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ABSTRACT
The bin packing problem (BPP) is a well-researched and important

NP-hard problem with many contemporary applications (e.g. stock

cutting, machine scheduling), which requires a set of items with

variable sizes to be packed into a set of fixed-capacity containers.

Many metaheuristic approaches have been successfully trialled

on this problem, including evolutionary algorithms, ant colony

optimization and local search techniques. The most successful vari-

ants of these approaches use grouping techniques whereby the

algorithm considers sets of items together rather than as separate

decision variables. This paper presents an Ant Colony Optimiza-

tion integrated with a grouping technique and a novel differential

pheromone procedure for bin packing. The proposed differential

pheromone grouping ACO shows state-of-the-art results for ACO

approaches in BPP and approaches the performance of the best

evolutionary methods.
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1 INTRODUCTION
The BPP is one of the most challenging NP-hard problems in com-

binatorial optimisation which has been investigated and studied

since the 1930s [19]. It has a wide range of applications such as data

storage and cutting stock [1], printed circuit board design, assembly

line balancing, capacitated vehicle routing, multiprocessor schedul-

ing [8], file allocation [13], and virtual machine load balancing [4].
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Moreover, the knapsack problem and the cutting stock problem are

both special categories of BPP [22]. The rationale underlying the

bin packing problem is to add items of varied sizes into a minimum

number of bins having a fixed capacity without exceeding these

capacities [19].

The challenge comes if the problem has a large set of items,

which can incur significant computation time [19], and many al-

gorithms have been proposed to find the optimal number of bins

in a reasonable time. Examples of these include approximate algo-

rithms, heuristic algorithms, mathematical optimisation algorithms,

metaheuristic algorithms, and population-based algorithms [19].

However, nature-inspired algorithms have often been found to be

superior to other algorithms due to their ability to solve different

types of BPP [19].

Many types of BPP have been proposed such as the one-di-

mensional BPP; the two-dimensional BPP (2DBPP); themulti-dimen-

sional BPP; the real-time BPP, and the conflicting items BPP [17].

Approximation algorithms are the first method applied for solving

these two types of BPP, both online and offline [19]. Offline BPPs

have the number of items and their size known at the initialisa-

tion step and can be solved using heuristic approaches, such as

next-fit decreasing, best-fit decreasing, and first-fit decreasing [19].

One of the main steps of those approaches starts by sorting items

in decreasing order [20]. Online BPP deals with items individu-

ally without prior knowledge about the next item [1]. Online BPP

restrictions include packing items that cannot be changed later,

making it more challenging to find the optimal solution in a rea-

sonable time [20]. In this paper, we are only considering the offline

one-dimensional BPP.

This paper develops DpG-ACO a Differential pheromone Group-

ing Ant Colony Optimization approach which can solve BPP ef-

ficiently by using a grouping and a novel differential pheromone

techniques. These contributions result in a modified approaches

that show significant improvement over standard and enhanced

ACO for BPP, setting a new standard for ACO in this field. Further-

more, the approach meets or closely approximates the performance

of the best-in-class EA methods across a range of datasets without

the expensive local search initialisation processes.

This paper is organised as follows: Section 2 provides back-

ground; Section 3 will cover the proposed DpG-ACO approach;

Section 4 represents the experimental setup, and the results; Sec-

tion 5 discuss the DpG-ACO approach in depth; and finally, Section

6 summarise the findings and highlights future works.
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2 BACKGROUND
2.1 Bin Packing Problem Approaches
Recently, metaheuristic approaches have been augmented with a

human-designed heuristic to solve both the offline and the online

BPP, these include: bounded-space algorithms, the Next-Fit heuris-

tic (NF), the First-Fit heuristic (FF), and the Best-Fit heuristic (BF)

[1]. Variable-sized bin packing problem is another class of prob-

lem which is considered a real-world problem where the sizes of

bins are different. The researchers propose many algorithms to

solve this problem. Such as iterative first fit decreasing, iterative

best fit decreasing [14], grouped genetic algorithm [10], variable

neighbourhood search [12], and minimal bin stack [18].

2.2 ACO algorithms for BPP
Ant colony optimisation algorithms (ACO) are swarm intelligence

optimisation algorithms based on the principles of ant foraging

and communication. ACO has been widely applied and there have

been a number of approaches to solve the BPP using ACO. For

example, ACO algorithms have been used to solve conflict BPP by

using the concept of graph colouring [24]. A further approach used

to the multidimensional knapsack problem develops a probability

selection equation by adding dynamic impact (dynamic heuristic)

to improve convergence depending on the current situation, for

example, a local search which improves the fitness value by 33.2%

[23]. A Multi-Objective Ant Colony Optimization (MOACO) hybrid

with FFD local search is used to solve the Multi-Objective Bin Pack-

ing Problem (MOBPP) by using different pheromone matrices for

each objective and a variant of pheromone deposition in addition to

using the Pareto dominance [15]. A further ACO technique, the Hy-

brid Constructive Heuristic Ant Colony Optimization (HCHACO)

is used for variable-sized bin packing which hybridises ACO with

mutation operator to improve the result which is gained from the

ant’s tour [11].

For 1-D BPP, an augmented exact method is used as local search

with ACO to solve 1-D BPP to improve problem-solving efficacy

[7, 16]. In this approach,MAX-MIN Ant System (MMAS ) has

been used with the Martello and Toth dominance criterion as a

local search after each iteration to enhance the solution that has

been produced by ants. Another ACO-based algorithm, Ant System

(AS) has also been used to solve 1-D BPP, called AntPacking. In this

approach, different encoding pheromones and employing a fitness

function depend on the fullness of the bins in the ant’s solution.

The fitness function, in this approach, is the summation of only full

bins for each ant. Consequently, the pheromone is deposited only

on the path that leads to full bins [3].

2.3 Grouping Technique for BPP
The grouping method was first proposed to work with a genetic

algorithm (GA) in 1996 by Falkenauer [9] to solve 1D BPP and

was named the Hybrid Grouping Genetic Algorithm (HGGA). This

method replaces a group of items in a bin with unpacked items using

a special encoding scheme rather than placing items one by one [9].

Building on this idea, Quiroz et al. [21], in 2015, proposed a grouping

genetic algorithm with controlled gene transmission (GGA-CGT).

This new algorithm has additional features including pre-processing

to generate an initial population depending on a special type of

first-fit heuristic to balance exploration and exploitation. Borgulya

[2], in 2021, adopted a similar approach that groups items according

to the how frequently they are paired in the best solution, to create

the hybrid evolutionary algorithm (HEA) which also makes use of

local search to improve the quality of the solution.

3 METHODOLOGY
ACO algorithms are a good fit for solving BPP due to the dynamic

construction graph which is used for representing the problems.

The main phases of ACO include: initialisation, construction of

ant solutions, and updating of the pheromone trail. However, to

date, little work has been done to adapt the successful grouping

approach seen in evolutionary algorithms to theACOdomain.Many

different types of ACO exist, but the most popular are ant system

(AS) andMAX-MIN ant system (MMAS ), with the latter often
outperforming the former in studies. In this section, we explain our

proposed differential pheromone grouping approach which uses

theMMAS pheromone limits and depositing strategies as its basis.

For further detail on the standardMMAS approach, please see [6].
The full proposed DpG-ACO is shown in Algorithm 1.

3.1 Problem description and formulation
A one-dimensional BPP is a problem having a set of items with

different sizes that should be packed in fixed capacity bins in which

the objective function is to minimise the number of used bins.

The formulation of one-dimensional BPP is defined by Delorme

[5] as follow: let 𝑁 = {1, 2, ..., 𝑛} be a set of items to be packed.

𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑛} represent the sizes of these items, with 𝑠𝑖 being

the size of 𝑖𝑡𝑒𝑚𝑖 . A number of possible bins from 1 to 𝑢. 𝐶 is the

maximum capacity of a bin. The binary decision variables can be

defined as follows:

𝑦𝑖 =

{
1 if bin 𝑖 is used in the solution;

0 otherwise

where 𝑖 = 1, . . . , 𝑢

𝑥𝑖 𝑗 =

{
1 if item 𝑗 is packed into bin 𝑖;

0 otherwise

where 𝑖 = 1, . . . , 𝑢; 𝑗 = 1, . . . , 𝑛

According to the above, the BPP formulation is as follows:

𝑚𝑖𝑛

𝑢∑︁
𝑖=1

𝑦𝑖 (1)

𝑛∑︁
𝑗=1

𝑠 𝑗𝑋𝑖 𝑗 ≤ 𝐶𝑦𝑖 (𝑖 = 1, . . . , 𝑢) (2)

where 𝑥𝑖 𝑗 , 𝑦𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝑢, ∀𝑗 ∈ 𝑛

𝑢∑︁
𝑖=1

𝑥𝑖 𝑗 = 1 ( 𝑗 = 1, . . . , 𝑛) (3)

This formulation ensures that each item is packed into exactly

one bin (Eq. 2), and the total size of items packed into each bin does

not exceed the bin’s capacity (Eq. 3). The objective function seeks

to minimize the total number of used bins.
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Within ACO, BPP can be formulated into an undirected weighted

graph structure 𝐺 = (𝑉 , 𝐸). This graph is used to represent the

relationship between items where vertices V are the items, and the

edges E are the relationships between these items where (𝑖, 𝑗) = 1

if the 𝑖𝑡𝑒𝑚𝑖 and 𝑖𝑡𝑒𝑚 𝑗 are in the same bin. The pheromone value

𝜏𝑖, 𝑗 is used to weight the edge that connects the 𝑖𝑡𝑒𝑚𝑖 with 𝑖𝑡𝑒𝑚 𝑗 .

At the beginning of each ant’s tour, all items belong to the ’Un-

packed Items’ list. While the ant packs items, those items are se-

quentially removed from this list. Simultaneously, a ’feasible item

set’ list, which is a subset of the ’Unpacked Items’ list, is utilised.

This subset only includes those unpacked items that can fit in the

current bin, thus guiding the ants to choose from a feasible item

set.

Each ant has a different starting point in the construction graph

moving through it by picking up items one by one from the feasible

item set to its solution according to the transition rule. After finish-

ing its tour, the fitness function evaluates the solution. Following

this, the pheromone trail in the standard algorithm is uniformly

updated according to fitness, by depositing the pheromone on the

ant’s path in accordance with the optimality of the solution in

addition to the evaporation of all the pheromones.

Algorithm 1 DpG-ACO algorithm

procedure ACO algorithm

function Initialization

Setting parameters

Initialize the pheromone matrix.

Creating a construction graph

end function
while i <= number of iterations or find global optima do

for each ant in ants do
Construct Ant Solutions

Put ants randomly on the vertex.

Apply the transition rule.

if vertex ∈ group then
Add combinations randomly.

end if
Calculate fitness function.

for each edge in a construction graph do
Update the pheromone trails according to Eq. 4

end for
end for

end while
end procedure

3.2 G-ACO
The adaptation of the grouping technique in the ACO approach

is highlighted in this section. After all ants finish their tour, any

part of a solution that is generated by an ant that can fill a bin

100%, is considered as a group. Accordingly, each item will belong

to one of three possible statuses: an item in a single group, an item

in multiple groups or an item with no associated group. To adapt

these changes to the construction graph, the following procedure

is applied when an item is selected according to the transition rule:

(1) Item with no associated groups: the item is selected as before,

probabilistically according to pheromone.

(2) Item with one group: the group will be selected as a singular

item. The ant position will move to the last item in that group.

All items in this group will be removed from the unpacked

items list.

(3) Item with multiple different groups: the ant randomly choos-

es from the list of possible groups. The ant position will move

to the last item in the selected group. The grouped items in

the selected group will be removed from the unpacked items

list.

At the end of the procedure, the ant next move using the transi-

tion rule to the available qualified items list from the current posi-

tion. This approach exploits grouping to speed up the convergence

to optimal or near-optimal solutions by ensuring that collections

of items that completely fill a bin are preserved whilst reducing the

size of the space required to be searched by the algorithm.

3.3 Dynamic Group Management
The construction graph in the proposed algorithm is dynamic due

to the group strategy as this strategy adds and removes vertices.

Thus, it produces a dynamic graph which needs to be managed

through a group management system explained here.

An essential mechanism of this approach is the ability to dynam-

ically form groups. This formation is primarily triggered when an

ant creates a solution involving a solution section that leads to a

full bin, indicating the potential for group formation. However, it’s

essential to ensure redundancy is avoided. To achieve this, a ’Group

Existence Check’ is initiated, searching for any section that matches

the existing groups. If there is a match, the approach prevents the

creation of a new group; if not, it proceeds with the formation of a

new group and adds to the construction graph.

3.4 DpG-ACO
Once an ant completes a tour, the pheromone trails 𝜏𝑡

𝑖 𝑗
are updated

through the evaporation and depositing process, as shown in Eq.(4).

𝜏𝑡𝑖 𝑗 = (1 − 𝑝)𝜏𝑡−1𝑖 𝑗 + Δ𝜏𝑡𝑖 𝑗 (4)

Where 0 < 𝑝 ≤ 1 is the pheromone evaporating rate. Δ𝜏𝑡
𝑖 𝑗

is

depositing pheromone amount between 𝑖𝑡𝑒𝑚𝑖 and 𝑖𝑡𝑒𝑚 𝑗 calculated

according to Eq. (5).

To enhance the pheromone deposition process, we introduce

a differential procedure. In contrast to the uniform deposition de-

scribed above, this new method rewards sections of the solution

differently based on their efficiency. A section of a solution lead-

ing to a completely filled bin receives a full pheromone deposit,

whereas any other section that partially fills the bin receives a

reduced pheromone deposit, as shown in Eq. (5).

Δ𝜏𝑡𝑖 𝑗 =


𝑓 (𝑥) if 𝑖, 𝑗 ∈ 𝐹𝐵

𝑓 (𝑥) × 𝑝 if 𝑖, 𝑗 ∉ 𝐹𝐵

0 Otherwise

(5)

Where FB is 100% fullness of the bin. 0 < 𝑝 ≤ 1 is an evaporation

rate. 𝑓 (𝑥) is the fitness function of the best ant, calculated based

on Falkenauer’s fitness function [9].
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Through this refined deposition methodology, the approach en-

courages solutions that prioritise full bins. By distinctly recognising

and rewarding efficient packing, this method significantly limits

the number of iterations required to identify the most promising

regions within the search space.

3.4.1 Duplicated Items Handling. The items with duplicated sizes

are managed individually to ensure they’re accurately grouped.

Such precision ensures that each group is unique.

3.4.2 New Group Creation and Management. As the algorithm

progresses, there may arise situations where a particular set of

items doesn’t align with any existing group. In such instances, a

new group is formed, and the algorithm establishes relationships

between these items and the newly created group.

4 EXPERIMENTAL SETUP
The DpG-ACO algorithms were coded in C# and run on a PC under

Windows 10 Pro with a 2.40 GHz Core i5-1135G7 and 16.0 GB RAM.

In the experimentation, 20 independent runs were conducted to en-

sure the robustness and reliability of the findings. The termination

criteria for each run were either when the algorithm achieved a

predetermined number of maximum iterations or discovered the

global optima, whichever occurred sooner.

4.1 Benchmark Problem Sets
The proposed algorithms were evaluated using wide types of bench-

mark problem sets ranging from easy to challenging categories

which are publicly available on http://or.dei.unibo.it/library/bpplib.

Across these problem sets, a total of 1587 instances were examined.

The details of these problem sets are shown in Table 1 which is

adapted from [2].

4.2 Parameter Settings
To identify the best parameter settings for MMAS and the pro-

posed algorithms, several tests were performed to tune the parame-

ters to find the best results. Various settings were applied to control

parameters concerning the different methods for the proposed algo-

rithm, as shown in Table 2. These parameters include: the number

of ants, number of iterations, and evaporation rate.

Table 2: Control-parameter settings of proposed algorithms

Control parameter settings Value

Number of ants 50

Number of iterations 10000

Evaporation rate 0.01

4.3 Results
In the results section, the first aim is to assess the performance

of the proposed algorithm in comparison to standard ACO and

the potential contribution of the new components to improve its

performance. The second aim is to then compare the performance

with other ACO algorithms and state-of-the-art algorithms.

4.4 Statistical analysis
To highlight the impact of new components on the standard ACO

across different problem sets, different metrics have been used. Ta-

ble 3 provides a comprehensive performance comparison between

the standard ACO, the proposed G-ACO and DpG-ACO capturing

mean success rate (the mean percentage of runs that achieved the

global optima from 20 independent runs of each instance in the

problem sets), Root Mean Square Error (RMSE) calculated from the

global optimum, and associated Standard Deviation (STD) across

the problem sets.

As illustrated in Table 3, G-ACO and DpG-ACO demonstrated

significant performance improvements over MMAS across all

problem sets. Considering the mean success rate, a metric indi-

cating the frequency at which the algorithms reached the global

optima in 20 independent runs for each problem set instance, both

the DpG-ACO and G-ACO achieved a significantly high success

rate of 78% and 77%, respectively, compared to the 47% of ACO,

showing consist performance enhancements. Particularly,MMAS
struggled with 0% and 9% success in the Triplet and Scholl3 problem

sets, respectively. In contrast, DpG-ACO and G-ACO achieved 41%

and 43% for the corresponding problem sets. Additionally, in Schw-

erin1, Schwerin2 and Scholl2 sets, DpG-ACO and G-ACO outper-

formed MMAS by achieving a 100% success rate, while MMAS
lagged with success rates of 45%, 87% and 81% for the same sets,

respectively. In the Scholl1 problem set, all the algorithms perform

comparably well, with success rates closely matched (MMAS 95%,
DpG-ACO 96% and G-ACO 99%). While ACO had a low success rate

at 12% in Wäscher, G-ACO and DpG-ACO improved to 59% and

64%, respectively. Moreover, in the Uniform problem set, G-ACO

and DpG-ACO outperformed MMAS , with a success rate of 75%

and 76%, compared to the 46%.

Regarding the RMSE metric, both DpG-ACO and G-ACO showed

significant improvements overMMAS . On average, ACO recorded

an RMSE of 0.58, indicating larger errors. Conversely, G-ACO and

DpG-ACO achieved near global optima results with lower RMSE

values of 0.30 and 0.29, respectively. Notably, in Schwerin1, Schw-

erin2 and Scholl2 problem sets, G-ACO and DpG-ACO achieved an

RMSE of 0, reflecting hitting the global optima in all 20 independent

runs for all instances for these problem sets, while ACO recorded

higher RMSE values (0.56 for Schwerin1, 0.15 for Schwerin2, and

0.39 for Scholl2). Concerning STD, which measures the consistency

of the algorithm across runs, MMAS generally had the lowest

variability, with an average STD of 0.05. However, G-ACO and

DpG-ACO , despite showing more variability with the average STD

metric values of 0.15 and 0.16, respectively, showed more stable

and consistent behaviour in problem sets Schwerin1, Schwerin2

and Scholl2, where both achieved an STD of 0, contrasting with

MMAS ’s performance.

Overall, The comparative analysis across the metrics indicates

the superior performance of G-ACO and DpG-ACO over MMAS .

These results show a valuable contribution of both grouping and dif-

ferentiation of pheromone components in enhancing the MMAS
formulation. The results also show that the grouping is responsible

for the majority of the performance improvements seen, but that
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Table 1: Overview of Benchmark Problem Sets Used for Evaluation

Problem Sets

Number of

Instances

Difficulty Level Range of Number of Items Capacity

Falkenauer Uniform 80 Moderate [120,1000] 150

Falkenauer Triplet 80 Challenge [60 – 501] 1000

Scholl-1 720 Easy [50 - 500] [100 - 150]

Scholl-2 480 Moderate [50 - 500] 1000

Scholl-3 10 Challenge 200 100000

Schwerin1 100 Easy 100 1000

Schwerin2 100 Moderate 120 1000

Wäscher 17 Challenge [57 - 239] 10000

Table 3: The table provides a comprehensive performance comparison between the standard ACO, the proposed G-ACO and
DpG-ACO capturing mean success rate (the mean percentage of runs that achieved the global optima from 20 independent runs
of each instance in the problem sets), Root Mean Square Error (RMSE), and Standard Deviation (STD) across various problem
sets.

Problem sets

MMAS G-ACO DpG-ACO

Mean

RMSE STD

Mean

RMSE STD

Mean

RMSE STD

Success rate Success rate Success rate

Triplet 0% 1 0 41% 0.76 0.47 41% 0.77 0.47

Uniform 46% 0.58 0.09 75% 0.37 0.24 76% 0.36 0.24

Schwerin1 45% 0.56 0.04 100% 0 0 100% 0 0
Schwerin2 87% 0.15 0.05 100% 0 0 100% 0 0
Wäscher 12% 0.88 0.01 59% 0.51 0.17 64% 0.45 0.15

Scholl1 95% 0.05 0 99% 0.01 0.05 96% 0.04 0.08

Scholl2 81% 0.39 0.01 100% 0 0 100% 0 0
Scholl3 9% 1.02 0.18 41% 0.72 0.25 43% 0.71 0.31

Average 47% 0.58 0.05 77% 0.30 0.15 78% 0.29 0.16

the differential pheromone does lead to significant performance im-

provements in the Wascher and Scholl3 problem sets and a slightly

improved average overall.

Table 4 shows the statistical significance of the improvement

of DpG-ACO on the standard ACO using the Wilcoxon signed-

rank test based on 20 runs across 149 instances. As expected, the

results indicate that DpG-ACO has a better average rank compared

to MMAS , illustrating its superiority across the problem sets.

The computed Z-value of -6.71 signifies a substantial difference

between the two algorithms. A negative Z-value points to DpG-

ACO having a ranking that is significantly lower and thus better

performance than ACO. The p-value of 0.00001 strongly rejects the

null hypothesis of no difference in performance between the two

algorithms. This indicates that the improvement of DpG-ACO over

MMAS is statistically significant.

Table 4: Table showing the Wilcoxon signed-rank test on the
average of 20 runs over the 149 instances set.

DpG-ACO MMAS

Average Rank 1.318 1.681

Z-value -6.71

p-value 0.00001

4.5 Comparative Analysis of Leading
Algorithms with DpG-ACO

Table 5 shows the comparative performance between DpG-ACO

and state-of-art algorithms: HACO, AntPacking, GGA-CGT and

HEA, across a variety of problem sets. The evaluation used is taken

from [21] based on hit rate (measuring the ability of finding the

global optima of each instance in the problem sets at least once)

and the maximum number of fitness evaluations (FEs) to get the

global optima.

In this subsection, we display the comparative performance of

leading algorithms, including HACO [7, 16], HGGA [10], GGA-CGT

[21], HEA [2], AntPacking [3], and the proposed algorithm DpG-

ACO on different benchmarks. The primary metrics of focus hit

rate and the number of fitness evaluations.

Both HGGA [10] and GGA-CGT [21] employ grouping tech-

niques, like DpG-ACO but are based on a genetic algorithm. HACO

[7, 16] and AntPacking [3] are included in the comparison as con-

temporary ACO approaches that tackle these problem sets.

In the Triplet problem sets, GGA-CGT andDpG-ACOboth achiev-

ed a perfect hit rate of 100% with 50,000 FEs as well as HEA had

a 100% hit rate. In contrast, HACO did not manage to achieve the

global optima in all instances, with 420,000 FEs. Additionally, in

the Uniform problem set, Both GGA-CGT and DpG-ACO showed

outstanding performance with a 100% hit rate, though DpG-ACO
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Table 5: a comparative performance between DpG-ACO and state-of-art algorithms: HACO, AntPacking, GGA-CGT and HEA,
across a variety of problem sets, evaluated based on hit rate (measuring the ability of finding the global optima of each instance
in the problem sets at least once) and the maximum number of fitness evaluations (FEs) to get the global optima.

Problem sets

GGA-CGT [21] HEA [2] HACO [7, 16] AntPacking [3] DpG-ACO

Hit Rate FE Hit Rate FE Hit Rate FE Hit Rate FE Hit Rate FE

Triplet 100% 50,000 100% N/A 0% 420,000 N/A N/A 100% 50,000
Uniform 100% 50,000 100% N/A 97% 20,000 100% N/A 100% 40,000

Scholl1 100% 50,000 99.70% N/A N/A N/A N/A N/A 100% 30,000
Scholl2 100% 5,000 100% N/A N/A N/A N/A N/A 100% 2,000
Scholl3 100% 10,000 80% N/A N/A N/A N/A N/A 88% 11,000

Schwerin1 100% 5,000 100% N/A N/A N/A N/A N/A 100% 4,000
Schwerin2 100% 5,000 100% N/A N/A N/A N/A N/A 100% 3,500
Wäscher 94.10% 500,000 100% N/A N/A N/A N/A N/A 71% 350,000

Average 99% 84,375 97% N/A 49% 220,000 100% N/A 95% 61,313

N/A denotes that the metric value was not provided or the algorithm was not executed on this instance.

was more efficient, requiring only 40,000 FEs compared to GGA-

CGT’s 50,000. HEA also achieved 100% and HACO managed a 97%

hit rate with 20,000 FEs.

In both Schwerin1 and Schwerin2 problem sets, GGA-CGT and

DpG-ACO achieved a 100% hit rate. Although DpG-ACO was more

efficient, requiring fewer function evaluations.

Regarding Wäscher, GGA-CGT had a 94.10% hit rate with a high

FE count of 500,000. DpG-ACO had a lower hit rate of 71% but

required fewer FEs (350,000). HEA achieved a perfect hit rate.

For Scholl1 and Scholl2 problem sets, both GGA-CGT and DpG-

ACO achieved a perfect hit rate of 100%, though DpG-ACO demon-

strated greater efficiency, requiring only 30,000 and 2,000 FEs com-

pared to GGA-CGT’s 50,000 and 5000 for Scholl1 and Scholl2, re-

spectively. However, despite HEA being slightly lower with a 99.70%

hit rate in Scholl1, but performed worse in Scholl2 with an 80% hit

rate. Moving to Scholl3, GGA-CGT upheld its 100% hit rate with

10,000 FEs, whereasDpG-ACO achieved a lower performance of 88%

hit rate, with a higher FE count of 11,000 compared to GGA-CGT.

However, HEA’s performance in Scholl3 dropped to an 80% hit rate,

illustrating the increasing complexity and challenges presented by

these problem sets. This analysis underscores DpG-ACO ’s consis-

tent efficiency, particularly in the Scholl2 set, while highlighting

the robustness of GGA-CGT across all Scholl problem sets.

On average, GGA-CGT led with a 99% hit rate but required a

higher number of FEs (84,375). GGA-CGT employs local search and

pre-processing procedures. HEA showed a promising 97% average

hit rate, but FE data was not available. HEA also have integrated

local search procedures. DpG-ACO closely followed with a 95% hit

rate and was more efficient with an average of 61,313 FEs. DpG-

ACO is competitive to both approaches without the use of any

local search or pre-processing procedures. HACO, with the low-

est average hit rate of 49%, required a significant number of FEs

(220,000).

In summary,DpG-ACO ’s performance was shown to be superior

in comparison to ant colony optimization algorithms, by achiev-

ing higher hit rates in fewer function evaluations and setting new

benchmarks for ACO algorithm approaches. The consistent per-

formance across a range of problem sets showed its effectiveness

in solving BPP problems compared to other ant colony variants

such as HACO and AntPacking. However, despite GGA-CGT and

HEA demonstrating high hit rates, DpG-ACO stands out for its

balance between efficiency and effectiveness, achieving high hit

rates with comparatively fewer function evaluations across most

problem sets. This highlights DpG-ACO ’s capability to deliver op-

timal solutions efficiently, positioning it as a competitive algorithm

in this comparison.

5 DISCUSSION
The results section demonstrates that both grouping and differential

pheromone significantly influence ACO’s performance in solving

various BPP sets, requiring fewer fitness evaluations. The effective-

ness of the grouping technique is recognised by its emphasis on

combining items as a singular item. This strategy not only allows

bins to be filled completely but also simplifies the decision-making

process by treating these items as singular items. Consequently, this

approach enables the ants to concentrate more effectively on other

individual items, facilitating the discovery of optimal combinations.

Additionally, it effectively reduces the search space by eliminating

these combined items from the dynamic construction graph.

In parallel, the differential pheromone technique contributes to

the overall performance by providing accumulative experience on

preferred paths for the ants. It does so by depositing an increased

amount of pheromone on parts of the solution that demonstrate

promising item combinations while depositing a few pheromones in

other parts. This differential distribution encourages ants to explore

and identify effective paths throughout these parts. Such a strategy

ensures a more accurate evaluation of the ants’ solutions, thereby

guiding them to the regions of interest within the search space in a

few fitness evaluations.

6 CONCLUSION
This paper presents a novel DpG-ACO approach that integrated a

grouping technique and a differential pheromone procedure into
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the ACO algorithm to create a new ACO formulation for bin pack-

ing. The analysis confirms the superiority of DpG-ACO over the

traditional ACO across various problem sets. Specifically, the statis-

tical significance of the performance improvements, success rates,

RMSE, and computational efficiency emphasize DpG-ACO ’s poten-

tial in this domain. When compared with other Ant Colony-based

algorithms, DpG-ACO ’s efficiency, both in terms of optima hits

and fitness evaluations, underlines its promise in addressing the

bin packing problem effectively. The DpG-ACO is the only ACO

approach that shows the performance on all the problem sets. Also,

the results are not only competitive but, in many scenarios, set new

benchmarks for ACO. Unlike other state-of-the-art algorithms, the

DpG-ACO does not utilise local search or pre-processing, which dis-

tinguishes our approach. Future research will focus on improving

DpG-ACO by guiding ants through a pheromone in group choice,

rather than random selection, and to assess any performance im-

provements this might deliver.
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