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Abstract

The ability to rapidly screen material perfor-
mance in the vast space of high entropy al-
loys is of critical importance to efficiently iden-
tify optimal hydride candidates for various use
cases. Given the prohibitive complexity of first
principles simulations and large-scale sampling
required to rigorously predict hydrogen equi-
librium in these systems, we turn to compo-
sitional machine learning models as the most
feasible approach to screen on the order of
10,000s of candidate equimolar alloys. We crit-
ically show that machine learning models can
predict hydride thermodynamics and capacities
with reasonable accuracy (e.g. a mean abso-
lute error in desorption enthalpy prediction of
∼5 kJ/molH2) and that explainability analy-
ses capture the competing trade-offs that arise
from feature interdependence. We can there-
fore elucidate the multi-dimensional Pareto op-
timal set of materials, i.e., where two or more
competing objective properties can’t be simul-
taneously improved by another material. This
provides rapid and efficient down-selection of
the highest priority candidates for more time-

consuming density functional theory investiga-
tions and experimental validation. Various tar-
gets were selected from the predicted Pareto
front (with saturation capacities approaching
2 H per metal and desorption enthalpy less
than 60 kJ/molH2) and were experimentally
synthesized, characterized, and tested amongst
an international collaboration group to validate
the proposed novel hydrides. Additional top-
predicted candidates are suggested to the com-
munity for future synthesis efforts, and we con-
clude with an outlook on improving the current
approach for the next generation of computa-
tional HEA hydride discovery efforts.

Introduction

Hydrogen is a promising energy carrier that
has significant potential to decarbonize eco-
nomic sectors that produce “difficult-to-abate”
emissions, including heavy duty transportation
(maritime shipping, rail, long-haul trucks), avi-
ation, high temperature industrial applications
(chemicals, steel making), and seasonal grid
storage.1 Yet the lack of the demonstrated com-
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mercial progress to-date mainly stems from sig-
nificant technical challenges related to the stor-
age, transportation, and generation of green hy-
drogen.2,3 In terms of hydrogen storage, inter-
metallic compounds and their substituted al-
loys have long been studied as promising candi-
dates because they achieve hydrogen volumetric
densities on par with or exceeding compressed
gas (e.g., 700 bar H2) at significantly lower
pressures.4–11 While lighter weight complex hy-
drides have been intensively investigated in the
context of light duty vehicle applications,12,13

high performance but heavier metal alloy-based
hydrides could be attractive in stationary ap-
plications where weight of the hydride bed is of
less concern, i.e. stationary and seasonal grid
storage and hydrogen compression.14–17

While exploration of intermetallic and al-
loy hydrides in novel structural/chemical space
has traditionally been an intuitive process
and guided by manually derived design rules
and thermodynamics models (see Ref. 18 and
references therein), recent years have also
seen a “big-data” approach to hydride discov-
ery. These span various applications and ap-
proaches: from deep learning methods for pre-
dicting superconducting hydrides19 or resolv-
ing hydride location in metal nanoclusters20

to tree-based models to predict metal hy-
dride thermodynamics for hydrogen compres-
sors materials.21 Compositional machine learn-
ing models22–24 have also been trained on ex-
perimentally collected hydride thermodynamic
data,25 then applied to high-throughput screen-
ing novel composition spaces to search for pos-
sible materials exhibiting desired hydride ther-
modynamics.26 This efficient modeling capabil-
ity becomes increasingly necessary when con-
sidering hydrides based on high entropy alloys
(HEAs),27,28 a relatively nascent class of hy-
drides29 first highlighted for their outstanding
volumetric capacities arising from exception-
ally large hydrogen to metal (H/M) ratios.30

The combinatorial explosion of compositional
design space in equimolar HEAs alone is simply
too large for brute-force experimental search31

or modeling with compute-intensive methods
like density functional theory (DFT). While
experimental validation of ML-predicted hy-

dride thermodynamics has indeed been demon-
strated,26,32 and the space of experimentally in-
vestigated HEA hydrides is ever growing,33–39

only a small fraction of possible compositional
space has been explored. Furthermore, a per-
spective on the possible upper bounds of HEA
hydride performance remains obtuse.

To address some of these opportunities and
further drive discovery with data-driven meth-
ods, we first improve upon our previously de-
veloped hydride thermodynamic models. v0.0.4
of the ML-HydPARK training database40 was
augmented to contain additional HEA hydride
thermodynamic properties from literature stud-
ies when the necessary pressure-composition-
temperature (PCT) measurements were per-
formed to extract the enthalpy and entropy of
hydrogen desorption (∆H and ∆S) and satu-
ration capacity (H/M).26,30,32,35,37,41 Thermody-
namic properties from metal hydrides investi-
gated for hydrogen compression were also added
to the training data.15 We then expanded the
scope of these models over our previous work
by predicting new properties like H/M. Ex-
plainability analyses42,43 of these models im-
portantly reveal the interdependence of dif-
ferent thermodynamic properties on the same
material features, which leads to unavoidable
and well-known trends in hydride design, i.e.
the enthalpy-capacity trade-off or the enthalpy-
entropy correlation effect. These represent
competing objectives that are detrimental for
most proposed use cases of hydrides, e.g., re-
ducing the desorption enthalpy of high capac-
ity hydrides reduces the required desorption
temperature but typically also reduces the ca-
pacity. When such competing objectives exist,
one seeks the Pareto optimal set of candidates
among all possible materials: candidates where
no further improvement of one objective (min-
imizing desorption enthalpy) can be achieved
without penalizing another objective (maximiz-
ing capacity). After screening 10,000s of HEA
candidate compositions with the ML models, a
multi-objective Pareto optimal front of just 10s
of materials can be ascertained.

Finally, predicted Pareto (or near Pareto) op-
timal materials were selected for experimen-
tal validation. Target HEA compositions were
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also selected to be similar to previously synthe-
sized compounds, yet different enough to chal-
lenge the ML-prediction task. In the end, Mg
containing compositions were selected for ex-
perimental validation (MgAlTiVCr, MgTiVN-
bCr, and MgTiVZrNbHf), even though there
are no Mg containing equimolar HEAs in the
training data. ML-predictions and experiments
are in good agreement, as well as the DFT
calculations used to gain insight into mech-
anisms and thermodynamics of hydrogen ab-
sorption in these HEAs. This holistic valida-
tion of our data-driven approach to synthesiz-
ing predicted Pareto optimal materials serves
as a blue print for further hydride discovery, al-
though there remains significant potential for
further acceleration. Currently, the speed at
which PCT measurements can be performed is
a bottleneck to experimental data acquisition
and model validation, especially when the ki-
netics of absorption and desorption are slug-
gish. Alternative methods could be explored in
the future to facilitate faster experimental data
acquisition.31,44–46

Methods

This section details (1) the experimental meth-
ods used for synthesizing, characterizing, and
testing high entropy hydrides; (2) the meth-
ods for machine learning model training, valida-
tion, interpretability analysis, high-throughput
screening, and Pareto optimality of HEA hy-
dride candidates; and (3) the density functional
theory methods for additionally understanding
hydriding mechanisms and predicting the ther-
modynamic driving forces and high capacities
in HEA hydrides.

Experiments

HEA synthesis. Due to the low melting
temperature of Mg and Al and the high vapour
pressure of Mg, the selected compositions were
directly synthesized as hydride phases follow-
ing a two step procedure: first, pre-alloys of
refractory elements were prepared by arc melt-
ing followed by reactive ball milling (RBM) of

the pre-alloy with the Mg/Al in powder form
under high H2 pressure. The pre-alloys TiVCr,
TiVCrNb and TiVZrNbHf were synthesized by
arc melting under Ar atmosphere from lumps
of Ti (Neyco, 99.99% metals basis), V (Neyco,
99.9% metals basis), Cr (Alfa Aesar, 99.99%
metals basis), Zr (Neyco, 99.95% metals basis),
Nb (Alfa Aesar, 99.95% metals basis) and Hf
(Alfa Aesar, 99.9% metals basis). They were
flipped and remelted 12 times to ensure chem-
ical homogeneity. The pre-alloys were crushed
in pieces by hammering and further used in the
second step of the synthesis. The reactive ball
milling of Mg (Alfa Aesar, 99.8% metals basis)
and Al (Strem Chemicals, 99% metals basis)
powders and the pre-alloy was performed un-
der 70 bar H2 pressure for 120 minutes process
following the procedure reported elsewhere.33

During the initial filling of the RBM vial with
H2 gas, the pre-alloys TiVCr and TiVCrNb
spontaneously absorb hydrogen at room tem-
perature forming hydrides. Thus, the hydrogen
content in the final compositions MgAlTiVCr
and MgTiVCrNb is calculated based on two
separate reactions: the hydrogenation of the
pre-alloy at room temperature and the hydro-
gen absorption during the RBM process. The
TiVZrNbHf pre-alloy did not show any hydro-
gen absorption during the initial filling of the
vial, in agreement with our previous results.30

For this last sample, we have demonstrated the
repeatability of the two-step synthesis by per-
forming the same procedure several times and
obtaining similar results in terms of both crys-
talline lattice of the hydride and its hydrogen
content.

X-ray diffraction. Structural characteriza-
tions of the hydride phases after RBM were
carried out by X-ray powder diffraction (XRD)
using the laboratory D8 advance Bruker instru-
ment (Cu Kα radiation λ = 1.5406 Å, Bragg-
Brentano geometry) in a 2θ range from 10 to
90◦.

Energy Dispersive X-Ray Spectroscopy.
Scanning electron microscopy (SEM) and
energy-dispersive spectroscopy (EDS) measure-
ments on MgTiVZrNbHf, MgTiVCrNb and

3
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MgAlTiVCr phases before and after hydrogen
cycling were performed on a Jeol JSM-7600F
thermal field emission scanning electron mi-
croscope equipped with an Oxford X-Max de-
tector and operated at 10 and 15 kV. The
samples were deposited onto aluminum stubs
using double-sided carbon tape.

PCT data collection. The absorption
pressure–composition–temperature (PCT)
isotherm of MgTiVZrNbHf was collected on an
automated PCTPro instrument from Setaram,
which allows accurate volumetric determination
of the amounts of hydrogen absorbed by the
sample by using calibrated volumes. The pres-
sure was monitored with high-accuracy pressure
transducers while the sample was maintained
at the desired temperature and dosed with hy-
drogen. Prior to PCT measurements, the sam-
ples were activated in vacuum at 653 K. The
enthalpy and entropy of MgTiVZrNbHf hydro-
genation were determined using a published
hybrid PCT/van’t Hoff method by measuring
a full hydrogen isotherm at 644 K, then reduc-
ing the sample temperature to 633 and 621 K
and re-measuring the equilibrium pressure.26

The absorption PCT isotherm for the MgAl-
TiVCr phase was collected using an in-house
built Sieverts apparatus, with similar method-
ology employed above, with initial tempera-
ture of 653 K, then repeating hydrogenation
measurements at 673 and 693 K, re-measuring
equilibrium pressure. Three absorption PCT
isotherms for the MgTiVCrNb were collected at
644, 654 and 664 K after activation in vacuum
at 683 K, by the help of an in-house built Siev-
erts apparatus. The thermodynamic properties
were determined by van’t Hoff method. Due to
sluggish kinetics and a highly sloped plateau,
the hydriding thermodynamics could only be
extracted by measuring the full PCT curves at
654 K and 664 K for the van’t Hoff analysis.

Machine learning

Training Data. Our models are trained
on the experimental metal-hydride thermody-
namic data contained in v0.0.4 of the ML-
HydPARK database,40 which includes re-

cent literature data on high entropy alloy
hydrides26,30,32,35,37,41 and metal hydrides for
compression.15,47 The thermodynamic quan-
tities available in the database are hydro-
gen per metal saturation capacity [H/M], the
∆H [kJ/molH2] and ∆S [J/(molH2·K)] of
the (de-)hydriding reaction, and, therefore,
the Gibbs free energy or equilibrium plateau
pressure at room temperature, ln(P o

eq/Po) =
−∆H/(RT o) + ∆S/R (where Po is the refer-
ence pressure of 1 bar).

Materials featurization. The Magpie strat-
egy, as implemented in Matminer,48 was em-
ployed for materials featurization. This strat-
egy permits derivation of an input feature vec-
tor to an ML model using composition alone,
rather than requiring an exact crystal struc-
ture which (especially for high entropy mate-
rials existing as solid solutions) is not readily
defined. The set of elemental properties, p,
utilized by Magpie (electronegativity, covalent
radius, etc.) and the molar fractions, f , in a
given composition are combined in various op-
erations like mean (p̄ =

∑
i pifi), average devia-

tion (p̂ =
∑

i fi|pi−p̄|), etc. While Magpie com-
prehensively covers standard elemental proper-
ties, we also include domain specific features
by supplementing p with ∆Hb, each element’s
binary hydride formation enthalpies, which we
obtained from computed entries in Materials
Project49 since this value may not be experi-
mentally accessible for non-hydriding elements.

Model training and validation. Gradient
boosting tree regressors (GBR) and classifiers
(GBC) have previously been found to be high-
performing models for predicting hydride ther-
modynamics and HEA phase stability.26 We
utilized the scikit-learn50 library’s implemen-
tation of these methods to train GBR models
for H/M, ∆H, ∆S, and ln(P o

eq/Po) with hyper-
parameters (see SI) that were tuned to mini-
mize over-fitting by minimizing the average K-
fold cross validation test set errors.51 This aver-
age K-fold cross validation test set error is the
expected model performance when predicting
hydriding properties of new HEA compositions
during screening.

4
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High-throughput compositional screen-
ing. A screening set of all 4-, 5-, and 6-
component equimolar high entropy composi-
tions from the possible element set E = {Mg,
Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb,
Mo, Pd, Hf, Ta}. This yields

(
17
6

)
+
(
17
5

)
+
(
17
4

)
=

20944 possible compositions. Taking the subset
of what are typically considered hydriding ele-
ments, H = {Mg, Ti, V, Zr, Nb, Pd, Hf, Ta},
we then remove any composition whose com-
bined molar fraction of H elements is less than
0.25 (since there are no experimental measure-
ments in the ML-HydPARK dataset on com-
positions that only contain non-hydriding ele-
ments). This reduces screening space to a to-
tal of 17,920 unique equimolar compositions,
and the hydriding properties of H/M, ∆H, ∆S,
and/or ln(P o

eq/Po) of each composition can be
predicted by the cross-validated ML models.

Pareto optimal materials Hydrogen stor-
age materials are well-known for competing
property trade-offs that hinder optimization of
overall material performance, e.g., the general
trade-off between gravimetric capacity and en-
thalpy of desorption.3 When multiple objec-
tives exist (that may or may not be in compe-
tition with each other), selecting optimal mate-
rials requires identifying the Pareto set, i.e. the
set of materials for which no two objectives can
be simultaneously improved by any other ma-
terial in the dataset. For HEA hydride candi-
dates, we seek to maximize four properties (cor-
respond to the goal of identifying low stability,
high capacity, and low material cost hydrides):
(1) −|∆H − 27|, (2) H/M, (3) Hwt%, and (4)
negative raw material cost. Objective 1 and 2
come directly from ML predictions, objective 3
is readily derived from objective 2, and objec-
tive 4 simply comes from tabulated elemental
costs.

Code and data availability. The jupyter
notebooks and data needed to reproduce this
study are made publicly available (https://
github.com/mwitman1/HEAhydrideMLv2 and
https://zenodo.org/record/7324809).

Density functional theory

Density functional theory (DFT) calculations
were performed to understand the atomistic
mechanisms of hydrogen absorption in selected
HEA compositions. All DFT calculations were
performed using the Vienna ab initio simulation
package,52 using the settings53–56 described in
the SI. For each composition (MgTiVZrNbHf,
MgTiVCrNb and MgAlTiVCr), 100 BCC ran-
dom alloy configurations (3x3x2 supercells = 36
metal atoms) and 100 FCC random alloy con-
figurations (3x2x2 supercells = 48 metal atoms)
were relaxed. For each composition and lattice
type, the lowest energy structure was selected
yielding Ealloy. For varying H/M ratios (from 0
to 2), N hydrogen atoms were inserted sequen-
tially in tetrahedral interstitial sites (ordered
from lowest to highest mean electronegativity
of the surrounding metal atoms). H placement
at an interstitial site was skipped if it violates
an H-H minimum distance constraint (i.e., is
within 1.8 Å of a previously placed hydrogen)
and the hydrided structures were relaxed yield-
ing Ehydride. The hydride decomposition en-
thalpy per mole hydrogen at 0K, ∆Hd, was then
calculated as,

∆Hd(N) =
1

(N/2)

(
Ealloy +

N

2
EH2 − Ehydride

)
.

(1)
Here Ehydride is the relaxed DFT energy of the
hydrided random alloy configuration with N
hydrogen atoms, Ealloy is the relaxed DFT en-
ergy of the same alloy configuration with no
hydrogen, and EH2 is the total energy of the
gas-phase H2 molecule. While ∆Hd is not the
same quantity as the experimentally measured
desorption enthalpy, it provides a proxy that
is tractably calculated with DFT and qualita-
tively comparable with experimentally observed
trends in HEA hydride stability.

Results and discussion

The materials discovery workflow and corre-
sponding results are structured as follows: (1)
ML models for hydride thermodynamics are
trained and their predictive capabilities as-
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sessed by comprehensive cross-validation; (2)
interpretability methods are applied to these
ML models to elucidate competing structure-
property relationships in optimal material de-
sign; (3) HEA hydride properties are predicted
and screened in high-throughput; (4) Pareto
optimal HEA hydride candidates are identi-
fied as validation targets; (5) experimental syn-
thesis, characterization, and testing confirms
high-performance of predicted these new tar-
gets; and (6) first-principles calculations cor-
roborate the experimentally-observed and ML-
predicted trends in these new materials, while
providing insights into the mechanism and ther-
modynamic driving forces for their high perfor-
mance.

Validating hydride thermodynamic mod-
els

First, we perform detailed cross validation of
our models to elucidate their predictive capa-
bilities. The first through fourth rows of Fig-
ure 1 respectively summarize the ML models’
performance on predicting hydride thermody-
namics for the properties contained in v0.0.4
of ML-HydPARK database: H/M, ∆H, ∆S
and ln

(
P o
eq/Po

)
. Figure 1a shows parity plots

for the test set predictions from a random
K=10-fold cross validation split across the en-
tire dataset. For each thermodynamic prop-
erty model, the expected mean absolute error
(MAE) of predictions on unseen compositions is
assessed by the average MAE across all K=10
test sets, ⟨MAE⟩K and shown in Table 1. For
each model, the average coefficient of determi-
nation, R2, across all 10 test sets is also shown.

Table 1: MAE and R2 averaged across K=10-
fold test sets for H/M, ∆H [kJ/molH2], ∆S
[J/(molH2·K)], and ln

(
P o
eq/Po

)
models.

Model H/M ∆H ∆S ln
(
P o
eq/Po

)
⟨MAE⟩K 0.14 5.4 13 1.5
⟨R2⟩K 0.80 0.87 0.67 0.89

Figure 1b breaks down the K-fold test set er-
rors against the underlying data distribution.
Higher accuracy is directly correlated with the

density of training data for a given target prop-
erty; thus, the highly non-uniform distribution
of all measured properties in ML-HydPARK
presents a challenge but also a significant op-
portunity for model improvement with the col-
lection of additional data. The challenge is
most pronounced when predicting materials at
the extrema of the property ranges. For ex-
ample, there are few hydrogen storage applica-
tions where one would not want to maximize
H/M, but the lack of data for H/M ≥ 2 chal-
lenges predictions in this regime. Another ex-
ample is the low density of training data for
∆H < ∼20 kJ/molH2, which is the typical re-
gion in which promising materials for hydrogen
compression are found. Nonetheless, the mod-
els are sufficiently accurate that we can high-
throughput screen HEA compositions for pri-
mary down-selection of hydrides that should be
prioritized for experimental testing. Further-
more, we anticipate model accuracy will con-
tinue to improve as more experimental data is
collected and as recent advancements begin to
more rigorously deal with data imbalance in the
context of regression (as opposed to the more
developed solutions for classification).57

Model interpretability and competing
structure-property relationships

Interpretability of ML models can critically dis-
cern underlying feature-property relationships,
and reveal how materials can be rationally mod-
ified to tune a desired property. For exam-
ple, the goal of SHapely Additive Predictions
(SHAP)43 is to compute the contribution, or
SHAP value, of each feature to a model’s pre-
diction of a particular instance (i.e., alloy com-
position in this study). The SHAP analysis
summary plot for each model, shown in Fig-
ure 1c, simultaneously reveals overall feature
importance and feature effects. For each possi-
ble input feature (listed on the y-axis), points
represent all instances in the dataset with their
SHAP values on the x-axis and color-coded by
the feature value. Thus, overall feature impor-
tance can be ranked by the sum of the absolute
SHAP values per feature; more importantly,
feature effects (i.e., SHAP values’ dependence

6
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Figure 1: Column (a) shows the test set parity plots for all K=10-fold cross validation models.
Color-coding corresponds to the density of training examples. Column (b) shows the histogram of
the training data (blue), where test set MAEs have been plotted within an individual histogram bin
(orange). The first, second, third, and fourth rows correspond to the models for H/M, ∆H, ∆S,
and lnP o

eq, respectively. Column (c) shows the SHAP values for each feature of each hydride in the
training dataset. The following appear as one of the five most important features in any given model:
νpa ≡ volume per atom of elemental solid, C ≡ column number, χ ≡ Pauling electronegativity, rc ≡
covalent radius, ∆Hb ≡ binary hydride formation enthalpy, Nv ≡ valence electron number, Nv,d ≡
d-valence electron number, SG# ≡ space group number of the elemental solid, Tm ≡ melting
temperature).

on the feature values) allows for interpretable
material design rules to be extracted.

For example, the dominant feature contri-

bution to ∆H, and hence ln
(
P o
eq/Po

)
, arises

from a strong correlation with ν̄pa, or the
compositionally-weighted, mean volume per

7
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atom of the elemental solids.22 Thus a simple,
first-order design rule to tune the stability of
metal hydrides can be discerned: reduce ν̄pa of
the alloy composition to reduce hydride stabil-
ity. An equally important observation is that
models for different thermodynamic properties
have significant overlap in the 5 globally most
important features and share similar feature ef-
fects (SHAP values’ dependence on feature val-
ues). We can therefore capture the intercon-
nected feature-property relationships that gen-
erally hinder one’s ability to independently tune
the desired thermodynamic properties of metal
hydrides. For example, ∆H’s dependence on
∆H̄b and S̄G# are qualitatively similar to ∆S’s,
indicative of the enthalpy/entropy compensa-
tion effect that generally constrains materials
design.25,58 The similar feature dependencies of
the H/M and ∆H models (e.g., SHAP values for
mean electronegativity, χ̄, and mean binary hy-
dride formation enthalpies, ∆H̄b) indicate the
limited ability to independently tune hydride
stability and capacity, a critical optimization
problem that must be overcome, as discussed
next.

Screening for Pareto optimal HEAs.

The hydriding thermodynamic properties were
predicted for the selected screening space of
17,920 unique equimolar compositions. The
predicted log equilibrium plateau pressures,
plotted as a function of the most important
ML feature, ν̄pa, span many orders of magni-
tude across the HEA screening set (Figure 2a).
This emphasizes the attractiveness of HEAs as
a materials platform for hydrogen applications
since they generally support continuous tun-
ing of properties via expansive possibilities for
chemical substitution and compositional modi-
fication.

The thermodynamic favorability of the hy-
driding reaction is closely correlated with sat-
uration capacity in materials-based hydrogen
storage: the stronger a material absorbs hy-
drogen, the higher its capacity. This correla-
tion is detrimental to most practical applica-
tions which require high gravimetric and/or vol-
umetric capacity (e.g., vehicular and stationary

storage) but relatively low ∆H (on the order of
27 kJ/molH2) to achieve hydrogen release with-
out excessive heating requirements. This funda-
mental trade-off is clearly captured in the HEA
hydride predictions shown in Figure 2b. Here
we plot the absolute deviation of ∆H from a
desired target enthalpy, in this case |∆H − 27|
kJ/molH2, versus the predicted saturation ca-
pacity in terms of H/M. In the presence of these
competing objectives, the Pareto front is the
set of materials for which both objectives can-
not be simultaneously improved by any other
material in the dataset. Figure 2b shows a 4
dimensional Pareto front based on additional
objectives, such as minimizing estimated raw
material cost (USD/kg) and maximizing gravi-
metric saturation capacity, Hwt.% (as derived
from predicted H/M and the molar mass of the
composition). Finally, Figure 2c shows the it-
erative evolution of the Pareto front as previ-
ous Pareto front materials are removed from the
screening dataset.

For experimental validation we chose mate-
rials that were lying on or near the Pareto
front, similar to previous successful HEA hy-
drides, and/or had a high ratio of predicted
H/M to formula weight (i.e., high gravimetric
capacity for its H/M ratio). The materials se-
lected for experimental testing in this study in-
clude MgTiVZrNbHf, MgTiVCrNb, and MgAl-
TiVCr. Another interesting Pareto front ma-
terial is the low-cost, low-weight MgTiCrMn.
Although the composition is predicted to be ca-
pable of forming a solid solution mixture using
a gradient boosting classifier that essentially re-
produces the Hume-Rothery rules,26,59 our ex-
perimental efforts to synthesize a pure BCC or
FCC HEA phase were not successful. However,
many other interesting materials lying along the
Pareto front can and should be tested in future
studies. MgTiCrMnFe, for example, contains
no high raw metal costs and has relatively low
predicted ∆H = 30 kJ/molH2 with relatively
high capacity of H/M = 1 and Hwt.% = 2.1.
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Figure 2: (a) Screening of 17,920 unique equimolar HEA compositions for predicted equilibrium
plateau pressure plotted vs. the primary feature for this model, ν̄pa, where the color coding demon-
strates the density of candidate materials in that space. (b) The 4 dimensional Pareto front (cyan
line) that maximizes −|∆H − 27|, H/M, Hwt.%, and negative raw material cost is projected onto
a 2 dimensional plot using the same density coloring as (a). Various HEAs of interest are shown
with special markers. (c) Evolution of the ith Pareto front when all materials in the i− 1th Pareto
front materials have been removed.

Synthesizing, characterizing, and testing
HEA hydrides

The three selected compositions MgTiVZrNbHf,
MgAlTiVCr and MgTiVCrNb were success-
fully prepared by a two-step method mainly
due to the Mg high vapour pressure that hin-
ders the use of high temperature melting tech-
nique. The RBM technique under high H2

pressure permits direct production of hydride
phases of these compositions with high hy-
drogen content: 1.6, 1.34 and 1.85 H/M for
MgTiVZrNbHf, MgAlTiVCr and MgTiVCrNb,
respectively. The crystalline lattice of the ob-
tained hydrides phases is FCC (Fm3̄m) as
shown in Figure 3, typical for full hydrides
of BCC high entropy alloys. The lattice pa-
rameters of the FCC hydrides are 4.612(2) Å,
4.464(5) Å, and 4.297(2) Å for MgTiVZrNbHf,
MgTiVCrNb, and MgAlTiVCr, respectively. A
small amount of secondary amorphous phase
(possibly poorly crystalline BCC phase) can
be noticed at 2θ around 40o for the composi-
tion MgAlTiVCr. This might explain the low-
est hydrogen capacity of this phase relative to
the other compositions and be consistent with
slight and small Al enrichment zones observed
by EDS (Figure 3). It is worth mentioning that

hydrogen can be desorbed from these initial hy-
drides by heating up to 450 oC under secondary
vacuum and the desorbed phases adopt a BCC
lattice (Im3̄m), as expected for these materials
(see TDS measurements and XRD patterns of
the BCC phases after desorption in the SI).

EDS maps before and after H2 cycling are
also shown in Figure 3. Polished surfaces were
not possible due to powder form of the HEAs
upon hydrogenation; regardless, no phase seg-
regration was noticeable in the EDS maps for
any of the compositions. EDS spectra support-
ing near-equimolar elemental compositions are
shown in the SI. The bottom of Figure 3 shows
PCT curves for each composition, with an inset
corresponding to the van’t Hoff analysis from
which thermodynamic parameters can be de-
rived. Table 2 summarizes the ML predictions
vs. experiment for the Pareto axis quantities
(∆H, H/M) visualized in Figure 2.

ML performance on Mg-based HEA hy-
drides

The ML model predicts a ∆H ranking of Mg-
TiVZrNbHf ¿ MgTiVCrNb ¿ MgAlTiVCr. The
significant destabilization of MgAlTiVCr rela-
tive to MgTiVZrNbHf is correctly predicted as

9
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Figure 3: Experimental characterization of HEA hydrides based on MgTiVZrNbHf (left column),
MgTiVCrNb (middle column), and MgAlTiVCr (right column). For each material, XRD of the
RBM synthesized FCC hydride (top), EDS maps of hydrided and desorbed samples (middle), and
PCT curves (bottom) and van’t Hoff analysis (bottom inset) are shown.
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well as the directional effect on ∆H by Mg ad-
dition to the AlTiVCr and TiVZrNbHf parent
alloys (Table 2). The ML model’s ∆H predic-
tions have the highest discrepancy with the Mg-
TiVCrNb experiment. Yet experimental uncer-
tainty is high (∆H = 68 ± 9 kJ/molH2) due
the highly sloped plateau of this sample and
limited range of temperature where the PCT
isotherms could be collected. Furthermore, if
one performs a van’t Hoff analysis using only
the two highest temperature and two lowest
temperature PCT curves, one obtains widely
varying ∆H predictions of 52 or 82 kJ/molH2,
which are below and above the ML prediction,
respectively. This highlights the difficulty of ex-
tracting thermodynamic parameters when PCT
curves are highly sloped and the measurement
temperature range limited (see SI).

The experimental H/M saturation capacity
was extracted from the last PCT measurement
point for each sample. This value slightly un-
derestimates the true saturation capacity of
MgAlTiVCr and MgTiVCrNb, neither of which
could be saturated at the elevated temperatures
needed to ensure kinetics were fast enough to
produce equilibrated PCT measurements in a
reasonable amount of time. Nonetheless, all
ML predictions are in reasonable quantitative
agreement with experiment and correctly cap-
ture the directional change in H/M with Mg’s
addition in the parent alloy. Even better quan-
titative agreement should exist between MgAl-
TiVCr and MgTiVCrNb predictions and exper-
iment, given that the true saturation capacity
is higher than the maximum capacity observed
in the non-saturated PCT measurements.

Hydriding mechanism and stability
trends from DFT

Mechanistic insight into the thermodynamic
driving force for HEAs’ BCC alloy to FCC hy-
dride transitions can be discerned from DFT
calculations, and therefore used to predict hy-
dride stability trends as a function of composi-
tion to corroborate with machine learning pre-
dictions or experiments. The hydride decom-
position enthalpy per mole hydrogen at 0K,
∆Hd, was computed (see Methods and Equa-

tion (1)) for each synthesized composition in
both BCC and FCC lattices and as a func-
tion of H/M, as shown in Figure 4. Gener-
ally we observe that ∆Hd of MgTiVZrNbHf ¿
MgTiVNbCr ¿ MgAlTiVCr. This is in good
qualitative agreement with the ML model pre-
dictions and experimental PCT measurements
of ∆H for MgTiVZrNbHf and MgAlTiVCr (57
and 44 kJ/molH2, respectively). Our DFT re-
sults also indicate that at higher hydrogen load-
ing, the ∆Hd of the FCC hydride is generally
higher than that of the BCC hydride for all
three compositions. This again is in good qual-
itative agreement with the experimentally ob-
served BCC alloy → FCC hydride transition for
all three HEA compositions, confirming the hy-
drogenation enthalpy is the driving force. For
the two hydrides with the highest experimen-
tal capacity that approaches H/M = 2 (Mg-
TiVZrNbHf and MgTiVNbCr), the FCC ∆Hd

is non-monotonic as a function of H/M which
and further increases as H/M →2. While for the
lowest capacity phase (MgAlTiVCr), the FCC
∆Hd is monotonically decreasing.

Interestingly, we found that for the most sta-
ble alloy configurations of all three composi-
tions, the initial BCC alloy configurations re-
main as BCC after DFT structural optimiza-
tions, and the initial FCC alloy configurations
transform into BCC after DFT structural op-
timizations, which implies the intrinsic insta-
bility of FCC alloy structures. On the other
hand, for the hydrides of each alloy composi-
tion, the initial BCC hydrides undergo signifi-
cant structural relaxations and no space group
symmetry can be identified from the optimised
structures, while the initial FCC hydrides re-
main as FCC after DFT structural optimiza-
tions. In summary, for selected candidate ma-
terials, DFT calculations can (1) unravel the
thermodynamic driving force for the high H/M
ratios observed in some of these materials, (2)
understand the driving force for the BCC →
FCC phase transition, and (3) confirm the hy-
dride stability trends as predicted by ML and
observed experimentally.
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Table 2: ML-predicted vs experimental values extracted from PCT curves for ∆H [kJ/molH2] and
saturation capacity (H/M) for HEAs tested in this work. RBM as-synthesized H/M are shown for
comparison. Experimental uncertainties are computed from the linear regression in the van’t Hoff
analysis under the assumption of residual normality. †Non-Mg containing analogs from previous
literature26,30,37 existed in the training data for this study (i.e., they correspond to training rather
than test set predictions). ‡True saturation capacity is underestimated due to incomplete saturation
at the high temperatures that were needed for PCT measurements.

HEA ∆HML ∆HPCT H/MML H/MPCT H/MRBM

TiVZrNbHf† 61 62 2.0 2.1 -
MgTiVZrNbHf 59 57 ± 4 1.5 1.8 1.6
TiVCrNb† 47 49 1.8 1.9 -
MgTiVCrNb 55 68 ± 9 1.5 1.1‡ 1.85
AlTiVCr† 41 42 0.57 0.49 -
MgAlTiVCr 51 44 ± 0.2 0.83 0.51‡ 1.34
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Figure 4: DFT-computed hydride decomposi-
tion enthalpy (at 0 K) for random alloy configu-
rations as a function of H/M for the three HEAs
synthesized in this work. For each composition,
the decomposition enthalpy was calculated for
both the FCC and BCC lattices.

Conclusions

High entropy alloys and their hydrides present
an intractably large compositional design space
for experiments or costly first-principles calcu-

lations like DFT, so efficient data-driven models
that (1) capture key materials descriptors and
(2) can predict primary thermodynamic eval-
uation criteria are critical. We have demon-
strated how explainable machine learning mod-
els capture the dependence of different thermo-
dynamic properties (e.g., ∆H, ∆S, or H/M)
on the same critical materials features, which
in turn generally produces unavoidable trade-
offs in desired hydride thermodynamic proper-
ties. These include enthalpy-entropy compen-
sation (e.g., positive correlations in ∆H vs. ∆S)
as well as the capacity-enthalpy trade-off (e.g.,
H/M vs. ∆H) in the design of optimal mate-
rials. When high-throughput screening novel
HEA hydride compositions, such trade-offs are
explicitly captured and the selection of opti-
mal materials can be re-framed as a Pareto
optimal selection task. In this work we se-
lected various Mg-containing HEAs that were
predicted to be on or near the Pareto front
for experimental synthesis and validation, and
good agreement was obtained between ML pre-
dictions, DFT analysis, and experiments. Sac-
rificing capacity for decreased ∆H was unavoid-
able in these selected materials, which clearly
highlights the need for predicting and further
synthesizing Pareto efficient materials.

Moving forward, significant work remains on
both computational and experimental fronts.
For example, an ability to directly model the
PCT curves of a proposed HEA with DFT-level
accuracy would provide a step change improve-
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ment in the predictive capabilities and better
direct experimental efforts. The continued ac-
quisition and integration of literature experi-
ments into the training data will be paramount
for continued improvement of the compositional
model, especially in property space with low
amounts of data. Furthermore, databases of hy-
drogen absorption/desorption kinetics need to
be assembled so that this quantity can be added
to the multi-objective Pareto front. On the ex-
perimental front, higher-throughput efforts to
obtain metal hydride thermodynamics (e.g., us-
ing high-pressure calorimetry methods) could
further accelerate the validation of Pareto opti-
mal hydrides, provide more data for improved
ML models, and even allow active learning feed-
back loops between ML and experiment for op-
timal materials design.
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