino, desktop, and mobile devices is
SRAM:4KB, 8GB, and 12 GB, respectively. The processor
utilized by Arduino, desktop, and mobile devices is Microcon-
troller: ATmega328, Intel(R) Core(TM) i7-1065G7, and Octa-
core, respectively. Moreover, we used Bouncy Castle [17] and
PyCryptodome [18] libraries while implementing our code on
mobile and desktop devices, respectively. Table II represents
the execution times of cryptographic operations, including
point multiplication (Tecpm), one-way hash function (Towh ),
and PUF (TPUF ) on their respective devices.

TABLE II: Execution Time of Cryptographic Operations

Execution Time (in milliseconds)Operations Arduino Device Desktop System Mobile Device
Tecpm 0.013623 0.012535 0.008020
Towh 0.015802 0.002746 0.004001
TPUF 0.000280 N/A N/A

B. Computational Cost Analysis

We have evaluated the computational overhead by utilizing
the cryptographic functions such as Towh (Execution time for
one-way hash function), Tpm (Execution time for point multi-
plication), TOPUF (Execution time for OPUF. We determined
the computational overhead at Ui, MGWc, and Sj . Excluding
the registration process, which is a one-time event in our
scheme, we focused solely on the computational overhead of
the login and authentication phase.

[4] [8] [11] [12] Ours
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In the devised scheme, Sj executes the following operations:
1TPUF + 3Towh. So, the computation overhead at the Sj side
is approximately 0.061309 ms. The cryptographic operation
executed at the MGWc side is 6Towh, and the computational
overhead at MGWc is approximately 0.016476 ms. Similarly,
operations executed at Ui are 1Tecpm+6Towh, and the total
computational overhead at Ui is approximately 0.032026 ms.
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Therefore, the approximate computation overhead of the pro-
posed scheme is 0.109811 ms. We utilize the same approach
to determine the computation overhead of the other schemes in
comparison. We show the detailed comparison of computation
overhead among proposed and related schemes in Fig. 2.

C. Communication Overhead

In this section, we compare the communication cost of
our scheme with those of existing schemes. As the regis-
tration phase is a one-time process, we solely focus on the
communication overhead during the key agreement phase. To
assess the communication overhead, we assume that the nonce,
identity, password, and XOR operation each consist of 160
bits. Furthermore, the hash operation (SHA-256) produces a
256-bit output, and the size of the elliptic curve point is 320
bits.

In the devised scheme, the entities Ui, MGWc and Sj
transmits four messages. Ui sends first message (W1) to
MGWc and exchanges 1088 bits. MGWc sends W2 to Sj ,
and exchanges 832 bits. After that, Sj sends W3 to MGWc

and exchanges 576 bits. Similarly, MGWc sends W4 to
Ui, requiring the exchange of 576 bits. As a result, the
devised scheme has an overall communication overhead of
(1088+832+576+576)=3072 bits. We calculated the commu-
nication overhead of other relevant schemes using a similar
method, and the results are presented in Fig. 3.
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D. Security Features Evaluation
Our proposed scheme outperforms similar schemes [4],

[8], [11], [12] regarding security. The analysis in Table III
shows that our scheme guarantees all security features while
effectively resisting attacks like device impersonation, untrace-
ability attacks, and machine learning attacks. Additionally, our
scheme offers additional security features, such as resilience
to machine learning and desynchronization attacks.

TABLE III: Comparison on Security features

Schemes IA1 IA2 IA3 IA4 IA5 IA6 IA7 IA8

Li et al. [4] • ◦ • • ◦ • ◦ ◦
Li et al. [8] • ◦ • • • • • N/A
Yu et al. [11] • ◦ • • ◦ ◦ • ◦
Shihab et al. [12] ◦ • ◦ • ◦ • • ◦
Proposed • • • • • • • •
IA1: Physical Capturing Attack; IA2 : Sj impersonation Attack; IA3 : Ui impersonation Attack;

IA4 : MGWc Impersonation Attack; IA5: Stolen Verifier attack; IA6: ESL Attack;

IA7: Desynchronization attack; IA8: Machine learning or modeling attack;

• : Resists; ◦ : Does not Resists; N/A: Not Applicable

The presented results demonstrate that our scheme is supe-
rior to comparative schemes regarding computation overhead
and security features. It outperforms other schemes and of-
fers additional security characteristics that distinguish it from
previous works. Although our scheme has slightly higher com-
munication costs compared to [8], [12], the extensive security
justifies the trade-off features it provides. These enhancements
make our scheme more comprehensive and secure, making the
minor increase in communication costs an acceptable trade-off
for improved security.

VI. CONCLUSION

The evolution in IoMT infrastructure, artificial intelligence,
6G, and wearable technology has led to remote patient health
monitoring in the e-health environment. Developing these
large-scale AI-enabled RPHM models necessitates robust sup-
port from computing, communication, and networks to ensure
low latency, efficiency, stability, and reliability, especially in
resource-contained environments. Physical unclonable func-
tions are favoured for hardware-based security in mobile
sensing devices with limited resources. However, PUF-based
security faces challenges from machine learning attacks. Exist-
ing key agreement schemes are unsuitable for remote patient-
health monitoring. This article presents a reliable authentica-
tion scheme using elliptic curve cryptography, leveraging one-
time PUFs to ensure robust security against machine learning
attacks. Extensive security analysis demonstrates resilience
against various potential attacks. The proposed scheme has
lower computation costs than related schemes, offering a
promising remote patient health monitoring solution. De-
spite all of these advantages, it’s crucial to acknowledge the
limitations of our current proposed scheme, that it is not
enough secure to resist all post-quantum attacks, which is a
growing concern in this field. Therefore, we are committed to
addressing this limitation and ensuring the long-term security
of our system. In our future work, we plan to focus on the
development of a robust lattice-based authentication scheme
that can withstand post-quantum attacks, thereby fortifying the
security of patient’s critical information.
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