
Please cite the Published Version

Davies, Sergio , Gait, Andrew , Rowley, Andrew and Di Nuovo, Alessandro (2025) Super-
vised learning of spatial features with STDP and homeostasis using Spiking Neural Networks on
SpiNNaker. Neurocomputing, 611. 128650 ISSN 0925-2312

DOI: https://doi.org/10.1016/j.neucom.2024.128650

Publisher: Elsevier

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/635814/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an open access article which first appeared in Neurocomputing

Data Access Statement: The data and the code used to generate this article are available both
on the MMU data storage servers using the DOI: 10.23634/MMU.00634935 and on GitHub at the
URL: https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0001-5330-5527
https://orcid.org/0000-0001-9349-1096
https://doi.org/10.1016/j.neucom.2024.128650
https://e-space.mmu.ac.uk/635814/
https://creativecommons.org/licenses/by/4.0/
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Supervised learning of spatial features with STDP and homeostasis using
Spiking Neural Networks on SpiNNaker✩

Sergio Davies a,∗, Andrew Gait b, Andrew Rowley b, Alessandro Di Nuovo c

a Department of Computing and Mathematics, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, United Kingdom
b APT group, School of Computer Science, The University of Manchester, IT Building, Oxford Road, Manchester, M13 9PL, United Kingdom
c Department of Computing, Sheffield Hallam University, Cantor Building, 153 Arundel Street, Sheffield, S1 2NU, United Kingdom

A R T I C L E I N F O

Communicated by F. Perez-Pena

Dataset link: 10.23634/MMU.00634935, https:
//github.com/sergiodavies/SpiNNakerSpatialL
earningCodeAndDataset

Keywords:
Spiking Neural Networks
SNN
Spatial pattern
STDP
Spike Timing Dependent Plasticity
Supervised learning

A B S T R A C T

Artificial Neural Networks (ANN) have gained significant popularity thanks to their ability to learn using the
well-known backpropagation algorithm. Conversely, Spiking Neural Networks (SNNs), despite having broader
capabilities than ANNs, have always posed challenges in the training phase. This paper shows a new method
to perform supervised learning on SNNs, using Spike Timing Dependent Plasticity (STDP) and homeostasis,
aiming at training the network to identify spatial patterns. Spatial patterns refer to spike patterns without a
time component, where all spike events occur simultaneously. The method is tested using the SpiNNaker digital
architecture. A SNN is trained to recognise one or multiple patterns and performance metrics are extracted
to measure the performance of the network. Some considerations are drawn from the results showing that,
in the case of a single trained pattern, the network behaves as the ideal detector, with 100% accuracy in
detecting the trained pattern. However, as the number of trained patterns on a single network increases, the
accuracy of identification is linked to the similarities between these patterns. This method of training an SNN
to detect spatial patterns may be applied to pattern recognition in static images or traffic analysis in computer
networks, where each network packet represents a spatial pattern. It will be stipulated that the homeostatic
factor may enable the network to detect patterns with some degree of similarity, rather than only perfectly
matching patterns. The principles outlined in this article serve as the fundamental building blocks for more
complex systems that utilise both spatial and temporal patterns by converting specific features of input signals
into spikes. One example of such a system is a computer network packet classifier, tasked with real-time
identification of packet streams based on features within the packet content.

1. Introduction

The rising popularity of neural networks can be attributed to their
information processing capabilities, despite being regarded as ‘‘black-
box’’ systems due to their emulation of the behaviour of biological
neural networks, rather than relying on established biological struc-
tures [1].

Artificial neural network models draw inspiration from their biolog-
ical counterparts, attempting to mimic how the human brain performs
specific tasks [2]. Based on the computational units (neurons) used
in these networks, we can classify three main categories of neural
networks [3]. Each of these categories is referred to as a ‘‘generation’’

✩ Using STDP and homeostasis on spiking neural networks simulated on SpiNNaker, Davies et al. demonstrate that it is possible for such a network to learn
and recognise spike patterns by presenting the desired pattern to the network only once. The pattern is presented as a set of simultaneous spikes at the input
layer, and the output is produced after a short delay. In addition, the same network is trained with multiple patterns, and the accuracy and other performance
metrics are computed.
∗ Corresponding author.
E-mail address: sergio.davies@mmu.ac.uk (S. Davies).
URL: https://www.mmu.ac.uk/staff/profile/dr-sergio-davies (S. Davies).

of neural networks. Each generation simulates biological processes with
an increasing degree of accuracy.

The first generation of neural networks were dominated by the
McCulloch-Pitts neuron model [4] which allows discrete inputs and
outputs (only ‘‘0’’s or ‘‘1’’s). The next generation (second generation of
neural networks, more commonly known as Artificial Neural Networks)
evolved this model to allow input and output values to be continuous
within a specified range, either [0; 1] or [−1; 1].

In both these generations of neural networks, the output of a neuron
is transferred to the subsequent neuron(s) through weighted connec-
tions. This weight is altered during the training phase by presenting the

https://doi.org/10.1016/j.neucom.2024.128650
Received 14 March 2024; Received in revised form 24 June 2024; Accepted 19 September 2024

Neurocomputing 611 (2025) 128650

Available online 24 September 2024
0925-2312/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/neucom
https://www.elsevier.com/locate/neucom
https://doi.org/10.23634/MMU.00634935
https://doi.org/10.23634/MMU.00634935
https://doi.org/10.23634/MMU.00634935
https://doi.org/10.23634/MMU.00634935
https://doi.org/10.23634/MMU.00634935
https://doi.org/10.23634/MMU.00634935
https://doi.org/10.23634/MMU.00634935
https://doi.org/10.23634/MMU.00634935
https://doi.org/10.23634/MMU.00634935
https://doi.org/10.23634/MMU.00634935
https://doi.org/10.23634/MMU.00634935
https://doi.org/10.23634/MMU.00634935
https://doi.org/10.23634/MMU.00634935
https://doi.org/10.23634/MMU.00634935
https://doi.org/10.23634/MMU.00634935
https://doi.org/10.23634/MMU.00634935
https://doi.org/10.23634/MMU.00634935
https://doi.org/10.23634/MMU.00634935
https://doi.org/10.23634/MMU.00634935
https://doi.org/10.23634/MMU.00634935
https://doi.org/10.23634/MMU.00634935
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
mailto:sergio.davies@mmu.ac.uk
https://www.mmu.ac.uk/staff/profile/dr-sergio-davies
https://doi.org/10.1016/j.neucom.2024.128650
https://doi.org/10.1016/j.neucom.2024.128650
http://creativecommons.org/licenses/by/4.0/

S. Davies et al.

network with an input for the training session, analysing the network
output, and determining the error between the current network output
and the desired output. This error is then used to compute the changes
in synaptic weights throughout the network using the backpropagation
algorithm [5,6].

It is suggested that the popularity of Artificial Neural Networks
(ANNs) can be attributed to the use of the backpropagation training
algorithm [7]. This algorithm has played a pivotal role in enabling
the training of significant ANN models [e.g.: 8–10]. Indeed, back-
propagation has provided an advantage to this type of networks with
a well-known and robust method of training which has now been
embedded in most, if not all, ANN simulation platforms.

However, both the first and the second generations of neural net-
works do not consider one fundamental aspect: biological networks
evolve following biological time. Artificial neural networks perform
their operations in abstract time that does not correspond to biological
time. Even advanced models such as Continuous Timescale Recurrent
Neural Networks (CTRNN) [11] and Multi-Timescale Recurrent Neural
Networks (MTRNN) [12] use the recurrent structure of the neural
network to keep track of the state and its evolution. However, this does
not correspond to biological real-time, but rather follows the number
of iterations in the network.

The third generation of neural networks [3], also known as Spiking
Neural Networks (SNNs), improves the biological realism of previous
generations of neural and synaptic models by introducing the time
variable in the models [13,14]. Indeed, the models proposed for this
generation of neural networks are directly inspired from biology: the
most realistic model is the Hodgkin–Huxley neuron [15], which is
also the most complex to simulate numerically on a computer. Other
models, instead, limit their biological plausibility to reduce their nu-
merical complexity [16]. All of these neuron models are described using
differential equations that depict the evolution of a neuron’s state over
time [e.g. 14,17–19].

The communication between neurons is also inspired from biology:
it is known that neurons interact by means of action potentials, also
known as spikes [19]. Such communications use a wide array of
mechanisms to encode information, as described by Auge et al. [20],
and even more methods could be envisioned.

Similarly, also synapses (the interconnection between neurons) in
second generation neural networks are represented by a single number
that represents its ‘‘strength’’. This value is altered during training using
the backpropagation algorithm. However, from a biological perspec-
tive, this algorithm has raised some skepticism on its plausibility [21].
This is also supported by the fact that biological findings have shown
that signals transmitted through synapses have a time evolution that
may be described through a differential equation [14].

In addition, biology has described a number of mechanisms that
allow biological neural networks to adapt to input stimuli. Among
these we can mention STP — short-term plasticity [22], STDP — Spike
Timing Dependent Plasticity [23,24], homeostasis [25,26], structural
plasticity [27] and evolutionary learning [6]. All these mechanisms, fol-
lowing different processes, alter the architecture of the neural network
by altering the synaptic strength of existing synapses, by creating new
synapses (synaptogenesis), or by removing existing synapses (synaptic
pruning). Despite all the changes imposed by these mechanisms, neu-
rons within the network need to maintain their functional stability,
and the network itself needs to keep a stable behaviour. This happens
through the homeostatic process at two levels: on a neuron scale it
helps to keep a healthy neural activity, while on the network scale
homeostasis helps keeping the network stability [28].

The learning process underlying mechanism was proposed by Hebb
[29], and commonly summarised as ‘‘Cells that fire together wire to-
gether’’. More details of this biological process have emerged in the last
few decades, leading to a number of learning rules which can affect
synapses on a time interval spanning a few milliseconds to a lifetime,
or more, through generations of individuals [30,31].

As a general rule, the longer the learning period, the more perma-
nent the effects are on the neural networks: short-term plasticity affects
quickly the stability of the network, but the effects do not last very
long [32]. On the other hand, long-term plasticity has a stronger impact
on the network, so that it allows the network to self-organise towards a
stable critical regime [30]. Evolutionary learning has an even stronger
impact that allows generation of individuals to behave in a specific way
innately [33].

Such learning rules have been replicated in computer simulations,
and showed their characteristics in applied tasks. In particular, it
is relevant to mention that STDP was successfully applied in many
applications related to the identification of spatio-temporal spike pat-
terns [e.g. 34–37].

A neural network is trained within an environment. On the basis of
this it is possible to classify four learning paradigms [14] depending on
the presence and the structure of the teaching signal: supervised learn-
ing, semi-supervised learning, unsupervised learning and reinforcement
learning. The learning rules introduced before (STP, STDP, etc.) refer to
an unsupervised learning paradigm, where the teaching signal is absent
and the network aims to identify autonomously a pattern in the input
signal.

In this paper we present a novel method of training a spiking neural
network to identify spatial patterns (patterns of spikes presented at
the same time as input to the network) using STDP and homeostasis:
two learning algorithms acting on different time-scales collaborating
to achieve a task. The network is trained initially to identify a single
pattern and the accuracy is then evaluated by testing exhaustively all
the possible input patterns to the network. In a second step, the network
is trained to identify two patterns, and we will show that the accu-
racy of the identification depends strictly on the degree of similarity
between the two patterns on which the network has been trained. This
similarity will be measured by the Hamming Distance between input
patterns. Finally, a more thorough experiment includes training the
network on three patterns and measuring again the detection accuracy,
among other classification metrics.

The experiments are performed on the SpiNNaker digital architec-
ture [38], using the sPyNNaker implementation of the PyNN neural
network language [39–41]. SpiNNaker is a system designed at the Uni-
versity of Manchester: each SpiNNaker chip comprises eighteen very-
low-power ARM986 processors (cores); the main SpiNNaker server,
housed at the University of Manchester, consists of a million cores
built of multiple boards containing multiple chips. Computations in the
brain are inherently parallel and the architecture is designed to mimic
this parallelism. SNNs may be simulated on the machine by submitting
scripts based on the PyNN neural network language. These scripts are
then converted by the software stack into executable files which run on
as many cores as required by the neural network.

The remaining sections of this article encompass a detailed ac-
count of the experiments outlined in the methodology section (Sec-
tion 2). This includes an in-depth exploration of the STDP learning rule
(Section 2.1), training procedures (Section 2.2), and testing methods
(Section 2.3). Subsequently, the results section (Section 3) will shed
light on the research outcomes, involving training the network on a
single pattern (Section 3.1), two patterns (Section 3.2), and multiple
patterns (Section 3.3). In each case, various classification metrics will
be employed to assess the network’s performance in pattern identifi-
cation following the training process. Finally, the conclusion section
(Section 4) will summarise the key findings of this research and its
applicability.

While the architecture of the neural network proposed in this paper
may appear simplistic, it is intentionally designed as such to study
the training process outlined within this research and isolate each
component’s effects on the network’s performance.

Neurocomputing 611 (2025) 128650

2

S. Davies et al.

Fig. 1. An example of how weight change (dW) is calculated based on the time
difference between pre- and post-synaptic spikes (dt). In green on the left is the Long
Term Potentiation (LTP) generated by a pre-synaptic and post-synaptic spike sequence.
In blue on the right is the Long Term Depression (LTD) generated by a post-synaptic
and pre-synaptic spike sequence.

2. Methodology

In this paper we refer to spatial patterns of spikes as a set of spikes
that are presented to the network from different source neurons at the
same time, and whose source neuron is meaningful for the pattern.

As spatial patterns relate only to the presence or absence of a spike
from a specific source, this type of patterns can be identified and
encoded with the use of binary numbers, where ‘‘1’’s represent the
presence of a spike, while ‘‘0’’s reflect its absence. These numbers rep-
resented either in their binary or decimal format will also be referred
to as ‘‘code words’’.

The spikes used to transfer information follow two of the possible
encodings suggested by Auge et al. [20], namely:

• Time To First Spike: This is utilised during the network training
phase to ensure that the supervised learning paradigm correctly
triggers the relevant side of the STDP learning rule. Depending
on whether the input spike represents ‘‘0’’ or ‘‘1’’, the generated
spike occurs slightly before or after the training signal.

• Parallel binary encoding: Since spatial patterns only correspond
to the presence or absence of spikes from each source, we can
represent patterns with binary numbers that are presented to the
network. A binary number ‘‘1’’ indicates the presence of a spike
from that source, while ‘‘0’’ represents its absence.

Two related neural networks are designed for this exercise: the first
one is used to train the relevant synapses, while the second network,
which is a simplified version of the training network, is used to test and
validate the model obtained in the first step.

2.1. STDP on SpiNNaker

STDP is a form of learning whereby the weight of a synapse between
two neurons is either potentiated (LTP) or depressed (LTD) dependent
upon whether a post-synaptic spike follows or precedes a pre-synaptic
spike. The size of this change, in general, drops off exponentially as
the time difference between the pre- and post-synaptic spikes gets
larger [42]. This is shown graphically in Fig. 1. In PyNN, STDP is
defined in a modular fashion such that the user may specify which

timing rule (for example, to determine the shape of the exponential
decay) and weight update rule (for example, to indicate whether the
weight update is additive or multiplicative) they wish to use.

This is how the rules are also implemented on SpiNNaker, with one
proviso: due to local memory restrictions on how much data can be held
for parameters, multiple STDP projections to the same target population
must use the same rule with the same parameters.

On SpiNNaker, the plasticity mechanism for STDP is also only acti-
vated when the post-synaptic neuron receives the second (pre-synaptic)
spike: at least two pre-synaptic spikes are, therefore, required for the
calculations to take place. This is because the conventional method for
calculating STDP at every pre-synaptic spike and every post-synaptic
spike is difficult on SpiNNaker due to the synaptic weights being held
in external memory and only copied into local memory when a pre-
synaptic spike arrives. Thus, a deferred event-driven model is used to
postpone the STDP calculation until future spike timings determine
how the pre-synaptic sensitive scheme is applied [43]. Because of
this deferred event-driven model, STDP weight changes can only be
computed when a pre-synaptic spike is received. Therefore, to detect
the effects of the sequence of spikes to the output neuron at the end
of the training phase, a ‘‘save neuron’’ (see Figs. 2 and 3) emits a final
spike whose only effect is to trigger the execution of the STDP learning
rule on plastic synapses.

2.2. Training phase

The training phase relies on the network shown in Fig. 3. This
network consists of two sections: one focused on the ‘‘0’’s on the left,
and, symmetrically, another section dedicated to the ‘‘1’’s on the right.

The ‘‘Spike Source Populations’’ inject spikes according to spe-
cific patterns to train the network. The ‘‘Spike injector’’ populations
comprise leaky integrate-and-fire neurons with delta synapses. These
synapses have the characteristic that the current transferred to the post-
synaptic neuron is applied within a single-millisecond time slot, during
which it receives all the current. The neuron parameters are set to the
default values provided by the PyNN [39] interface to the SpiNNaker
backend simulator [40,41].

Fig. 2 shows the spike times for each neuron in the network in
the case of a ‘‘0’’ on the left and in case of a ‘‘1’’ on the right. The
information is encoded using the ‘‘Time to first spike’’ method: in case
a ‘‘0’’ needs to be presented, the sequence of spikes generated by the
Spike Source Population ‘‘0’’ includes spikes at 6, 36 and 59 ms, while
to encode a ‘‘1’’ the Spike Source Population ‘‘1’’ emits spikes at 1, 26
and 56 ms. These spikes are propagated through to the output neuron
following the time pattern in Fig. 2. Indeed, the neurons in the ‘‘Spike
Injector’’ populations emit a spike for each spike they receive.

The output neuron receives the features of the signal from the
plastic synapses (in blue) which do not contribute to the membrane
potential since their weight is 0. However, they allow the output neuron
to store information to trigger the STDP learning rule. This sequence
of spikes has been designed considering the peculiarities of both the
SpiNNaker architecture and of the software implementation of the
STDP algorithm [43]. The STDP algorithm employed in this case is
the nearest neighbour spike pair rule, which is only triggered when
at least one pre-synaptic spike and one post-synaptic spike are already
in memory at the point when an new incoming pre-synaptic spike
is received. This is a custom extension for the SpiNNaker backend
simulator in PyNN. The parameters used for the weight update rule are
as follows: 𝜏+ = 5, 𝜏− = 5, 𝐴+ = 1 and 𝐴− = −1. However, later in this
article it will be discussed that the specific values of these parameters
have little relevance on the whole set of experiments.

In the model presented above, the output spike generated by the sig-
nal from the teacher neuron (in red) is always received at millisecond
31 and generates an output spike at millisecond 32. This output spike
always falls between at least two pre-synaptic spikes, both in the case
of a ‘‘0’’ and a ‘‘1’’, thus triggering the STDP rule in both cases. This

Neurocomputing 611 (2025) 128650

3

S. Davies et al.

Fig. 2. The sequence of spikes in the network used for training.

Fig. 3. The network used for training. In blue the STDP-enabled synapses.

Fig. 4. The precise timing of the spikes for potentiation and depression. The timing for
both Long Term Potentiation (LTP) and Long Term Depression (LTD) is considered on
the timestep immediately following the outgoing spike value, so the values concerned
here are 5 ms when the ‘‘1’’ is potentiated and the ‘‘0’’ is depressed, and 25 ms when
the ‘‘0’’ is potentiated and the ‘‘1’’ is depressed.

is further detailed in Fig. 4, which shows which elements of the STDP
rule are triggered by each spike in the network.

The precise spike times in this model have been chosen based on
experimentation to ensure that the potentiation and the depression
induced by the STDP rule on the plastic synapses have the same
magnitude but opposite sign. Finally, the save neuron is used to allow
the storage of the newly computed synaptic weight to memory, so that
these can be retrieved at the end of the simulation.

Initially, synapses are set with a weight of zero, emphasising that
the output spike relies solely on the contribution of the teacher neuron.
This underscores that the training process exclusively depends on the
activity of the teacher neuron and the STDP learning rule.

The synaptic weights obtained during this training phase are used
in the testing network in Fig. 5. The input pattern is injected in

Fig. 5. The network used for testing.

this network through the ‘‘Spike Injectors 0’’ and ‘‘Spike Injectors 1’’
populations. In the first population a neuron fires if the corresponding
bit of the input pattern is a ‘‘0’’. On the contrary, if the bit is a ‘‘1’’, then
the corresponding neuron of the ‘‘Spike Injectors 1’’ population fires. In
addition, all synapses are fixed, and the excitatory weights originating
from ‘‘Spike injector 0’’ or ‘‘Spike injector 1’’ to the output neuron mir-
ror the patterns learned by the synapses in the corresponding locations
of the preceding network. In contrast, the inhibitory weights stemming
from ‘‘Spike injector 0’’ to the output neuron are guided by the weights
learned by ‘‘Spike injector 1’’, and conversely, the inhibitory weights
originating from ‘‘Spike injector 1’’ to the output neuron are influenced
by the weights learned by ‘‘Spike injector 0’’. Excitatory synapses
from the ‘‘Spike injector 1’’ population and inhibitory synapses from
‘‘Spike injector 0’’ population have the same weight but opposite sign.
The same applies to excitatory synapses from ‘‘Spike injector 0’’ and
inhibitory synapses from ‘‘Spike injector 1’’ populations.

Following this pattern of connectivity:

𝑊 𝐼
𝑆𝐼0(𝑛) = −𝑊 𝐸

𝑆𝐼1(𝑛)

𝑊 𝐼
𝑆𝐼1(𝑛) = −𝑊 𝐸

𝑆𝐼0(𝑛)

where:

• 𝑾 𝑬
𝑺𝑰𝟎(𝒏) represents the weight of the excitatory synapse from the 𝑛th

neuron of the ‘‘Spike injector 0’’ population;
• 𝑾 𝑰

𝑺𝑰𝟎(𝒏) represents the weight of the inhibitory synapse from the 𝑛th
neuron of the ‘‘Spike injector 0’’ population;

• 𝑾 𝑬
𝑺𝑰𝟏(𝒏) represents the weight of the excitatory synapse from the 𝑛th

neuron of the ‘‘Spike injector 1’’ population;
• 𝑾 𝑰

𝑺𝑰𝟏(𝒏) represents the weight of the inhibitory synapse from the 𝑛th
neuron of the ‘‘Spike injector 1’’ population;

This reciprocal relationship between excitatory and inhibitory
weights ensures that the output neuron is able to select the pattern
or patterns to respond to. Indeed, even in the case that the network is

Neurocomputing 611 (2025) 128650

4

S. Davies et al.

Table 1
Classification metrics used for the evaluation of the performance of trained networks.

Name Variable Description

Positives 𝑃𝑖 Equals to 1 in case the network emits a
spike associated with the 𝑖th input pattern

Negatives 𝑁𝑖 Equals to 1 in case the network does not
emit a spike associated with the 𝑖th input
pattern

True positives 𝑡𝑝 Number of spikes emitted associated with
patterns learned by the network

True negatives 𝑡𝑛 Number of patterns correctly not identified
by the network

False positives 𝑓𝑝 Number of spikes emitted, but not
associated with patterns learned by the
network

False negatives 𝑓𝑛 Number of patterns on which the network
was trained but that the network failed to
identify

Name Formula Description

Accuracy
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
Proximity of the identification task to the
training. It evaluates the overall
performance of classification

Precision
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
Positive predicted value. This indicates the
reliability of identification

Negative prediction
𝑡𝑛

𝑡𝑛 + 𝑓𝑛
Reliability of classification of distractions

Sensitivity
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
Focuses on how good is the performance in
classifying attention

Specificity
𝑡𝑛

𝑡𝑛 + 𝑓𝑝
Evaluates the performance in classifying
distractions

trained on multiple patterns, the output signal is generated always by
the single output neuron present in the network.

In the cases where the network needs training on multiple patterns,
each pattern will be trained separately, always starting from a network
with plastic synaptic weights set to ‘‘0’’. The final value of the synap-
tic weights will be obtained by summing the weights resulting from
training, synapse-by-synapse. The weights obtained from the previous
step are used as the basis for the homeostatic process. During this
step, after summing all the weights from the various training iterations,
homeostasis is applied. This is modelled as a multiplier factor that re-
scales the synaptic weights to obtain the minimum scaling value for
each training pattern that allows the output neuron to fire exactly once
for each learned pattern. To complete this step, the summed and re-
scaled synaptic weights are applied to the testing network in multiple
iterations, adjusting the homeostatic factor at each iteration. Each
training pattern is injected into this network, obtaining a homeostatic
factor that may differ for each trained pattern. Finally, the maximum
among these factors is selected as the network homeostatic factor.

The search for the re-scaling factor is performed initially through a
binary search in the interval between the values of 0.0001 and 1000,
reducing the interval until the values between the two extremes 𝑥 and
𝑦 is less than or equal to 0.0001. Then the search becomes linear in
the interval [𝑥−0.00001; 𝑦+0.00001] with a step equal to 0.00001, one
order of magnitude smaller than the interval. The precision of this step
descends from the precision of the synaptic weights on SpiNNaker. This
precision is determined at runtime based upon the maximum weight
value possible within the network [44]. For the network described here
the minimum weight that can be represented is 2−11 ≈ 0.0005, so a
linear search with a step size equal to 0.00001 does not reduce the
precision of the network. Once the homeostatic factor is determined to
allow the network to spike once for every pattern presented, the process
moves to the testing and validation phase. Because the homeostatic
process re-scales all weights to obtain a specific required result, the
original weights obtained through the STDP is of little relevance to the
whole training process.

2.3. Test and validation phase

During this phase, the objective is to validate the methodology for
the training of a spatial feature classifier. To this end, we calculate the
following classification metrics: Accuracy, Precision, Negative Predic-
tion, Sensitivity, and Specificity, as presented in [45]. These metrics
are employed for class identification, as detailed in Table 1.

The network utilised is depicted in Fig. 5. All neurons operate
as leaky integrate-and-fire units with non-plastic delta synapses, as
previously described.

3. Results

3.1. Single pattern training

To create a sufficiently broad testing space, the network in Fig. 5
undergoes testing and validation using 10-bit patterns. These patterns
are represented by numbers in the range [0; 1023], where their binary
representation effectively reflects the combination of spikes in the
pattern. The initial test focuses on the pattern expressed by the number
99210 = 11111000002 (the subscript numbers represent the base in which
the code word is expressed). Since the network comprises only 10
synapses per injector population, the details of the weights generated
by the training step are documented fully in Table 2 to provide context
for the discussion.

It is evident that the weights precisely mirror the pattern of ‘‘0’’s
and ‘‘1’’s in the pattern. Subsequently, homeostasis is applied to the
group of synapses to ensure that the output neuron fires once when the
pattern is presented to the network. The resulting homeostasis factor
is computed as 4.18817, which re-scales the weight values to those
presented in Table 3.

With the weights outlined in the latter table, the network is vali-
dated using all possible combinations of spikes, showing that it pro-
duces only one output spike in response to the input 99210 =
11111000002, in accordance with the training provided, demonstrating
perfect pattern recognition, as shown in Table 4.

3.2. Dual pattern training

In addition to the single-pattern testing, a set of two-pattern training
experiments has been conducted to investigate how training a sin-
gle network on multiple patterns influences the recognition process.
Building upon the previous experiment, this set of experiments aims to
elucidate how the disparity between the two learned patterns impacts
the recognition process. The first experiment aims to train the network
to identify the patterns 99210 = 11111000002 and 96010 = 11110000002.
Between the two patterns there is only one bit difference in position
5. Network training takes this difference into account both at STDP
training stage and at the homeostasis adjustment stage. Indeed, the
synaptic weights for the plastic synapses to the output neuron achieve
the values presented in Table 5.

At a first glance, two main differences become evident when com-
paring these values with those related to the single-pattern experiment:
in the first instance, weights of neurons 0 to 4 and 6 to 9 are doubled.
This is because the two-pattern experiment sums the corresponding
synapses trained independently on the two patterns. Therefore these
synapses are reinforced twice, and their weights are doubled.

In the second instance, it is possible to notice that the weights of the
synapses from neuron 5 is evenly distributed between the two injector
populations. This distribution arises from the training process: while
the pattern 99210 = 11111000002 trained the network to detect a 1 in
position 5, the pattern 96010 = 11110000002 trained the network to
detect a 0 in the same position.

This means that neither of the neurons with ID 5 contributes to the
generation of the output spike. In the testing network (Fig. 5) both the

Neurocomputing 611 (2025) 128650

5

S. Davies et al.

Table 2
Trained synaptic weights for a single pattern expressed by the number 99210 = 11111000002.
Neuron ID 9 8 7 6 5 4 3 2 1 0

Population Injector ‘‘0’’ 0 0 0 0 0 0.367 0.367 0.367 0.367 0.367

Population Injector ‘‘1’’ 0.367 0.367 0.367 0.367 0.367 0 0 0 0 0

Table 3
Re-scaled synaptic weights (after homeostasis).
Neuron ID 9 8 7 6 5 4 3 2 1 0

Population Injector ‘‘0’’ 0 0 0 0 0 1.538 1.538 1.538 1.538 1.538

Population Injector ‘‘1’’ 1.538 1.538 1.538 1.538 1.538 0 0 0 0 0

Table 4
Classification metrics for the network trained with a single pattern.

Metric Formula Value

Homeostatic value 4.18817
Positives 𝑃𝑖 1
Negatives 𝑁𝑖 1023
True positives 𝑡𝑝 1
True negatives 𝑡𝑛 1023
False positives 𝑓𝑝 0
False negatives 𝑓𝑛 0

Accuracy
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
1024
1024

= 1

Precision
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
1

1 + 0
= 1

Negative prediction
𝑡𝑛

𝑡𝑛 + 𝑓𝑛
1023

1023 + 0
= 1

Sensitivity
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
1
1
= 1

Specificity
𝑡𝑛

𝑡𝑛 + 𝑓𝑝
1023
1023

= 1

inhibitory and excitatory synapses from both injector populations have
the same weight:

𝐼5 = 𝑊exc5|Inj0 −𝑊inh5|Inj0 +𝑊exc5|Inj1 −𝑊inh5|Inj1 (1)

= 0.367 − 0.367
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

for a ‘‘0’’
spike

+0.367 − 0.367
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

for a ‘‘1’’
spike

= 0 (2)

Therefore, the input current to the output neuron contributed by
neuron 5 in either spike injector population is null. The homeostasis
process takes this into account by increasing the overall value of
the other contributing neurons by the same amount of the missing
synapses. In fact, the homeostatic parameter in this instance is

2.32647 ≈ 4.18817
2

× 10
9

(3)

where the value 4.18817 is the homeostatic value from the single
pattern experiment, and 10∕9 represents the fact that one of the synapses
is not contributing to the identification, and therefore all the other
synapses need to be stronger.

In these conditions, it is possible to evaluate the network perfor-
mance metrics in the detection of the patterns by testing all the possible
combinations. In this case the network positively identifies only the
two trained patterns (99210 = 11111000002 and 96010 = 11110000002)
behaving as the perfect classifier.

As we test the network with patterns increasingly divergent from
the original 99210 = 11111000002 pattern, several general trends become
evident:

• The synapses related to the bits that are different among the two
patterns have weights evenly distributed between the two injector
populations. In this way, the output neuron does not depend on
these inputs, which can be considered ‘‘don’t care’’ synapses or
bits.

• The homeostatic factor increases with the number of ‘‘don’t care’’
bits, to account for the fewer synapses that contribute to the
detection.

• The network’s performance metrics demonstrate a noticeable de-
terioration as the number of dissimilarities between the patterns
learned by the network increases. This degradation in perfor-
mance underscores the sensitivity of the network to discrepancies
among the learned patterns.

• The deterioration in the performance of the pattern recognition
task is related to the Hamming Distance [46,47] between the two
learned patterns: the number of ‘‘don’t care’’ bits in the network
and therefore the number of patterns that the network is able to
identify.

These results can be seen in Table 6. The position of the ‘‘don’t care’’
bits or synapses in the pattern is irrelevant for the purpose of this task.
This can be seen in the cases where the Hamming Distance is 1 to 5:
even though the patterns to learn are different, the classification met-
rics are equal and dependent only on the Hamming Distance between
them.

A special mention should be made for the case of two patterns that
are completely opposite. In our case 99210 = 11111000002 and 3110 =
00000111112 have a Hamming Distance of 10. In this scenario, none of
the synapses in the network would contribute to the identification of
the pattern, and therefore, the output neuron would never spike. Con-
sequently, the homeostatic factor becomes infinite (+∞). As a result,
all the classification metrics become incalculable since no output spike
is generated under any circumstances, and therefore this combination
of patterns is not included as a result in the table.

3.3. Multiple pattern training

Finally, the network was tested with three code words. As discussed
in the previous case, the accuracy of the network relies on the similari-
ties between the various code words, and in particular on the Hamming
Distance across all code words trained.

To ensure the test was conducted with the largest possible set
comprising all 10-bit code words, the Hamming Distance between
all possible combinations of 10-bit numbers was computed, and only
the first occurrence of the code words for each Hamming Distance
was recorded, where the code words were all different. The resulting
combinations of code words is described in Table 9.

The network was trained using the same protocol as in previous
experiments, this time using three code words. The weights obtained
in this way are then re-scaled simulating an homeostatic process so
that, where possible, the network would spike for all three trained
patterns. However, as shown in Table 9, not in all cases this is possible:
with specific combinations of code words it is not possible to have the
positive identification of one or even two code words.

To explain this behaviour we can start considering each training
iteration as providing a synaptic weight unit contribution to the ‘‘0’’
population or to the ‘‘1’’ population. When the code word is then
re-applied during homeostasis, these unit weights contribute to the

Neurocomputing 611 (2025) 128650

6

S. Davies et al.

Table 5
Trained synaptic weights for two patterns expressed by numbers 99210 = 11111000002 and 96010 = 11110000002.
Neuron ID 9 8 7 6 5 4 3 2 1 0

Population Injector ‘‘0’’ 0 0 0 0 0.367 0.734 0.734 0.734 0.734 0.734

Population Injector ‘‘1’’ 0.734 0.734 0.734 0.734 0.367 0 0 0 0 0

Table 6
Classification metrics for the network trained with two patterns.

Pattern 1 99210 99210 99210 99210 99210 99210 99210 99210 99210 99210 99210 99210 99210 99210
Pattern 2 100810 101610 102010 102210 102310 96010 89610 76810 51210 010 1610 2410 2810 3010
Hamming distance 1 2 3 4 5 1 2 3 4 5 6 7 8 9
Homeostasis factor 2.3265 2.6177 2.9914 3.4907 4.1875 2.3265 2.6177 2.9914 3.4907 4.1875 5.2354 6.9814 10.4708 20.9415

Positives 2 4 8 16 32 2 4 8 16 32 64 128 256 512
Negatives 1022 1020 1016 1008 992 1022 1020 1016 1008 992 960 896 768 512
True positives 2 2 2 2 2 2 2 2 2 2 2 2 2 2
True negatives 1022 1020 1016 1008 992 1022 1020 1016 1008 992 960 896 768 512
False positives 0 2 6 14 30 0 2 6 14 30 62 126 254 510
False negatives 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Accuracy 1 0.998 0.994 0.986 0.971 1 0.998 0.994 0.986 0.971 0.939 0.877 0.752 0.502
Precision 1 0.5 0.25 0.125 0.0625 1 0.5 0.25 0.125 0.0625 0.03125 0.0156 0.00781 0.00391
Negative prediction 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sensitivity 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Specificity 1 0.998 0.994 0.986 0.971 1 0.998 0.994 0.986 0.971 0.939 0.877 0.751 0.501

Table 7
Trained unit synaptic weights for the three code words ‘‘0’’, ‘‘1’’ and ‘‘2’’.

Population ‘‘0’’
Neuron ID 10 9 8 7 6 5 4 3 2 1

Code word ‘‘0’’ unit synaptic contributions 1 1 1 1 1 1 1 1 1 1
Code word ‘‘1’’ unit synaptic contribution 1 1 1 1 1 1 1 1 1 0
Code word ‘‘2’’ unit synaptic contribution 1 1 1 1 1 1 1 1 0 1

Final unit synaptic weights 3 3 3 3 3 3 3 3 2 2

Population ‘‘1’’
Neuron ID 10 9 8 7 6 5 4 3 2 1

Code word ‘‘0’’ unit synaptic contributions 0 0 0 0 0 0 0 0 0 0
Code word ‘‘1’’ unit synaptic contribution 0 0 0 0 0 0 0 0 0 1
Code word ‘‘2’’ unit synaptic contribution 0 0 0 0 0 0 0 0 1 0

Final unit synaptic weights 0 0 0 0 0 0 0 0 1 1

Table 8
Example of synaptic unit contributions for the three code words ‘‘0’’, ‘‘1’’ and ‘‘2’’,
coloured numbers indicate the source of the corresponding weight from Table 7.

Code word Synaptic contribution Unit weight

‘‘0’’ 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 2 + 2−
(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1)

26

‘‘1’’ 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 2 + 1−
(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 2)

24

‘‘2’’ 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 1 + 2−
(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 2 + 1)

24

final weight applied to the output neuron. If the sum of excitatory
and inhibitory unit weights is positive, then the homeostasis finds the
smallest factor for which the network fires for all the code words. In
alternative, one or two code words are ‘‘discarded’’ during this process
and will appear in the ‘‘False Negative’’ count.

For example, in the case of code words ‘‘0’’, ‘‘1’’ and ‘‘2’’, the final
weight unit contribution to the output neuron is described in Table 7:

As for the code word 0 all the neurons in population ‘‘0’’ are spiking,
these neuron contribute to the output neuron by exciting it through
the excitatory ‘‘0’’ synapses and inhibit it through the inhibitory ‘‘1’’
synapses (see Fig. 5). In this case the final contribution is positive
and includes 26 unit weights. If we repeat this process for all the
code words in the example, the synaptic weights contributions are as

described in Table 8, where coloured numbers indicate the source of
the corresponding weight from Table 7.

As all the contributions are positive, in this case applying the
appropriate homeostatic factor to the weights will lead to the output
neuron firing (at least) for the trained code words. Considering the
STDP parameters applied to the network, one synaptic weight unit is
equal to 0.3671875 and the homeostatic factor required for the network
is estimated in this case equal to 1.74513.

The table describing all the combinations of code words, their
Hamming Distance, the synaptic unit weights and homeostasis factors
computed for this case is presented in Table 9.

Table 10 introduces the performance metrics of the test and valida-
tion network, and clearly illustrates two trends: maintaining two code
words constant while progressively increasing the Hamming Distance
of the remaining one from the others results in the deterioration of
synaptic unit weights. These weights reach zero or become negative,
rendering one or more code word(s) no longer positively identifiable
by the network.

Simultaneously, as the synaptic unit weight decreases, the home-
ostatic factor increases to compensate for the limited efficacy of the
incoming excitation. This holds true until the network is no longer able
to detect one of the code words, which is then automatically excluded
from the identification task during the search for a valid homeostatic
factor: indeed the neural network cannot emit a spike in case the output
neuron excitation results in a ‘‘0’’ or even a negative number. The unit
weights for which one or two code words are no longer identifiable are
highlighted in red in Table 9.

Neurocomputing 611 (2025) 128650

7

S. Davies et al.

Table 9
Combinations of code words (CW1, CW2 and CW3) trained on the network, their Hamming Distance HD(x,y), the synaptic unit weight, computed as described in the text, and
the resulting homeostatic factor.

CW1 CW2 CW3 HD (1,2) HD (1,3) HD (2,3) Code word 1 Unit weight Code word 2 Unit weight Code word 3 Unit weight Homeostatic factor

0 1 2 1 1 2 26 24 24 1.74513
0 1 6 1 2 3 24 22 20 2.09442
0 1 14 1 3 4 22 20 16 2.61791
0 1 30 1 4 5 20 18 12 3.49203
0 1 62 1 5 6 18 16 8 5.23937
0 1 126 1 6 7 16 14 4 10.47873
0 1 254 1 7 8 14 12 0 3.4907
0 1 510 1 8 9 12 10 −4 4.19016
0 1 1022 1 9 10 10 8 −8 5.23804
0 3 5 2 2 2 22 22 22 1.90382
0 3 12 2 2 4 22 18 18 2.32669
0 3 13 2 3 3 20 20 18 2.32713
0 3 28 2 3 5 20 16 14 2.99203
0 3 29 2 4 4 18 18 14 2.99203
0 3 60 2 4 6 18 14 10 4.18883
0 3 61 2 5 5 16 16 10 4.18618
0 3 124 2 5 7 16 12 6 6.98405
0 3 125 2 6 6 14 14 6 6.98405
0 3 252 2 6 8 14 10 2 21
0 3 253 2 7 7 12 12 2 21
0 3 508 2 7 9 12 8 −2 5.23671
0 3 509 2 8 8 10 10 −2 4.18883
0 3 1020 2 8 10 10 6 −6 6.98139
0 3 1021 2 9 9 8 8 −6 5.23671
0 7 25 3 3 4 18 16 16 2.61791
0 7 56 3 3 6 18 12 12 3.49025
0 7 57 3 4 5 16 14 12 3.49025
0 7 120 3 4 7 16 10 8 5.23582
0 7 121 3 5 6 14 12 8 5.23582
0 7 248 3 5 8 14 8 4 10.47873
0 7 249 3 6 7 12 10 4 10.47873
0 7 504 3 6 9 12 6 0 6.98139
0 7 505 3 7 8 10 8 0 5.23671
0 7 1016 3 7 10 10 4 −4 10.47607
0 7 1017 3 8 9 8 6 −4 6.98139
0 15 51 4 4 4 14 14 14 2.99203
0 15 113 4 4 6 14 10 10 4.18972
0 15 115 4 5 5 12 12 10 4.18972
0 15 240 4 4 8 14 6 6 6.9805
0 15 241 4 5 7 12 8 6 6.9805
0 15 243 4 6 6 10 10 6 6.9805
0 15 496 4 5 9 12 4 2 20.95745
0 15 497 4 6 8 10 6 2 20.95745
0 15 499 4 7 7 8 8 2 20.95745
0 15 1008 4 6 10 10 2 −2 20.95213
0 15 1009 4 7 9 8 4 −2 10.47341
0 15 1011 4 8 8 6 6 −2 6.98139
0 31 227 5 5 6 10 8 8 5.23582
0 31 481 5 5 8 10 4 4 10.47164
0 31 483 5 6 7 8 6 4 10.47164
0 31 992 5 5 10 10 0 0 4.19016
0 31 993 5 6 9 8 2 0 20.94681
0 31 995 5 7 8 6 4 0 10.47341
0 63 455 6 6 6 6 6 6 6.98139
0 63 963 6 6 8 6 2 2 20.94681
0 63 967 6 7 7 4 4 2 20.94681

Comparing Table 9 with Table 10, it is possible to notice that the
false negatives appear in correspondence to the 0 or negative unit
weights. These classification metrics show that the accuracy is linked
to the Hamming Distance between code words. However, when one
code word is dropped from identification, the negative prediction and
specificity parameters receive lower values, but the overall accuracy
improves, as the number of false positive identifications drastically
reduces. However, the precision parameter decreases rapidly as the
number of false positives increases.

The classification metrics presented in Table 10 are also displayed
graphically in Fig. 6. In these graphs it is possible to notice how the
closer the experiments are to the bottom left corner, the better the

classification metrics that represent the outcome. Indeed, the bottom
left corner represents experiments using three code words whose Ham-
ming Distance among them is minimum. In these graphs the three axis
HD(x,y) indicate the Hamming Distance between the ‘‘x’’ and ‘‘y’’ code
words.

In particular it is possible to notice also how there is an inverse
relation between the homeostatic factor and the overall accuracy of
the identification task. As the distance between code words increases,
the number of synapses with overall contribution ‘‘0’’ (‘‘don’t care’’
synapses) or small (‘‘care little’’ synapses) increases, and these require
a higher homeostatic factor to allow the remaining synapses to trigger
an output spike. However, this also causes the number of false positive

Neurocomputing 611 (2025) 128650

8

S. Davies et al.

Table 10
Combinations of code words (CW1, CW2 and CW3) trained on the network, and the corresponding test classification metrics obtained from simulations.

CW1 CW2 CW3 True positives True negatives False positives False negatives Accuracy Precision Negative prediction Sensitivity Specificity

0 1 2 3 1021 0 0 1.000 1.000 1.000 1.000 1.000
0 1 6 3 1017 4 0 0.996 0.429 1.000 1.000 0.996
0 1 14 3 1003 18 0 0.982 0.143 1.000 1.000 0.982
0 1 30 3 963 58 0 0.943 0.049 1.000 1.000 0.943
0 1 62 3 873 148 0 0.855 0.020 1.000 1.000 0.855
0 1 126 3 705 316 0 0.691 0.009 1.000 1.000 0.690
0 1 254 2 1014 7 1 0.992 0.222 0.999 0.667 0.993
0 1 510 2 1013 8 1 0.991 0.200 0.999 0.667 0.992
0 1 1022 2 1012 9 1 0.990 0.182 0.999 0.667 0.991
0 3 5 3 1020 1 0 0.999 0.750 1.000 1.000 0.999
0 3 12 3 1013 8 0 0.992 0.273 1.000 1.000 0.992
0 3 13 3 1013 8 0 0.992 0.273 1.000 1.000 0.992
0 3 28 3 998 23 0 0.978 0.115 1.000 1.000 0.977
0 3 29 3 998 23 0 0.978 0.115 1.000 1.000 0.977
0 3 60 3 963 58 0 0.943 0.049 1.000 1.000 0.943
0 3 61 3 963 58 0 0.943 0.049 1.000 1.000 0.943
0 3 124 3 817 204 0 0.801 0.014 1.000 1.000 0.800
0 3 125 3 817 204 0 0.801 0.014 1.000 1.000 0.800
0 3 252 3 591 430 0 0.580 0.007 1.000 1.000 0.579
0 3 253 3 591 430 0 0.580 0.007 1.000 1.000 0.579
0 3 508 2 977 44 1 0.956 0.043 0.999 0.667 0.957
0 3 509 2 1013 8 1 0.991 0.200 0.999 0.667 0.992
0 3 1020 2 967 54 1 0.946 0.036 0.999 0.667 0.947
0 3 1021 2 1012 9 1 0.990 0.182 0.999 0.667 0.991
0 7 25 3 1008 13 0 0.987 0.188 1.000 1.000 0.987
0 7 56 3 982 39 0 0.962 0.071 1.000 1.000 0.962
0 7 57 3 982 39 0 0.962 0.071 1.000 1.000 0.962
0 7 120 3 922 99 0 0.903 0.029 1.000 1.000 0.903
0 7 121 3 922 99 0 0.903 0.029 1.000 1.000 0.903
0 7 248 3 787 234 0 0.771 0.013 1.000 1.000 0.771
0 7 249 3 787 234 0 0.771 0.013 1.000 1.000 0.771
0 7 504 2 892 129 1 0.873 0.015 0.999 0.667 0.874
0 7 505 2 977 44 1 0.956 0.043 0.999 0.667 0.957
0 7 1016 2 847 174 1 0.829 0.011 0.999 0.667 0.830
0 7 1017 2 967 54 1 0.946 0.036 0.999 0.667 0.947
0 15 51 3 1002 19 0 0.981 0.136 1.000 1.000 0.981
0 15 113 3 957 64 0 0.938 0.045 1.000 1.000 0.937
0 15 115 3 957 64 0 0.938 0.045 1.000 1.000 0.937
0 15 240 3 859 162 0 0.842 0.018 1.000 1.000 0.841
0 15 241 3 859 162 0 0.842 0.018 1.000 1.000 0.841
0 15 243 3 859 162 0 0.842 0.018 1.000 1.000 0.841
0 15 496 3 632 389 0 0.620 0.008 1.000 1.000 0.619
0 15 497 3 632 389 0 0.620 0.008 1.000 1.000 0.619
0 15 499 3 632 389 0 0.620 0.008 1.000 1.000 0.619
0 15 1008 2 637 384 1 0.624 0.005 0.998 0.667 0.624
0 15 1009 2 847 174 1 0.829 0.011 0.999 0.667 0.830
0 15 1011 2 967 54 1 0.946 0.036 0.999 0.667 0.947
0 31 227 3 931 90 0 0.912 0.032 1.000 1.000 0.912
0 31 481 3 767 254 0 0.752 0.012 1.000 1.000 0.751
0 31 483 3 767 254 0 0.752 0.012 1.000 1.000 0.751
0 31 992 1 1021 0 2 0.998 1.000 0.998 0.333 1.000
0 31 993 2 637 384 1 0.624 0.005 0.998 0.667 0.624
0 31 995 2 847 174 1 0.829 0.011 0.999 0.667 0.830
0 63 455 3 893 128 0 0.875 0.023 1.000 1.000 0.875
0 63 963 3 638 383 0 0.626 0.008 1.000 1.000 0.625
0 63 967 3 638 383 0 0.626 0.008 1.000 1.000 0.625

identifications to increase, which in turn reduces the overall accuracy
of the identification task of the network.

4. Conclusions

This paper presented a method for training a spiking neural network
to identify spatial patterns. Validation results show that a spiking
network trained this way is able to successfully complete this task.
The testing involved training on a single pattern, two patterns and
three patterns, covering all meaningful combinations of code words.
In these experiments, it became evident that specific parameter values
for the STDP learning rule hold little significance. This is because the
homeostatic process plays a crucial role in re-scaling synaptic weights
to elicit spikes from the output neuron under specific conditions.

The results of the experiments show that a network trained with a
single pattern acts as a perfect classifier, which only identifies spatial

patterns that are identical to the trained one. The ability of the network
to select a specific pattern comes from the structure of the network:
while excitatory synapses trigger the output neuron, inhibitory con-
nections perform the selection of the pattern during the testing and
validation phase.

When two or more patterns are trained on a single network, the
accuracy of the identification task depends only on the Hamming
Distance between the code words imprinted in the network.

From the analysis of the classification metrics, it is possible to see
that the negative prediction in the case of one or two trained patterns is
always 1, which highlights how the absence of an output spike always
correctly identifies that the trained pattern is not present.

On the other hand, positive identification spikes depend on the
number of ‘‘don’t care’’ and ‘‘care little’’ synapses or bits imprinted in
the network. As the number of ‘‘don’t care’’ or ‘‘care little’’ synapses

Neurocomputing 611 (2025) 128650

9

S. Davies et al.

Fig. 6. Statistical classification metrics for the multiple code words training. The axes represent the Hamming Distance between the various code words as indicated in each graph.

increases, the number of false positives increases, and this reduces the
overall accuracy of the identification task.

In the multiple code word experiments, the classification metrics
extracted show that the accuracy is linked to the Hamming Distance
between code words. However, when one code word is dropped from
identification because its Hamming Distance is too high, the negative
prediction and specificity parameters receive lower values, but the
overall accuracy improves because the number of false positive identi-
fications drastically reduces. Overall, precision and sensitivity decrease
rapidly as the number of false positives increases when the Hamming
Distance between code words increases.

This article has presented a method to train a spiking neural net-
work to detect spatial patterns which do not have a temporal com-
ponent. These kind of patterns may be found, for example, in the
analysis of computer network traffic packets, where each single packet
does not have a temporal component, but holds enough information
for a neural network to determine the type of traffic that is car-
ries [e.g. 48,49]. Performing such analysis would require to extract
bits of information from the packet (from the header and/or from the
payload) and encoding such information following the methodology
presented above. Following the training, this methodology allows the
extraction of features ideal for packet classification. Moreover, using
multiple of these classifiers and considering that traffic streams have a
typical sequence of packets in a stream, by using a technique such as
polychronization [50] it would be possible to identify the sequence and
determine to which stream it belongs.

An additional example of spatial pattern is represented by static
images which can be encoded into spikes to allow a spiking neural net-
work to perform pattern matching tasks on trained patterns [e.g. 45].

In these applications, it is conceivable to adjust the homeostatic
factor, calculated during the training phase, to also serve as a similarity
factor in matching the input pattern with the trained pattern. Even
in the case of a single trained pattern, increasing the homeostatic
factor appropriately may enable the network to identify patterns with
a certain degree of similarity, rather than requiring an exact match
between the input and the trained pattern.

CRediT authorship contribution statement

Sergio Davies: Writing – review & editing, Writing – original
draft, Visualization, Validation, Software, Methodology, Investigation,
Funding acquisition, Data curation, Conceptualization. Andrew Gait:
Writing – review & editing, Writing – original draft, Visualization,
Software, Methodology. Andrew Rowley: Writing – review & editing,
Software. Alessandro Di Nuovo: Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Neurocomputing 611 (2025) 128650

10

S. Davies et al.

Data and code availability

The data and the code used to generate this article are avail-
able both on the MMU data storage servers [51] using the DOI: 10.
23634/MMU.00634935, and on GitHub at the URL: https://github.
com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset.

Declaration of Generative AI and AI-assisted technologies in the
writing process

During the preparation of this work the authors used ChatGPT
in order to improve readability and language. After using this tool,
the authors reviewed and edited the content as needed and take full
responsibility for the content of the publication.

Acknowledgements

For the purpose of open access, the authors have applied a Cre-
ative Common Attribution (CC BY) licence to any Author Accepted
Manuscript version arising from this submission.

This work has been supported by the Department of Computing and
Mathematics at the Manchester Metropolitan University and authorised
through ethical review 59273.

Development of SpiNNaker software was supported by the EU ICT
Flagship Human Brain Project which has received funding from the
European Union’s FP7 programme under Grant Agreement no. 604102,
and from the European Union’s Horizon 2020 research and innovation
programme under FPA No 650003 (HBP-785907).

Prof. Di Nuovo acknowledges the support of the UK Engineering and
Physical Sciences Research Council (grant number EP/X018733/1 for
the project ALDENS), and Innovate UK (grant number 10089807 for
the Horizon Europe project PRIMI Grant agreement n. 101120727).

The authors extend their gratitude to Prof. Steve Furber and all
members, current and past, of the APT group at the University of
Manchester for their invaluable support.

References

[1] A. Prieto, B. Prieto, E.M. Ortigosa, E. Ros, F. Pelayo, J. Ortega, I. Rojas,
Neural networks: An overview of early research, current frameworks and
new challenges, Neurocomputing 214 (2016) 242–268, http://dx.doi.org/10.
1016/J.NEUCOM.2016.06.014, URL: https://linkinghub.elsevier.com/retrieve/
pii/S0925231216305550.

[2] S.S. Haykin, Neural Networks: A Comprehensive Foundation, second ed., Prentice
Hall, 1999, URL: https://archive.org/details/neuralnetworksco0000hayk_2ed.

[3] W. Maass, Networks of spiking neurons: The third generation of neural net-
work models, Neural Netw. 10 (9) (1997) 1659–1671, http://dx.doi.org/10.
1016/S0893-6080(97)00011-7, URL: https://linkinghub.elsevier.com/retrieve/
pii/S0893608097000117.

[4] W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous
activity, Bull. Math. Biophys. 5 (4) (1943) 115–133, http://dx.doi.org/10.1007/
BF02478259, URL: http://link.springer.com/10.1007/BF02478259.

[5] S. Linnainmaa, Taylor expansion of the accumulated rounding error, BIT 16
(2) (1976) 146–160, http://dx.doi.org/10.1007/BF01931367, URL: https://link.
springer.com/article/10.1007/BF01931367.

[6] J. Schmidhuber, Deep Learning in neural networks: An overview, Neural Netw.
61 (2015) 85–117, http://dx.doi.org/10.1016/j.neunet.2014.09.003, URL: https:
//www.sciencedirect.com/science/article/pii/S0893608014002135.

[7] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015)
436–444, http://dx.doi.org/10.1038/nature14539, URL: http://www.ncbi.nlm.
nih.gov/pubmed/26017442.

[8] P. Sermanet, K. Kavukcuoglu, S. Chintala, Y. Lecun, Pedestrian detection with
unsupervised multi-stage feature learning, in: 2013 IEEE Conference on Computer
Vision and Pattern Recognition, IEEE, 2013, pp. 3626–3633, http://dx.doi.org/
10.1109/CVPR.2013.465, URL: http://ieeexplore.ieee.org/document/6619309/.

[9] A.-r. Mohamed, G.E. Dahl, G. Hinton, Acoustic modeling using deep belief
networks, IEEE Trans. Audio Speech Lang. Process. 20 (1) (2012) 14–22,
http://dx.doi.org/10.1109/TASL.2011.2109382, URL: http://ieeexplore.ieee.org/
document/5704567/.

[10] G.E. Dahl, D. Yu, L. Deng, A. Acero, Context-dependent pre-trained deep
neural networks for large-vocabulary speech recognition, IEEE Trans. Audio
Speech Lang. Process. 20 (1) (2012) 30–42, http://dx.doi.org/10.1109/TASL.
2011.2134090, URL: http://ieeexplore.ieee.org/document/5740583/.

[11] K.-i. Funahashi, Y. Nakamura, Approximation of dynamical systems by continu-
ous time recurrent neural networks, Neural Netw. 6 (6) (1993) 801–806, http://
dx.doi.org/10.1016/S0893-6080(05)80125-X, URL: https://linkinghub.elsevier.
com/retrieve/pii/S089360800580125X.

[12] Y. Yamashita, J. Tani, Emergence of functional hierarchy in a multi-
ple timescale neural network model: A humanoid robot experiment, PLoS
Comput. Biol. 4 (11) (2008) e1000220, http://dx.doi.org/10.1371/JOURNAL.
PCBI.1000220, URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/
journal.pcbi.1000220.

[13] W. Gerstner, W.M. Kistler, R. Naud, L. Paninski, Neuronal Dynamics, Cambridge
University Press, 2014, http://dx.doi.org/10.1017/CBO9781107447615, URL:
https://www.cambridge.org/core/product/identifier/9781107447615/type/
book.

[14] N.K. Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired Artificial
Intelligence, in: Springer Series on Bio- and Neurosystems, vol. 7, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2019, http://dx.doi.org/10.1007/978-3-
662-57715-8, URL: http://link.springer.com/10.1007/978-3-662-57715-8.

[15] A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current
and its application to conduction and excitation in nerve, J. Physiol. 117 (4)
(1952) 500–544, http://dx.doi.org/10.1113/jphysiol.1952.sp004764, URL: http:
//www.ncbi.nlm.nih.gov/pubmed/12991237.

[16] E. Izhikevich, Which model to use for cortical spiking neurons? IEEE Trans.
Neural Netw. 15 (5) (2004) 1063–1070, http://dx.doi.org/10.1109/TNN.2004.
832719, URL: http://ieeexplore.ieee.org/document/1333071/.

[17] E. Izhikevich, Simple model of spiking neurons, IEEE Trans. Neural Netw.
14 (6) (2003) 1569–1572, http://dx.doi.org/10.1109/TNN.2003.820440, URL:
http://ieeexplore.ieee.org/document/1257420/.

[18] L. Lapicque, Recherches quantitatives sur l’excitation electrique des nerfs traitee
comme une polarization, J. Physiol. Pathol. Gén. 9 (1907) 620–635, URL:
https://fr.wikisource.org/wiki/Recherches_quantitatives_sur_l%27excitation_
%C3%A9lectrique_des_nerfs_trait%C3%A9e_comme_une_polarisation.

[19] P. Dayan, L.F. Abbott, Theoretical Neuroscience: Computational and Mathemat-
ical Modeling of Neural Systems, first ed., The MIT Press, 2001, URL: https:
//mitpress.mit.edu/9780262041997/theoretical-neuroscience/.

[20] D. Auge, J. Hille, E. Mueller, A. Knoll, A survey of encoding techniques for
signal processing in spiking neural networks, Neural Process. Lett. 53 (6) (2021)
4693–4710, http://dx.doi.org/10.1007/S11063-021-10562-2, URL: https://link.
springer.com/article/10.1007/s11063-021-10562-2.

[21] A. Tavanaei, M. Ghodrati, S.R. Kheradpisheh, T. Masquelier, A. Maida, Deep
learning in spiking neural networks, Neural Netw. 111 (2019) 47–63, http://
dx.doi.org/10.1016/j.neunet.2018.12.002, URL: https://linkinghub.elsevier.com/
retrieve/pii/S0893608018303332.

[22] R.S. Zucker, W.G. Regehr, Short-term synaptic plasticity, Annu. Rev. Physiol.
64 (1) (2002) 355–405, http://dx.doi.org/10.1146/annurev.physiol.64.092501.
114547, URL: https://www.annualreviews.org/doi/10.1146/annurev.physiol.64.
092501.114547.

[23] H. Markram, J. Lübke, M. Frotscher, B. Sakmann, Regulation of synaptic efficacy
by coincidence of postsynaptic APs and EPSPs, Science 275 (5297) (1997)
213–215, http://dx.doi.org/10.1126/science.275.5297.213, URL: https://www.
science.org/doi/10.1126/science.275.5297.213.

[24] G.-q. Bi, M.-m. Poo, Synaptic modification by correlated activity: Hebb’s pos-
tulate revisited, Annu. Rev. Neurosci. 24 (1) (2001) 139–166, http://dx.doi.
org/10.1146/annurev.neuro.24.1.139, URL: http://www.annualreviews.org/doi/
10.1146/annurev.neuro.24.1.139.

[25] G.G. Turrigiano, Homeostatic plasticity in neuronal networks: the more things
change, the more they stay the same, Trends Neurosci. 22 (5) (1999)
221–227, http://dx.doi.org/10.1016/S0166-2236(98)01341-1, URL: https://
linkinghub.elsevier.com/retrieve/pii/S0166223698013411.

[26] G. Turrigiano, Too many cooks? Intrinsic and synaptic homeostatic mechanisms
in cortical circuit refinement, Annu. Rev. Neurosci. 34 (1) (2011) 89–103,
http://dx.doi.org/10.1146/annurev-neuro-060909-153238, URL: https://www.
annualreviews.org/doi/10.1146/annurev-neuro-060909-153238.

[27] N. Zecevic, P. Rakic, Synaptogenesis in monkey somatosensory cortex, Cerebral
Cortex 1 (6) (1991) 510–523, http://dx.doi.org/10.1093/cercor/1.6.510, URL:
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/1.6.510.

[28] A. Maffei, A. Fontanini, Network homeostasis: a matter of coordination, Curr.
Opin. Neurobiol. 19 (2) (2009) 168–173, http://dx.doi.org/10.1016/j.conb.2009.
05.012, URL: http://www.ncbi.nlm.nih.gov/pubmed/19540746.

[29] D.O. Hebb, The Organization of Behavior: A Neuropsychological Theory, Wiley,
1949, URL: https://archive.org/details/in.ernet.dli.2015.168156.

Neurocomputing 611 (2025) 128650

11

https://doi.org/10.23634/MMU.00634935
https://doi.org/10.23634/MMU.00634935
https://doi.org/10.23634/MMU.00634935
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
https://github.com/sergiodavies/SpiNNakerSpatialLearningCodeAndDataset
http://dx.doi.org/10.1016/J.NEUCOM.2016.06.014
http://dx.doi.org/10.1016/J.NEUCOM.2016.06.014
http://dx.doi.org/10.1016/J.NEUCOM.2016.06.014
https://linkinghub.elsevier.com/retrieve/pii/S0925231216305550
https://linkinghub.elsevier.com/retrieve/pii/S0925231216305550
https://linkinghub.elsevier.com/retrieve/pii/S0925231216305550
https://archive.org/details/neuralnetworksco0000hayk_2ed
http://dx.doi.org/10.1016/S0893-6080(97)00011-7
http://dx.doi.org/10.1016/S0893-6080(97)00011-7
http://dx.doi.org/10.1016/S0893-6080(97)00011-7
https://linkinghub.elsevier.com/retrieve/pii/S0893608097000117
https://linkinghub.elsevier.com/retrieve/pii/S0893608097000117
https://linkinghub.elsevier.com/retrieve/pii/S0893608097000117
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1007/BF02478259
http://link.springer.com/10.1007/BF02478259
http://dx.doi.org/10.1007/BF01931367
https://link.springer.com/article/10.1007/BF01931367
https://link.springer.com/article/10.1007/BF01931367
https://link.springer.com/article/10.1007/BF01931367
http://dx.doi.org/10.1016/j.neunet.2014.09.003
https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://www.sciencedirect.com/science/article/pii/S0893608014002135
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1109/CVPR.2013.465
http://dx.doi.org/10.1109/CVPR.2013.465
http://dx.doi.org/10.1109/CVPR.2013.465
http://ieeexplore.ieee.org/document/6619309/
http://dx.doi.org/10.1109/TASL.2011.2109382
http://ieeexplore.ieee.org/document/5704567/
http://ieeexplore.ieee.org/document/5704567/
http://ieeexplore.ieee.org/document/5704567/
http://dx.doi.org/10.1109/TASL.2011.2134090
http://dx.doi.org/10.1109/TASL.2011.2134090
http://dx.doi.org/10.1109/TASL.2011.2134090
http://ieeexplore.ieee.org/document/5740583/
http://dx.doi.org/10.1016/S0893-6080(05)80125-X
http://dx.doi.org/10.1016/S0893-6080(05)80125-X
http://dx.doi.org/10.1016/S0893-6080(05)80125-X
https://linkinghub.elsevier.com/retrieve/pii/S089360800580125X
https://linkinghub.elsevier.com/retrieve/pii/S089360800580125X
https://linkinghub.elsevier.com/retrieve/pii/S089360800580125X
http://dx.doi.org/10.1371/JOURNAL.PCBI.1000220
http://dx.doi.org/10.1371/JOURNAL.PCBI.1000220
http://dx.doi.org/10.1371/JOURNAL.PCBI.1000220
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000220
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000220
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000220
http://dx.doi.org/10.1017/CBO9781107447615
https://www.cambridge.org/core/product/identifier/9781107447615/type/book
https://www.cambridge.org/core/product/identifier/9781107447615/type/book
https://www.cambridge.org/core/product/identifier/9781107447615/type/book
http://dx.doi.org/10.1007/978-3-662-57715-8
http://dx.doi.org/10.1007/978-3-662-57715-8
http://dx.doi.org/10.1007/978-3-662-57715-8
http://link.springer.com/10.1007/978-3-662-57715-8
http://dx.doi.org/10.1113/jphysiol.1952.sp004764
http://www.ncbi.nlm.nih.gov/pubmed/12991237
http://www.ncbi.nlm.nih.gov/pubmed/12991237
http://www.ncbi.nlm.nih.gov/pubmed/12991237
http://dx.doi.org/10.1109/TNN.2004.832719
http://dx.doi.org/10.1109/TNN.2004.832719
http://dx.doi.org/10.1109/TNN.2004.832719
http://ieeexplore.ieee.org/document/1333071/
http://dx.doi.org/10.1109/TNN.2003.820440
http://ieeexplore.ieee.org/document/1257420/
https://fr.wikisource.org/wiki/Recherches_quantitatives_sur_l%27excitation_%C3%A9lectrique_des_nerfs_trait%C3%A9e_comme_une_polarisation
https://fr.wikisource.org/wiki/Recherches_quantitatives_sur_l%27excitation_%C3%A9lectrique_des_nerfs_trait%C3%A9e_comme_une_polarisation
https://fr.wikisource.org/wiki/Recherches_quantitatives_sur_l%27excitation_%C3%A9lectrique_des_nerfs_trait%C3%A9e_comme_une_polarisation
https://mitpress.mit.edu/9780262041997/theoretical-neuroscience/
https://mitpress.mit.edu/9780262041997/theoretical-neuroscience/
https://mitpress.mit.edu/9780262041997/theoretical-neuroscience/
http://dx.doi.org/10.1007/S11063-021-10562-2
https://link.springer.com/article/10.1007/s11063-021-10562-2
https://link.springer.com/article/10.1007/s11063-021-10562-2
https://link.springer.com/article/10.1007/s11063-021-10562-2
http://dx.doi.org/10.1016/j.neunet.2018.12.002
http://dx.doi.org/10.1016/j.neunet.2018.12.002
http://dx.doi.org/10.1016/j.neunet.2018.12.002
https://linkinghub.elsevier.com/retrieve/pii/S0893608018303332
https://linkinghub.elsevier.com/retrieve/pii/S0893608018303332
https://linkinghub.elsevier.com/retrieve/pii/S0893608018303332
http://dx.doi.org/10.1146/annurev.physiol.64.092501.114547
http://dx.doi.org/10.1146/annurev.physiol.64.092501.114547
http://dx.doi.org/10.1146/annurev.physiol.64.092501.114547
https://www.annualreviews.org/doi/10.1146/annurev.physiol.64.092501.114547
https://www.annualreviews.org/doi/10.1146/annurev.physiol.64.092501.114547
https://www.annualreviews.org/doi/10.1146/annurev.physiol.64.092501.114547
http://dx.doi.org/10.1126/science.275.5297.213
https://www.science.org/doi/10.1126/science.275.5297.213
https://www.science.org/doi/10.1126/science.275.5297.213
https://www.science.org/doi/10.1126/science.275.5297.213
http://dx.doi.org/10.1146/annurev.neuro.24.1.139
http://dx.doi.org/10.1146/annurev.neuro.24.1.139
http://dx.doi.org/10.1146/annurev.neuro.24.1.139
http://www.annualreviews.org/doi/10.1146/annurev.neuro.24.1.139
http://www.annualreviews.org/doi/10.1146/annurev.neuro.24.1.139
http://www.annualreviews.org/doi/10.1146/annurev.neuro.24.1.139
http://dx.doi.org/10.1016/S0166-2236(98)01341-1
https://linkinghub.elsevier.com/retrieve/pii/S0166223698013411
https://linkinghub.elsevier.com/retrieve/pii/S0166223698013411
https://linkinghub.elsevier.com/retrieve/pii/S0166223698013411
http://dx.doi.org/10.1146/annurev-neuro-060909-153238
https://www.annualreviews.org/doi/10.1146/annurev-neuro-060909-153238
https://www.annualreviews.org/doi/10.1146/annurev-neuro-060909-153238
https://www.annualreviews.org/doi/10.1146/annurev-neuro-060909-153238
http://dx.doi.org/10.1093/cercor/1.6.510
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/1.6.510
http://dx.doi.org/10.1016/j.conb.2009.05.012
http://dx.doi.org/10.1016/j.conb.2009.05.012
http://dx.doi.org/10.1016/j.conb.2009.05.012
http://www.ncbi.nlm.nih.gov/pubmed/19540746
https://archive.org/details/in.ernet.dli.2015.168156

S. Davies et al.

[30] R. Zeraati, V. Priesemann, A. Levina, Self-organization toward criticality by
synaptic plasticity, Front. Phys. 9 (2021) http://dx.doi.org/10.3389/fphy.2021.
619661, URL: https://www.frontiersin.org/articles/10.3389/fphy.2021.619661.

[31] S. Nolfi, D. Parisi, J.L. Elman, Learning and evolution in neural networks, Adapt.
Behav. 3 (1) (1994) 5–28, http://dx.doi.org/10.1177/105971239400300102,
URL: http://journals.sagepub.com/doi/10.1177/105971239400300102.

[32] M. Tsodyks, S. Wu, Short-term synaptic plasticity, Scholarpedia 8 (10)
(2013) 3153, http://dx.doi.org/10.4249/scholarpedia.3153, URL: http://www.
scholarpedia.org/article/Short-term_synaptic_plasticity.

[33] A.J. Tierney, The evolution of learned and innate behavior: Contributions from
genetics and neurobiology to a theory of behavioral evolution, Anim. Learn.
Behav. 14 (4) (1986) 339–348, http://dx.doi.org/10.3758/BF03200077, URL:
https://link.springer.com/article/10.3758/BF03200077.

[34] S. Davies, Learning in Spiking Neural Networks (Ph.D. thesis), The Univer-
sity of Manchester, Kilburn Building, Oxford road, M13 9PL, 2013, p. 177,
URL: https://apt.cs.manchester.ac.uk/people/daviess/thesis.pdf https://research.
manchester.ac.uk/en/studentTheses/learning-in-spiking-neural-networks.

[35] R. Guyonneau, R. VanRullen, S.J. Thorpe, Neurons tune to the earliest spikes
through STDP, Neural Comput. 17 (4) (2005) 859–879, http://dx.doi.org/10.
1162/0899766053429390, URL: https://direct.mit.edu/neco/article/17/4/859-
879/6942.

[36] T. Masquelier, R. Guyonneau, S.J. Thorpe, Spike timing dependent plasticity
finds the start of repeating patterns in continuous spike trains, PLoS ONE 3
(1) (2008) e1377, http://dx.doi.org/10.1371/journal.pone.0001377, URL: https:
//dx.plos.org/10.1371/journal.pone.0001377.

[37] S. Davies, F. Galluppi, A. Rast, S. Furber, A forecast-based STDP rule suit-
able for neuromorphic implementation, Neural Netw. 32 (2012) 3–14, http://
dx.doi.org/10.1016/j.neunet.2012.02.018, URL: https://linkinghub.elsevier.com/
retrieve/pii/S0893608012000470.

[38] S. Furber, P. Bogdan (Eds.), SpiNNaker: A Spiking Neural Network Architecture,
Now Publishers, Boston-Delft, 2020, http://dx.doi.org/10.1561/9781680836523,
URL: https://nowpublishers.com/article/BookDetails/9781680836523.

[39] A.P. Davison, D. Brüderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski, L. Per-
rinet, P. Yger, PyNN: a common interface for neuronal network simulators, Front.
Neuroinform. 2 (2009) http://dx.doi.org/10.3389/neuro.11.011.2008, URL: http:
//journal.frontiersin.org/article/10.3389/neuro.11.011.2008.

[40] O. Rhodes, P.A. Bogdan, C. Brenninkmeijer, S. Davidson, D. Fellows, A. Gait,
D.R. Lester, M. Mikaitis, L.A. Plana, A.G.D. Rowley, A.B. Stokes, S.B. Furber,
sPyNNaker: A software package for running PyNN simulations on SpiNNaker,
Front. Neurosci. 12 (2018) 816, http://dx.doi.org/10.3389/fnins.2018.00816,
URL: https://www.frontiersin.org/article/10.3389/fnins.2018.00816.

[41] A.G.D. Rowley, C. Brenninkmeijer, S. Davidson, D. Fellows, A. Gait, D.R. Lester,
L.A. Plana, O. Rhodes, A.B. Stokes, S.B. Furber, SpiNNTools: The execution
engine for the SpiNNaker platform, Front. Neurosci. 13 (2019) http://dx.
doi.org/10.3389/fnins.2019.00231, URL: https://www.frontiersin.org/article/10.
3389/fnins.2019.00231.

[42] J. Sjöström, W. Gerstner, Spike-timing dependent plasticity, Scholarpedia 5 (2)
(2010) 1362, http://dx.doi.org/10.4249/scholarpedia.1362, URL: http://www.
scholarpedia.org/article/Spike-timing_dependent_plasticity.

[43] X. Jin, A. Rast, F. Galluppi, S. Davies, S. Furber, Implementing spike-timing-
dependent plasticity on SpiNNaker neuromorphic hardware, in: The 2010
International Joint Conference on Neural Networks, IJCNN, Sch. of Comput.
Sci., Univ. of Manchester, IEEE, Manchester, UK, 2010, pp. 1–8, http://dx.doi.
org/10.1109/IJCNN.2010.5596372, URL: http://ieeexplore.ieee.org/document/
5596372/.

[44] S.J. van Albada, A.G. Rowley, J. Senk, M. Hopkins, M. Schmidt, A.B. Stokes, D.R.
Lester, M. Diesmann, S.B. Furber, Performance comparison of the digital neuro-
morphic hardware SpiNNaker and the neural network simulation software NEST
for a full-scale cortical microcircuit model, Front. Neurosci. 12 (MAY) (2018)
http://dx.doi.org/10.3389/fnins.2018.00291, URL: https://www.frontiersin.org/
article/10.3389/fnins.2018.00291.

[45] S. Davies, A. Lucas, C. Ricolfe-Viala, A. Di Nuovo, A database for learning
numbers by visual finger recognition in developmental neuro-robotics, Front.
Neurorobot. 15 (2021) 12, http://dx.doi.org/10.3389/fnbot.2021.619504, URL:
https://www.frontiersin.org/articles/10.3389/fnbot.2021.619504.

[46] R.W. Hamming, Error detecting and error correcting codes, Bell Syst. Tech. J. 29
(2) (1950) 147–160, http://dx.doi.org/10.1002/J.1538-7305.1950.TB00463.X,
URL: https://ieeexplore.ieee.org/document/6772729.

[47] M. Tomlinson, C.J. Tjhai, M.A. Ambroze, M. Ahmed, M. Jibril, Error-
Correction Coding and Decoding, Springer International Publishing, Cham,
2017, http://dx.doi.org/10.1007/978-3-319-51103-0, URL: http://link.springer.
com/10.1007/978-3-319-51103-0.

[48] A. Rasteh, F. Delpech, C. Aguilar-Melchor, R. Zimmer, S.B. Shouraki, T. Masque-
lier, Encrypted internet traffic classification using a supervised spiking neural
network, Neurocomputing 503 (2022) 272–282, http://dx.doi.org/10.1016/j.
neucom.2022.06.055.

[49] G. Aceto, D. Ciuonzo, A. Montieri, A. Pescapé, DISTILLER: Encrypted traffic
classification via multimodal multitask deep learning, J. Netw. Comput. Appl.
183–184 (2021) 102985, http://dx.doi.org/10.1016/j.jnca.2021.102985, URL:
https://linkinghub.elsevier.com/retrieve/pii/S1084804521000126.

[50] E.M. Izhikevich, Polychronization: Computation with spikes, Neural Comput.
18 (2) (2006) 245–282, http://dx.doi.org/10.1162/089976606775093882, URL:
https://direct.mit.edu/neco/article/18/2/245-282/7033.

[51] S. Davies, A. Gait, A. Rowley, A. Di Nuovo, SpiNNaker spatial learning code
and dataset, 2024, http://dx.doi.org/10.23634/MMU.00634935, URL: https://e-
space.mmu.ac.uk/634935/.

Sergio Davies is a senior lecturer in the Department of
Computing and Mathematics at Manchester Metropolitan
University. He received his Laurea (equivalent to MSc
Eng) in Telecommunication Engineering from the Univer-
sity ‘‘Federico II’’ in Napoli, Italy in 2006. Following his
Ph.D. in Computer Science at the University of Manch-
ester in 2012, Sergio continued his research on spiking
neural networks as a postdoc in the Human Brain Project
until 2016. Transitioning to industry, he took leadership
roles in strategic advising as a consultant, and then man-
aged various research projects covering computer hardware
design, embedded systems architecture, software develop-
ment and system networking. In 2019, Sergio returned to
academia, initially at Sheffield Hallam University before
joining Manchester Metropolitan University. His current
research focuses on practical application of spiking neural
networks in real-world scenarios.

Andrew Gait is a Research Software Engineer at the Uni-
versity of Manchester within the Research IT department.
Following his PhD completed at the University of Leeds
in 2007, he has worked in multiple different departments
and institutes across the University of Manchester on vari-
ous software projects and within multiple cross-disciplinary
teams. This has included work on a multi-physics software
library, the design of software for use in segmenting medical
images, and the development and user support of spiking
neural network software as part of the Human Brain Project
in the APT group in Computer Science.

Andrew Rowley is a Senior Research Software Engineer
at the University of Manchester within the Research IT de-
partment. After completing his PhD in Artificial Intelligence
at the University of St. Andrews in 2004, he joined the
University of Manchester as a Research Software Engineer.
There he worked on various projects related to Access
Grid video conferencing before becoming a Senior Research
Software Engineer for NaCTeM working on text mining
projects. He then joined the Human Brain Project team
in Manchester and was working on the SpiNNaker project
designing, building and supporting the sPyNNaker software
since 2014.

Alessandro Di Nuovo is Professor of Machine Intelligence
at Sheffield Hallam University. He received the Laurea (MSc
Eng) and the PhD in Informatics Engineering from the
University of Catania, Italy, in 2005 and 2009, respectively.
He is the leader of the Smart Interactive Technologies
research laboratory of the Department of Computing. He has
published over 120 articles in computational intelligence
and its application to cognitive modelling, human–robot
interaction, computer-aided assessment of intellectual dis-
abilities, and embedded computer systems. Prof. Di Nuovo
has an extensive track record of leading interdisciplinary
research and innovation in fundamental and applied topics
in AI and Robotics, for which he has received several
grants from prestigious funders (EPSRC, European Union)
and companies. Currently, Prof. Di Nuovo is editor-in-chief
(topics AI in Robotics; Human Robot/Machine Interaction)
of the International Journal of Advanced Robotic Systems
(SAGE). He is serving as Associate Editor for IEEE Journal
of Translational Engineering in Health and Medicine.

Neurocomputing 611 (2025) 128650

12

http://dx.doi.org/10.3389/fphy.2021.619661
http://dx.doi.org/10.3389/fphy.2021.619661
http://dx.doi.org/10.3389/fphy.2021.619661
https://www.frontiersin.org/articles/10.3389/fphy.2021.619661
http://dx.doi.org/10.1177/105971239400300102
http://journals.sagepub.com/doi/10.1177/105971239400300102
http://dx.doi.org/10.4249/scholarpedia.3153
http://www.scholarpedia.org/article/Short-term_synaptic_plasticity
http://www.scholarpedia.org/article/Short-term_synaptic_plasticity
http://www.scholarpedia.org/article/Short-term_synaptic_plasticity
http://dx.doi.org/10.3758/BF03200077
https://link.springer.com/article/10.3758/BF03200077
https://apt.cs.manchester.ac.uk/people/daviess/thesis.pdf
https://research.manchester.ac.uk/en/studentTheses/learning-in-spiking-neural-networks
https://research.manchester.ac.uk/en/studentTheses/learning-in-spiking-neural-networks
https://research.manchester.ac.uk/en/studentTheses/learning-in-spiking-neural-networks
http://dx.doi.org/10.1162/0899766053429390
http://dx.doi.org/10.1162/0899766053429390
http://dx.doi.org/10.1162/0899766053429390
https://direct.mit.edu/neco/article/17/4/859-879/6942
https://direct.mit.edu/neco/article/17/4/859-879/6942
https://direct.mit.edu/neco/article/17/4/859-879/6942
http://dx.doi.org/10.1371/journal.pone.0001377
https://dx.plos.org/10.1371/journal.pone.0001377
https://dx.plos.org/10.1371/journal.pone.0001377
https://dx.plos.org/10.1371/journal.pone.0001377
http://dx.doi.org/10.1016/j.neunet.2012.02.018
http://dx.doi.org/10.1016/j.neunet.2012.02.018
http://dx.doi.org/10.1016/j.neunet.2012.02.018
https://linkinghub.elsevier.com/retrieve/pii/S0893608012000470
https://linkinghub.elsevier.com/retrieve/pii/S0893608012000470
https://linkinghub.elsevier.com/retrieve/pii/S0893608012000470
http://dx.doi.org/10.1561/9781680836523
https://nowpublishers.com/article/BookDetails/9781680836523
http://dx.doi.org/10.3389/neuro.11.011.2008
http://journal.frontiersin.org/article/10.3389/neuro.11.011.2008
http://journal.frontiersin.org/article/10.3389/neuro.11.011.2008
http://journal.frontiersin.org/article/10.3389/neuro.11.011.2008
http://dx.doi.org/10.3389/fnins.2018.00816
https://www.frontiersin.org/article/10.3389/fnins.2018.00816
http://dx.doi.org/10.3389/fnins.2019.00231
http://dx.doi.org/10.3389/fnins.2019.00231
http://dx.doi.org/10.3389/fnins.2019.00231
https://www.frontiersin.org/article/10.3389/fnins.2019.00231
https://www.frontiersin.org/article/10.3389/fnins.2019.00231
https://www.frontiersin.org/article/10.3389/fnins.2019.00231
http://dx.doi.org/10.4249/scholarpedia.1362
http://www.scholarpedia.org/article/Spike-timing_dependent_plasticity
http://www.scholarpedia.org/article/Spike-timing_dependent_plasticity
http://www.scholarpedia.org/article/Spike-timing_dependent_plasticity
http://dx.doi.org/10.1109/IJCNN.2010.5596372
http://dx.doi.org/10.1109/IJCNN.2010.5596372
http://dx.doi.org/10.1109/IJCNN.2010.5596372
http://ieeexplore.ieee.org/document/5596372/
http://ieeexplore.ieee.org/document/5596372/
http://ieeexplore.ieee.org/document/5596372/
http://dx.doi.org/10.3389/fnins.2018.00291
https://www.frontiersin.org/article/10.3389/fnins.2018.00291
https://www.frontiersin.org/article/10.3389/fnins.2018.00291
https://www.frontiersin.org/article/10.3389/fnins.2018.00291
http://dx.doi.org/10.3389/fnbot.2021.619504
https://www.frontiersin.org/articles/10.3389/fnbot.2021.619504
http://dx.doi.org/10.1002/J.1538-7305.1950.TB00463.X
https://ieeexplore.ieee.org/document/6772729
http://dx.doi.org/10.1007/978-3-319-51103-0
http://link.springer.com/10.1007/978-3-319-51103-0
http://link.springer.com/10.1007/978-3-319-51103-0
http://link.springer.com/10.1007/978-3-319-51103-0
http://dx.doi.org/10.1016/j.neucom.2022.06.055
http://dx.doi.org/10.1016/j.neucom.2022.06.055
http://dx.doi.org/10.1016/j.neucom.2022.06.055
http://dx.doi.org/10.1016/j.jnca.2021.102985
https://linkinghub.elsevier.com/retrieve/pii/S1084804521000126
http://dx.doi.org/10.1162/089976606775093882
https://direct.mit.edu/neco/article/18/2/245-282/7033
http://dx.doi.org/10.23634/MMU.00634935
https://e-space.mmu.ac.uk/634935/
https://e-space.mmu.ac.uk/634935/
https://e-space.mmu.ac.uk/634935/

	Supervised learning of spatial features with STDP and homeostasis using Spiking Neural Networks on SpiNNaker
	Introduction
	Methodology
	STDP on SpiNNaker
	Training phase
	Test and Validation phase

	Results
	Single pattern training
	Dual pattern training
	Multiple pattern training

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data and code availability
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Acknowledgements
	References

