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A B S T R A C T

Accurate gestational age (GA) prediction is crucial for monitoring fetal development and ensuring optimal 
prenatal care. Traditional methods often face challenges in terms of precision and prediction efficiency. In this 
context, leveraging modern deep learning (DL) techniques is a promising solution. This paper introduces a novel 
DL approach for GA prediction using fetal brain images obtained via magnetic resonance imaging (MRI), which 
combines the strength of the Xception pretrained model with a multihead attention (MHA) mechanism. The 
proposed model was trained on a diverse dataset comprising 52,900 fetal brain images from 741 patients. The 
images encompass a GA ranging from 19 to 39 weeks. These pretrained models served as feature extraction 
components during the training process. The extracted features were subsequently used as the inputs of different 
configurable MHAs, which produced GA predictions in days. The proposed model achieved promising results 
with 8 attention heads, 32 dimensionality of the key space and 32 dimensionality of the value space, with an R- 
squared (R2) value of 96.5 %, a mean absolute error (MAE) of 3.80 days, and a Pearson correlation coefficient 
(PCC) of 98.50 % for the test set. Additionally, the 5-fold cross-validation results reinforce the model’s reliability, 
with an average R2 of 95.94 %, an MAE of 3.61 days, and a PCC of 98.02 %. The proposed model excels in 
different anatomical views, notably the axial and sagittal views. A comparative analysis of multiple planes and a 
single plane highlights the effectiveness of the proposed model against other state-of-the-art (SOTA) models 
reported in the literature. The proposed model could help clinicians accurately predict GA.

1. Introduction

Age-related changes in the human brain occur throughout life due to 
a complex combination of biological and genetic factors [1]. Given that 
age-related brain alterations are known to be region-specific and impact 
behavior and cognition, magnetic resonance imaging (MRI) may be a 
vital biomarker for brain health since age-related alterations in the brain 
are region-specific and have been linked to behavioral and cognitive 
functions [2,3]. The brain ages of healthy adults and children have been 
accurately predicted by structural MRI research in the past [4]. Patients 
had significantly greater predicted age differences (PADs) than healthy 

subjects did, which is thought to be a risk factor for abnormal brain 
aging or maturation. A large PAD is linked to the severity of the con
dition, deterioration in cognitive function, and the possibility of devel
oping Alzheimer’s disease in the future, according to several long-term 
studies [5]. As a result, precise brain age estimation can offer medically 
meaningful insights into brain health, enabling the identification of 
anatomical anomalies linked to brain illnesses and the prediction of 
future hazards.

With increasing GA, the human fetal brain exhibits dynamic struc
tural changes. Quantitative structural brain parameters under strict 
genetic control, such as surface area, curvature, sulcal depth, brain 
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volume, cortical gyrification, and modest intersubjective differences, are 
strongly linked with GA in typically developing (TD) fetuses [6]. 
Furthermore, compared to those in TD fetuses, abnormal structural 
characteristics have been detected more frequently in fetuses with 
ventriculomegaly, congenital cardiac disease, and Down syndrome [7]. 
Thus, fetal brain age prediction using structural MRI features may be 
helpful in identifying brain development problems and the likelihood of 
unfavorable developmental consequences.

For several reasons, it is essential to estimate GA accurately in ob
stetrics. First and foremost, it is crucial for individual women when 
making obstetric decisions, such as determining which patients would 
benefit from treatments such as magnesium sulfate for neuroprotection 
or steroids for fetal lung maturation [8]. It is also crucial when inter
preting diagnostic data such as malpresentation or a low-lying placenta, 
which are only pertinent in the near future. Second, understanding GA is 
essential at the neonatal level to identify various forms of tiny, vulner
able neonates, such as those who are small for GA or small due to pre
term birth, so that they can receive the care they need. Finally, as 
preterm delivery is the world’s leading cause of death for children under 
five years of age, understanding GA at the population level is crucial to 
comprehending the prevalence of preterm birth [9]. Although it is 
feasible to estimate GA at delivery using neonatal assessment, this in
formation is not available for prenatal care, and estimations frequently 
differ greatly from the gold standard by as much as three to four weeks. 
The use of biomarkers, such as those in maternal serum and urine, 
umbilical cord blood, and newborn heel prick testing, is one method to 
improve the assessment of GA [10]. An accurate, dependable, and 
reasonably priced biomarker that could estimate GA in this manner 
would undoubtedly be advantageous. Although a number of potential 
biomarkers have been studied, no systematic assessment of the ability of 
these biomarkers to accurately measure GA has been performed.

The research motivation can be summarized as follows:

(a) To enhance the understanding of key aspects of fetal brain 
maturation, a precise timetable for cortical gyrification and 
morphological changes was established.

(b) To fill the research gap in fetal brain-based age estimation, pre
natal care and outcomes should be improved by enabling early 
identification of developmental deviations for timely 
intervention.

(c) To develop a more accurate and robust method for predicting GA 
from fetal brain MR images, challenges such as variable image 
quality and motion artifacts must be overcome.

DL presents a promising avenue for GA prediction from fetal brain 
MR images, offering several advantages over traditional manual sys
tems. First, DL algorithms have the capacity to automatically learn 
intricate patterns and features from large datasets, thus potentially 
enhancing the accuracy and robustness of GA predictions. DL-based GA 
prediction models have the potential to streamline clinical workflows 
and reduce reliance on manual assessment methods. By automating the 
GA estimation process, clinicians can save time and resources, allowing 
for more efficient prenatal screening and monitoring practices.

The aim of this work was to predict GA from fetal brain MR images, 
an area with very limited existing research, highlighting the novelty and 
significance of this work. The main contributions of this research are as 
follows:

1. This research proposes a customized and novel DL model by 
combining the strengths of Xception with MHA for feature extraction 
and regression to handle the various spatial perspectives of fetal 
brain MRI datasets to achieve state-of-the-art GA prediction.

2. Unlike most existing studies that rely on single-plane imaging, the 
effectiveness of the proposed model was analyzed across different 
imaging perspectives (axial, coronal, and sagittal): single planes, 
combinations of any two planes and combinations of all three planes.

3. The performance of the proposed model was compared with that of 
different transfer learning models (TLMs) through an ablation study 
to further demonstrate its effectiveness for GA prediction.

4. The performance of the model was also compared with that of SOTA 
models in terms of GA prediction to demonstrate its competitiveness 
and potential advancements in the field.

2. Literature review

The importance of accurately predicting GAs has led researchers to 
employ diverse methodologies for this purpose. Several studies have 
been conducted using different ML and DL algorithms on MR images or 
ultrasonogram-based biometrics to predict GA accurately.

Lu et al. [11] reported promising results when an ensemble model 
consisting of random forest, XGBoost, and LightGBM algorithms was 
used. This study highlighted that models incorporating both Fetal 
Fraction (FF) and Routine Clinical Tests (RCTs) yielded more accurate 
GA predictions than those using only FF or RCTs individually. The 
ensemble model achieved 64.3 % accuracy, with a mean relative error of 
7. They suggested that a hybrid approach that combines multiple sour
ces of data might enhance GA prediction accuracy. Additionally, using 
advanced modeling techniques or ensembles could further improve 
predictions, especially for the challenging 19–38-week range that is of 
particular interest in this case. However, they did not mention whether 
they predict age in days or weeks. Another study by Diego et al. [12] 
developed an ML pipeline using multimodal fetal MRI data to predict GA 
at birth, achieving an R2 of 0.51 and a mean absolute error of 2.22 
weeks. The pipeline demonstrated high accuracy (0.88), sensitivity 
(0.86), and specificity (0.89), outperforming previous methods. The key 
predictive features included cervical length and placental T2 values. 
This work provides a proof of concept for using regression models in 
preterm birth prediction and suggests future expansion to improve 
stratification within the preterm cohort. A study by Ross et al. [13] 
developed a logistic regression model to predict adverse immediate 
neonatal adaptation (INA) in fetuses with suspected severe fetal growth 
restriction after 34 gestational weeks. Using data from 1220 women, the 
model incorporated six prelabor features and achieved an area under the 
curve of 78 %, with a sensitivity of 66 % and a specificity of 83 %. The 
strong performance of the model demonstrated the potential to predict 
INA risk using prelabor characteristics, suggesting early intervention 
strategies. Another study by Mahmood et al. [14] presented an 
end-to-end framework for segmenting, measuring, and estimating fetal 
GA and weight from 2D ultrasound images of the fetal head. Using eight 
fine-tuned segmentation architectures and a weighted voting method to 
create an ensemble transfer learning model (ETLM), the framework 
achieved high segmentation accuracy (98.53 % mean intersection over 
union), precise measurements (1.87 mm mean absolute difference), and 
low prediction errors for the GA (0.03 % MSE) and estimated fetal 
weight (0.05 % MSE). Validation against expert assessments and lon
gitudinal references confirms the framework’s reliability and superiority 
over SOTA methods. Another study presented by Lee et al. [15] pre
sented a SOTA ML model for estimating GA using standard ultrasound 
images without measurement data. After training and validation on two 
independent datasets, the model was blinded to the ground truth of the 
GA. It compensates for variations in fetal size and remains accurate even 
in cases of intrauterine growth restriction. The model estimates GA with 
a mean absolute error of 3.0 days in the second trimester and 4.3 days in 
the third trimester, outperforming current ultrasound-based clinical 
methods. This approach improves the accuracy of pregnancy dating, 
particularly later in gestation.

Shen et al. [16] introduced an end-to-end, attention-guided DL 
model for predicting fetal brain MR images. The model achieved an R2 

score of 0.945, a mean absolute error of 6.7 days, and a concordance 
correlation coefficient of 0.970. After training on 741 images from 19 to 
39 weeks gestation, the model demonstrated strong generalizability 
across independent datasets from four institutions, achieving R2 scores 
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of 0.81–0.90 with minimal fine-tuning. This regression algorithm offers 
a robust, automated tool for assessing in utero neurodevelopment and 
estimating GA beyond the first trimester. Liyue Shen et al. [17] imple
mented an end-to-end model with an attention-guided DL method to 
predict the GA. The model results included an R2 value of 0.945, a mean 
absolute error of 6.7 days, and a concordance correlation coefficient of 
0.970. They used a heterogeneous dataset of 741 developmentally 
normal fetal brain images to build a convolutional neural network. Zhao 
et al. [18] proposed an attention-based Hemispheric Relation Inference 
Network (HRINet) to leverage the inherent structural lateralization of 
the brain during early development. This model captures the 
inter-hemispheric relationships using a graph attention mechanism, 
transmitting lateralization information as features to describe the 
interactive development between the bilateral hemispheres. The HRINet 
was applied to estimate the brain age of 531 preterm and full-term ne
onates from the Developing Human Connectome Project (dHCP) data
base. Compared with other benchmark models, HRINet demonstrated 
superior performance in predicting perinatal brain age, achieving a 
mean absolute error of 0.53 and a determination coefficient (R2) of 0.89. 
The generalizability of HRINet was further validated on an independent 
dataset collected from the Gansu Provincial Maternity and Child Care 
Hospital. Additionally, when applied to a separate dataset consisting of 
47 scans of preterm infants at term-equivalent age, the model predicted 
significantly lower ages than chronological age did, indicating delayed 
brain development in premature infants. However, this study has several 
limitations. The sample size was relatively small, and although the 
model’s effectiveness and generalizability were validated on an addi
tional independent dataset, further testing on a larger dataset with 
diverse demographic groups is necessary to assess the model’s gener
alizability fully. Moreover, while chronological age has been commonly 
used as the ground truth in brain age prediction studies, it may not fully 
capture the individual variations in brain development, highlighting the 
need for more comprehensive metrics in future research. Kojita et al. 
[19] trained a DL model with T2-weighted images from 126 training 
cases and 29 validation cases. Although the predicted value of ρc for BPD 
(ρc = 0.920) was moderate, the model’s ρc (ρc = 0.964) was substantial. 
An attention-based DL model was used to predict a GA with an 
end-to-end framework by Liyue Shen et al. [20] This work combines key 
insights from multiview MR images, including axial, coronal, and 
sagittal MR images, with age-activated weakly supervised attention 
maps. The extensive experiments revealed an age prediction perfor
mance with an R2 of 0.94 via multiview MRI and attention. Ran et al. 
[21] conducted a study at Wuhan Children’s Hospital, and a total of 1, 
327 MR images were collected from 157 healthy fetuses between 22 and 
34 weeks of gestation. These images were utilized to evaluate the per
formance of a novel algorithm, JoCoRank, designed for fetal brain age 
estimation. The JoCoRank algorithm, which incorporates joint correla
tion learning with ranking similarity regularization, demonstrated 
promising results, with an average MAE of 0.693 ± 0.064 weeks and an 
R2 coefficient of 0.930 ± 0.019. Despite its success, the study has certain 
limitations. The method employed by JoCoRank focuses solely on 
single-view (coronal orientation) fetal brain MR images and does not 
leverage the information available from other orientations, such as axial 
and sagittal views. Ziteng et al. [22] introduced the Pyramid Squeeze 
Attention (PSA)-guided Dynamic Feature Fusion CNN (PDFF-CNN), 
which is designed to robustly predict gestational age from fetal brain MR 
images, particularly from an imbalanced dataset. The PDFF-CNN 
framework consists of four key components: a transformation module, 
a feature extraction module, a dynamic feature fusion module, and a 
balanced mean square error (MSE) loss function. The transformation and 
feature extraction modules utilize the PSA to learn multiscale and 
multi-orientation feature representations through a parallel 
weight-sharing Siamese network. The PDFF-CNN was evaluated on an 
imbalanced dataset comprising 1,327 routine clinical T2-weighted MR 
images from 157 subjects. The model demonstrated promising perfor
mance in predicting gestational age, achieving a mean absolute error of 

0.848 weeks and an R2 of 0.904. Additionally, attention activation maps 
generated by PDFF-CNN highlighted regional features that significantly 
contributed to gestational age prediction at various stages of gestation. A 
limitation of this study is that it only involves the prediction of gesta
tional age for healthy fetuses, which may restrict the generalizability of 
the model to other populations. Mengting et al. [23] used 577 T1 MR 
images of preterm neonates from two different datasets. The NEOCIVET 
pipeline was used to generate cortical surfaces and morphological fea
tures, which were then input into a Graph Convolutional Network (GCN) 
to predict brain age. The brain age index (BAI) is defined as the differ
ence between the predicted brain age (PBA) and chronological age. The 
results indicated that brain morphology and GCN-based age prediction 
for preterm neonates without brain lesions (mean absolute error: 0.96 
weeks) outperformed conventional machine learning methods that do 
not utilize topological information. Structural equation modeling (SEM) 
revealed that BAI mediated the effects of preterm birth and postnatal 
clinical factors on neurodevelopmental outcomes at 30 months but not 
the effects of perinatal brain injuries. Despite the strengths of this study, 
including its large dataset, it has several limitations. The dataset was 
heterogeneous, consisting of data from two different sources, and the 
MRI scans from UCSF were acquired using a different protocols and MRI 
strengths. Although harmonization techniques were applied, the num
ber of participants who underwent clinical evaluations and follow-up 
neurodevelopmental assessments was relatively small. Additionally, 
the significant time gap between the neonatal period and infancy at 30 
months may limit the model’s predictive power. Ansari et al. [24] pre
sented a study in which they used a DL approach with a CNN based on 
the Inception architecture to estimate brain age from 20-min, 
single-channel EEG recordings in preterm neonates, achieving a mean 
absolute error (MAE) of 0.78 weeks. Compared with traditional tech
niques, this method significantly reduces the recording duration and 
complexity. The model effectively differentiates between normal and 
severely abnormal neurodevelopmental outcomes and demonstrates 
robust accuracy on an independent dataset, highlighting its potential for 
clinical application. Using routine clinical T2-weighted MR images of 
659 fetal brains, Wen et al. [25] developed an attention-based deep 
residual network for fetal brain age prediction using T2-weighted MR 
images, achieving a mean absolute error of 0.767 weeks and an R2 of 
0.920. The model quantified predictive uncertainty to detect anomalies 
such as a small head circumference and malformations with high diag
nostic power (AUC of 0.90). Attention maps revealed key regional fea
tures for age estimation. This approach shows promise for clinical 
prenatal diagnosis.

Kim et al. [26] investigated functional brain connectivity develop
ment in utero during the second and third trimesters using 110 
resting-state functional magnetic resonance imaging (MR) scans from 95 
healthy fetuses. Representational similarity analysis revealed that 
intersubjective similarity in fetal functional connectome patterns 
correlated with GA differences (r = 0.28, P < 0.01) and showed GA 
sensitivity, particularly in the frontal area. A critical subnetwork pre
dicted GA with a mean absolute error of 2.72 weeks, and functional 
connectome patterns reliably predicted individual fetuses’ GA (r = 0.51, 
P < 0.001). The study also revealed a principal brain network that tracks 
fetal brain maturity, resembling the global signal in the adult brain. 
Mazher et al. [27] presented an automatic multitissue fetal brain seg
mentation model using inception residual and dense spatial attention 
blocks. Three GA prediction methods, including radiomics-based ap
proaches, achieved strong performance (RMSE: 1.42), as validated on 80 
fetal brain MR images. The effectiveness of IRMMNET, demonstrated by 
a Dice score of 0.791, highlights its potential for clinical applications 
such as tumor segmentation. Yasuyuki et al. [28] evaluated the accuracy 
of a DL model in predicting GA from fetal brain MR images by comparing 
it with biparietal diameter (BPD) measurements. The model, trained on 
126 patients and validated on 29 patients, demonstrated substantial 
concordance (ρc = 0.964), outperforming the BPD model (ρc = 0.920). 
However, both methods show increasing discrepancies from the 
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reference standard as the GA increases, with the model’s upper limit of 
prediction being significantly shorter than that of the BPD (2.45 weeks 
vs. 5.62 weeks). DL holds promise for accurate GA estimation from fetal 
brain MR images acquired after the first trimester. Farzan et al. [29] 
developed an AI model to predict GA using biometric measurements 
from fetal brain MR images, specifically BPD, frontooccipital diameter 
(FOD), and head circumference (HC) measurements. Using a dataset of 
52 normal fetal MR images, the AI model’s predictions showed strong 
correlations with manual measurements and high accuracy, particularly 
with HCs. The results varied depending on the reference used, with 
Pearson correlation coefficients greater than 0.97 for all comparisons. 
This AI approach enhances accuracy and convenience in estimating GA, 
demonstrating significant potential for improving prenatal care through 
precise fetal development assessment and pregnancy monitoring.

While some authors have attempted to predict GAs, their results have 
often been subpar, estimating age in weeks and lacking precision. 
Furthermore, very few studies have focused on predicting GAs between 
19 and 38 weeks, as this period is longer than the other periods 
mentioned in SOTA; therefore, a highly efficient model for handing 
significant age variation is needed to correctly predict GAs. The devel
opment of models that can handle this longer range will be crucial for 
improving prediction accuracy across a wider gestational spectrum. 
Furthermore, most studies did not analyze results using both single- 
plane and multiplane imaging; they typically showcased only one 
plane. Additionally, many studies have used a limited number of pa
tients as well as a limited number of training images, resulting in models 
that lack robustness. Addressing these gaps by employing advanced DL 
techniques, focusing on direct age prediction, utilizing multiplanar im
aging, and involving larger patient cohorts will increase the accuracy 
and reliability of GA prediction models.

3. Methodology

The methodology section outlines the various steps and techniques 
employed in this research, from the dataset description to the final 
evaluation of the proposed model’s performance. Below, the overall 
model architecture, dataset preprocessing, and specific methodologies 
used are discussed.

3.1. Overall model architecture

The overall model architecture shown in Fig. 1 clearly presents the 
workflow for predicting the GA. It starts with preprocessing fetal brain 
MR images by resizing and scaling the images. The dataset is split into 
training (80 %) and testing (20 %) sets. Initial feature extraction is 
carried out using the TLM, followed by deep feature extraction with the 
MHA mechanism to capture intricate relationships within the learned 
features, enhancing the model’s discriminative capabilities, and a dense 
layer is added for the regression task. It aims to improve spatial hier
archies and computational efficiency. The best-performing model was 
saved and used to predict the GA. The performance of both the single 
plane (axial, coronal, and sagittal) and the combination of all three 
planes (multiple planes) was analyzed by the proposed model. This 
workflow demonstrates a comprehensive approach for predicting GA 
from fetal brain MR images using an advanced MHA mechanism com
bined with Xception for feature extraction and regression tasks.

3.2. Dataset description

The dataset used in this study included fetal brain MR images 
collected from Stanford Lucile Packard Children’s Hospital, which is 
publicly available. A total of 1927 fetal brain MR images taken between 
2004 and 2017 were the subject of the investigation. The 1.5 T (T) and 3 
T (T) MRI scans were performed utilizing GE Healthcare’s Signa HDxt, 
Signa EXCITE, Optima MR450W, and Discovery MR750W scanners. The 
MRI data were collected via an 8-channel head coil. A total of 572 MRI 
scans that revealed cerebral malformations, ventriculomegaly (enlarged 
brain ventricles), or other acquired or congenital brain abnormalities 
were removed from the initial pool of MR images by the researchers. In 
addition, 422 images were removed because they had too much noise or 
motion artifacts to be properly interpreted. Following these restrictions, 
the final database consisted of 933 prenatal brain MR images that had 
been reviewed by pediatric neuroradiologists and determined to be 
developmentally normal. The interpretations were mostly based on vi
sual cues from the MR images and biometric measurements, such as the 
biparietal diameter of the brain (the distance between its two sides) and 
the occipitofrontal diameter of the skull (the distance between its rear 
and its front). One-shot rapid spin‒echo T2-weighted sequences were 

Fig. 1. Proposed workflow for predicting gestational age.
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available in all three planes of 741 of the 933 MR images: axial (hori
zontal), coronal (frontal), and sagittal (side-to-side), as shown in Fig. 2. 
All the images were then augmented to obtain a total of 52,900 images 
in the dataset, and the data distribution associated with individual 
planes is presented in Table 1. For visual display, these single-shot 
photos that were initially recorded in the Digital Imaging and Commu
nications in Medicine (DICOM) File Format were compressed to JPEG 
files.

3.3. Dataset preprocessing

The dataset contains 741 individual patient IDs, where 52900 images 
are stored in black and white jpg formats. All the images were 512 × 512 
pixels long and were too large to be employed in this research envi
ronment. Therefore, all the images were resized to 75 × 75 pixels 
without degrading the image quality. Next, the images are converted 
from grayscale to RGB color space to align with the requirements of the 
proposed model, which requires RGB input. The amount of additional 
storage space and processing power required is reduced by this down
sizing strategy. Images usually use many intensity levels to be repre
sented. After the pixel values were divided by 255, normalization was 
used to simplify the images and to change the scale from 0 to 255 to 0–1. 
To ensure the integrity of the study and prevent any bias in the model’s 
predictive performance, the data split was performed on a subject-wise 
basis rather than on individual images. More specifically, for each sub
ject, 80 % of their images were allocated to the training set, and the 
remaining 20 % were reserved for the test set. This approach guarantees 
that no images from the same subject appear in both the training and test 
sets. This allocation ensured a comprehensive representation across the 
dataset for effective model training and testing.

3.4. Proposed model description

In this section, an in-depth description of the proposed model is 
provided, highlighting its unique architectural features and the specific 
design choices made. Every component that contributes to the model’s 
efficiency is discussed here in detail.

3.4.1. Depthwise separable convolution operation for Xception
In the proposed model, depthwise separable convolutions are used in 

the deep convolutional neural network architecture commonly referred 
to as Xception. Classical convolutions have alternatives called depthwise 
separable convolutions, which are apparently significantly faster to 
compute. Depthwise separable convolutions, which are a key compo
nent of Xception, are designed to decouple the spatial and cross-channel 
filtering operations typically performed in standard convolutions. 
Instead of applying individual filters to each input channel, the depth
wise separable convolution approach first performs depthwise convo
lution followed by pointwise convolution. It is designed to reduce the 
computational complexity of standard convolutions while still capturing 
meaningful spatial information from the input data.

3.4.2. Depthwise convolution
In the depthwise convolution stage, each input channel is convolved 

independently with its corresponding depthwise filter. Depthwise 
convolution performs spatial filtering within each channel, capturing 
local spatial features while maintaining the number of channels. This 
step significantly reduces the computational cost compared with tradi
tional convolutions, where a separate filter is used for each input 
channel. After the depthwise convolution, the pointwise convolution 
stage is applied. A pointwise convolution is essentially a 1 × 1 convo
lution that operates across channels. It applies a linear combination of 1 
× 1 filters to the output of the depthwise convolution. This step helps 
capture cross-channel correlations and allows the model to learn com
plex representations by combining spatially filtered channels.

By separating the spatial and cross-channel filtering operations, 
depthwise separable convolutions reduce the number of parameters and 
operations required in comparison to standard convolutions. This 
reduction leads to improved computational efficiency and enables the 
training of larger and deeper networks with limited computational 
resources.

Depthwise convolution generates matching feature maps by 
applying a single convolution kernel to each input channel. Fig. 3 shows 
the depthwise and pointwise convolutions of both processes. Here, we 
assume that the typical convolution kernel K is (DK,DK,M,N), the input 
feature map F is (DF,DF ,M), the output feature map G is (DG,DG,N), and 
M and N represent the numbers of input and output channels, respec
tively. The feature map’s size is denoted by D. K is divided into two 
convolutions: a pointwise convolution (1, 1,M,N) and a depthwise 
convolution (DK,DK,1,M).

The formula of the standard convolution is [30]: 

Gk,l,n =
∑

i,j,m
K̂i,j,m,n × Fk+i− 1,l+j− 1,m (1) 

The cost of computation for the standard convolution is [30]: 

Dk ×Dk × M × N × DF × DF (2) 

The expression for the depthwise separable convolution is [30]: 

Ĝk,l,m =
∑

i,j
K̂i,j,m,n × Fk+i− 1,l+j− 1,m (3) 

The computational cost for the depthwise separable convolution is 
[30]: 

Dk ×Dk × M × DF × DF + M × N × DF × DF (4) 

Fig. 2. Multiple planes of patient ID 1: (a) axial, (b) coronal (c) and sagittal planes.

Table 1 
Image distribution of each plane in the fetal brain MRI dataset.

Position No. of Images No. of Training Images No. of Testing Images

Axial 16,811 13,448 3363
Coronal 19,619 15,695 3924
Sagittal 16,470 13,176 3294
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The ratio of calculation consumption (RCC) is defined to determine 
the computational efficiency of the proposed model [30]: 

RCC=
Dk × Dk × M × DF × DF + M × N × DF × DF

Dk × Dk × M × N × DF × DF
=

1
N
+

1
DK

2 (5) 

3.4.3. Pointwise convolution
Pointwise convolution, often referred to as a 1 × 1 convolution, is a 

type of convolutional operation in which a filter of size 1 × 1 is applied 
to each element of the input tensor. Unlike traditional convolutions, 
which span both spatial dimensions and input channels, pointwise 
convolutions act only in the channel dimension. It uses filters with a 
spatial size of 1 × 1. The term “pointwise” is derived from the fact that 
the convolutional filter essentially operates at a single spatial point. 
Then, it performs a convolution operation independently at each spatial 
location across all the input channels. This means that each element in 
the output corresponds to a linear combination of the input values at the 

corresponding spatial location across all channels. One of the primary 
motivations for using pointwise convolution is parameter reduction. By 
applying a 1 × 1 filter independently to each channel, the number of 
parameters in the network can be significantly reduced, especially 
compared with standard convolutions that use larger filters. While each 
pointwise convolution operation is applied independently at each 
spatial location, the combination of the results across channels effec
tively allows for the mixing and combination of features. This enables 
the network to learn nonlinear relationships between different channels, 
contributing to the expressive power of the model.

3.4.4. Xception architecture
The Xception architecture takes advantage of depthwise separable 

convolutions throughout its network. It replaces the traditional con
volutional layers with depthwise separable convolutional layers. This 
change allows the Xception model to achieve a high level of accuracy 
while significantly reducing the number of parameters compared with 

Fig. 3. Block diagram of the depthwise and pointwise convolution operations.

Fig. 4. Each flow input and output dimension for the 75 × 75 image in the Xception architecture.
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earlier CNN architectures. The Xception architecture can be described as 
a linear sequence of depthwise separable convolution layers, each of 
which is connected residually. The term “Xception” stands for “Extreme 
Inception,” reflecting its design as a more advanced and powerful iter
ation of the Inception architecture [31,32].

The input to the network is a 75 × 75 RGB image. The Xception 
architecture consists of three main sections, which are shown in Fig. 4: 
the entry flow, middle flow, and exit flow. In the entry flow, three 
successive blocks, namely, entry block 1, entry block 2, and entry block 
3, sequentially apply convolutions and separable convolutions with 
batch normalization and ReLU activation functions. Each block in
corporates a residual connection, and max pooling layers are strategi
cally employed to reduce spatial dimensions. The middle flow comprises 
repeated blocks of separable convolutions with 3 × 3 kernels and 728 
filters, along with batch normalization and ReLU activation functions. 
Residual connections are applied within each block to facilitate infor
mation flow. The exit flow consists of two exit blocks: exit block 1 and 
exit block 2. Exit block 1 applies separable convolutions with 728 and 
1024 filters, followed by batch normalization and rectified linear unit 
(ReLU) activation. A residual connection and max pooling layer further 
reduce the spatial dimensions. Exit Block 2 employs separable convo
lutions with 1536 and 2048 filters, followed by similar normalization 
and activation functions. The architecture concludes with global 
average pooling to reduce spatial dimensions. In addition to this archi
tecture, a fully connected (dense) layer and a Softmax activation func
tion were added to generate class probabilities in the final output layer. 
The dense layer combines high-level features learned by preceding 
layers, introducing nonlinearity through the Softmax activation func
tion. It is used for parameterized mapping, adjusting weights during 
training to adapt to data characteristics. This layer aids in dimension
ality reduction by condensing complex representations into a suitable 
format for final predictions. Connected to all the neurons in the previous 
layer, it acts as a critical element in the neural network’s ability to 
capture intricate relationships within the data. The process of calcu
lating attention in MHA is shown in Fig. 4.

3.4.5. Multihead attention
A module for attention mechanisms known as “multihead attention” 

operates iteratively and concurrently through an attention mechanism, 
as depicted in Fig. 5. The main idea behind MHA is to split the input into 
multiple subspaces and apply attention to each subspace independently. 

Each subspace, also referred to as a head, is associated with its own set of 
learnable parameters. This allows the model to attend to different parts 
of the input sequence in parallel, providing a more comprehensive un
derstanding of the data. For collecting useful information from an 
image, the entire portion is not essential, so the attention mechanism 
concentrates on the useful portion.

With the use of linear layers and other learnable weights, the input is 
projected to queries, keys, and values [33]. 

Q=
(
Xʹ∈RN×E)×

(
WQ ∈RE×d) (6) 

K=
(
Xʹ∈RN×E)×

(
WK ∈RE×d) (7) 

V =
(
Xʹ∈RN×E)×

(
WV ∈RE×d) (8) 

Now, queries (Q), keys (K), and values (V) are obtained. When a 
scaled dot-product form of attention is used, the computation of the dot 
product between the queries and keys is scaled by 

̅̅̅̅̅
dK

√
. The attention 

weights are then obtained by applying the nonlinear Softmax function 
[33]. 

Zʹ=
(
Q∈RN×d)×

(
KT ∈Rd×N) (9) 

Z= soft max
((

Zʹ∈RN×N)
/ ̅̅̅̅̅

dK
√ )

(10) 

As a result, the scaled dot-product attention function may be 
expressed in the following shorter form [33]: 

Attention(Q,K,V)= soft max

(
QKT
̅̅̅̅̅
dK

√

)

V (11) 

With d-dimensional queries, keys, and values, it is desirable to lin
early project them to dh, dk, and dv dimensions, h times, using various 
learnable weights with linear layers, as opposed to conducting a single 
attention function. The scaled dot-product attention function is then 
simultaneously applied to each of the h heads, producing the h number 
of dv dimensional values. These attention-weighted values are subse
quently combined and concatenated with linear layers [33]. 

Multihead(Q,K,V)= concatinate[head1, head2.....headi]Wo (12) 

Here, Wo ∈ Rhd×d.
In this research, the use of 8 heads, a key dimension of 32, and a 

value dimension of 32 in the MHA mechanism proved to be optimal for 
the dataset. The use of multiple attention heads allows the model to 
focus on different aspects of the input data simultaneously. This can 
enhance the model’s ability to capture diverse and complex patterns in 
the dataset. The combination of Xception, known for its depthwise 
separable convolutions, with MHA provides an increased capacity for 
the model to learn hierarchical features and relationships within the 
data. The specified dimensions for the key and value in the attention 
mechanism are crucial parameters. The choice of 32 for both the key and 
value dimensions, on the basis of the optimal performance in the study 
selected by the trial and error approach, indicates adaptability to 
capturing intricate relationships within the dataset. Overall, the optimal 
configuration of 8 heads, with key and value dimensions set to 32, in the 
MHA mechanism, along with the integration of Xception, enables our 
model to effectively capture diverse patterns, learn hierarchical features, 
and adapt to intricate relationships, leading to accurate prediction of 
fetal brain GA.

3.4.6. Dense layers
In the proposed model, a dense layer was incorporated with 512 

neurons and a rectified linear unit (ReLU) activation function, which 
was applied to the output of the attention mechanism. This dense layer 
plays a crucial role in capturing complex relationships and features 
within the data, contributing to the model’s ability to learn and gener
alize. The network subsequently concludes with an output layer, Fig. 5. Mechanism of multihead attention.
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represented by a dense layer, containing 1 neuron designed for regres
sion. This output layer is responsible for producing the final prediction 
for the GA, encapsulating the collective insights and patterns learned 
throughout the network. The omission of an activation function in the 
output layer is deliberate, as this architecture is tailored for regression 
tasks where the model is expected to directly output a numerical value. 
The configuration of these layers is a key aspect of the model architec
ture, representing the transition from learned features to the final pre
diction, and underscores the model’s adaptability for regression tasks.

3.5. System configuration and performance metrics

Table 2 shows the system configuration used to complete the entire 
computational process.

The necessary fine-tuned hyperparameters used to construct the 
model are presented in Table 3. Without the correct values of the 
hyperparameters, the expected results might not be achieved.

For predicting GA in fetal brain MR images, this study focused on the 
problem of different DL models with MHA, and by identifying the best 
result among these regressors, the next step was chosen. The best 
regression model was chosen on the basis of R2, MAE, MSE and PCC. R2 

quantifies the extent to which the variability in the dependent variable 
can be explained by the independent variables. Its value lies between 
0 and 1, where higher values signify a superior model fit. 

R2 =

∑n
i=1(xi − x)(yi − y)

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
∑n

i=1
(xi − x)2

)(
∑n

i=1
(yi − y)2

)√ (13) 

The MAE represents the mean of the absolute differences between 
the predicted and actual values. It is less affected by outliers than MSE is. 

MAE=

∑n
i=1|xi − yi|

n
(14) 

The MSE measures the average squared difference between the 
predicted values and the actual values. It provides a comprehensive 
assessment of overall model performance. It provides a more interpret
able measure of the average prediction error. 

MSE=

∑n
i=1(xi − yi)

2

n
(15) 

PCC=

∑n

i=1
(yi − y)(ŷi − ŷ)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − y)2∑n

i=1
(ŷi − y)2

√ (16) 

The PCC is a measure of the linear correlation between two variables, 
providing insight into the strength and direction of the relationship, 
where yi and yi are the actual and predicted values, respectively; y

↼ 
is the 

mean of the actual values; and y is the mean of the predicted values. In 
the comprehensive evaluation of the performance parameters, several 

pretrained models with MHA were utilized as regressors, and their 
effectiveness was assessed using key metrics such as R2, MSE, and PCC. 
The performance of each model is presented in the following tables, 
which highlight their performance metrics.

4. Experimental results and discussion

This section presents the experimental results obtained from the 
implementation of the proposed model. A detailed analysis of their 
performance metrics and visual representation is provided here.

4.1. Ablation study with transfer learning models

A comprehensive analysis of the experimental results was obtained 
through the ablation study presented in this section. Many types of TLMs 
with custom dense layers and different MHA configurations were tested 
to construct the proposed model. Table 4 presents the results of the 
multiplane approach for predicting the GA using the TLM-Dense (1), 
TLM-Dense (512)-Dense (1) and TLM-MHA-Dense (512)-Dense (1) 
models on the test set. The Xception-MHA (8-32-32)-Dense (512)-Dense 
(1) model achieved the highest R2 of 96.5 %, indicating the best fit 
among all nine models. It also had the lowest MAE of 3.80 days, sug
gesting that the model made the most accurate GA predictions. The PCC 
value of 98.5 % further confirmed the strong correlation between the 
predicted and actual GA values. The ResNet50-MHA (8-32-32)-Dense 
(512)-Dense (1) model also performed well, but its accuracy was slightly 
lower than that of the Xception-MHA (8-32-32)-Dense (512)-Dense (1) 
model.

Notably, the models constructed with custom dense layers without 
MHA, such as Xception-Dense (512)-Dense (1), MobileNetV2-Dense 
(512)-Dense (1), and Xception-Dense (512)-Dense (1), demonstrated 
better performance than the model without a custom dense layer. The 
custom dense layer enhances the model’s capacity to learn intricate 
patterns, contributing to improved accuracy. The inclusion of MHA in 
the proposed model enhanced its ability to capture long-range de
pendencies and intricate patterns within the data, leading to superior 

Table 2 
System configurations for developing the computational model.

System configuration Values

Programming Language Python
Computational environment Google colab
Backend Keras with TensorFlow
Required disk space 78.2 GB
GPU RAM 15 GB
Graphics processing unit (GPU) Nvidia Tesla T4
GPU random access memory (RAM) 15 GB
System RAM 12.72 GB
Operating system Windows 11
Input data MRI Images
Input image size 75 × 75

Table 3 
Hyperparameters of the proposed model.

Parameters Values

Loss function Mean squared error
Introductory learning rate 0.001
Number of epochs 50
Batch size 16
Shuffling Every epoch
Optimizer Adam
Number of attention heads 8
Dimensionality of the key space 32
Dimensionality of the value space 32

Table 4 
Multiplane results produced using the TLM-Dense (1), TLM-Dense (512)-Dense 
(1) and TLM-MHA-Dense (512)-Dense (1) models for the test set.

Model R- 
squared

MAE MSE PCC

ResNet-50-Dense (1) 90.7 7.43 10.96 93.2
MobileNetV2-Dense (1) 89.7 8.72 120.85 93.7
Xception-Dense (1) 91.3 6.98 95.23 94.3
Xception-Dense (512)-Dense (1) 94.9 4.03 70.78 97.5
MobileNetV2-Dense (512)-Dense (1) 93.6 5.55 88.76 96.8
ResNet50-Dense (512)-Dense (1) 93.5 5.51 90.58 97.1
ResNet50- MHA (8-32-32)-Dense (512)- 

Dense (1)
95.1 3.82 68.16 97.5

MobileNetV2- MHA (8-32-32)-Dense 
(512)-Dense (1)

86.7 8.13 185.31 94

Xception-MHA (8–32–32)-Dense (512)- 
Dense (1)

96.5 3.80 48.92 98.5
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performance. The absence of MHA in the evaluated models contributed 
to their comparatively lower performance metrics. Therefore, inte
grating MHA and custom dense layers into TL models can significantly 
improve the accuracy and reliability of GA predictions. Among all the 
combinations, the Xception-MHA (8-32-32)-Dense (512)-Dense (1) 
model produced the best results.

4.2. K-fold cross-validation

K-fold cross-validation is a robust technique used to assess the 
generalizability and reliability of a predictive model. This approach 
reduces the risk of overfitting and provides a more comprehensive un
derstanding of the model’s capabilities. Table 5 presents the results of a 
5-fold cross-validation (CV) for the proposed Xception-MHA (8-32-32)- 
Dense (512)-Dense (1) model for predicting the GA. The performance 
metrics of the proposed model are reported for each fold of the CV, with 
average values across all folds. The model shows consistently high 
performance across the folds, with an average R-squared of 95.94 %, 
indicating that the model explains nearly 96 % of the variance in the 
data. The average MAE and MSE values are slightly lower, with averages 
of 3.61 and 58.27, respectively, demonstrating the model’s accuracy in 
predicting the target variable. The high average PCC value of 98.02 % 
suggests a strong linear relationship between the predicted and actual 
values. An analysis of the performance across all the folds clearly 
revealed that the model was not overfit. Overall, the model appeared to 
perform reliably across different subsets of the data, confirming the 
generalizability of the proposed model. Fig. 6 shows the regression plots 
for all 5 folds of the proposed model.

4.3. Results analysis across different MR imaging planes

Notably, the Xception-MHA (8-32-32)-Dense (512)-Dense (1) model 
outperformed all the other models, demonstrating superior performance 
across the key metrics. To further understand the robustness of this ar
chitecture, several configurations of the MHA component were tested by 
exploring variations in the number of heads, key dimensions, and value 
dimensions. These variations provided valuable insights into how 
different attention mechanisms influence the model’s performance, 
reaffirming that the chosen configuration MHA (8–32–32) produces the 
highest accuracy and lowest MAE. In addition, the analysis focused on 
evaluating the effectiveness of different image planes, such as a single 
plane, a combination of two planes, and three planes, for predicting GA 
from fetal brain MR images.

4.3.1. Combination of all three planes
In real-life clinical scenarios, the combination of three planes is more 

suitable because it provides an in-depth view of the fetal brain. Each 
plane offers unique information: the axial plane can highlight the lateral 
and third ventricles, the coronal plane can show the brain’s symmetry 
and midline structures, and the sagittal plane can display the corpus 
callosum and brainstem [34]. Table 6 shows the results of the experi
ments performed to predict fetal brain GA in 741 patients by taking all 
three available axial, coronal, and sagittal plane images. Notably, the 
combination of 8-32-32 (number of attention heads-dimensionality of 
the key space-dimensionality of the value space) yielded a commendable 

R2 value of 96.5 %, indicating strong predictive performance. This 
model configuration is characterized by low errors, including an MAE of 
3.80 days and a PCC of 98.5 %. Fig. 7 shows the regression plots for the 
actual and predicted GAs. The choice of hyperparameters, such as the 
number of attention heads, dimensionality of the key space and 
dimensionality of the value space, profoundly influences the model’s 
ability to capture intricate relationships within fetal brain MRI data. In 
this context, the superior performance of the 8-32-32 configuration can 
be attributed to the increased complexity and expressiveness introduced 
by having eight attention heads. This enables the model to address 
different aspects of the input data simultaneously, extracting more 
nuanced features and patterns related to the GA. Furthermore, the 
dimensionality of the key space also plays a critical role. A higher 
dimensionality, as seen in the 8-32-32 configuration, provides the model 
with a richer representation of key features, facilitating a more accurate 
prediction of gestation age. However, striking a balance is crucial, as an 
overly complex model may lead to diminished performance due to 
overfitting or excessive computational demands.

4.3.2. Combination of two planes
Table 7 presents the performance results of the proposed model 

when two-plane combinations are used on the test set. The axial-sagittal 
combination yields the highest performance among the two-plane 
models, with an R2 of 95.7 %, an MAE of 4.97 days, and a PCC of 
98.4 %. The axial-coronal combination had an R2 of 90.6 %, an MAE of 
5.11 days, and a PCC of 95.4 %. The sagittal-coronal combination per
formed the least effectively, with an R2 of 88.2 %, an MAE of 7.52 days, 
and a PCC of 94.0 %. Compared with the multiplane results (R2 of 96.5 
%, MAE of 3.80 days, and PCC of 98.5 %), the multiplane approach 
outperforms all two-plane combinations, demonstrating the advantage 
of utilizing all three planes for more accurate predictions. Compared 
with the single-plane results, the axial-sagittal combination performed 
better than the coronal and sagittal planes alone but slightly worse than 
the axial plane in terms of R2 and the MAE.

Fig. 8 shows the comparison between the actual and predicted GAs 
derived from combined fetal brain MR images across two different 
anatomical planes: axial-sagittal, axial-coronal, and sagittal-coronal. 
Fig. 8 (a) shows the relationship between the actual GA and the pre
dicted GA when the MR images were taken from the combined axial and 
sagittal planes. The plot demonstrates a high degree of accuracy (77 %) 
in the GA predictions, as indicated by the close alignment of the pre
dicted values with the actual values. According to the results, the axial- 
sagittal combination performed the best, with an R2 value of 95.7 %, an 
MAE of 4.97 days, and a PCC of 98.4 %. This high performance can be 
attributed to the complementary information provided by the axial and 
sagittal planes, enhancing the model’s ability to capture relevant fea
tures for accurate GA prediction. Fig. 8 (b) The actual and predicted GAs 
are plotted for MR images taken from the combined axial and coronal 
planes. The data points indicate that the model’s predictions are 
reasonably accurate, although not as precise as those of the 
axial–sagittal combination. The axial-coronal combination had an R2 

value of 90.6 %, an MAE of 5.11 days, and a PCC of 95.4 %. The axial and 
coronal planes together provide substantial information, but the 
increased variability in the coronal images likely affects the overall ac
curacy. Fig. 8 (c) presents the actual versus predicted GA for MR images 
taken from the combined sagittal and coronal planes. The plot shows 
that the predicted GA values have more variance than the actual GA 
values do, indicating the least accurate predictions among the three 
combinations. The sagittal-coronal combination performed the worst, 
with an R2 value of 88.2 %, an MAE of 7.52 days, and a PCC of 94.0 %. 
The lower performance may be due to the greater variability and less 
distinct features in the coronal plane, which, when combined with 
sagittal plane images, do not provide as many robust predictive features 
as the axial plane does. Overall, Fig. 8 demonstrates the effectiveness of 
the proposed model in predicting GA from combined fetal brain MR 
images, with the axial-sagittal combination providing the highest 

Table 5 
5-Fold CV of the proposed Xception-MHA (8–32–32)-Dense (512)-Dense (1) 
model.

Model R-squared MAE MSE PCC

Fold-1 95.6 3.51 60.72 97.8
Fold-2 95.8 3.37 67.13 97.6
Fold-3 96.5 3.80 48.92 98.5
Fold-4 96.4 3.94 50.13 98.5
Fold-5 95.4 3.43 64.45 97.7
Average 95.94 3.61 58.27 98.02
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accuracy, followed by the axial-coronal and then the sagittal-coronal 
combination. The model’s performance is best when the axial plane is 
used in combination with either the sagittal or the coronal plane because 
the axial plane has clearer and more consistent features.

4.3.3. Single-plane
The single-plane approach is still valuable in scenarios where 

computational resources are limited or when quick assessments are 
needed. Table 8 presents the performance results of the proposed model 
when it is applied to single-plane images in the test set. The axial plane 
yields the highest performance, with an R2 of 97.1 %, an MAE of 3.24 
days, and a PCC of 98.6 %. The sagittal plane had an R2 of 93.6 %, an 
MAE of 4.49 days, and a PCC of 96.7 %. The coronal plane performs the 
least effectively, with an R2 of 86.3 %, an MAE of 7.06 days, and a PCC of 
93.0 %. Compared with the multiplane results of the 8-32-32 configu
ration, which achieved an R2 of 96.5 %, the MAE was 3.80 days, and the 
PCC was 98.5 %. From the above analysis, it was evident that the mul
tiplane (all three-planes) approach leverages the complementary infor
mation from all three planes to deliver a more robust and accurate 
prediction than any single-plane (coronal or sagittal) approach did. The 
axial plane, however, showed a slightly higher R2 and lower errors than 
the three-plane result did, indicating its strong standalone predictive 
power.

Fig. 9 shows the comparison between the actual and predicted GAs 
derived from fetal brain MR images across three different anatomical 
planes: axial, coronal, and sagittal. Fig. 9 (a) shows the relationship 
between the actual GA and the predicted GA when the MR images were 

Fig. 6. Actual and predicted GA plot of the proposed model Xception-MHA (8-32-32)-Dense (512)-Dense (1) using multiple planes (axial, coronal, and sagittal) of 5- 
fold CV.

Table 6 
Proposed Xception-MHA-Dense (512)–Dense (1) model results obtained via 
multiple planes by varying the configuration of the multihead attention 
mechanism.

Model with varying multihead attention R-squared MAE MSE PCC

8-64-64 96.1 4.12 54.68 98.3
8–32–32 96.5 3.80 48.92 98.5
4-64-64 94.8 4.08 71.85 97.5
4-32-32 96.00 3.80 55.95 98.2
2-64-64 95.3 3.69 65.57 97.60
2-32-32 95.60 3.86 60.67 97.90
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taken from the axial plane. The plot demonstrates the accuracy of the GA 
predictions by aligning the predicted values closely with the actual 
values, suggesting a high degree of correlation between the two. Ac
cording to the results, the axial plane performed the best, with an R2 

value of 97.1, an MAE of 3.24 days, and a PCC of 98.6. This high per
formance can be attributed to the model’s ability to capture more 
distinct and relevant features in axial plane images, which are often 
clearer and more consistent. The axial-coronal and sagittal-coronal 
combinations, however, did not perform as well as the single-plane 
axial model did, highlighting the superior standalone predictive power 
of the axial plane.

Fig. 9 (b) The actual and predicted GAs are plotted for MR images 
taken from the coronal plane. The data points indicated that the model’s 
predictions were less consistent with the actual GA values than those in 
the axial plane were, reflecting the reduced robustness of the model in 
predicting the GA from coronal MR images. The coronal plane per
formed the worst, with an R2 value of 86.3, an MAE of 7.06 days, and a 
PCC of 93.0. This lower performance may be because the coronal plane 
images have more variability and potentially fewer distinctive features 
for the model to accurately predict the GA. Fig. 9 (c) presents the actual 
versus predicted GA for MR images taken from the sagittal plane. The 
plot shows that the predicted GA values are relatively well aligned with 

Fig. 7. Actual and predicted GA plot of the proposed model Xception-MHA 
(8–32–32)-Dense (512)-Dense (1) using multiple planes (axial, coronal, 
and sagittal).

Table 7 
Results of the proposed Xception-MHA (8-32-32)-Dense (512)-Dense (1) model 
using two planes.

Model R- 
squared

MAE MSE PCC

Xception-MHA (8-32-32)-Dense (512)- 
Dense (1) -Axial- Sagittal

95.7 4.97 60.95 98.4

Xception-MHA (8-32-32)-Dense (512)- 
Dense (1) -Axial- Coronal

90.6 5.11 130.84 95.4

Xception-MHA (8-32-32)-Dense (512)- 
Dense (1) -Sagittal- Coronal

88.2 7.52 163.40 94.0

Fig. 8. Actual and predicted GA plots of combined two-axis images using two planes for the proposed model Xception-MHA (8-32-32)-Dense (512)-Dense (1) (a) 
axial-sagittal, (b) axial-coronal and (c) sagittal-coronal images for predicting gestational age in the fetal brain MRI dataset.

Table 8 
Results of the proposed Xception-MHA (8-32-32)-Dense (512)-Dense (1) model 
using a single plane.

Model R- 
squared

MAE MSE PCC

Xception-MHA (8-32-32)-Dense (512)- 
Dense (1) -Axial

97.1 3.24 41.179 98.6

Xception-MHA (8-32-32)-Dense (512)- 
Dense (1) -Coronal

86.3 7.06 188.22 93.0

Xception-MHA (8-32-32)-Dense (512)- 
Dense (1) -Sagittal

93.6 4.49 90.32 96.7

M.A. Hasan et al.                                                                                                                                                                                                                               Computers in Biology and Medicine 182 (2024) 109155 

11 



the actual GA values, confirming the model’s ability to predict the GA 
from sagittal MR images with a reasonable degree of accuracy. The 
sagittal plane performed moderately well, with an R-squared value of 
93.6, an MAE of 4.49 days, and a PCC of 96.7. The sagittal plane images 
likely provide a good balance of features that are distinct enough for 
accurate GA prediction but may still have some variability compared 
with the axial plane. Overall, Fig. 9 demonstrates the effectiveness of the 
proposed model in predicting GA from fetal brain MR images, with the 
axial plane providing the highest accuracy, followed by the sagittal and 
then the coronal planes.

4.3.4. Time complexity analysis
Time complexity analysis is a crucial aspect of evaluating DL models, 

as it provides insight into the computational resources required for 
training and inference.

Table 9 presents a comparison of complexity across several models 
with the proposed model, focusing on parameters (million), FLOPs 
(Floating Point Operations - Giga), and runtime (seconds). The proposed 
model has 71.92 million parameters and requires 1.19 GFLOPs, which 
indicates moderate complexity compared with the others reported in the 
literature. However, its runtime of 1.95 s is substantially longer than 
those of the other models, indicating that while it balances the param
eter count and computational load efficiently, it may be less optimized 
for speed. This suggests a trade-off in the proposed model between 
complexity and execution time, potentially due to more intricate pro
cessing steps or deeper network architecture.

4.4. Performance comparison with SOTA models

Table 10 illustrates the superior performance of the proposed 
Xception-MHA-Dense model in predicting GA from fetal brain MR im
ages compared with existing SOTA models. Kojita et al. [19] utilized the 
VGG-16 model on a smaller dataset of 184 patients, yielding an MAE of 
5.8 weeks (approximately 40.6 days), but did not report R2 or PCC 
values. Additionally, Kojita et al. used only a pretrained model without 
custom modifications, and the limited number of images further 
contributed to their higher error rates. Diego et al. [12] employed a 
50-KNF-RF model with 243 patients, achieving an MAE of 2.22 weeks 
(approximately 15.54 days) but also lacked R2 and PCC metrics. 
Compared with modern DL techniques, this traditional machine learning 
approach resulted in poor performance. Wen et al. [25] and Liao et al. 
[35] used attention-based and multibranch deformable CNN models, 
respectively, reporting high R2 values (92 % and 94.7 %) and moderate 
MAE values expressed in weeks. Although the results of Wen et al. were 
impressive, with an R2 of 92 % and an MAE of 0.767 weeks (approxi
mately 5.37 days), the proposed model still outperformed them. Shen 
et al. [16,20] applied attention-guided ResNet-50 models on larger 
datasets, achieving R2 values of approximately 94–94.5 %, MAEs of 
6.7–6.8 days and PCCs of up to 97 %. In the latest paper by Shen, they 
used the same dataset as this study but achieved an R2 of 94.5 %, 
whereas the proposed model reached 96.5 %, with a lower MAE of 3.8 
days, indicating superior accuracy and robustness. By leveraging a 
robust architecture combining Xception with multihead attention and 
dense layers, which was applied to an extensive dataset of 741 patients 
and 52,900 images, the proposed model demonstrated the highest R2 

value of 96.5 %, the lowest MAE of 3.8 days, and an impressive PCC of 
98.5 %, confirming its superior accuracy and reliability in GA predic
tion. For segmentation tasks, studies such as Tran et al. [36] and Tuhi
nangshu et al. [37] achieved high accuracy. Tran et al. reported median 
Dice scores of 0.95 for intracranial contents and 0.90 for brain seg
mentation. Tuhinangshu et al. achieved a Jaccard similarity of 77 % and 
a Dice score of 82 %. While these segmentation results are impressive, 

Fig. 9. Actual and predicted GA plots of a single plane for the proposed model Xception-MHA (8-32-32)-Dense (512)-Dense (1) (a) axial, (b) coronal and (c) sagittal 
images for predicting gestational age in the fetal brain MRI dataset.

Table 9 
Comparison of algorithm complexity.

Reference Parameters (M) FLOPs (G) Runtimes (S)

Shen et al. [16] 32.07 0.95 0.13
Liao et al. [35] 117.81 2.75 0.20
Feng et al. [22] 48.95 1.34 0.14
Proposed model 71.92 1.19 1.95
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they focus primarily on ROI segmentation rather than direct GA 
prediction.

Zhao et al. [18] used an attention-based hemispheric relation infer
ence network, and Ziteng et al. [22] PDFF-CNN, which predicts GAs in 
the narrower range of 22–24 weeks, achieved R2 values of 89 % and 
90.4 %, with MAEs of 0.53 weeks and 0.84 weeks, respectively. In 
contrast, our model predicts the GA across a broader range of 19–38 
weeks, demonstrating greater stability and robustness. Additionally, 
Ran et al. [22] applied the JoCoRank algorithm to a dataset of 157 pa
tients and achieved an R2 of 93 % and an MAE of 0.693 weeks, which are 
smaller compared with our model. The proposed Xception-MHA-Dense 
model, with data from 741 patients and 52,900 images, achieves an 
impressive R2 of 96.5 %, an MAE of 3.8 days, and a PCC of 98.5 %. This 
broader age prediction range and higher accuracy highlight the model’s 
ability to handle more variation effectively, establishing it as a more 
reliable and stable solution for GA prediction. Compared with existing 
models, the proposed Xception-MHA-Dense model excels in GA predic
tion from fetal brain MR images, offering a higher R2 value, lower MAE, 
and higher PCC. The proposed method combines advanced DL tech
niques, multiplanar imaging, and a larger dataset, addressing the limi
tations of previous studies and setting a new benchmark for accuracy 
and reliability in GA prediction.

4.5. Discussion

In the discussion section, the experimental results have been inter
preted, considering both the strengths and limitations of the proposed 
model. The potential applications of the proposed model findings and 
directions for future research have been explored.

4.5.1. Strengths, limitations and future work
Predicting GA from fetal brain MR images is a challenging task, with 

limited research in this area due to its complexity. However, this study 

successfully addresses this challenge by employing a novel DL model 
that outperforms SOTA models. The proposed model leverages multi
planar images, significantly enhancing its predictive accuracy because 
MHA might allow the capture of diverse anatomical perspectives present 
in MR images, contributing to more robust predictions of the GA. To 
enhance the discriminative power of the extracted features, a dense 
layer was incorporated into the model architecture. This layer might 
have enabled nonlinear transformations, facilitating better regression 
performance and improving the overall predictive accuracy of the 
model. A key strength of this study is its robustness, demonstrated by the 
extensive dataset used, comprising 52,900 images from 741 patients. 
This large dataset ensures the model’s reliability and generalizability. 
Furthermore, the proposed model predicts the GA in days rather than in 
weeks, providing more precise and specific estimations. This level of 
granularity is crucial because it handles a wider range of variations, 
from 140 to 280 days, than the narrower range of 19–39 weeks used in 
other studies. This ability to predict GA in days highlights the model’s 
capacity to manage more intricate variations in fetal development. This 
is particularly important for clinical applications where precise timing 
can influence critical decisions in prenatal care. The proposed model 
outperformed existing SOTA models by producing the lowest MAE of 3.8 
days. Overall, the proposed model’s high accuracy, extensive dataset, 
and fine-grained predictions underscore its robustness and potential for 
significant clinical impact.

Despite its strengths, the proposed model has several limitations. The 
prediction time for an image is relatively high for the proposed model. 
Notably, the image dataset used to develop the model was taken by 
instruments operating at magnetic field strengths of both 1.5 T and 3 T, 
but individual images are not specifically labeled for the Tesla values. 
The variation in magnetic field strength during image creation can 
indeed impact image quality, potentially affecting model performance. 
Additionally, the unavailability of datasets with clearly documented 
Tesla values restricts our ability to comprehensively evaluate the 
model’s robustness across diverse imaging conditions. While it out
performed all other SOTA models when the GA was predicted via mul
tiplane images, its performance varied significantly across different 
planes. The model showed impressive results when predicting the GA 
from axial plane images and performed well with sagittal plane images. 
However, its performance was notably poorer with coronal plane im
ages, indicating that the model struggles to accurately learn the varia
tions in coronal images. This limitation affects the results of two-plane 
combinations involving coronal images, such as coronal-sagittal and 
coronal-axial images, which do not achieve as much accuracy as other 
combinations do. The inability to predict the GA accurately from coronal 
images suggests a critical area for future improvement. Enhancing the 
model’s ability to handle coronal images more effectively will be 
essential for achieving consistently high performance across all imaging 
planes and improving the overall robustness of GA predictions.

4.5.2. Clinical significance
The clinical significance of this research lies in its potential to greatly 

enhance prenatal care through the accurate prediction of GA via the 
application of DL models to fetal brain MR images. DL models provide a 
reliable and highly accurate method for predicting GAs, surpassing 
traditional manual methods. This improved accuracy is crucial for 
making informed obstetric decisions, such as determining the optimal 
timing for interventions such as magnesium sulfate administration for 
neuroprotection or steroids for fetal lung maturation. Traditional 
methods for estimating GA from MRI data involve manual processes that 
require radiologists to measure various brain structures and compare 
these measurements to established growth charts [38]. This manual 
process is time-consuming, prone to inter-observer variability, and often 
less accurate, as it relies heavily on the experience and expertise of the 
clinician [38,39]. With precise GA predictions, clinicians can better 
identify and manage high-risk pregnancies, ensuring timely in
terventions that can significantly improve maternal and fetal outcomes. 

Table 10 
Comparative analysis between the proposed Xception-MHA-Dense model and 
other state-of-the-art models.

Reference Models Num. of 
patients

Num. 
of 
images

R2 MAE PCC

Kojita 
et al. 
[19]

VGG-16 184 184 – 5.8 
(weeks)

–

Diego 
et al. 
[12]

50-KNF-RF 243 – 51 2.22 
(weeks)

–

Wen et al. 
[25]

Attention based 
Residual 
Network

– 659 92 0.767 
(weeks)

–

Liao et al. 
[35]

Multibranch 
deformable CNN

289 – 94.7 0.751 
(weeks)

–

Shen et al. 
[20]

Attention 
guided ResNet- 
50

741 1927 94 6.8 
(days)

–

Shen et al. 
[16]

Attention 
guided ResNet- 
50

741 52,900 94.5 6.7 
(days)

97

Zhao et al. 
[18]

Attention-based 
hemispheric 
relation 
inference 
network

531 – 89 0.53 
(weeks)

94

Ran et al. 
[21]

JoCoRank 
algorithm

157 1327 93 0.693 
(weeks)

–

Ziteng 
et al. 
[22]

PDFF-CNN 157 1327 90.4 0.84 
(weeks)

–

Proposed 
model

Xception-MHA 
(8-32-32)-Dense 
(512)-Dense (1)

741 52,900 96.5 3.8 
(days)

98.5
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Accurate GA estimation allows for early identification of potential 
developmental issues, facilitating prompt and appropriate medical re
sponses. At the neonatal level, precise GA estimation helps in identifying 
vulnerable neonates, such as those who are small for GA or who are 
preterm, ensuring that they receive the necessary care. Accurate GA 
predictions from fetal MRI can enhance the management and outcomes 
of these infants by providing better insights into their developmental 
status. Preterm birth is a leading cause of mortality in children under 
five years of age [39]. Accurate GA estimation using DL models can help 
in understanding the prevalence of preterm births and implementing 
effective strategies to mitigate associated risks. This can contribute to 
better monitoring and intervention strategies during pregnancy, ulti
mately reducing complications related to preterm birth. The use of DL 
models for GA prediction can automate and streamline clinical work
flows, reducing the reliance on manual assessments. This automation 
can save time and resources, allowing for more efficient prenatal 
screening and monitoring practices. Clinicians can focus more on patient 
care than on time-consuming manual calculations, thereby increasing 
overall healthcare efficiency. DL models offer scalability and consis
tency in GA predictions, ensuring uniformity in assessments across 
different healthcare settings. This consistency reduces the variability 
and potential errors associated with manual methods, leading to more 
reliable and standardized prenatal care. Overall, the integration of DL in 
GA prediction from fetal brain MR images represents a significant 
advancement in prenatal care, offering precise, efficient, and scalable 
solutions that improve clinical decision-making and patient outcomes.

5. Conclusions

This research demonstrated the efficacy of a novel DL model in 
predicting GA from fetal brain MR images, providing a robust and ac
curate method that surpasses existing state-of-the-art models. The pro
posed model, which leverages a combination of Xception with MHA and 
dense layers, exhibits high accuracy and robustness across various im
aging planes. The proposed model achieved promising results with 8 
attention heads, a 32-dimensional key space, and a 32-dimensional 
value space, attaining an R2 value of 96.5 %, a mean absolute error of 
3.80 days, and a PCC of 98.50 % on the test set. Additionally, the 5-fold 
cross-validation results reinforce the model’s reliability, with an average 
R2 of 95.94 %, an MAE of 3.61 days, and a PCC of 98.02 %, demon
strating consistently high performance across different subsets of data. 
This high performance can be attributed to the complementary infor
mation provided by multiplane combinations, enhancing the model’s 
ability to capture relevant features for accurate GA prediction. The 
analysis revealed that the multiplanar approach outperformed the 
combination of any two planes, such as the axial-sagittal combination 
(R2 95.7 %, MAE 4.97 days, PCC 98.4 %), the axial-coronal combination 
(R2 90.6 %, MAE 5.11 days, PCC 95.4 %) and the sagittal-coronal 
combination (R2 88.2 %, MAE 7.52 days, PCC 94.0 %). Among single 
planes, the axial plane provided the best performance (R2 97.1 %, MAE 
3.24 days, PCC 98.6 %), followed by the sagittal (R2 93.6 %, MAE 4.49 
days, PCC: 96.7 %) and coronal planes (R2 86.3 %, MAE 7.06 days, PCC 
93.0 %). This model outperformed all other state-of-the-art models. The 
proposed DL method can automate the GA estimation process with high 
accuracy, enabling precise, efficient, and scalable solutions that improve 
clinical decision-making and patient outcomes and marking a significant 
step forward in prenatal care. In the future, further improvements in the 
DL model with higher computational accuracy and efficiency for real- 
time clinical applications will be implemented.

CRediT authorship contribution statement

Mohammad Asif Hasan: Writing – original draft, Visualization, 
Methodology, Investigation, Data curation, Conceptualization. Fariha 
Haque: Writing – original draft, Visualization, Methodology, Investi
gation, Data curation, Conceptualization. Tonmoy Roy: Writing – 

original draft, Methodology, Investigation, Data curation. Mahedi 
Islam: Writing – original draft, Methodology, Investigation, Data cura
tion. Md Nahiduzzaman: Writing – review & editing, Validation, Su
pervision, Formal analysis. Mohammad Mahedi Hasan: Writing – 
original draft, Methodology, Data curation. Mominul Ahsan: Writing – 
review & editing, Visualization, Validation, Supervision, Formal anal
ysis. Julfikar Haider: Writing – review & editing, Visualization, Vali
dation, Supervision, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

References

[1] A.F. Alexander-Bloch, A. Raznahan, S.N. Vandekar, J. Seidlitz, Z. Lu, S.R. Mathias, 
E. Knowles, J. Mollon, A. Rodrigue, J.E. Curran, Imaging local genetic influences 
on cortical folding, Proc. Natl. Acad. Sci. USA 117 (13) (2020) 7430–7436.

[2] T. Rogne, A.A. Engstrøm, G.W. Jacobsen, J. Skranes, H.F. Østgård, M. Martinussen, 
Fetal growth, cognitive function, and brain volumes in childhood and adolescence, 
Obstet. Gynecol. 125 (3) (2015) 673–682.

[3] H.J. Yun, L. Vasung, T. Tarui, C.K. Rollins, C.M. Ortinau, P.E. Grant, K. Im, 
Temporal patterns of emergence and spatial distribution of sulcal pits during fetal 
life, Cerebr. Cortex 30 (7) (2020) 4257–4268.

[4] C.R. Madan, E.A. Kensinger, Predicting age from cortical structure across the 
lifespan, Eur. J. Neurosci. 47 (5) (2018) 399–416.

[5] J.H. Cole, J. Raffel, T. Friede, A. Eshaghi, W.J. Brownlee, D. Chard, N. De Stefano, 
C. Enzinger, L. Pirpamer, M. Filippi, Longitudinal assessment of multiple sclerosis 
with the brain-age paradigm, Ann. Neurol. 88 (1) (2020) 93–105.

[6] N.N. Andescavage, A. Du Plessis, R. McCarter, A. Serag, I. Evangelou, G. Vezina, 
R. Robertson, C. Limperopoulos, Complex trajectories of brain development in the 
healthy human fetus, Cerebr. Cortex 27 (11) (2017) 5274–5283.

[7] H.J. Yun, J.D.R. Perez, P. Sosa, J.A. Valdés, N. Madan, R. Kitano, S. Akiyama, B. 
G. Skotko, H.A. Feldman, D.W. Bianchi, Regional alterations in cortical sulcal 
depth in living fetuses with down syndrome, Cerebr. Cortex 31 (2) (2021) 
757–767.

[8] A. Conde-Agudelo, R. Romero, Antenatal magnesium sulfate for the prevention of 
cerebral palsy in preterm infants less than 34 weeks’ gestation: a systematic review 
and metaanalysis, Am. J. Obstet. Gynecol. 200 (6) (2009) 595–609.

[9] L. Liu, S. Oza, D. Hogan, Y. Chu, J. Perin, J. Zhu, J.E. Lawn, S. Cousens, C. Mathers, 
R.E. Black, Global, regional, and national causes of under-5 mortality in 2000–15: 
an updated systematic analysis with implications for the Sustainable Development 
Goals, Lancet 388 (10063) (2016) 3027–3035.

[10] A.C. Lee, P. Panchal, L. Folger, H. Whelan, R. Whelan, B. Rosner, H. Blencowe, J. 
E. Lawn, Diagnostic accuracy of neonatal assessment for gestational age 
determination: a systematic review, Pediatrics 140 (6) (2017).

[11] Y. Lu, X. Fu, F. Chen, K.K. Wong, Prediction of fetal weight at varying gestational 
age in the absence of ultrasound examination using ensemble learning, Artif. Intell. 
Med. 102 (2020) 101748.

[12] D. Fajardo-Rojas, M. Hall, D. Cromb, M.A. Rutherford, L. Story, E. Robinson, 
J. Hutter, Predicting gestational age at birth in the context of preterm birth from 
multi-modal fetal MRI, medRxiv (2024), 2024.02. 17.24302791.

[13] C. Ross, P. Deruelle, M. Pontvianne, L. Lecointre, S. Wieder, P. Kuhn, M. Lodi, 
Prediction of adverse neonatal adaptation in fetuses with severe fetal growth 
restriction after 34 weeks of gestation, Eur. J. Obstet. Gynecol. Reprod. Biol. 296 
(2024) 258–264.

[14] M. Alzubaidi, M. Agus, U. Shah, M. Makhlouf, K. Alyafei, M. Househ, Ensemble 
transfer learning for fetal head analysis: from segmentation to gestational age and 
weight prediction, Diagnostics 12 (9) (2022) 2229.

[15] L.H. Lee, E. Bradburn, R. Craik, M. Yaqub, S.A. Norris, L.C. Ismail, E.O. Ohuma, F. 
C. Barros, A. Lambert, M. Carvalho, Machine learning for accurate estimation of 
fetal gestational age based on ultrasound images, NPJ Digital Medicine 6 (1) 
(2023) 36.

[16] L. Shen, J. Zheng, E.H. Lee, K. Shpanskaya, E.S. McKenna, M.G. Atluri, D. Plasto, 
C. Mitchell, L.M. Lai, C.V. Guimaraes, Attention-guided deep learning for 
gestational age prediction using fetal brain MRI, Sci. Rep. 12 (1) (2022) 1408.

[17] L. Shen, J. Zheng, E.H. Lee, K. Shpanskaya, E.S. McKenna, M.G. Atluri, D. Plasto, 
C. Mitchell, L.M. Lai, C.V. Guimaraes, H. Dahmoush, J. Chueh, S.S. Halabi, J. 
M. Pauly, L. Xing, Q. Lu, O. Oztekin, B.M. Kline-Fath, K.W. Yeom, Attention-guided 
deep learning for gestational age prediction using fetal brain MRI, Sci. Rep. 12 (1) 
(Jan 26 2022) 1408.

[18] L. Zhao, D. Zhu, X. Wang, X. Liu, T. Li, B. Wang, Z. Yao, W. Zheng, B. Hu, An 
attention-based hemispheric relation inference network for perinatal brain age 
prediction, IEEE Journal of Biomedical Health Informatics (2024).

[19] Y. Kojita, H. Matsuo, T. Kanda, M. Nishio, K. Sofue, M. Nogami, A.K. Kono, 
M. Hori, T. Murakami, Deep learning model for predicting gestational age after the 
first trimester using fetal MRI, Eur. Radiol. 31 (6) (Jun 2021) 3775–3782.

M.A. Hasan et al.                                                                                                                                                                                                                               Computers in Biology and Medicine 182 (2024) 109155 

14 

http://refhub.elsevier.com/S0010-4825(24)01240-X/sref1
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref1
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref1
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref2
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref2
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref2
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref3
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref3
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref3
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref4
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref4
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref5
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref5
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref5
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref6
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref6
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref6
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref7
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref7
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref7
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref7
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref8
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref8
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref8
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref9
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref9
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref9
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref9
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref10
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref10
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref10
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref11
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref11
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref11
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref12
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref12
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref12
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref13
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref13
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref13
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref13
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref14
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref14
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref14
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref15
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref15
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref15
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref15
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref16
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref16
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref16
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref17
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref17
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref17
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref17
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref17
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref18
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref18
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref18
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref19
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref19
http://refhub.elsevier.com/S0010-4825(24)01240-X/sref19


[20] L. Shen, K. Shpanskaya, E. Lee, E. McKenna, M. Maleki, Q. Lu, S. Halabi, J. Pauly, 
K. Yeom, Deep learning with attention to predict gestational age of the fetal brain, 
arXiv preprint arXiv:1812.07102 (2018).

[21] R. Zhou, Y. Liu, W. Xia, Y. Guo, Z. Huang, H. Gan, A. Fenster, JoCoRank: joint 
correlation learning with ranking similarity regularization for imbalanced fetal 
brain age regression, Comput. Biol. Med. 171 (2024) 108111.

[22] Z. Feng, R. Zhou, W. Xia, S. Wang, Y. Liu, Z. Huang, H. Gan, PDFF-CNN: an 
attention-guided dynamic multi-orientation feature fusion method for gestational 
age prediction on imbalanced fetal brain MRI dataset, Med. Phys. 51 (5) (2024) 
3480–3494.

[23] M. Liu, M. Lu, S.Y. Kim, H.J. Lee, B.A. Duffy, S. Yuan, Y. Chai, J.H. Cole, X. Wu, A. 
W. Toga, Brain age predicted using graph convolutional neural network explains 
neurodevelopmental trajectory in preterm neonates, Eur. Radiol. 34 (6) (2024) 
3601–3611.

[24] A. Ansari, K. Pillay, L. Baxter, E. Arasteh, A. Dereymaeker, G.S. Mellado, K. Jansen, 
G. Naulaers, A. Bhatt, S. Van Huffel, Brain age as an estimator of 
neurodevelopmental outcome: a deep learning approach for neonatal cot-side 
monitoring, bioRxiv (2023) 2023, 01. 24.525361.

[25] W. Shi, G. Yan, Y. Li, H. Li, T. Liu, C. Sun, G. Wang, Y. Zhang, Y. Zou, D. Wu, Fetal 
brain age estimation and anomaly detection using attention-based deep ensembles 
with uncertainty, Neuroimage 223 (2020) 117316.

[26] J.-H. Kim, J. De Asis-Cruz, K.M. Cook, C. Limperopoulos, Gestational age-related 
changes in the fetal functional connectome: in utero evidence for the global signal, 
Cerebr. Cortex 33 (5) (2023) 2302–2314.

[27] M. Mazher, A. Qayyum, D. Puig, M. Abdel-Nasser, Effective approaches to fetal 
brain segmentation in MRI and gestational age estimation by utilizing a multiview 
deep inception residual network and radiomics, Entropy 24 (12) (2022) 1708.

[28] C. Calixto, F. Machado-Rivas, D. Karimi, M.C. Cortes-Albornoz, L.M. Acosta- 
Buitrago, S. Gallo-Bernal, O. Afacan, S.K. Warfield, A. Gholipour, C. Jaimes, 
Detailed anatomic segmentations of a fetal brain diffusion tensor imaging atlas 
between 23 and 30 weeks of gestation, Hum. Brain Mapp. 44 (4) (2023) 
1593–1602.

[29] F. Vahedifard, X. Liu, K.K. Marathu, M. Kocak, H.A. Ai, M.P. Supanich, S. Adler, S. 
M. Ansari, M. Akyuz, J.O. Adepoju, Artificial intelligence prediction of gestational 

age of fetal in brain magnetic resonance imaging versus ultrasound using three 
different biometric measurements, Preprints (2023).

[30] G. Hong, X. Chen, J. Chen, M. Zhang, Y. Ren, X. Zhang, A multi-scale gated multi- 
head attention depthwise separable CNN model for recognizing COVID-19, Sci. 
Rep. 11 (1) (2021) 18048.

[31] H.T. Pham, J. Awange, M. Kuhn, Evaluation of three feature dimension reduction 
techniques for machine learning-based crop yield prediction models, Sensors 22 
(17) (Sep 1 2022).

[32] F. Chollet, Xception: deep learning with depthwise separable convolutions, in: 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 
2017, pp. 1251–1258.

[33] M.R. Islam, M. Nahiduzzaman, M.O.F. Goni, A. Sayeed, M.S. Anower, M. Ahsan, 
J. Haider, Explainable transformer-based deep learning model for the detection of 
malaria parasites from blood cell images, Sensors 22 (12) (Jun 8 2022).
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