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Development of a Multiscale XGBoost-based Model
for Enhanced Detection of Potato Late Blight Using
Sentinel-2, UAV, and Ground Data

Sheng Chang, Zelong Chi, Hong Chen, Tongle Hu, Caixia Gao, Jihua Meng and Liangxiu Han


Abstract—Potatoes, a crucial staple crop, face

significant threats from late blight, which poses serious
risks to food security. Despite extensive research using
ground and unmanned aerial vehicle (UAV)
hyperspectral data for crop disease monitoring, satellite-
scale identification of diseases like Potato Late Blight
(PLB) remains limited. This study employs a multi-scale
analysis approach, integrating high-resolution Sentinel-2
multispectral satellite data with UAV and ground spectral
data, to monitor and identify PLB. A key finding of this
study is the general similarity in spectral patterns across
different scales, with consistent valley values in bands of
Blue and Red and peak values in bands of Near Infrared
and Narrow near Infrared, accompanied by a consistent
decrease in reflectance correlating with increasing disease
severity. Furthermore, the study highlights scale-
dependent spectral variations, with changes in bands of
Vegetation Red Edge2, Vegetation Red Edge3, Near
Infrared and Narrow Near Infrared being more
pronounced at the ground scale compared to UAV and
satellite scales. Based on the developed Red Edge Index
and Disease Stress Index with a suite of machine learning
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algorithms, we proposed a XGBoost-based model
integrating spectral indices for PLB monitoring (PLB-SI-
XGBoost). Notably, the proposed model demonstrated the
highest average evaluation score of 0.88 and the lowest
root mean square error (RMSE) of 13.50 during ground
scale validation, outperforming other algorithms. At the
UAV scale, the proposed model achieved a robust R-
squared value of 0.74 and an RMSE of 18.27. Moreover,
the application of Sentinel-2 data for disease detection at
satellite scale yielded an accuracy of 70% in the model.
The results of the study emphasize the importance of scale
in disease monitoring models and illuminate the potential
for satellite-scale surveillance of PLB. The exceptional
performance of PLB-SI-XGBoost model in detecting PLB
suggests its utility in enhancing agricultural decision-
making with more accurate and reliable data support.

Index Terms— Hyperspectral remote sensing,
Multispectral remote sensing, Potato late blight, XGBoost,
Machine learning, Sentinel-2, Multiscale.

I. INTRODUCTION
N 2016, China introduced the "Potato Staple Food

Strategy", aiming to industrialize and elevate the status of
potatoes within the national diet. This initiative

anticipates that half of the projected increase in China's grain
production over the next two decades will be attributed to
potatoes [1]. Potatoes play a crucial role in agricultural
innovation and the shift towards sustainable Agriculture 4.0
practices. However, historical devastation such as the "Irish
Potato Famine" in the 1840s and a severe potato blight in
China's Sichuan and Chongqing regions in the 1940s, which
led to an 80% reduction in yields, underscore the significant
threat posed by potato late blight (PLB). Recognized as one
of the most severe plant diseases globally, the threat of PLB
remains substantial [2]. Traditional methods for monitoring
PLB rely on field inspections conducted by agricultural
practitioners or technicians. These methods are labor-
intensive and susceptible to misdiagnosis. The advent of
remote sensing technology in the early 1930s [3] introduced
new possibilities for disease monitoring by exploiting the
distinct spectral reflection characteristics of healthy and
diseased plants across various bands [4, 5].
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Remote sensing efficacy in crop disease monitoring
depends on detecting stress-induced symptoms via
specialized sensors [6], enabling the development of models
to assess disease severity. These models start with the
analysis of spectral bands and their response functions. The
spectral response to diseases is complex and can be described
as a function of various crop changes [7], such as alterations
in pigmentation, water content, morphology, and structure.
These multivariate effects are disease-specific [8-10].
Vegetation indices, derived from algebraic operations on
spectral data within sensitive bands, can reveal the
pathophysiological spectral characteristics of crops,
facilitating disease monitoring [11, 12]. As a result, different
diseases, each with their unique spectral signatures, require
tailored remote sensing strategies for effective monitoring.
In the case of potato canopies, the reflectance within the

680-750nm wavelength range gradually increases, with near
infrared (NIR) reflectance notably higher than in the visible
spectrum. Late blight infection in potatoes leads to significant
changes in reflectance between 750-1350nm, where the
severity of the disease correlates with a varying decrease in
reflectance [13]. The variability in reflectance in the infrared
region is more pronounced than in the visible region,
attributed to the disease's impact on the plant's physiological
responses, such as changes in chlorophyll content and
alterations in the leaf's internal structure [14]. A decrease in
chlorophyll content results in lower absorption in the red light
spectrum, subsequently increasing the reflectance of infected
plants. Conversely, the reflectance in the NIR region
decreases due to changes in the leaf's internal structure.
Extensive research has been dedicated to detecting PLB,

including the use of hyperspectral imaging under laboratory
conditions [15], and building of the correlations between
indoor and field models through hyperspectral databases [16].
Field spectroscopic studies were performed using a handheld
field spectrometer to examine spectral variability between
healthy and late blight-infected potato canopies [17]. These
studies focus on assessing which spectral variables and at
which time of late blight can be detected over potato crops by
field spectroradiometer has been the focus of several studies
[18]. However, they are typically limited to assessments at
leaf canopy-level, posing challenges for comprehensive
monitoring across large region.
To address these challenges, researchers have increasingly

utilized Unmanned Aerial Vehicles (UAVs) equipped with
diverse camera technologies for rapid, high-resolution image
acquisition. This approach includes techniques for assessing
PLB severity through UAV-captured RGB images [19], and
the deployment of several indices [9] or deep learning models
to automate PLB diagnosis from UAV hyperspectral imagery
[13, 20]. Despite these technological advances, UAV-based
methods face constraints in flight endurance and coverage
areas, while the limited availability of reliable satellite data
hampers the scope of satellite-scale monitoring capabilities.
In recent years, satellite remote sensing has gained
prominence as a feasible alternative for crop disease

monitoring. Notable applications include the detection and
monitoring of wheat diseases using Quickbird and SPOT-6
imagery [21], alongside the effective employment of
Sentinel-2 data for monitoring wheat powdery mildew in
China, where monitoring accuracies have reached up to 78%
[22].
Despite the advancements in remote sensing technology,

satellite-scale identification of PLB remains underexplored,
with much of the current research focus on UAV-scale data.
This limitation restricts the potential for extensive,
convenient monitoring of the disease. Machine learning
techniques have increasingly been leveraged to tackle the
challenge of PLB in recent years. In a pivotal study by
Duarte-Carvajalino et al. [23], a thorough assessment of late
blight across 14 potato genotypes was performed using UAV-
derived multispectral imagery in conjunction with machine
learning approaches. These included multilayer perceptrons,
convolutional neural networks, SVM, and RF. The findings
indicated that machine learning algorithms are a viable
alternative to traditional visual estimation methods, achieving
an average absolute error of 11.72%, which is deemed
acceptable for real applications. In another study, Sun et al.
[24] compared and developed models for monitoring the
severity of PLB using SVM, RF, and KNN algorithms. The
success of these classifications have shed light on the
potential of machine learning in addressing PLB issues.
The current study introduces a method for detecting PLB

through the analysis of multiscale imagery. Several disease
indices are developed and seven coupled machine learning
models are trained using high-quality ground-based PLB
spectral data and disease metrics. These models are then
employed for classification and regression on new datasets,
followed by monitoring and validation at ground, UAV and
satellite scales. To evaluate the effectiveness of integrating
machine learning algorithms with remote sensing data, a
comparative analysis was conducted using ground-based
datasets. The aim of this comparative analysis is to explore
the feasibility of satellite-scale monitoring of PLB using
spectral information. The proposed model is expected to
contribute to the development of more rational and effective
decision-making systems for PLB management. The study
will address the following questions:
(1) Are the spectral patterns associated with PLB

consistent across various spatial scales?
(2) How do the performances of ground data-based PLB

monitoring models vary across different scales?
(3) What is the feasibility of extending PLB detection by

integrating machine learning model with remote sensing to
satellite scale?

Ⅱ. DESCRIPTION OF THE STUDY AREA AND DATA SETS

A. Study Area
Considering the availability of historical data and the ease

of acquiring meteorological and ground-level data, the study
area includes the Guyuan county in Northern Hebei province
and the Duolun county in Middle-South of Inner Mongolia
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Autonomous Region. These regions are recognized as
principal potato production areas in northern China (Fig. 1).
The potato cultivation cycle in these regions typically begins
with the sowing and emergence stages from April to May,
progresses through a rapid growth phase from June to August,
and culminates in the harvesting season from late August to
September. Two counties are situated in a temperate
continental climate zone, characterized by rising summer
temperatures, ample rainfall, and high humidity—conditions
that are favorable for the development of PLB [25]. The
climatic factors, coupled with the region's critical role in
potato production, make it as an ideal study area for research
on modeling and experimental validation of the PLB
monitoring.

B. Ground Data Collection and Preprocessing
To evaluate the impact of multi-scale disease, this study

utilized two different types of ground experimental data:
controlled small-area experiments and field observations, to
construct and validate the proposed model. Fig. 1 details the
spatial distribution of observation data sampling points within
the study area.
1) Controlled small-area experiments: This study

conducted experiments (S1 and S2) at locations in Sirenwa
Township (41.684003N, 115.746497E) and Shandianhe
Township (41.700667 N, 115.795664E) within Guyuan

County, as shown in Fig. 1, with the red triangles indicating
the locations where ground data were collected. The first
small-area experiment consisted of 9 plots, while the second
involved 16 plots, each plot measuring 1m × 1m. In the first
small-area experiment, two potato varieties 'Yizhangshu
No.12' and 'Shishu No.1' were planted. Two control groups
and four infection groups were established, with seedlings
infected starting on May 13, 2020, at a spore concentration of
9mg/100mL.
The second small-area experiment consisted of 6 control

groups and 30 infection groups, with the infection process
beginning on May 14, 2020, using the same spore
concentration as in the first experiment. Field spectral data
for two areas were collected by the SVC HR-1024i full-band
spectral radiometer under cloudless conditions between 10:00
and 14:00 on August 16, 2020. The initial hyperspectral
measurements obtained from the radiometer were corrected
and registered based on predefined marked positions. The
raw data were preprocessed using SVC HR-1024i PC-side
software, facilitating the export of full-band dataset.
Simultaneously, PLB severity were observed in each 0.2m ×
0.2m sample area using the methods [2, 26] shown in Table I.
In total, 623 pairs of high-quality ground spectral and disease
data were collected, which are essential for capturing micro-
environmental conditions at the plot level and constructing
the PLB monitoring model.

Fig. 1. Presents a detailed geographic profile of the study area, illustrating the spatial distribution of the sampling points and plots.
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TABLE I
AMETHOD FOR VISUAL ESTIMATION OF PLB DISEASE IN THE

FIELD
SEVERITY DESCRIPTION

0.0% No disease is observed.
0.1% First sporulating lesion in the plot

1.0% General light infection observed, approximately 5-
10 lesions per plant

5.0% Approximately 50 lesions per plant, affecting l in
10 leaflets.

5.0%
Nearly every leaflet is infected, but plants retain
normal form; a blight odor may be present. Field
appears green, though every plant is affected.

50.0%
Every plant is affected, with approximately 50%
of the leaf area destroyed. Field appears green
flecked with brown.

75.0%
Approximately 75% of the leaf area is destroyed;
field appears neither predominantly green nor
Brown.

95.0% Only a few leaves remain on plants, but stems are
still green.

100.0% All leaves are dead, and the stems are either dead
or dying.

To ensure the compatibility of ground-based hyperspectral
data with Sentinel-2 satellite data, a weighted averaging
method was applied to align it with specific Sentinel-2 bands,
namely B2, B3, B4, B5, B6, B7, B8, B8A, B11, and B12 (as
shown in Table II). This processing step is crucial for the
direct comparison, validation, and analysis between ground
spectral data and satellite observation data. Additionally, the
Z-score method was employed for outlier detection to
eliminate the influence of extreme values on the data
distribution, ensuring the robustness and accuracy of data
processing.

2

1 1 2 2 3 3
1 2 3

S

SVC SVC SVC SVC

Rx
R w R w R w Rn wn

w w w wn



       
   




(1)

Here, RxS2 represents the composite value of spectral
reflectance from SVC HR-1024i ground observations
corresponding to the band ranges of Sentinel-2 satellite data.
1SVCR , 2SVCR , 3SVCR , ... and nSVCR represent the spectral

reflectance of multiple narrow bands included within the
band range of SVC, and 1w , 2w , 3w , ...and 4w present the
width of each narrow band.

2) Field observation data: The cyan dots on the map in Fig.
1 represent the sampling locations at the regional scale,
distributed across multiple sites labeled the study area. Field
observations were conducted from August 12 to 13, 2021,
collecting a total of 201 field observation data. GPS was used
to mark the different sampling locations, with each
observation area corresponding to the spatial resolution of
Sentinel-2 pixels (10m×10m). The severity of disease within
each pixel was determined using visual estimation methods,
with the assessment criteria detailed in Table I.

C. Remote Sensing Data and Processing
The Sentinel-2 satellite constellation, developed and

launched by the European Space Agency (ESA), provides
high-resolution multispectral imaging. It comprises two
satellites, Sentinel-2A and Sentinel-2B, each with a revisit
10-day revisit period，which combine to offer a 5-day revisit
period. Equipped with a Multispectral Instrument (MSI),
Sentinel-2 provides imagery across 13 spectral
bands,including four with a 10-meter resolution (blue, green,
red, and near-infrared), six with a 20-meter resolution (three
red-edge bands and one near-infrared band), and three with a
60-meter resolution(as depicted in TableⅡ ). In this study, a
total of 10 bands spanning from the visible light to the
shortwave infrared spectrum were utilized, encompassing
both 10-meter and 20-meter resolutions. Sentinel-2's data
products are derived from Google Earth Engine (GEE) [20],
utilizing self-contained QA60 band de-cloudings to improve
image quality [27].
This study also utilized a full-band imaging

spectroradiometer, the HR-1024i, mounted on a DJI Matrice
600 Pro, to collect UAV-derived spectral data within the
range of 350nm to 2500nm at the flight altitude of 100m. The
UAV observations were conducted simultaneously with
ground measurements, collecting spectral reflectance data of
potato canopies in sampling areas S1 and S2 with 0.2m
resolution, along with corresponding photographs. The
collected data were processed to align with the wavelength
range of Sentinel-2 (400-1000nm), generating 25 data pairs
that included spectral values and disease severity information.

III. METHODOLOGY

The main processes of the proposed model for wide-area
monitoring of PLB include data collection, disease index
calculation, model construction, model validation, and
optimization, as shown in Fig. 2.

A. Disease Indices Based on Remote Sensing Spectra
In this study, high-spectral-resolution ground-based

reflectance data were first synthesized into broadband
reflectance to match the spectral response of Sentinel-2
satellite data across different wavelength ranges. This
synthesis facilitated in analyzing the correlation between
synthesized broadband reflectance with the incidence of PLB，
evaluating the sensitivity of different broadband reflectance
to the disease. Based on the spectral reflectance differences
under various PLB infection rates, four most sensitive bands
(RRedE2, RRedE3 ,RNIR, RRedE4 ) were used to construct indices,
which were further analyzed for sensitivity.
Previous research [28, 29] has demonstrated that UAV

hyperspectral data within specific bands (including 540nm,
610nm, 620nm, 700nm, 710nm, 730nm, 780nm, and 1040nm)
can effectively distinguish between healthy potatoes and
those affected by PLB. Notably, when the infection rate
reaches 25%, bands at 710nm, 720nm, and 750nm become
particularly effective for differentiation. This suggests that
the red-edge bands are highly indicative of the PLB severity.
The shape and position of the red edge are significant as they
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Fig. 2. Workflow for integrated PLB monitoring method

TABLE Ⅱ
THE SPECIFIC PARAMETER INFORMATION OF THE SENTINEL- 2

BANDS

Band
No. Band name

Sentinel-
2A

Sentinel-
2B Band

width
(nm)

Resoluti
on
(meters)

Central
wavelengt
h (nm)

Central
waveleng
th (nm)

1 B1 443.9 442.3 20 60

2 B2 496.6 492.1 65 10

3 B3 (Green) 560 559 35 10

4 B4 (Red) 664.5 665 30 10

5 B5 (RRedE1) 703.9 703.8 15 20

6 B6 (RRedE2) 740.2 739.1 15 20

7 B7 (RRedE3) 782.5 779.7 20 20

8 B8 (RNIR) 835.1 833 115 10

8b B8A (RRedE4) 864.8 864 20 20

9 Water Vapour 945 943.2 20 60

10 SWIR-Cirrus 1373.5 1376.9 30 60

11 B11 (Rswir1) 1613.7 1610.4 90 20

12 B12 (Rswir2) 2202.4 2185.7 180 20

reflect changes in chlorophyll content and leaf structure. This
is due to chlorophyll’s strong absorption in the red band and
strong scattering in the near-infrared region within leaf
tissues [30, 31]. To detect PLB areas, multiple red-edge
bands were used to formulate red-edge indices. The specific

red-edge indices established are as follows:
2 1

2 1

1 RedE RedE

RedE RedE

R R
RENI

R R





(2)

3 1

3 1

2 RedE RedE

RedE RedE

R R
RENI

R R





(3)

4 1

4 1

3 RedE RedE

RedE RedE

R R
RENI

R R





(4)

Where RRed represents the reflectance in the red band,
RRedE1、RRedE2、RRedE3、RRedE4 represent the reflectance in
the four red-edge bands, and RNIR represents the reflectance
in the near-infrared band.
Additionally, the Disease Water Stress Index (DWSI) was

introduced, which is a spectral reflectance sensitive to
changes in leaf pigments, internal leaf structure, and moisture
content [32]. DWSI consists of the green band, red band,
near-infrared, and shortwave infrared. Corresponding to
various bands of Sentinel-2, multiple indices were proposed
using a similar method, replacing RNIR with RRedE2, RRedE3 ,
and RRedE4, resulting in the following indices:

2

1

2 RedE Green

SWIR Red

R R
DWSI

R R





(5)

3

1

3 RedE Green

SWIR Red

R R
DWSI

R R





(6)

4

1

4 RedE Green

SWIR Red

R R
DWSI

R R





(7)

Where RGreen represents the reflectance in the green band
(B3), and RSWIR1 represents the reflectance in the short wave
infrared band (B11).

B. Alternative Machine Learning Methods
To effectively construct the proposed PLB monitoring

model, seven machine learning algorithms were employed.
Below (Table III) is a concise list explaining the machine
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learning algorithms evaluated in the study.

TABLE Ⅲ
ALTERNATIVE ALGORITHMS AND INTRODUCTIONS

ALGORITHM DESCRIPTION

Random Forest (RF)
An ensemble of decision trees that operate on
the majority-vote principle for classification
or average predictions for regression [33].

Gradient Boosting
(GB)

Sequentially trains weak learners, focusing
on the residuals of the previous model,
refining predictions through gradient descent
[34].

K-Nearest
Neighbors (KNN)

A non-parametric algorithm that uses the 'K'
closest neighbors in the training set for
classification or prediction [35].

Neural Network
(NN)

Inspired by biological neural networks,
capable of capturing complex, nonlinear
relationships through interconnected layers of
neurons [36].

Support Vector
Machine (SVM)

Identifies an optimal hyperplane for class
separation in feature space, using kernel
functions for nonlinear data [37].

eXtreme Gradient
Boosting (XGBoost)

A variant of gradient boosting that introduces
regularization and parallel computing to
improve efficiency and performance [38].

Categorical
Boosting (CatBoost)

Specifically designed for classification
problems, with technology for automatic
transformation of categorical features and
robust generalization [39].

C. Multi-scale disease severity-spectral pattern and
sensitivity analysis methods
In this study, we employed Spearman's rank correlation

coefficient [40] to examine the relationship between the
severity of Potato Late Blight (PLB) and spectral reflectance
patterns. By ranking the data and calculating the coefficient,
we were able to determine the degree of association between
the spectral characteristics and disease progression without
assuming a specific distribution of the data. This
methodological choice was critical for our analysis, as it
allowed us to include all relevant data points and provided a
robust measure of correlation that is not influenced by
outliers or data distribution.
To investigate the relationship between disease severity

and spectral patterns across various scales, and to compare
them for these scales in the context of late blight progression,
we synthesized data from three distinct scales. This synthesis
included alternative indices — excluding the UAV band's
missing data—and it was based on the reflectance values of
Sentinel-2 satellite bands. Additionally, we incorporated the
aggregate of six disease indices (excluding the UAV band's
missing segment). We then analyzed the sensitivity and
correlation of each index to changes in disease severity using
the correlation coefficient. During the visualization process,
variables were ordered according to the eigenvalues of the
matrix. These eigenvalues signify the extent of variation
within the matrix, and by sorting them, we were able to
cluster variables with higher correlations, thereby enhancing
the clarity of the correlational structure.

D. Construction of PLB monitoring model
This study is dedicated to establishing a monitoring model

for PLB , achieved through a series of meticulously designed
steps. Initially, spectral data from potato canopies across the
visible and near-infrared spectrum were collected using
ground spectroradiometers, UAV spectroradiometer, and
satellite sensors. With this high-quality ground observation
data, a machine learning model was trained to identify and
learn the spectral characteristics of PLB. The model was then
executed on new datasets to perform classification and
regression tasks, predicting disease occurrence. Results were
validated at ground, UAV and satellite scales to ensure its
accuracy and applicability.
To evaluate the performance of different algorithms, a

comparative analysis was conducted based on ground data,
testing seven machine learning models: RF, GB, KNN, NN,
SVM, XGBoost, and CatBoost. The inputs to the models
were spectral bands and indices from the ground
measurement and spectral data, and the outputs were disease
severity, quantified on a scale of 0 to 100 for regression
analysis, or categorized into five classes based on 20-unit
intervals for classification.

E. Model evaluation methods
For evaluating the performance of machine learning

models [41] in both classification and regression scenarios,
the following evaluation methods were adopted:
1) Evaluation Method for classification model: In

predicting PLB at the satellite scale, the classification model
to determine whether plants were affected by late blight was
developed. To evaluate the performance of the classification
model, the following metrics were used:
Accuracy: refers to the ratio of the number of samples

correctly predicted by the model to the total number of
samples.

TP TNAccuracy
TP TN FP FN




  
(8)

Precision: refers to the proportion of plants that the model
predicts to be affected by late blight that are actually affected.

TPPrecision
TP FP




(9)

Recall: the proportion of plants that the model correctly
detects for late blight. It tells us how successfully the model
can predict how many plants will actually be infested.

TPRecall
TP FN




(10)

F1 Score: The F1 score is a blended average of precision
and recall, which combines the accuracy and recall of the
model.

1 Precision RecallF
Precision Recall





(11)

Confusion Matrix: is a 2×2 matrix that visualizes the
performance of a classification model. It contains the number
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of TP,TN, FP, and FN.
Here, TP (True Positive) is the number of true examples,

TN (True Negative) is the number of true negative examples,
FP (False Positive) is the number of false positive examples,
and FN (False Negative) is the number of false negative
examples.
2) Evaluation Method for regression model: In addition to

the classification model, we also built a regression model to
predict continuous changes such as the degree of PLB. For
the evaluation of the regression model, the following
indicators were used:
The R-square (coefficient of determination), Root Mean

Square Error (RMSE) and Mean Square Error (MSE) were
chosen to evaluate the goodness-of-fit of the regression
model as follows:

2

2 1

2

1

ˆ( )
1

( )

n

i i
i
n

i
i

y y
R

y y






 






(12)

2

1

1 ˆ( )
n

i i
i

RMSE y y
n 

  (13)

2

1

1 ˆ( )
n

i i
i

MSE y y
n 

  (14)

Where yi is the observed value, while y�i is the model
prediction, and n is the sample size.
Besides, five-fold cross-validation is a commonly used

model evaluation method that divides the dataset into five
subset, one subset is used as the validation set, and the rest as
the training set, and the model training and validation are
repeated. The five-fold cross-validation R-squared is the
average of the R-squared values obtained from each iteration,
providing a robust estimate of the model's performance.

5

5
1

1
5 i

i

CV eval


  (15)

Where, evali is the evaluation index of the ith verification,
such as accuracy, precision, recall, etc.

Ⅲ. RESULT

A. Spectral characteristics of PLB in ground-UAV-satellite
scale
This study utilized data from ground-based experiments,

UAV, and satellites to explore the spectral variations
indicative of PLB across the potato canopy. The results are
illustrated in Fig. 3 and Fig. 4.
1) Consistency Across Scales: The spectral reflectance

trends observed across the ground, UAV, and satellite scales
exhibit a consistent pattern (Fig. 3). This pattern includes a
valley value in the B2 and B4 bands, a peak in the B8 and
B8A bands, and an overall consistency in the shape of the
spectral reflectance curves. Additionally, the reflectance
values of the original bands show general similarity, with a
notable decrease in reflectance for B6, B7, B8, and B8A
bands as the disease severity increases. Different levels of
disease severity correspond to varying degrees of reflectance
reduction. Despite these variations, the result illustrates the
relative consistency in the spectral response to PLB across
different observation scales.
2) Scale-Dependent Spectral Variations: As the severity of

late blight increases, the spectral values at the ground scale,
especially in bands of B6, B7, B8, and B8A, exhibit more
pronounced changes compared to those observed at the UAV
and satellite scales. Although the trend in the spectral curve
changes remains consistent across different scales, there is a
significant variation in the actual reflectance values observed.
Fig. 3 illustrates the UAV-derived spectral curves exhibit a
narrower bandwidth and some gaps, likely due to the
limitations in the spatial resolution and data capture
continuity of UAV sensors compared to satellite systems. On
the band values of REN1, REN2, REN3 (Fig. 4), near the
ground (0.25-0.5), UAV (0.2-0.55), satellite (0.4-0.6). The
ground and the UAV scale show similarity, and the difference
with the satellite scale is manifested in the upper and lower
limits of the satellite scale are increased.The spectral values
close to the ground, UAV, and satellite ranged from 0.25-0.5,
0.2-0.55, and 0.4-0.6, respectively.The spectral values of the
ground and UAV scales are similar, and the upper and lower
limits of the satellite scale are wider. UAV-derived data are
capable of providing more detailed spectral information.
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Fig. 3. Spectral response curves of potato canopies affected by PLB in ground, UAV and satellite scale

Fig. 4. Spectral indices curves of potato canopies affected by PLB in ground, UAV and satellite scale.

B. Multiscale sensitivity analysis of PLB to spectral
characteristics
1) Ground-scale correlation analysis

In the ground-scale correlation matrix depicted in Fig. 5, a
non-statistically significant positive correlation is observed
between disease severity and bands B12 and B4. Conversely,
a statistically significant negative correlation is evident with
remaining bands, particularly with the near-infrared, red-edge
bands and derived indices. This relationship is characterized
by a negative correlation coefficient exceeding -0.9. These
findings suggest that at the ground scale, as the severity of
PLB increases, there is a corresponding decrease in the
reflectance values of the red edge, near-infrared bands, and
derived indices.
2) UAV-scale correlation analysis
In the UAV-scale correlation plot shown in Fig. 6, a strong

negative correlation is observed between disease severity and
the three calculated indices, as well as between the red edge
and near-infrared bands. These relationships confirm the
spectral analysis results, indicating a significant correlation

between PLB severity and spectral data. At the UAV scale,
PLB was positively correlated with the B4 band, weakly
correlated with B2, B3 and B5, and strongly negatively
correlated with other bands. Statistical analysis reveals a
significant negative correlation, with values ranging from -
0.89 to -0.74. The positive correlation for the B4 band
suggests that an increase in reflectivity in this band is
associated with a increase in disease severity, possibly linked
to certain spectral signatures of the plant health.
3) Satellite-scale correlation analysis

The statistically significant relationship between disease
severity and the red edge and near-infrared bands is observed
to be lower at the satellite scale compared to the ground and
UAV scales (Fig. 7). Specifically, the negative correlation
coefficient falls within the range of -0.4 to -0.5, indicating a
weaker association. Furthermore, the negative correlations
observed among some bands are even less pronounced and do
not reach statistical significance. These findings align with
the spectral analysis results, which also reveal a more
subdued alteration in the spectral reflectance curves
compared to the ground and UAV scales. This suggests that,
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at the satellite scale, there is a slight decrease in the spectral
reflectance values of the red edge and near-infrared bands as
the PLB severity increases.

Fig. 5. Ground-scale Correlations between PLB Severity and
Spectral Bands/Indices of the Potato Canopy. Figure 5 illustrates the
ground-scale correlations between the severity of Potato Late Blight
(PLB) and various spectral bands and indices derived from field
measurements of the potato canopy. The color bars indicate the
strength of the correlation, ranging from blue for negative to red for
positive. Significance levels are denoted by asterisks: *p<0.05,
**p<0.01, ***p<0.001.

Fig. 6. Correlations between PLB severity and UAV spectral
bands/indices. Color bars indicate correlation strength: blue
(negative) to red (positive). Asterisk denote significance levels:
*p<0.05,**p<0.01,***p< 0.001.

Fig. 7. Correlations between PLB severity and Sentinel-2 spectrual
bands/indices. Color bars indicate correlation strength: blue
(negative) to red (positive). Asterisk denote significance levels:
*p<0.05 ,**p<0.01,***p< 0.001.

4). Analysis of disease occurrence law of inter-scale
spectroscopy
This study identified a correlation between ground data and

the incidence of PLB, as well as between remote sensing data
and the incidence of PLB across varying scales, as illustrated
in Fig. 8. Generally this correlation weaken with the
expansion of the scale. At the ground scale, a correlation was
detected between disease severity and 14 spectral bands or
indices (All 14 bands are p< 0.001). In contrast, at the UAV
and satellite scales, the number of correlated bands or indices
was reduced to 9 (Seven of the bands p< 0.001 and two bands
p< 0.01) and 4 (All four of these bands are p< 0.001),
respectively. This reduction underscores the variability in
correlation intensity across different scales. Additionally, the
study observed a negative correlation between the PLB
severity and the spectral responses in bands B6, B7, B8, and
B8A, with the correlation weakening as the scale increases.
These insights highlight the relationship between spectral
signatures and the occurrence of PLB, as well as the
distinctive application traits of remote sensing data at each
scale.

C. PLB monitoring model based on machine learning and
spectral indices
To detect PLB, a suite of machine learning
algorithms(introduced in Section II) were employed to
construct the PLB monitoring model, with a thorough
performance evaluation. After normalizing the predictive
indicators, the comparative results of seven machine learning
models are visually presented in Fig. 9. RF and CatBoost
perform well in regression, exhibiting lower RMSE and
higher R-square values. Their ability to capture complex
relationships within the data suggests a complex relationship
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between PLB severity and spectral features. XGBoost
performs well in classification, demonstrating higher
Accuracy, Precision, Recall, and F1 score. While CatBoost is
perform well in regression, exhibiting lower RMSE and
higher R-square values. Their ability to capture complex
relationships within the data suggests a complex relationship
between PLB severity and spectral features. XGBoost
performs well in classification, demonstrating higher
Accuracy, Precision, Recall, and F1 score. While CatBoost is
comparable in these metrics, XGBoost slightly outperformed
in Precision and Recall. Overall, XGBoost demonstrates
superior performance on the dataset, particularly in
classification, indicating its higher feasibility and practicality
for satellite-scale monitoring compared to regression methods.
The XGBoost model's feature importance evaluation

results show that the importance score of the DWSI2 feature
is significantly higher than of other features (Fig. 10),
indicating its crucial role in predicting the target variable.
Compared to previous studies, our research further
emphasizes the importance of DWSI2, providing new
insights for relevant work in the field. This finding enhances
the understanding of machine learning methods for PLB
monitoring and offers valuable information for satellite-scale
monitoring. The computation of the DWSI2 index provides
information about vegetation chlorophyll, moisture status,
and land characteristics. Specifically, the numerator's red
edge index minus the green band represents the specific
reflection characteristics of the potato canopy, while the
denominator involves combinations of SWIR1 and red bands.
This comprehensive approach captures the reflection
characteristics of both the potato canopy and land surface.
DWSI2 is particularly effective in capturing features relevant
to PLB monitoring, exhibiting high importance among
various bands used in XGBoost machine learning modeling.
Thus, the PLB monitoring model, integrating of spectral

indices and XGBoost algorithm (PLB-SI-XGBoost) was
proposed for the ground-scale PLB prediction. Firstly, 596
high-quality ground data from the data source were divided
into training and testing sets with a ratio of 4 to 1. To find the
optimal model configuration,a grid search was conducted in
the hyperparameter space. The hyperparameters such as
learning rate, number of trees, maximum depth, subsample
ratio, and column sampling ratio were all considered. The
optimal combination was determined with a learning rate of
0.2, 50 trees, maximum depth of 3, subsample ratio of 0.8,
and a column sampling ratio of 1.0.
To evaluate the PLB-SI-XGBoost model's generalization

ability, the model was then applied to the testing set and the
RMSE and five-fold cross-validated R-square value were
calculated. The five-fold cross-validation results (Table IV)
show excellent performance, with an RMSE of approximately
12.09 and an R-square of 0.98 on the training set. On the
validation set, an MSE of 184.18, an R2 of 0.88, and an
RMSE of approximately 13.50 were observed. Overall, the
proposed model performed well on the training set and
exhibited relatively good performance on the validation set,

demonstrating strong prediction performance and
generalization ability for PLB.

Fig. 8. Differential performance of the correlation between
spectral data and PLB severity at different scales (ground,
UAV, satellite) with a significance level of 0.001.

Fig. 9. Comparative analysis of seven models integrating
spectral indices and machine learning algorithms

Fig. 10. Feature importance of the PLB-SI-XGBoost model
based on the ground obersvation.

TABLEⅣ

THE DIFFERENT PERFORMANCES OF THE MODEL BASED ON
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GROUND-SCALE TRAINING SET AND THE VALIDATION SET

Training set Validation set
(RMSE) 12.09 13.50
(R^2) 0.98 0.88

To further validate the effectiveness of the model, the
relationship between the PLB-SI-XGBoost model predictions
and the actual observations is shown in Fig. 11. Most of the
scatter is distributed around the diagonal line, indicating that
the model effectively captures overall trends and changes in
the data and accurately predicts the target variable in most
cases. However, some discrete points were also observed,
which could be outliers or instances of poor model
performance. Overall, the comparison chart between
prediction and reality reflects the model's performance,
providing an important clue for evaluating the accuracy and
reliability of the model. This indicates a generally favorable
modeling effect.

Fig. 11. Comparison of the actual value with the prediction by the
PLB-SI-XGBoost model trained at the ground-scale.

D. Verification of the model at the UAV and satellite scale
The PLB-SI-XGBoost model developed at ground scale, was
then validated at the UAV and satellite scale, respectively.
1). UAV-scale verification
The validation results show an R-square of up to 0.74, and

an RMSE of 18.27. The model performs well in UAV-scale
regression and demonstrates robust generalization ability.
The predicted values and the corresponding actual

observed values for each sample are shown in Fig. 12. Most
of the scatter points are distributed around the diagonal,
indicating that the model's predictions are in good agreement
with reality and accurately predict the target variable in most
cases. However, some discrete points, especially those with
low disease levels, were observed. These discrete values
could be outliers or samples where the model underperforms
at low PLB levels.
2). Satellite-scale verification

Fig. 12. Comparison of the actual value and the prediction by the
PLB-SI-XGBoost model trained at the UAV scale.

The accuracy of the PLB-SI-XGBoost model trained at
ground scale was verified using Sentinel-2 data and field
observation data in different regions. As shown in Fig. 13, the
70% accuracy prediction for PLB indicates a good overall
classification performance. The model demonstrated a
precision of 65%, meaning that 65% of the samples predicted
as infected were indeed infected, indicating a low
misjudgment rate. Additionally, the model showed a recall
rate of 70%, effectively capturing real infection samples and
reducing the possibility of missed diagnoses, which is
beneficial for disease control. Considering both accuracy and
recall, the F1 score reaches 66%, highlighting the
comprehensive performance evaluation of the model and
providing useful guidance for balancing the accuracy and
comprehensiveness of the predictions.

Fig. 13. The validation results of the PLB-SI-XGBoost model at the
satellite scale.

The confusion matrix (Fig. 14) shows that 116 samples in the
first category (disease severity 0-25) were accurately
classified, 1 sample was incorrectly classified as the second
category, and 9 were misclassified as the third category. For
the second category (disease severity 25-50), only 1 out of 20
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samples were correctly classified, 1sample was misclassified
as the first category, and 2 were misclassified as the third
category. For the third category (disease severity 50-100), 23
out of 51 samples were accurately classified, 4 were
misclassified as the first category, and 24 were misclassified
as the second category. In general, the model demonstrates a
good classification performance for samples with a disease
degree of 0-25, and there is a certain degree of
misclassification for samples with severity of 25-50 and 50-
100. The results indicate that PLB can be better detected at an
early stage when the disease severity is low, which can
support intelligent and efficient decision-making in
agricultural production , thereby reducing losses and costs.
In addition,the spatial distribution of errors in the PLB-SI-

XGBoost model is visualized (Fig. 15). Overall, the model
performs well in predicting the severity of PLB, facilitating
early-stage PLB monitoring, and providing decision support
to minimize further delays.

Fig. 14. Confusion matrix results of the PLB-SI-XGBoost
model for the severity classification of PLB in study area.
(Class 1:0-25; Class 2:25-50; Class 3:50-100).

IV. DISCUSSION

A. Validity and Universality Across Scales
The scale problem is the core problem of remote sensing

[42, 43] , and the scale effect is especially obvious in the
classification accuracy of remote sensing images [44, 45].
Studies have shown that increasing the spatial resolution of
an image can reduce the number of mixed pixels and thus
improve the classification accuracy [46, 47]. However, as the
spatial resolution is further increased, the spectral variability
within the same category increases, which in turn may lead to
a reduction in classification accuracy [48]. This suggests that
the choice of scale is critical to the accuracy of remotely
sensed data, which raises concerns about the scalability of
ground-scale models. In this study, the proposed model was
validated at multiple scales, including ground, UAV, and
satellite. Ground (0.2m ×0.2m) and UAV(1m×1m) data can
provide detailed information, more effectively capturing
micro-scale spectral variations associated with disease
severity compared to satellite data (10m×10m). Our results
indicate that the validation accuracy of proposed model is
highest at the ground scale (0.88), followed by the UAV scale
(0.74), and the lowest at the satellite scale (0.70). This

discrepancy may be mainly due to spatial resolution and scale
effects, which are consistent with the findings of Song et al
[49]. In addition, atmospheric conditions and other
environmental factors may affect the spectral features
captured by the sensors. Satellite data may be more
susceptible to atmospheric interference, which may affect the
accuracy of the models. The timing of data collection relative
to disease progression and environmental conditions may
affect model performance. UAV and satellite data may be
acquired at different times, resulting in differences in disease
spectral expression. The study aims to extend PLB
monitoring model built at ground scale to the satellite scale,
focusing on universal systemic rules and optimal scale
identification. Ground scale can offer high accuracy, UAV
enable quantitative disease assessment, while satellites,
despite limited classification capabilities, can identify PLB in
early stages over large areas quickly and cost-effectively.
Furthermore, the study posits that while remote sensing data
exhibits a general pattern and broad applicability, it is crucial
to account for scale effects and other influential factors when
interpreting data at different scales.

B. Model Generalization for large area
Validation at UAV and satellite scales demonstrate the

model's robustness and generalizability. The model's success
in UAV regression and 70% disease detection accuracy on
satellite-scale Sentinel-2 data suggest its potential for broader
applications. Comprehensive generalization validation across
diverse seasons, climates, and soil conditions is essential to
assess model performance and enhance applicability. Future
research could explore deep learning algorithms for improved
handling of satellite-scale data and complex relationships.

C. Superiority and Limitations of Machine Learning
Algorithms
This study highlights the superior performance of the

XGBoost model in PLB monitoring, as evidenced by high R-
square values and low RMSE in training and validation sets.
As a gradient boosting variant, XGBoost excels at capturing
multivariable relationships, potentially offering better insights
into spectral reflectance differences. However, the "black-
box" nature of machine learning algorithms [50] may limit
interpretability, posing challenges in explaining sensitive
band discrepancies and evaluating feature importance, such
as DWSI2.

D. Constraints Due to Data Limitations
The proposed model, which focuses on specific regions

and growth stages, faces challenges in obtaining high-quality,
satellite-corresponding ground observation data across
multiple time frames. Similarly, the limited number of
authentic samples within the UAV dataset presents
difficulties in rigorously validating the model's efficacy.
Expanding study areas and covering more growth stages
could improve model generalization. The spatial resolution of
satellite data can limit the effectiveness of disease
surveillance.
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E. Disease Severity Classification and Future Directions
The refinement of disease severity classification can offer

more precise agricultural recommendations. A detailed
classification system helps in accurately understand disease
conditions and carry out appropriate management. The
extensive use of Sentinel-2 and other high remote sensing

data necessitates further model or algorithm optimization.
Specifically, we can try to improve the resolution and
frequency of satellite data, integrate multisource remote
sensing and environmental data, explore radar data for
enhancing accuracy and practicality of monitoring. Ensuring
the robustness of the model in different climates and
geographical locations is also a key direction for future work.

Fig. 15. Spatial distribution of the error of the PLB-SI-XGBoost model on August 12, 2021. The error is calculated as the absolute difference
between the predicted value and the field data: green represents perfect model performance, blue represents excellent performance, and red
represents poor performance.

V. CONCLUSION
By integrating technological solutions, this study fills the

gap in satellite-scale PLB monitoring, enhancing the
agricultural decision-making process. The multi-scale data
analysis underscores the effectiveness of machine learning
algorithms and remote sensing technologies in detecting PLB
over large areas. This research employs a synergistic
approach, combining ground experiments, UAV spectral data,
and satellite imagery, to overcome the limitations inherent in
traditional monitoring methods.
This study is the first to emphasize the consistency in

spectral reflectance trends across ground, UAV, and satellite
scales. These trends include specific band valleys and peaks,
and the overall shape of the spectral reflectance curves. The
red edge and near-infrared bands exhibit universal sensitivity
to PLB detection across scales, highlighting the importance
of these bands in spectral analysis. As disease severity
increases, there is a general decrease in reflectance for
specific bands (B6, B7, B8, B8A), with varying degrees of
reduction corresponding to different levels of disease severity.
The study also explores scale-dependent spectral variations,

revealing that as PLB severity increases, the spectral values at
the ground scale, especially in bands B6, B7, B8, and B8A,
exhibit more pronounced changes compared to those
observed at UAV and satellite scales. UAV-derived spectral
curves show a narrower bandwidth and some gaps, possibly
due to limitations in the spatial resolution and data capture
continuity of UAV sensors. Compared to satellite systems,
the spectral values at ground and UAV scales are similar,
while the satellite scale shows wider upper and lower limits.
Generally, it notes that scale effects may influence the
generalizability of predictive models. While the ground scale
provides the highest accuracy, UAV and satellite scales are
equally effective for disease monitoring, offering a robust
framework for multi-scale disease detection.
Furthermore, based on the developed Red Edge Index and

Disease Stress Index with a suite of machine learning
algorithms, a PLB-SI-XGBoost model was proposed. Notably,
the proposed model demonstrated the highest average
evaluation score of 0.88 and the lowest RMSE of 13.50
during ground scale validation, outperforming other
algorithms. At the UAV scale, the proposed model achieved a
robust R-squared value of 0.74 and an RMSE of 18.27.
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Moreover, the application of Sentinel-2 data for disease
detection at satellite scale yielded an accuracy of 70% in the
model. Overall, the PLB-SI-XGBoost model demonstrated its
exceptional generalization capabilities.
The research indicates that although monitoring patterns

demonstrate a degree of universality and systematicity across
scales, the strength of correlation may weaken as the scale
expands. Satellite remote sensing emerges as a promising
method for large scale monitoring, laying a solid foundation
for the integration of machine learning with remote sensing
techniques. Future studies should focus on refining model
algorithms and enhancing the resolution and frequency of
satellite data to improve the precision and applicability of
PLB monitoring. In conclusion, this study pioneers new
avenues for disease monitoring in satellite-scale agricultural
production, paving the way for enhanced agricultural
efficiency, minimized resource wastage, and the advancement
towards Agriculture 4.0.
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