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Abstract—Recent breakthroughs in event-based vision, driven
by the capabilities of high-resolution event cameras, have signif-
icantly improved human-robot interactions. Event cameras excel
in managing dynamic range and motion blur, seamlessly adapting
to various environmental conditions. The research presented
in this paper leverages this technology to develop an intuitive
robot guidance system capable of interpreting hand gestures
for precise robot control. We introduce the “EB-HandGesture”
dataset, an innovative high-resolution hand-gesture dataset used
in conjunction with our network “ConvRNN” to demonstrate
commendable accuracy of 95.7% in the interpretation task,
covering six gesture types in different lighting scenarios. To
validate our framework, real-life experiments were conducted
with the ARI robot, confirming the effectiveness of the trained
network during the various interaction processes. This research
represents a substantial leap forward in ensuring safer, more
reliable and more efficient human-robot collaboration in shared
workspaces.

Index Terms—event-based, gesture recognition, robot control,
gesture dataset

I. INTRODUCTION

Gesture recognition provides a natural and intuitive way
for humans to interact with robots, carrying both theoretical
importance and practical value. As gesture recognition tech-
nology advances, it becomes increasingly useful in the field of
Human-Robot Interaction (HRI). However, there is a challenge
when it comes to collecting gesture data using regular RGB
cameras that have a frame rate of 30-60 frames per second
(fps). This method often results in motion blur issues when
capturing fast gestures [1], affecting the accuracy of gesture
recognition. One common solution to the motion blur problem
is to increase the frame rate of the standard camera. However,
this approach generates a lot of static and unnecessary infor-
mation in the continuous image frames. Additionally, it records
the background environment, which isn’t always needed for
gesture recognition. Furthermore, frame-based cameras are
ineffective in extreme lighting conditions, such as very bright
or dark environments. In HRI, where the robot could be placed
in extremely bright or very dark environments, it is important
to recognize human gestures for seamless interaction.

This work is funded by Marie Sklodowska-Curie Action Horizon 2020
(Grant agreement No. 955778) for the project ’Personalized Robotics as
Service Oriented Applications (PERSEO)’.

Event cameras are the solution to the above-mentioned prob-
lems. Designed to mimic biological sensors, event cameras
offer several advantages, including removing unnecessary data,
quick sensing abilities, high dynamic range sensitivity, and low
power consumption. They utilize frameless sampling, allowing
for the collection of continuous and asynchronous spatiotem-
poral data. This demand-driven approach records only the
changes in lighting caused by gestures, while eliminating
irrelevant background details, resulting in lower transmission
bandwidth requirements. Moreover, event cameras offer mi-
crosecond time resolution, ensuring the smooth capture of
gesture motion without being constrained by exposure time or
frame rate [2]. Additionally, they perform well in both well-lit
and dimly-lit environments due to their high dynamic range
capabilities. Since their introduction, event cameras have found
applications in various scenarios within the fields of computer
vision and robotics [3] [4]. This paper primarily explores a
real-time gesture recognition method based on event camera
technology.

In this study, we developed a real-time hand gesture recogni-
tion system. To begin, we acquired dynamic gesture data using
the CenturyArk SilkyCam VGA event camera. Subsequently,
we carried out the essential task of converting the three-
dimensional event stream. Following this, we meticulously
labeled the dataset and transformed it into the HDF5 format
to optimize it for training purposes. Then we trained and fine-
tuned our classification model. Our chosen training model
was based on the ConvRNN architecture [5] [6]. Finally, we
conducted real-time experiments using the event camera and
humanoid robot. The event camera demonstrated exceptional
performance in different light conditions, making it a valuable
tool in situations where standard cameras are less effective.
By leveraging the benefits of event cameras, this research
showcases the potential of event cameras to improve gesture
recognition systems, especially in challenging lighting envi-
ronments. Figure 1 shows the block diagram of the proposed
system.

The remainder of the paper is structured this way. Section
II presents an analysis of related work, elucidating the fusion
of event cameras with gesture recognition paradigms. Section
III briefly discusses the working principle of an event cam-
era. Moving forward, Section IV discusses the methodology



Fig. 1. Block diagram of the proposed system. Starting with data collection
to real-time gesture recognition with an event camera mounted on a robot.

employed in creating a dataset and labeling it. Section V is
about how we performed the training and the architecture
of the classifier. Looking ahead, in Section VI we presented
and discussed the results. Section VII is about the potential
applications of the proposed system.

II. RELATED WORK

Gesture recognition systems operating in real-time vary
widely in terms of hardware configurations and the algorithms
they employ for tasks like gesture classification and local-
isation. An overview of these algorithms for hand gesture
recognition, utilizing both RGB and RGB-D data sources, can
be found in a previous study [7].

The use of Convolutional Neural Networks (CNNs) for hand
gesture recognition has gained prominence in computer vision
applications [8]. CNNs excel at extracting hierarchical features
from visual data, making them well-suited for capturing the
intricate patterns and variations found in hand gestures [9]
[10]. Through deep learning techniques, these models achieve
high-accuracy gesture recognition, enabling applications in
sign language interpretation, human-computer interaction, and
virtual reality [11]. Considerable research efforts have been
dedicated to advancing hand gesture recognition techniques
[12] [13]. In a notable 2017 work by Amir et al. [14], a
pioneering gesture recognition system was developed, which
was fully implemented on event-based hardware. This sys-
tem utilized a TrueNorth neurosynaptic processor to achieve
real-time, energy-efficient recognition of hand gestures. This
achievement was made possible by processing events streamed
from a Dynamic Vision Sensor (DVS), a novel approach
that marked a significant milestone in the field. The authors
also introduced a proprietary dataset comprising hand gesture
samples from a 128x128 DVS camera.

Despite these advancements, there is a significant research
gap in the application of gesture recognition systems in
robotics. Additionally, the availability of high-resolution hand
gesture datasets is limited, which hinders comprehensive in-
vestigations. It’s important to note that access to neuromorphic
processors (e.g., SpiNNaker [15], Loihi [16], TrueNorth [17])
remains constrained due to their limited commercial avail-
ability. Consequently, there is a growing need for a system
capable of employing commercially available event cameras
for gesture recognition, without the necessity for neuromorphic

Fig. 2. CenturyArk SilkyCam VGA (event camera) and its basic circuit.

hardware. Lastly, so far there is no system available that uses
an event camera for robot control.

In this article, we introduce a new high-resolution hand ges-
ture dataset (640x480). Leveraging this dataset, we trained a
ConvRNN model, achieving commendable accuracy rates. By
integrating an event camera onto a robotic platform, we enable
real-time hand gesture recognition, thus enabling precise robot
control based on recognized gestures. This endeavor addresses
crucial gaps in both high-resolution gesture datasets and the
application of event camera-based gesture recognition systems
in robotics.

III. EVENT CAMERA

In this study, we utilized the SilkyCam VGA event cam-
era, manufactured by CenturyArk, as our primary imaging
device [18]. The SilkyCam VGA event camera is equipped
with Prophesee’s Metavision software stack to carry out its
operations. Figure 2 shows the event camera and its basic
circuit diagram. When light hits each pixel, it is transformed
into a voltage. This voltage change from the reference level is
identified, and if this change surpasses a certain threshold in
a comparator, an event is then generated.

The standard notation used to represent an event is as
follows:

e = [x, y, t, p]

Here, event e signifies that the pixel situated at coordinates
[x, y] within the pixel array of the event camera emitted an
event in response to an illumination change at time t. The
polarity attribute is encoded as p=[0, 1], with p=1 denoting an
ON event and p=0 representing an OFF event. It is noteworthy
that these events are transmitted at a temporal resolution of
1 µs [19], and the data rate of events depends on the rate
of illumination changes occurring in the scene. Most of the
companies use their proprietary data formats to save the event
data. For example, Prophesee saves data in EVT (2.0, 3.0)
format and iniVation saves in AEDAT (3.0, 3.1, 4.0) format.

IV. EVENT DATASET

As of now, most of the event-based gesture datasets are
either converted/reproduced from the standard camera dataset
or they are created with low-resolution datasets. Datasets
such as N-MNIST, N-Caltech101 [22], CIFAR10-DVS [20],
MNIST-DVS [21] and N-ImageNet [24] are recorded by
moving an event camera around monitors displaying images



TABLE I
COMPARISON OF DATASETS

Dataset Name Year Type Data Sensor Resolution Sec. per Instance Samples Reference
CIFAR10-DVS 2017 reproduced images DAVIS128 128x128 1.2s 10k [20]
MNIST-DVS 2013 reproduced digit images DAVIS128 128x128 2-3s 30k [21]
N-MNIST 2015 reproduced digit images ATIS 28x28 0.3s 70k [22]
N-CALTECH101 2015 reproduced images ATIS 302x245 0.3s 8.7k [22]
ES-ImageNet 2021 converted images - 224x224 - 1.3mil [23]
N-ImageNet 2021 reproduced images Samsung Gen3 480x640 - 1.7mil [24]
HARDVS 2022 event-based action DAVIS346 346x260 5s 100k [25]
Daily Action 2021 event-based action DAVIS346 346x260 5s 1.4k [26]
Bullying 10K 2023 event-based action DAVIS346 346x260 2-20s 10k [27]
ASL-DVS 2019 event-based hand action DAVIS240 240x180 0.1s 100k [28]
Nav-DVS 2020 event-based hand action ATIS 302x245 - 1.3k [29]
DVS128 Gesture 2017 event-based hand action DAVIS128 128x128 6s 1.3k [14]
EB-HandGesture 2024 event-based hand action SilkyCam Gen3 640x480 0.5s 1.5k This work

of well-known datasets like MNIST [30], Caltech101 [31] and
ImageNet [32]. Yihan lin et al. [23] used an Omnidirectional
Discrete Gradient (ODG) algorithm to convert the ImageNet
dataset into its event-stream (ES) version. They called it ES-
ImageNet.

A variety of event-based datasets are publicly accessible, as
highlighted in recent surveys [33]. This article focusses pri-
marily on datasets geared towards recognition tasks. Datasets
such as HARDVS [25], Daily Action [26], and Bullying10k
[27] pertain to human actions, while others like IBM-DVS128
Gesture [14], ASL-DVS [28], and Nav-DVS [29] are centered
on hand gestures. Commonly used event cameras for creat-
ing these datasets include DAVIS128 (128x128), DAVIS240
(240x180), DAVIS346 (346x260) [34], and ATIS (302x245)
[35]. The resolution of these event cameras is a critical
factor affecting their performance. Higher-resolution cameras
offer significant advantages, such as capturing finer details
within a scene. This enhanced spatial resolution is crucial
for tasks requiring precise object tracking, detailed motion
analysis, or intricate scene reconstruction. Furthermore, even
with brief accumulation times, high-resolution event cam-
eras can effectively capture sufficient information for gesture
recognition. Second, with advances in this area, new high-
resolution event cameras are entering the market [19]. This
development poses a challenge for researchers, as they cannot
use old, low-resolution datasets with new event cameras. For
instance, one of the newer sensors, CenturyArks’ SilkyCam
VGA, has a resolution of 640x480 and can only accept
inputs divisible by this resolution (e.g., 320x240, 160x120).
However, one widely used event-based hand gesture dataset,
the IBM-DVS128Gesture (captured with iniVation DVS128
event camera), has a resolution of 128x128. Consequently,
even if a user trains an effective classification model for this
dataset, it cannot perform real-time inference with SilkyCam
VGA due to the mismatch in input resolution.

We introduce the first high-resolution hand gesture dataset,
named the EB-HandGesture dataset, created using the Cen-
turyArk SilkyCam Gen3.0 (640x480). This camera is outfit-
ted with a Prophesee event-based vision sensor, boasting a
temporal resolution of 1µsec. To collect data, we utilized the

Fig. 3. The system discussed in this paper processes data displayed in the
final row, illustrating frame-based and event-based camera outputs. The top
section shows RGB images of a hand gesture (wave), the middle section
depicts positive (blue) and negative (black) DVS events over time, and the
bottom section presents the DVS event data corresponding to the executed
gesture.

Fig. 4. (top) event stream sequencing. (bottom) illustration of performed
gestures and the number of events captured during time.



Prophesee Metavision SDK and the OpenEB [6] framework.
Our dataset includes ground-truth files featuring gesture labels
along with their start and stop times, all gathered through
labeling system designed specifically for event data. The EB-
HandGesture dataset encompasses 9000 instances across 6
hand gestures, contributed by 5 participants. These gestures,
recorded at three different speeds (slow, normal, fast) and un-
der two lighting conditions (normal, low), include hand waves,
pointing, rock, scissors, claps, and arm rolls. Each instance has
a duration of 0.5 seconds, amounting to 1500 instances for
each gesture. The dataset’s details are summarized in Table
I, alongside other event-based recognition datasets. Figure 3
shows the comparison between RGB images and event data
along with the XYT plot of the performed gesture. Figure 4
demonstrates the sequencing of the event stream (top) and data
rate for the gesture performed (bottom).

TABLE II
CONVRNN CLASSIFIER MODEL ARCHITECTURE

Layer Type In Ch. Out Ch. Stride Remarks
ConvLayer 1 16 1 Initial conv
ConvLayer 16 32 2 Down-sample
ConvLayer 32 32 1 Same depth
ConvLayer 32 64 2 Increase ch.
ConvLayer 64 64 1 Pre-recurrent
ConvRNN 64 128 2 First ConvRNN
ConvRNN 128 256 2 Second ConvRNN
Conv2d 256 256 1 Pre-output
Conv2d 256 6 1 Output

V. MODEL TRAINING

In this section, we describe the training process for our Con-
volutional Recurrent Neural Network (ConvRNN) Classifier,
which serves as the backbone of our hand gesture recognition
system [36]. We provide insights into the dataset preparation,
model architecture, and training methodology.

A. Dataset Preparation

We utilized the EB-HandGesture dataset, a novel collection
of event-based data specifically designed for hand gesture
recognition and neuromorphic classification. The dataset was
partitioned into training (70%), validation (20%), and testing
(10%) subsets. With its unique characteristics, we believe that
the EB-HandGesture dataset offers an exceptional platform for
evaluating neuromorphic classification models, particularly for
hand gesture recognition tasks in the context of robotic control.

To facilitate data preprocessing and training, we harnessed
the capabilities of the Prophesee OpenEB open-source project,
tightly integrated with the Metavision SDK. The SilkyCam
Gen3.0 event camera was employed to capture data in EVT3.0
format. Additional information about this data format can be
found in the Prophesee documentation [6]. This data is then
converted to avi video format for annotation and also converted
to HDF5 format to make it ready for training.

B. Model Architecture and Training

The ConvRNN classifier that we are proposing is designed
to accommodate sequential data and has demonstrated remark-
able performance in our experiments. The architecture of this
classifier is detailed in Table II.

The ConvRNN Classifier comprises several integral compo-
nents. The input data, consisting of a single channel, undergoes
initial processing through a series of convolutional layers. The
number of these layers is determined by the size of the input,
allowing for the extraction of relevant features. Following
feature extraction, the data is subjected to two levels of Con-
vRNN layers. These layers incorporate recurrent connections,
enabling the model to capture temporal dependencies within
the data. The final segment of the ConvRNN Classifier is
the classification head. It consists of additional convolutional
layers, followed by Rectified Linear Unit (ReLU) activation
functions. This section ultimately produces class probabilities,
serving as the model’s output. Each event stream corresponds
to a single HDF5 file and an accompanying .npy file containing
ground truth data. During training, we employed a batch size
of 32, initiated the learning rate at 0.0001, and utilized the
Adam optimizer. Our implementation was executed in Python
3.8, leveraging the computational power of an RTX2080 GPU.

C. Evaluation Matrix

In addition to training our ConvRNN Classifier, we con-
ducted comparative experiments by training our dataset
with alternative classifiers, including MobileNetV2 [37] and
SqueezeNet [38]. Moreover, we also the used SpikeBased-
BP algorithm to train a classifier for our dataset. These
comparisons allow us to evaluate the effectiveness of our
proposed model against existing architectures.

The network’s performance is assessed by determining the
accuracy of its outputs to the given labels. However, using
accuracy as the sole metric for evaluation might not sufficiently
capture the model’s proficiency in accurately predicting the
final class. To remedy this, we have implemented the use of
the Precision-Recall (PR) curve [39]. This curve facilitates a
more nuanced examination of the model’s predictive abilities
under different conditions.

VI. RESULTS AND DISCUSSION

Figure 5 (a) Left: visually represents the training and vali-
dation accuracy (y-axis) for each epoch (x-axis). As training
progresses, we observe a consistent upward trajectory in both
accuracies, with getting commendable accuracy of 96.9%
(training) and 96.2% (validation). Right: shows the accuracy
of each class to epoch. At epoch=50 the accuracy of each class
is more than 93%. (b) shows the confusion and error matrices
for a better understanding of the results.

Figure 5 (c) shows Precision-Recall curves for all the
classes. The P-R curves for the classes ’wave’, ’clap’, ’arm-
roll’, ’point’, ’rock’, and ’scissor’ demonstrate varying lev-
els of classification performance by the model. Classes like
’wave’, ’clap’, and ’scissor’ show high precision and recall,
with only a slight decline in precision at higher recall levels,
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Fig. 5. (a) left: training and validation accuracy (y-axis) for each epoch (x-axis). right: Validation accuracy of each class. (b) Confusion and Error Matrix.
(c) Precision (y-axis), Recall (x-axis) curve. (d) Receiver Operating Characteristic (ROC) Curves for Gesture Recognition Model.

indicating the model’s effectiveness in identifying these ges-
tures with minimal false positives. The ’rock’ class exhibits
more fluctuation, with precision decreasing as recall increases,
suggesting a higher rate of false positives when the model
attempts to identify all true positives. ’Armroll’ and ’point’
maintain high precision across most recall levels but display
a minor dip at higher recalls, pointing to an increase in false
positives as the model strives for higher recall. The ’clap’ class
appears to have a perfect precision across all recall levels,
which could indicate either outstanding model performance or
a potential issue with data completeness or graph rendering.
(d) shows the ROC curves plot the True Positive Rate (TPR)
against the False Positive Rate (FPR) at various threshold
settings. The Area Under the Curve (AUC) for all models is
1.00, indicating perfect discrimination by the models with no
overlap between the positive and negative distributions.

In Table III we compared the existing event-based datasets
related to action and gesture with our dataset. For each
dataset, we showed the results of state-of-art models. In
general, we got high testing accuracy for our dataset as com-
pared to other datasets and their models. As DVS128Gesture
is closest to the EB-HandGesture dataset, we trained the
DVS128Gesture dataset with our proposed model. Addition-
ally, for comparison purposes, we used the SpikeBased-BP
algorithm to train EB-HandGesture. For the ConvRNN Clas-
sifier, the maximum accuracy we got for the DVS128Gesture
dataset was 87.42%, which is much lower than the EB-

TABLE III
COMPARISON OF VARIOUS MODELS AND DATASETS

Ref. Dataset Algo./Model Accuracy(%)
[40] G-CNN 87.5
[40] ASL-DVS RG-CNN 90.1
[41] MobileNet 86.7
[42] ESTF 57.53
[43] HAR-DVS ResNet18 56.09
[44] ResNet50 57.99
[45] Daily Action Motion SNN 90.3
[46] HMAX-SNN 76.9
[47] ResNet50 74.01
[48] Bullying10k ResNet18 72.5
[49] X3D 65.6
[50] Deep-SNN 93.6
[51] DVS128Gesture ConvRNN-SNN 90.28
[52] SpikeBases-BP 95.5

This Work ConvRNN 87.42
This Work MobileNet 70.44
This Work EB-HandGesture SqueezeNet 75.65
This Work ConvRNN 95.77
This Work SpikeBased-BP 85.6
This Work Custom RGB Dataset LSTM 98.9

HandGesture dataset (95.58%). For SpikeBased-BP, the accu-
racy for DVS128Gesture was 95.5% and for EB-HandGesture
it was 85.6%. We also compared our model with MobileNet
(70.44%) and Sqeezenet (75.65%). We also created a custom
RGB Gesture Dataset and trained it with LSTM to compare
the results. Although the accuracy of LSTM is high it does
not perform well because of RGB camera limitations. Figure



Fig. 6. (a) Testing our model in low light conditions where the standard camera was not able to detect. (b) real-time experiments with an event camera and
ARI robot for different hand gestures. (c) data collection setup. The arrow is pointing toward the mounted event camera.

6(a) demonstrates the superior low-light performance of the
event camera in scenarios where standard cameras fail to detect
any activity. The robustness of our model in these conditions
enhances the reliability of human-robot interactions, as it sur-
passes current state-of-the-art models in accurately interpreting
gestures in challenging conditions.

A. Robot Control

We demonstrated the real-world applicability of our gesture
recognition model through the use of the ARI humanoid robot
and an event camera for intuitive robot control. The event
camera was mounted on the ARI robot, enabling seamless in-
tegration of the classifier with the robot’s control system. This
integration permitted us to manipulate the robot’s movements
using predicted hand gestures. Our experimental procedure
entailed initializing the robot, activating the event camera, and
starting the classification pipeline. For real-time classification,
we segmented the input event stream into 1-second intervals.
We associated each gesture with a custom robot movement.
The model and inference pipeline can be used to associate
gestures with any movement according to the application.
Figure 6 (b) the ARI robot recognizing a hand gesture. Here
for wave gesture, ARI is waving. For point, it is showing
direction. For rock, it is showing paper. For clap and arm roll
it is trying to imitate the gestures. (c) shows the data collection
setup.

Visit the project website for more details and re-
sults comparison: https://sites.google.com/view/event-camera-
based-gesture/home

VII. POTENTIAL APPLICATIONS

The potential applications of our hand gesture recognition
system with an event camera in robot control are particularly
promising in sectors such as healthcare and collaborative
work environments. In healthcare, especially in elder care, the
system allows elderly individuals to command robots using
simple hand gestures. This feature is invaluable for those
with limited mobility or communication abilities, as the event
camera accurately captures gestures without the issues of
motion blur that standard cameras face. This ensures reliable
and precise operation, crucial in healthcare settings where
speed and accuracy are essential.

In collaborative workspaces such as warehouses, this tech-
nology can significantly improve the interaction between hu-
mans and robots. Workers can use hand gestures to direct
robots, a method that is especially beneficial in environments
where verbal communication might be impractical or ineffec-
tive. The robustness of the system in various lighting con-
ditions guarantees consistent performance, thereby enhancing
productivity and fostering a more reliable human-robot work-
ing relationship. Overall, this event-based gesture-controlled
robotic system could greatly enhance operational efficiency



and user experience across multiple sectors, representing a
significant step forward in this area.

VIII. CONCLUSION

Our study marks a significant advancement in event-based
vision and human-robot interaction, harnessing the capabilities
of high-resolution event cameras for hand gesture recognition.
The consistent improvements in accuracy, reaching an impres-
sive testing accuracy of 95.77%, underscore the exceptional
performance of our ConvRNN model. We put our model to
the test in the real world by seamlessly integrating it with
an ARI robot. This integration enables effortless and precise
control of the robot through hand gestures. The successful
deployment of our model in various environmental conditions
highlights its adaptability and its potential to enhance human-
robot teamwork.
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