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Artificial Intelligence based Zero Trust Security
Approach for Consumer Industry

Senthil Murugan Nagarajan, Member, IEEE, Ganesh Gopal Devarajan, Senior Member, IEEE, Suresh
Thangakrishnan M, Ramana T V, Ali Kashif Bashir, Senior Member, IEEE, and Ahmad Ali AlZubi

Abstract—Development in internet technology made consumer
electronics growth to another extent where several consumers
from all over the world utilize various essentials through recent
development. However, consumer electronics based devices could
be vulnerable to cyber attacks if it is not appropriately secured.
In this research work, we proposed AI-enabled deep learning
model based zero trust security (AIDL-XTS) framework for
verification and authentication for devices, users, and appli-
cations for every access request. We use smartphone sensor
data for user authentication using Deep CNN-BiLSTM network.
Furthermore, we proposed Bayes theorem based trust score
to evaluate the zero trust security. This proposed framework
assumes all users, devices, and applications are un-trusted which
requires verification and authentication for every access request,
regardless of the user’s location or device. To evaluate the trust
score in the zero trust security model, Bayes theorem-based trust
score (Bayes-TSC) model is proposed. The performance of model
is analyzed over three datasets: WISDM-HARB, HMOG, and
UCI-HAR, using four metric measures: accuracy, equal error
rate, success rate, and authentication time. From the results,
the performance of proposed framework outperforms when
compared with traditional benchmark deep learning models for
user authentication while protecting against unauthorized access
in minimal authentication time.

Index Terms—Artificial Intelligence, Consumer Industry, Deep
Learning, Security, Zero Trust.

I. INTRODUCTION

RECENT advancements in technologies have made world
to become victims of connectivity with digitization. Be-

cause of increasing connection between devices and trending
tools such as Internet of Things (IoT), cloud computing, and
sensors within the network which exchanges information or
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data across various places which results in need and impor-
tance of network security requirements [1], [2]. In today’s
modern world, various security concepts used in the network
is based on separation between external and internal networks.
The internal networks are isolated using Network Access Con-
trols (NACs), Virtual Private Networks (VPNs), and Firewalls
[3]. Different services, devices, users are trustworthy when
they are inside the protected internal network. However, other
devices and users who are outside will be treated as intruders.
This is where the realm of trustworthy protocol or zero trust
security is playing an important role that should be practiced
in various consumer environment [4], [5].

These challenges were adversely promoted by zero-trust
concept that is growing in recent days. In this methodology,
the main idea behind this is develop no trustworthy in which
each and every request or information must be validated and
approved before transferring through the network. Several or-
ganizations are still depend on perimeter-based model despite
of the potential ability towards zero-trust solutions for secure
networking [6], [7]. However, there is a multifaceted and
complex process in investing for new security approaches.
This becomes more important for customers, employees, and
business process to take informed decisions for their consumer
based industries. Various research has focused on technical
aspects of zero trust security and business oriented questions
were neglected [8], [9].

The paradigm of cyber-security is known to be zero trust
where it is mainly focused on protection of resources in which
continuous evaluation is must before implicitly granting trust.
Trustworthiness is the degree that viewed coarsely for the
people who has confidence for the product or service that
behaved as promised, intended, and advertised [10]. In the
environment of Zero-trust, continuous authorization and verifi-
cation are required for users while they access to the resources
of enterprise. The Zero Trust Architecture (ZTA) helps in
improving analytics and viability across various enterprise
network. An Ericom software survey has detailed that 83%
out of 1300 risk and security specialists have responded and
thus the zero trust is agreed and implemented the solutions for
their enterprise [11]–[13].

Transition towards ZTA will be an questionable task and
also challenging to understand and long journey to have proper
use. The migration to Zero Trust ecosystem is an challenging
and have several barriers for the enterprise industries [14]. It
is due to lack of concrete frameworks and industry standards
that can efficiently implement this methodology in different
enterprises. The requirements for infrastructure must be un-
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derstood clearly before migrating to ZTA as various standards
of Artificial Intelligence (AI) and IT system interoperability
and compatibility is different. More applicability towards AI
and zero trust security is integrated to develop an reliable
architecture to improve trust in enterprise industries [12], [15].
The main contributions of this research is summarized below:

• User authentication is analyzed using DeepCNN BiLSTM
network based on smartphone sensor data.

• Furthermore, the trust-score of zero trust security solution
is evaluated using Bayes theorem.

In this research, we proposed AI-enabled deep learning
model based zero trust security (AI-DL-XTS) framework for
verification and authentication for devices, users, and applica-
tions for every access request. We use smartphone sensor data
for user authentication using Deep-CNN-BiLSTM network.
Furthermore, we proposed Bayes theorem based trust score
to evaluate the zero trust security.

II. RELATED WORKS

Organizational operations have been changed these days
with increase in work from home popularity where devices
and users need dynamic access to various applications and
data from the outside to connect with internal network of
certain consumer based industries, organizations, and much
more [1]. Syed et al. [16] presented a extensive survey about
zero trust and critical infrastructure risk management. Authors
described the role of access control and authentication of
zero trust architectures in different scenarios. Authors also
discussed the various challenges associated with access control
schemes, software-defined perimeter, contemporary authenti-
cation schemes, micro-segmentation approaches, and risk com-
putation techniques which affect the zero trust implementation.

Eidle et al. [17] presented Observe, Orient, Decide, Act
(OODA) framework implementation based on experimental
test-bed results of plane feedback with automatic control. In
their model, automated threat response with identity man-
agement and combined with packet-based authentication of
trust levels towards eight distinct network. Poppo et al. [18]
presented two main frameworks for supply chain management
on zero trust security. First one authors mentioned as calcula-
tive trust in which economics transaction cost is associated
closely and second is relational-trust in which sociological
theories were closely aligned. Sedjelmaci et al. [19] proposed
hybrid model for security framework which combined of
machine learning and security experts for protecting the edge
computing network from unknown and known attacks by
minimizing false alarm rate.

Grzonkowski and Corcoran [20] proposed authentication
framework by user centric approach for home networks. Au-
thors used zero knowledge proof authentication scheme into
the cloud infrastructure by allowing users to transfer their
service temporarily within a trusted environment. Furthermore,
sophisticated services and sharing of personal content is en-
abled over convenient TCP/IP protocol by using this approach.
Wan et al. [21] presented zero knowledge proof with high
efficiency for data authentication by extending the previous zk-
SNARK scheme. Authors developed off-chain data based on

zero-knowledge authenticated and zk-AuthFeed for achieving
both authenticity and privacy for blockchain enabled DApps.

Ran [22] presented deep Content Disarm and Reconstruc-
tion (CDR) methodology based on zero-trust in which the
validation is first executed using the CDR and prevention
rate with effect of disarming were presented and measured.
Authors used well-know dataset for analyzing the performance
of DeepCDR model where they proved that reconstruction
file is functional and usable. Baozhan et al. [23] proposed
a protection and security awareness system for 5G-based
healthcare platform using zero-trust architecture. Four key
dimensions were considers in 5G-based healthcare such as
terminals, users, and much more for constructing trust-able
dynamic access control models.

Zhang et al. [24] realized the intelligent emergency analysis,
management and trustworthy using emergent semantic based
information centric-fog system. They designed efficient dis-
semination network for emergency information and aggregat-
ing. Furthermore, authors filtered fake contents using semantic
based trustworthy routing scheme. Abou-Nassar et al. [25]
come up with the solution where semantic gaps is reduced
by the Indirect Trust Inference System (ITIS) and budget
authentication by smart contract and enhanced estimation of
Trustworthy Factor (TF) using network edges and node with
the help of proposed Blockchain Decentralized Interoperable
Trust framework (DIT) for IoT zones.

Hosney et al. [26] proposed an alternative solution based
on machine learning algorithms for saving time and increase
efficiency for maintaining security posture with less human
intervention. In this mode, configured policies and information
about security feeds are enforced and maintain zero-trust net-
work policies. Kant and Johannsen [27] used AI based security
features in small and medium sized companies (SMEs) and
concluded the potential impact of security level is surveyed.
Saleem et al. [28] proposed zero-trust security framework
based on rich model for verification of trust by involving
federated learning in the cloud environments.

Tiwari et al. [29] demonstrated secure data aggregation
without using bi-linear groups with the support of verifiable
federated learning method to address malicious third-party
aggregation. Patil et al. [30] proposed a scheme based on
member reputation and member list chain based association
(MLC-R b A) for changing the type of authenticated data.
Authors also proposed two necessary functions for root au-
thentication without using external trust for hierarchical trust
model in which revoked members were controlled without
causing inconvenience to user. Kumar et al. [31] introduced
authentication and key key agreement (AKA) and AI based
Intrusion Detection System (IDS) for analyzing computation
cost. However, authors proposed explainable AI based on
blockchain for securing consumer applications in smart cities.
Shunji et al. [32] computed situation values by integrating
three factors such as IoT-threat, IoT-attack, and IoT-attack
probabilities. Then authors applied proposed model to de-
compose sequences with the help of variational mode de-
composition (VMD) and developed CNN-BiLSTM model for
predicting sub-sequences.
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III. PROPOSED METHODOLOGY

The growth of recent technologies made consumer electron-
ics to reach millions of people and increased in usage for daily
life style. Such consumer electronic devices like smart phones,
banking transactions, smart environment, and much more
made ease of usage and routine work life balance which also
lead consumers to obtain different advantages. However, this
flexibility also leads to severe cyber attacks as these devices are
not always protected from firewall devices. To enable security
against internet-enabled consumer electronics, we proposed
an AI-based deep-learning enabled zero-trust security (AI-
DL-XTS) model that use deep-learning techniques for bio-
metric authentication to detect authorized smartphone user.
Smartphones are equipped with various sensors that sense
user touch during a different activities like reading, writing,
eating, sitting, walking, etc. based on the sensor data, the
proposed deep learning model detects user authentication. The
zero trust security model uses DL method outcomes and other
networking activities to allow or deny the user request. Fig.
1 represents the proposed AL-DL-XTS model architecture for
detecting cyber attacks in consumer electronics.

Fig. 1: Proposed AL-DL-XTS Framework.

Zero Trust Security model: Here, it assumes by default
that no user, device, or network is trusted and all resources
must be secured and continuously authenticated. In the context
of consumer electronics, such as smartphones and laptops,
implementing a Zero Trust security model requires several
components working together, including a policy enforcement
point, policy engine, data store, and deep learning-based trust
engine for user authentication using various factors such as
smartphone, IP address, device, and location.

Policy Enforcement Point (PEP): It is the component
that enforces the security policies in the Zero Trust model.
It sits at the point of access to resources and ensures that only
authenticated and authorized users can access them.

Policy Engine: It defines the security policies that the PEP
enforces. It determines the criteria for granting or denying
access to resources based on the user’s location, device, IP
address, and behavior patterns.

Data Storage: The data store contains information about the
users, devices, and resources in the system. The trust engine
uses it to build user profiles, establish baselines for normal
behavior, and store authentication data.

DL-CNN BiLSTM Model: We proposed a deep learning-
based CNN-BiLSTM (Deep-CNN-BiLSTM) model for user
authentication that uses smartphone-based sensor data for
typical user patterns and behavior. The proposed Deep-CNN-
BiLSTM consists of deep learning-based Convolutional Neural
Networks (Deep-CNN), which helps in the extraction of
features and Bidirectional Long Short-Term Memory (BiCNN-
LSTM) network that is used for extracting temporal dynamic
elements from the input data. The trust engine is a deep
learning-based system that continuously evaluates user be-
havior and makes authentication decisions based on multiple
factors. It analyzes patterns and behavior over time to build a
user profile and establish a baseline of ”normal” behavior for
that user.

The proposed model in Fig. 1 outlines a scenario where an
authenticated user (AU) is accessing her account file using her
smartphone device, and a deep learning-enabled Zero Trust
model is used to verify her location, internet connection,
and behavior patterns to authenticate her. The model also
checks her authorization to access the specific account file and
grants her access if authorized. When an unauthorized user
(UAU) gains access to Alice’s device and tries to access the
account file, the model detects a deviation from Alice’s typical
behavior patterns and blocks Bob’s access. Similarly, when
an unauthorized user (UAU1) tries to access the account file
from a different location and internet address using an other
device, the model analyzes the context of the access request
and blocks John’s access as his behavior patterns do not
match Alice’s typical behavior. The proposed model combines
authentication, authorization, threat detection, and contextual
analysis to enhance user authentication security measures.

Let Sdatax be input to the Deep-CNN-BiLSTM model that
gathers from smartphone sensor reading, Θ the learning pa-
rameter, and Deepy be the target output. Equation 1 represents
the formula for Deep-CNN-BiLSTM model.

Deepy = Softmax(Sdatax; Θ) (1)
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The softmax function is used classifier that uses features
extracted from CNN and Bi-CNN-LSTM network. The Deep-
CNN component applies a series of convolutional filters to
the smartphone sensor input data to extract relevant features.
Equation 2 represents the mathematical expression for feature
extraction.

Concf = ReLU(Wcf ∗ x+ bcf ) (2)

Where, Wcf and bcf represents the convolutional weighted
filter and bias term, and ReLU is the rectilinear activation
function and is expressed as ReLU(x)=max(0,x). The output
Concf of the CNN component represent a set of feature maps.

To extract temporal characteristics of smartphone sensor
data, we apply the BiCNN-LSTM network over a convolu-
tional feature set Concf . BiCNN-LSTM network is a bidi-
rectional CNN-LSTM network that extracts features from two
networks in two directions: forward network in the forward
direction with learning parameter ΘFD

lstm and backward net-
work in the backward direction with model learning parameter
ΘBK

lstm. The output of forward and backward CNN-LSTM
networks are given in (3) and (4).

Let BiLSTMhfd
and BiLSTMhbk

be the output of for-
ward and backward CNN-LSTM networks, respectively.

BiLSTMhfd
= BiLSTMhfd

(Concf ; Θ
FD
lstm) (3)

BiLSTMhbk
= BiLSTMhbk

(Concf ; Θ
BK
lstm) (4)

Where, BiLSTMhfd
and BiLSTMhbk

are the functions
implemented by the BiCNN-LSTM network in the forward
and backward directions. The output of the forward network
BiLSTMhfd

and backward network BiLSTMhbk
is concate-

nated to produce the final hidden output state of the BiCNN-
LSTM network, and mathematically, it is expressed in (5).

BiLSTMho=tanh(Who∗[BiLSTMhfd
⊕BiLSTMhbk

]+bho) (5)

Where,[BiLSTMhfd
⊕ BiLSTMhbk

] represents the con-
catenated hidden state output of the forward and backward
BiCNN-LSTM, Who is the weight matrix, bho is the bias term,
and tanh is the tangent activation function.

The concatenated output of the final hidden output state
of the BiCNN-LSTM network then passes through a fully
connected layer that generates output DeepFCO, and can be
expressed mathematically as per (6).

DeepFCO = WFC ∗BiLSTMho + bFC (6)

Where, WFC and bFC are weight matrix and bias term
applied at fully connected layer, and BiLSTMho is the
final hidden output state of the BiCNN-LSTM network. The
softmax classifier is used for user authentication classification
and is expressed in (7).

Deepy = Softmax(DeepFCO) (7)

During the training phase, the model parameters (weights
and biases) are learned by minimizing the loss function using

an optimization algorithm such as Stochastic Gradient Descent
(SGD) or Adam. The loss function can be represented as per
(8).

Loss=−
∑

Deepyi
∗log(Deep′

yi
)−(1−Deepyi

)∗log(Deep′
yi

) (8)

Where, Deepyi
is the ground truth label of the sensor

input data (”authenticate” or ”unauthenticated”), Deep′yi
is

the predicted probability of the sensor input data belonging
to the authenticated user, and a log is the natural logarithm.
Main goal of this optimization algorithm is to minimize the
loss function loss value by updating the model parameters
iteratively.

Bayes theorem-based trust score (Bayes-TSC) Process:
The Zero Trust security model uses a trust score to determine
whether a device, user, or network should be granted access
to a resource or not. The trust score is calculated using a
mathematical equation based on Bayes’ theorem. The decision
to grant or deny access can be made based on a threshold
probability. For example, if the threshold probability is set to
0.7, access will be granted if Trust score > 0.7, and denied if
Trust score < 0.7. The equation can be expressed as per (9).

Trust Score=P (Req|UID,DID,NetLoc,IPAdd,times)

=ω1∗P (UID|Req)+ω2∗P (DID|Req)+ω3∗P (NetLoc|Req)

+ω4∗P (IPAdd|Req)+ω5∗P (times|Req)

(9)

Where, Req is the access request, UID is the user identity,
DID is the device identity, NetLoc is the network location,
IPAdd is the IP address, and times is the time of the access
request. To calculate the probability of granting access (Req),
given the user identity (UID), device identity (DID), network
location (NetLoc), IP Address (IPAdd), and time (times), we
need to consider conditional probability P (En|Req) is given
in (10).

P (En|Req) = P (Req|En) ∗ P (En)/P (Req) (10)

Where, P (En|Req) is the probability of the Entity (En)
being valid given the access request (Req), P (Req|En)
is the probability of observing the access request (Req)
given that the entity (En) is valid, P((En)) is the prior
probability of the Entity (En) being valid. P(Req) is the
probability of observing the access request (A); EntityEn =
{useridentity(B), deviceidentity(C), networklocation(D)},
{Ipaddress(E), timeoftheaccessrequest(F )}. The pseudo-
code for proposed model is depicted in algorithm 1.

IV. RESULTS AND DISCUSSION

This section typically describes the experiments conducted
to evaluate the performance of the proposed deep learning-
based zero trust security (DL-XTS) model. Furthermore, we
proposed a Deep-CNN-BiLSTM model for continuous user
authentication using smartphone sensing data. Our experi-
ments were conducted on three benchmark datasets: WISDM-
HARB, HMOG, and UCI-HAR. To evaluate the performance
of the proposed Deep-CNN-BiLSTM model, we used three
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Algorithm 1 Proposed DL-TE Algorithm
Input: Smatphone sensor reading, Θ is the learning parameter,
Sdatax is the input data
Output: Deepy is target output

Apply convolution filter for Sdatax using Conff =
ReLU(Wcf ∗ x+ bcf )
if device type=smartphone then
Yl = Deep− CNN −BiLSTM(Sdata,Θ)
Compute P (En|A) = P (En|Req) = P (Req|En) ∗
P (En)/P (Req) //for each Entity
Compute Trust Score =
P (Req|UID, DID, NetLoc, IPAdd, times) = ω1 ∗
P (UID|Req)+ω2∗P (DID|Req)+ω3∗P (NetLoc|Req)+
ω4 ∗ P (IPAdd|Req) + ω5 ∗ P (times|Req)

else
ComputeP (En|A) = P (En|Req) = P (Req|En) ∗
P (En)/P (Req)//foreachEntity
Compute Trust Score=
P (Req|DID, NetLoc, IPAdd, times) = ω1 ∗
P (DID|Req) + ω2 ∗ P (NetLoc|Req) + ω3 ∗
P (IPAdd|Req) + ω4 ∗ P (times|Req)

end if
if trust score ≥ 0.7 then

UserAut=Authenticated
else

UserAut=Unauthenticated
end if
Return UserAut

authentication metrics: confusion matrix, accuracy, and Equal
Error Rate (EER). To assess the effectiveness of the proposed
DL-XTS model, we used success rate as a metric measure.

The proposed user authentication Deep-CNN-BiLSTM
model is evaluated using error rate-based metrics, such as false
rejection error rate (FRER) and false acceptance error rate
(FAER). FRER and FAER increase and decrease, respectively,
as sensitivity rises. The equal error rate (EER) represents the
sensitivity point where FRR and FAR are equal. Metrics such
as FAER, FRER, accuracy, and EER are calculated using
formulas to determine authentication failures. Additionally,
accuracy and confusion matrices are used to evaluate the
classification performance of the authentication scheme.

FAER represents the probability of categorizing a pattern as
”Authenticate” if it does not belong to it and mathematically
it is expressed as (11).

FAER =
FAV

FAV + TRV
(11)

FRER represents the probability of not classifying a pattern
as ”Authenticate” if it does and is expressed mathematically
as per (12).

FRER =
FRV

FRV + TAV
(12)

.
Accuracy measures the likelihood of a pattern classifying

correctly and is expressed mathematically as (13).

Accuracy=((TAV+TRV ))/((TAV+TRV+FAV+FRV )) (13)

EER is the error rate obtained by equalizing FAER and
FRER using the system’s detection threshold. The EER is
calculated using the formula: EER = FAER+FRER

2 , where
|FAER+ FRER| is the smallest value.

A. Dataset Description

The UCI-HAR dataset [33], also known as the ”UCI Hu-
man Activity Recognition Using Smartphones Dataset,” is a
dataset collected from smartphone sensors that can be used
to recognize human activities such as walking, standing, and
sitting. The dataset contains 10,299 instances of 561 features
extracted from accelerometer and gyroscope signals collected
from 30 subjects while performing six activities. The dataset
is commonly used for machine learning, data mining, and
activity recognition research.

The WISDM-HAR dataset [34], also known as the ”Wire-
less Sensor Data Mining for Human Activity Recognition
dataset,” is a dataset collected from an Android phone’s
accelerometer and gyroscope sensors that can be used to rec-
ognize human activities such as walking, jogging, and sitting.
The dataset contains 1,098,207 instances of three features
(x, y, and z acceleration) collected from 29 subjects while
they performed six activities. The dataset is commonly used
for research in machine learning, data mining, and activity
recognition.

The HMOG dataset [35], also known as the ”Human Motion
Database,” is a dataset collected from an inertial measurement
unit (IMU) that can be used to recognize human activities
such as walking, running, and jumping. The dataset contains
data collected from 11 subjects while they performed various
activities. The dataset includes a total of 12,960 instances
of 10 features extracted from the IMU sensors. The dataset
is commonly used for machine learning, data mining, and
activity recognition research.

V. EXPERIMENTAL RESULTS

This study evaluated the proposed Deep-CNN-BiLSTM au-
thentication framework against basic deep learning algorithms
using three public datasets: UCI-HAR, WISDM-HARB, and
HMOG. The following subsections provide the experimental
observations of these deep learning methods trained on mobile
sensing data on various datasets.

A. UCI-HAR Dataset:

Figure 2 demonstrates the authentication performance com-
parison of proposed work with different models such as Con-
volutional Neural Network (CNN), CNN-LSTM, Long Short
Term Memory (LSTM), Deep Neural Network (DNN), en-
semble based deep federated learning (E-DFL), and cascaded
federated deep learning(C-FDL) using UCI HAR dataset. For
performance evaluation for this work, we considered the UCI
HAR dataset comprises smartphone sensor data collected from
35 volunteers. The accuracy and EER (Equal Error Rate) are
the metrics assessed. As shown in Fig. 2, the Deep-CNN-
BiLSTM based PEP model outperforms existing models such
as CNN, CNN-LSTM, LSTM, DNN, E-DFL, and C-FDL in
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terms of accuracy and EER across all six activities (walking,
walking upstairs, walking downstairs, sitting, standing, and
laying). The Deep-CNN-BiLSTM model achieves an average
accuracy of 94.4% (±8.432%) and an average EER of 5.16%
(±8.532%). On the other hand, the CNN model obtains an
average accuracy of 96.20% (±4.603%) and an average EER
of 5.27% (±7.034%). In comparison, the CNN-LSTM model
achieves an average accuracy of 88.60% (±11.593%) and
an average EER of 10.41% (±14.874%). However, E-DFL
and C-FDL performs better and close to proposed method.
Consequently, the Deep-CNN-BiLSTM model performs better
than the CNN and CNN-LSTM models for the given dataset.
Proposed Deep-CNN-BiLSTM model in Fig. 2 outperforms
current baseline deep learning models in average accuracy and
EER across all activity patterns using the UCI-HAR dataset,
which involves sensor data from 30 volunteers engaging in six
activities.

(a) Accuracy

(b) Equal Error Rate

Fig. 2: Result Analysis for Different Physical Activities on
UCI-HAR Dataset

B. WISDM-HARB Dataset
For WISDM-HARB dataset, 44 individuals that encom-

passes mobile sensor data performing 18 physical activi-
ties are considered. The dataset was evaluated using three
deep learning models: CNN, CNN-LSTM, and Deep-CNN-
BiLSTM. The authentication performance metrics for each
of the 18 physical activities were computed, including Ac-
curacy and Equal Error Rate (EER). Based on Fig. 3, the
Deep-CNN-BiLSTM model exhibited the highest accuracy of
99.81% (±0.529%) for sitting, while the lowest EER of 0.19%
(±1.714%) was obtained for clapping by the same model.
Results indicate that the proposed model outperforms the other
models for most physical activities, followed by E-DFL, C-
FDL, and CNN-LSTM model, and then the CNN model.

(a) Accuracy

(b) Equal Error Rate

Fig. 3: Result Analysis for Different Physical Activities on
WISDM-HARB Dataset

C. HMOG Dataset
Fig. 4 depicts the authentication performance metrics of

CNN, CNN-LSTM, Deep-CNN-BiLSTM, and Deep-CNN-
BiLSTM models for the HMOG dataset, which consists of
sensor data collected from 100 smartphones for six different
activities. Accuracy and equal error rate (EER) are the reported
metrics. For reading, while sitting, all three models achieved
accuracy above 99.45%, with Deep-CNN-BiLSTM having the
highest accuracy of 99.64% and the lowest EER of 0.46%.
Similarly, all three models showed an accuracy above 99.50%
for reading while walking, with Deep-CNN-BiLSTM again
having the highest accuracy of 99.62% and the lowest EER
of 0.38%. For writing, while sitting, all models achieved very
high accuracy, with Deep-CNN-BiLSTM having the highest
accuracy of 99.99% and the lowest EER of 0.01%. However,
for writing while walking, the accuracy of all models was
slightly lower, with Deep-CNN-BiLSTM having the highest
accuracy of 99.34% and the lowest EER of 1.02%. For the
activity of using a map while sitting, all models obtained high
accuracy above 98.77%, with Deep-CNN-BiLSTM having the
highest accuracy of 99.99% and the lowest EER of 0.01%.
For using a map while walking, all models achieved accuracy
above 99.08%, with Deep-CNN-BiLSTM having the highest
accuracy of 99.55% and the lowest EER of 0.73%. Overall,
the results suggest that Deep-CNN-BiLSTM outperformed the
other models regarding accuracy and EER for most activities
in the HMOG dataset.

D. Success Rate
Success rate states how the proposed model correctly rec-

ognizes the authenticated user and allows access permission
to request files and is mathematically expressed in Eqn. 14:
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(a) Accuracy

(b) Equal Error Rate

Fig. 4: Result Analysis for Different Physical Activities on
HMOG Dataset

SR =

(
NSA

TNAA

)
∗ 100 (14)

Where, SR is the sucess rate, NSA is the Number of Successful
Authentication, and TNAA is the Total Number of Authenti-
cation Attempts.

Figure 5(a) represents the success rate for the proposed AI-
DL-XTS and non-AI-DL-XTS models. The result showed that
the proposed AI-DL-XTS model has a higher success rate than
the non-AI-DL-XTS model (MEC without ZTS). The success
rates for the AI-DL-XTS model were 78.5% to 81.5% for
different user node configurations, while the success rates for
the non-AI-DL-XTS model were 39% to 61%. This indicates
that the AI-DL-XTS model is more effective at accurately
authenticating users.

Authentication time is the time taken by the model to
authenticate a user and is expressed in Eqn. 15:

AT =

(
TTAU

Number of Users

)
ms (15)

Where, AT is the authentication time and TTAU is the Total
Time Taken to Authenticate All Users.

Figure 5 (b) shows the outcome of authentication time. It
is observed that in terms of authentication time, the proposed
AI-DL-XTS model also performs better. The proposed AI-
DL-XTS model authenticates all the user nodes between 10
to 100 in 80ms to 81 ms, while the non-AI-DL-XTS model
takes 90.5 to 91.5 ms. From the result, it was suggested that
the AI-DL-XTS model is faster at authenticating users than
the non-AI-DL-XTS model.

The proposed zero-trust security solution not only stands out
in terms of technical innovation but, more importantly, offers

(a) Success Rate

(b) Authentication Time

Fig. 5: Success Rate and Authentication Time-based Analysis
for Proposed Model

tangible benefits for end-users. Unlike traditional approaches,
our framework prioritizes user-centric security by reduced
false positives and increased accuracy. This work focused
in ensuring a seamless and secure digital experience for
consumers. In the realm of cyber-security, the user experience
is paramount. This work distinguishes itself by placing a
strong emphasis on enhancing the overall user experience. By
minimal authentication hassles and adaptive security which
ensures that consumers can stay secure. Furthermore, leverages
threat intelligence data to proactively update security policies
and block access to known malicious entities. The proposed
algorithm can classify and monitor sensitive data, ensuring that
proper access controls are in place and sensitive information
is not compromised.

VI. CONCLUSION

With the increasing use of consumer electronics, including
smartphones and laptops, in our daily lives, the threat of cyber-
attacks is also increasing. In this regard, we have proposed
an AI-based deep learning-enabled zero-trust security (AI-
DL-XTS) model that uses deep learning techniques Deep-
CNN-BiLSTM for secure authentication to detect authorized
smartphone users. We presented the Bayes-TSC method for
trust score calculation in the zero trust security model. The
proposed Deep-CNN-BiLSTM model for continuous user au-
thentication using smartphone sensing data has been evaluated
on three benchmark datasets: WISDM-HARB, HMOG, and
UCI-HAR. Our experiments demonstrate that the Dee-CNN-
BiLSTM model outperforms other deep learning models,
namely CNN-LSTM, LSTM, DNN, E-DFL, and C-FDL in
terms of accuracy and equal error rate for all six activities.
The proposed AI-DL-XTS model has also shown high success
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rates, providing a robust and secure solution against cyber-
attacks. Future enhancements to this model can further im-
prove its performance and extend its capabilities to various
other scenarios. Furthermore, analysis based on cloud native
environments for zero trust security.
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