
Please cite the Published Version

Ezekiel, Agbon Ehime, Okafor, Kennedy Chinedu, Tersoo, Sena Timothy, Alabi, Christopher
Akinyemi, Abdulsalam, Jamiu, Imoize, Agbotiname Lucky, Jogunola, Olamide and Anoh, Kelvin
(2024) Enhanced Energy Transfer Efficiency for IoT-Enabled Cyber-Physical Systems in 6G Edge
Networks with WPT-MIMO-NOMA. Technologies, 12 (8). 119 ISSN 2227-7080

DOI: https://doi.org/10.3390/technologies12080119

Publisher: MDPI

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/635506/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an open access article which first appeared in Technologies,
published by MDPI

Data Access Statement: No new data were created or analyzed in this study. Data sharing is not
applicable to this article.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0002-2701-9524
https://doi.org/10.3390/technologies12080119
https://e-space.mmu.ac.uk/635506/
https://creativecommons.org/licenses/by/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


Citation: Ezekiel, A.E.; Okafor, K.C.;

Tersoo, S.T.; Alabi, C.A.; Abdulsalam, J.;

Imoize, A.L.; Jogunola, O.; Anoh, K.

Enhanced Energy Transfer Efficiency

for IoT-Enabled Cyber-Physical

Systems in 6G Edge Networks with

WPT-MIMO-NOMA. Technologies

2024, 12, 119. https://doi.org/

10.3390/technologies12080119

Academic Editors: Manoj Gupta and

Pedro Antonio Gutiérrez

Received: 4 May 2024

Revised: 22 June 2024

Accepted: 17 July 2024

Published: 24 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

technologies

Article

Enhanced Energy Transfer Efficiency for IoT-Enabled
Cyber-Physical Systems in 6G Edge Networks
with WPT-MIMO-NOMA
Agbon Ehime Ezekiel 1 , Kennedy Chinedu Okafor 2,3,* , Sena Timothy Tersoo 1 , Christopher Akinyemi Alabi 4 ,
Jamiu Abdulsalam 5, Agbotiname Lucky Imoize 6 , Olamide Jogunola 7 and Kelvin Anoh 3

1 Department of Electronics and Telecommunications Engineering, Ahmadu Bello University,
Zaria 810107, Nigeria; eagbonehime1@gmail.com (A.E.E.); timothysena93@gmail.com (S.T.T.)

2 Department of Electrical and Electronic Engineering Science, University of Johannesburg,
Johannesburg 2006, South Africa

3 School of Engineering, University of Chichester, Bognor Regis PO21 1HR, UK
4 Telecommunications Engineering Department, Air Force Institute of Technology (AFIT), Kaduna 800282, Nigeria
5 Department of Electrical Engineering and Computer Science, South Dakota School of Mines and Technology,

Rapid City, SD 57701, USA; abdulsalamjamiu20@gmail.com
6 Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Lagos, Akoka,

Lagos 101017, Nigeria; aimoize@unilag.edu.ng
7 Department of Computing and Mathematics, Manchester Metropolitan University, Manchester M15 6BH, UK;

o.jogunola@mmu.ac.uk
* Correspondence: kennedy.okafor@ieee.org

Abstract: The integration of wireless power transfer (WPT) with massive multiple-input multiple-
output (MIMO) non-orthogonal multiple access (NOMA) networks can provide operational capabili-
ties to energy-constrained Internet of Things (IoT) devices in cyber-physical systems such as smart
autonomous vehicles. However, during downlink WPT, co-channel interference (CCI) can limit the
energy efficiency (EE) gains in such systems. This paper proposes a user equipment (UE)–base station
(BS) connection model to assign each UE to a single BS for WPT to mitigate CCI. An energy-efficient
resource allocation scheme is developed that integrates the UE–BS connection approach with joint
optimization of power control, time allocation, antenna selection, and subcarrier assignment. The
proposed scheme improves EE by 24.72% and 33.76% under perfect and imperfect CSI conditions,
respectively, compared to a benchmark scheme without UE–BS connections. The scheme requires
fewer BS antennas to maximize EE and the distributed algorithm exhibits fast convergence. Further-
more, UE–BS connections’ impact on EE provided significant gains. Dedicated links improve EE by
24.72% (perfect CSI) and 33.76% (imperfect CSI) over standard connections. Imperfect CSI reduces
EE, with the proposed scheme outperforming by 6.97% to 12.75% across error rates. More antennas
enhance EE, with improvements of up to 123.12% (conventional MIMO) and 38.14% (massive MIMO)
over standard setups. Larger convergence parameters improve convergence, achieving EE gains
of 7.09% to 11.31% over the baseline with different convergence rates. The findings validate the
effectiveness of the proposed techniques in improving WPT efficiency and EE in wireless-powered
MIMO–NOMA networks.

Keywords: co-channel interference; energy efficiency; massive MIMO; NOMA; wireless power transfer

1. Introduction

The emerging IoT era has led to explosive growth in the number of connected devices.
To support the massive machine-type communications in IoT networks, the next genera-
tion (5G and beyond) wireless networks need to provide higher data rates and expanded
coverage. The abundant device connectivity also necessitates energy-efficient communica-
tion techniques to reduce the carbon footprint [1,2]. Technologies such as MIMO [3] and
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NOMA [4] have arisen as two promising technologies to meet these critical requirements.
Massive MIMO employs a large number of antennas to provide substantial improvements
in spectral efficiency and energy efficiency [5]. NOMA allows multiple users to share the
same time–frequency resources via power domain multiplexing and successive interference
cancellation, improving user connectivity and bandwidth utilization. The combination of
massive MIMO and NOMA, referred to as massive MIMO–NOMA, can unlock further
performance gains in future wireless networks [6]. However, providing continuous and
reliable communication to massive IoT devices with limited power and storage capabilities
remains an important challenge. For IoT devices, WPT has emerged as a viable solution
that allows wireless charging of energy-constrained nodes over the air interface [7].

By enabling wireless-powered communication networks (WPCN), the base stations can
wirelessly charge the IoT devices via WPT in the downlink and receive data from them in
the uplink [8]. The integration of WPT with massive MIMO–NOMA networks can therefore
realize self-sustaining IoT systems with perpetual operation capabilities. Nevertheless,
co-channel interference (CCI), inherent in the WPT phase in such networks, can limit
the energy efficiency (EE) gains. CCI occurs in this type of network when the IoT user
equipment (UE), especially cell-edge users, receives signals for WPT from multiple base
stations or moves across cells during the WPT phase. The resulting interference impedes
efficient wireless charging, thereby degrading the EE performance of WPT-enabled massive
MIMO–NOMA networks.

Prior works have developed resource allocation algorithms focusing on transmit
power, time allocation, antennas, etc., to improve the EE of wireless-powered massive
MIMO–NOMA networks. [9] conducted a study on energy-efficient resource allocation
in Machine-to-Machine (M2M) communications for the IoT. The work proposed joint
power control and time allocation techniques for minimizing energy consumption while
considering circuit power. The results showed that NOMA consumed less total energy than
time division multiple access (TDMA) at a low circuit power, but that TDMA achieved better
network EE at a high circuit power. Authors in [7] investigated the performance of NOMA
schemes in WPCN, with a specific emphasis on system EE. The work considered a scenario
with multiple energy-harvesting UEs that operate using a harvest-then-transmit protocol.
The study observed that broadcasting at higher power levels was more energy-efficient for
WPCN with uplink NOMA and the exponential decay quality of service (QoS) parameter
had a significant impact on the optimal solution. Another study [10] developed an energy-
efficient resource allocation scheme in massive MIMO–NOMA networks with wireless
power transfer, using a distributed alternating direction method of the multipliers (ADMM)
approach. The study suggested a novel joint power, time, antenna, and subcarrier resource
allocation strategy that can efficiently control the time required for energy harvesting and
data transmission in order to maximize the EE of the network. In [11], a fairness-aware
resource allocation scheme (FA-RAS) for a WPCN utilizing multiple sources for WPT was
proposed. The study addressed the joint optimization of power and block-length allocation
to improve the reliability of short packet transmissions. The proposed scheme showed the
potential to enhance EE and system performance.

However, these works do not address the CCI issue arising from WPT, which is
pivotal in ensuring effective IoT UE charging and high EE. The work [12] proposed a
scheme for collecting Interference Signal (IS) energy during intense CCI in a cellular
network. The system has the advantage of saving network energy during interference
periods after which transmission takes place. The work recorded throughput and energy
enhancement. However, results from the study showed that the presence of inherent
interference mitigated the performance of the network, resulting in delays. The authors [13]
examined a two-way relaying non-orthogonal multiple access IoT network whereby two
NOMA users communicate through an IoT access point relay using a decode-and-forward
protocol. The study further included CCI analysis for practicality. However, the outage
probability of the network was limited due to the presence of interference in NOMA.
The papers [14,15] proposed a multiuser non-cooperative computation offloading game
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to optimize offloading probabilities, incorporating factors like the vehicle-Multiaccess
Edge Computing (MEC) distance and multivehicle competition. Results from the work
showed fast convergence of the MEC algorithm. However, the MEC server suffered from
interference, which resulted in reduced expected performance. The work [16] considered
the effect of platoon vehicles’ air-to-ground and ground-to-air communication to solve
the problem of poor communication for road traffic-based BSs. Simulation results showed
improved power and data transmission. However, the interference between the set platoon
vehicles affected the expected performance of the platoon network. The authors [17]
proposed a multi-edge-IoT system that sets a new standard for efficiency within the IoT
ecosystem, outperforming existing approaches in key metrics such as energy consumption,
latency, communication overhead, and packet loss rate. Despite the significant contribution,
the interference from the IoT devices mitigated the performance of the designed system.

Authors [18–21] proposed wireless-powered mobile edge computing schemes to
improve the performance of wireless networks in terms of resource allocation and en-
ergy efficiency. Results recorded an improvement in the general performance of the net-
work. However, during WPT, the network suffered from high interferences between
network devices.

In this present study, the key contributions are as follows:

1. This work proposes a UE–BS connection model to assign each UE to a single BS for
WPT in order to mitigate CCI during the wireless charging phase;

2. This study developed an energy-efficient resource allocation scheme that integrates
the UE–BS connection approach with joint optimization of transmit power, time
allocation, antenna selection, and subcarrier assignment;

3. This work derived a non-convex mixed integer optimization problem for EE max-
imization and applied some techniques such as relaxation and approximation to
transform it into a more tractable form;

4. The study further applied the Alternating Direction Method of Multipliers (ADMM)
to efficiently solve the resource allocation problem in a distributed manner.

The remaining parts of the paper are organized as follows. Section 2 provides back-
ground on massive MIMO–NOMA, WPT, and CCI. Section 3 describes the proposed UE–BS
connection model. Section 4 presents the energy-efficient resource allocation scheme.
Section 5 evaluates the performance of the proposed scheme via simulations. Finally,
Section 6 concludes the paper.

2. Related Works

This section provides an overview of the key technologies and concepts that form the
foundation for this work—massive MIMO–NOMA networks, wireless power transfer, and
CCI in WPT.

2.1. Massive MIMO–NOMA Networks

Massive MIMO involves deploying a large number of antennas at the base station
(BS) to provide substantial improvements in spectral efficiency, coverage, and radiated
energy efficiency (EE). The large antenna array offers higher spatial degrees of freedom to
simultaneously serve multiple users in the same time–frequency resource. In particular,
massive MIMO exploits the channel hardening effect, where the channel vectors become
nearly deterministic as the number of antennas grows large. Channel hardening arises
from the law of large numbers, where the channel gains between each antenna and the user
becomes increasingly orthogonal. This results in reduced multi-user interference and mini-
mal intra-cell interference [22]. With channel hardening, simple matched filter precoders
and combiners that require only large-scale fading CSI tend to optimal performance [23].
Consequently, massive MIMO systems can approach theoretical capacity limits with low-
complexity signal processing. Furthermore, the array gain improves the received signal
power, allowing for large reductions in transmit power. Massive MIMO networks therefore
offer substantial improvements in spectral efficiency and energy efficiency compared to
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conventional MIMO systems [24]. NOMA allows multiple access on the same resource
block, where users are multiplexed in the power domain at different power levels [25].
On the transmitter side, superposition coding is applied to send a sum of messages to the
NOMA users [2]. The receivers exploit the power disparity through successive interference
cancellation (SIC), where multi-user interference is decoded and removed successively,
starting from the highest power message. NOMA provides higher bandwidth utilization
compared to orthogonal multiple access techniques like OFDMA [26]. The non-orthogonal
transmissions and SIC decoding also aid in lowering latency. Therefore, NOMA enhances
connectivity, capacity, and user fairness in multi-user networks [6].

The combination of massive MIMO and NOMA unlocks further performance bene-
fits compared to either technique alone. In massive MIMO–NOMA networks, the BS is
equipped with antennas denoted by M to serve single-antenna users denoted by K on the
same time–frequency resources, i.e., M >> K. For the downlink, the base station applies
beamforming to transmit the superposition-coded signals to the NOMA users. At the
receiver side, SIC is applied to remove multi-user interference. For the uplink, the base sta-
tion leverages the large array gain to detect the NOMA user signals using low-complexity
linear receivers. With proper design, massive MIMO–NOMA networks can greatly improve
system performance and EE [27].

2.2. Wireless Power Transfer

Wireless power transfer (WPT) is a technology that shows potential for remotely
providing energy to devices with low power consumption. These devices may have small
rechargeable batteries or no built-in power source at all [28]. This eliminates the need for
battery replacement or wired charging of devices like sensors and IoT nodes, which have
limited battery storage. WPT typically utilizes electromagnetic waves or radio signals and
hence its effectiveness is contingent upon the characteristics of the wireless connection and
the design of the receiving circuitry. WPT can broadly be categorized into near-field and
far-field techniques [29].

Near-field WPT exploits non-radiative magnetic or electric fields using inductive
coupling or magnetic/electric resonance between the transmit and receive coils. How-
ever, the range is limited to the coil diameter, requiring accurate alignment between the
transmitter and receiver. Far-field or RF-based WPT utilizes radiative electromagnetic
waves, providing greater mobility and allowing wireless charging of multiple devices
simultaneously [22]. Omnidirectional transmission as well as narrowband beamforming
can be applied for efficient wireless power delivery over longer distances. Ambient RF
signals from TV, cellular, and Wi-Fi transmissions can also be harvested as a source of WPT.
The key enablers for far-field WPT include [30].

1. Directional beamforming techniques like maximum ratio transmission focus the
radiated wireless energy toward the energy harvester’s location;

2. Waveform and transmit optimization to maximize the DC power extracted by the
energy harvester circuitry;

3. Sensitive antenna designs and low-power electronics to improve the RF-to-DC con-
version efficiency.

The integration of massive MIMO–NOMA with WPT is particularly promising since
the large array gain can significantly enhance the efficiency and range of RF wireless
power transfer [30]. However, co-channel interference (CCI) arising from the broadcast
nature of WPT transmission can limit the energy efficiency benefits. Effective interference
management techniques are necessary to facilitate efficient wireless power delivery in
WPT-enabled wireless communication networks.

2.3. Co-Channel Interference in WPT

A major impediment in realizing the full benefits of WPT is the problem of CCI during
the WPT phase [31]. CCI arises when multiple base stations concurrently transmit wireless
power to a user in the same frequency band. This unwanted co-channel interference power
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reduces the RF-to-DC conversion efficiency, leading to a loss in the usable harvested energy.
CCI is particularly detrimental for cell edge users that lie in the intersection of multiple
cells [32]. The interfering signals received from neighboring base stations can be of similar
or even higher strength than the intended signal. This greatly impedes the efficient wireless
charging of edge users. Studies from the works of [15,16] have further shown that CCI is a
major problem that has limited the performance of most wireless devices in terms of energy
efficiency and throughput.

3. Proposed UE–BS Connection Model

The following is a discussion of the proposed UE base station model used in this study.

3.1. System Model

We consider a distributed multicell WPT-enabled massive MIMO–NOMA network
with a large number of battery-powered IoT devices. There are K cells. Every cell has a BS
located at the cell center and several rechargeable IoT devices that are randomly scattered
within the cell. The BS in the k-th cell (i.e., BSk and k ∈ K) and has multiple antennas; each
IoT device is with a single antenna as shown in Figure 1.
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The BSk broadcasts a deterministic signal, denoted by Wk with power over the downlink
channel to power the nearby UE; a set of subcarriers are given in Equations (1) and (2) [7].

P = |Wk|2 (1)

S = {1, 2, . . . . . . ..s}. (2)

The total system bandwidth is B and the subcarrier bandwidth is Bs(s ∈ S). The
subcarrier bandwidth is denoted in Equation (10) [10].

Bs =
B
S

. (3)

The IoT device allocated to subcarrier s in the k-th(k ∈ K) cell is represented as
u(u ∈ U). Each BS is equipped with a Channel Estimator (CE) that is used to estimate the
characteristics of the channel. The candidate number of the antenna set is denoted by M,
while N represents the selected set of antenna vectors for all cells. Here, Mk represents the
maximum number of antennas for the BSk and Nk,s represents the optimal number vector of
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antennas picked in the k-th cell on subcarrier s. Nk,u,s denotes the ideal number of antennas
for a given situation. By selecting the best antenna for each BS, it can be inferred that Nk,n
may be simplified to Nk [10].

The system operates in a harvest-then-transmit time slot protocol. Each communi-
cation time block T is divided into two slots—a downlink WPT time slot of duration tk
followed by an uplink Wireless Information Transfer (WIT) time slot of duration T-tk,
as illustrated in Figure 2. During the WPT time slot, the BSs broadcast wireless energy,
which is harvested by the IoT devices. In the WIT time slot, the IoT devices transmit their
independent messages to the BS using the harvested energy.
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To mitigate CCI during WPT, each IoT device has to be associated with a single BS for
wireless charging in a given communication time block.

3.2. UE–BS Connection Matrix

We define a UE–BS connection variable as Xu,k to indicate the association between UEs
and BSs for wireless power transfer. In the situation whereby DIoT

k,u,s is connected with BSk,
Xu,k assumes a value of 1; otherwise, it assumes a value of 0. We denote this mathematically
as shown in Equation (4).

Xu,k =

{
1, I f u − th DIoT is connected to k − th BS
0, Otherwise.

. (4)

Each UE DIoT
k,u,s can only connect to one BS for WPT in a given communication time

block to reduce CCI. So, the connection matrix between the u-th and k-th BS is obtained as
shown in Equation (5).

X =


x1,1 x1,2 . . . x1,K
x2,1 x2,2 . . . x2,K

...
...

. . .
...

xIoT−D,1 xIoT−D 2 . . . xIoT−D, K

. (5)

During WPT, the u-th DIoT
k,u,s can have access to a certain number of antennas of k-th

BS simultaneously. Hence, we model the connection between the u-th DIoT
k,u,s to the k-th BS

with the following constraint as given in Equation (6).

∑K
k=1 Xu,k ≤ BSk. (6)

where BSk is the total number of accessible BSs in K number of cells in the network.
Furthermore, we define the connection indication matrix Z between the u-th DIoT

k,u,s and
M antennas in Equation (7).

Z = [Zu,k,M]DIoT
k,u,s × K × M. (7)

where M and K denotes the candidate antenna number and number of BS.
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That is, if the m-th antenna of the k-th BS is allocated to its connected u-th UE then the
connection indication variable Zu,k,M assumes a value of 1 otherwise it assumes a value of
0. We express this in Equation (8).

z{u,m}(k) =

{
1, i f antena m ∈ BSk allocation to uth − UE with BSk

0, otherwise
(8)

The connection variable of the u-th DIoT
k,u,s and k-th BS becomes that shown in Equation (9).

Z =

[
Zu,M(k)

T

]
k = 1, 2, . . . .K. (9)

where T is a single communication time block.
Intuitively, each UE should connect to the BS, which provides the highest channel

gain for efficient wireless charging. However, jointly optimizing Xu,k with other resource
allocation policies leads to a complex mixed integer programming problem. The UE–BS
connection model is described in Algorithm 1. The algorithm takes the network parameters
and channel gains as the input. It initializes the connection matrices, selects antennas based
on channel gain, and establishes dedicated UE–BS connections while limiting each UE to
connect to only one BS.

Algorithm 1: UE–BS Connection Model

1: Input: K, U, M, h, and N
2: Output: x
3: Initialize UE–BS connection matrix x to zeros
4: Estimate channel gains hk,u,s
5: Select optimal antennas Nk,u,s based on channel gains
6: Initialize antenna connection matrix Zk,u,s
7: for u = 1 to U do
8: for k = 1 to K do
9: for m = 1 to M do
10: if Nk,u,s = m then
11: Zk,u,s = 1
12: else
13: Zk,u,s = 0
14: end if
15: end for
16: end for
17: end for
18: Establish UE–BS connections:
19: for u = 1 to U do
20: k* = arg maxk(Zu,k,1:M)
21: xu,k* = 1
22: end for
23: Limit each UE to 1 BS:
24: for u = 1 to U do
25: if (xu,1:K) > 1 then
26: k = arg maxk(Zu,k,1:M)
27: xu,k = 1
28: xu,1:K\k = 0
29: end if
30: end for
31: return x
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4. Energy-Efficient Resource Allocation Scheme

The following sub-section discusses the EE resource allocation scheme used in the
course of this study.

4.1. Problem Formulation

The objective is to maximize the system EE of the considered massive MIMO–NOMA
network integrated with WPT. We formulate an optimization problem that jointly opti-
mizes the transmit power, time, antenna, subcarrier allocation, and the UE–BS connection
to maximize the system EE. The energy beamforming approach is applied for WPT to
improve the power transfer efficiency. The energy transmitter (i.e., the BS), under the
assumption of perfect CSI, has a downlink received signal at DIoT

k,u,s on subcarrier s, as given
in Equation (10) [10].

yP
k,u,s = αk,ubH

k,u,shk,u,sZk + nk,u,s (10)

where hk,u,s is the downlink channel gain vector between BSk and DIoT
k,u,s, bH

k,u,s is the energy
beamforming vector, αk,u denotes the coefficient of path loss, nk,u,s represents the Additive
White Gaussian Noise (AWGN), and k stands for the energy signal transmitted by BSk.

The transmit power of BSk, which is another form of Equation (1), is expressed as [10],
as follows:

E|K|2 = Pk. (11)

So, the harvested energy of DIoT
k,u,s from the energy transmitter according to the law of

energy conservation during WPT is obtained in Equation (12) [23].

Ek,u,s = ηt
k(α2

k,u |b
H
k,u,shk,u,s |

2Pk) ∀ η(0≤η≤1).
(12)

where η is the conversion efficiency from the RF power source to electrical energy.
In the WIT time slot (T − tk), DIoT

k,u,s sends information to BSk using the energy that
has been harvested. The uplink NOMA transmission technique is applied to complete
the message transmission. To complete the message transmission, the uplink NOMA
transmission technique is utilized. A set decoding order for the received signals follows
when multi-user detection and SIC are implemented at the BSk. The uplink received signal
is expressed in Equation (13).

yP
k,u,s =

√
Ek,u,s

T − tk
αk,uhH

k,u,sxk,u,s + nk,u,s + Γk,u,s. (13)

where nk,u,s denotes the AWGN in the WIT uplink phase, Γk,u,s denotes the co-channel
interference under perfect CSI condition, and Xk,u,s denotes the transmitted signal from
DIoT

k,u,s through the power-domain NOMA denoted by Ek,u,s
T−tk

.
The Signal-to-Interference-Plus-Noise Ratio (SINR) of DIoT

k,u,s on the subcarrier s is
formulated as given in Equation (14) [10].

YP
k,u,s =

Ek,u,sα2
k,u

∣∣hk,u,s
∣∣2

Iintra,k + Iinter,k + σ2 . (14)

where σ2 is variance in white Gaussians noise and Iintra,k and Iinter,k denote the intra-cell
and the inter-cell co-channel interferences.

The above formulations are for perfect CSI considerations. However, in realistic mas-
sive MIMO–NOMA communication networks, the errors in channel estimation, feedback,
and quantization result in imperfect CSI at the transmitters, degrading the system EE. We
consider a quasi-static Rayleigh channel, where the channel between BSk and DIoT

k,u,s remains
constant for each time block T and changes independently between different time blocks.
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In each block, BSk employs the CE to estimate the channel by the Minimum Mean Square
Error (MMSE) approach. The estimated channel is expressed in Equation (15) [33,34]:

ĥk,u,s = hk,u,s − ek,u,s. (15)

where ek,u,s is the channel estimation error.
The process of EH involves the use of the energy beamforming policy given as b̂k,u,s.

Considering the beamforming method and imperfect CSI, the system modifies the energy
transfer direction, such that the IoT devices capture as much energy as possible. The energy
signal of DIoT

k,u,s received in the WPT is then expressed in Equation (16) [10].

yim P
k,u,s =

√
αk,u b̂k,u,shk,u,sZk + nk,u,s. (16)

The same as shown in the perfect CSI instance, the harvested energy by DIoT
k,u,s under

imperfect CSI knowledge is given by Equation (17) [10].

Ek,u,s = ηt
k(α2

k,u |b
H
k,u,shk,u,s |

2
)Pk .

(17)

The process of acquiring CSI knowledge obtained from the known training pilot
signals, which are broadcast at regular intervals, is important as it ensures that complete and
precise signal detection and decoding in the uplink are carried out. Once the superimposed
signals of the IoT devices are received by the BS, several signal processing steps are
performed to acquire the desired signal of each IoT device.

In wireless communication systems, user EE is quantified as the number of bits of
information reliably delivered to a receiver per unit of energy consumed at the transmitter.
When there are multiple users, it is also important to consider system EE. Furthermore,
this allows for resource allocation in such a way that overall energy usage becomes more
efficient. This motivation leads to consideration of system EE, which is generally defined
by [7] in Equation (18).

Energy E f f iciency =
Total Throughput

total Consumed Energy
(b/J) (18)

To maximize the EE of a massive MIMO–NOMA network, it is necessary to achieve
near-optimal throughput performance while operating at lower power consumption levels.
So, according to the Shannon capacity formula and channel hardening characteristic of
massive MIMO–NOMA networks at the s-th subcarrier, the data rate from DIoT

k,u,s to BSk is
shown by Equation (19):

Rk,u,s = Bslog2

[
1 +

(
ln

Mk
Nk,u,s

)
yk,u,sNk,u,s

]
(19)

where yk,u,s = Nk,u,s in the condition of perfect CSI and yk,u,s = yim P
k,u,s in the condition of

imperfect CSI. Therefore, the EE from DIoT
k,u,s to BSk subcarrier s is denoted in Equation (20).

ηEE(k,u,s) =
Rk,u,s

Ek,u,s
. (20)

The total throughput of massive MIMO NOMA is then expressed in Equation (21) [10].

Rtot(P, t, N, C, x) = ∑K
k=1 ∑U

u=1 ∑S
s=1 ck,u,s(T − tk)Rk,u,s ∀ P ∈

[P1, P2, . . . , Pk], t ∈ [t1, t2, . . . , tk], C ∈ [ck,u,s], N ∈ [Nk,u,s], X ∈ [xk,u,s]
(21)

where P, t, N, C, and x are the vectors of transmit power, time, selected antenna, subcarrier
allocation, and UE–BS connection policies, respectively.
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The total consumed energy by the system is given in Equation (22) [10].

Etot(P, tN, Cx) =
K

∑
k=1

[(
Pbsmax

{
xu,k Nk,u,s

}
+ UPuser

)
T +

S

∑
s=1

Pkck,u,stk

]
. (22)

where Pbs and Puser are the power consumptions of each antenna at BSk and each IoT
device, respectively.

Thus, the EE of the considered massive MIMO–NOMA networks can be calculated in
Equation (23).

Rtotal(P, t, N, C, x) =
Rtotal(P, t, N, C, x)
Etotal(P, t, N, C, x)

. (23)

Also, Q1, which is the EE maximization model (having seven constraints C) using the
proposed UE–BS connection, is expressed in Equation (24).

Q1 : max
P,t,N,C,x

η
EE
(P, t, N, C, x). (24)

s.t C1 : 0 ≤ Pk ≤ Pbs,max, ∀ k ∈ K

C2 : 0 ≤ tk ≤ Tmax, ∀ k ∈ K

C3 : 0 ≤
Ek,u,s

T − tk
≤ Puser,max, ∀ k ∈ K, u ∈ U, s ∈ S

C4 : Rk,u,s≥ Puser,max, ∀ k ∈ K, u ∈ U, s ∈ S

C5 : Nk,u,s ∈ {1, 2, . . . .Mk} ∀ k ∈ K, u ∈ U, s ∈ S

C6 : ck,u,s ∈ {0, 1},
U

∑
u=1

ck,u,s ≤ U. ∀ k ∈ K, u ∈ U, s ∈ S

C6 : ck,u,s ∈ {0, 1},
U

∑
u=1

ck,u,s ≤ U. ∀ k ∈ K, u ∈ U, s ∈ S

where constraint C1 ensures that the maximum transmit power of BSk does not exceed
Pbs,max, constraint C2 specifies the time range for energy transfer, C3 makes sure that the
transmit power of DIoT

k,u,s is non-negative and does not exceed Puser,max, C4 ensures thta the
channel rate of DIoT

k,u,s does not fall below the minimal rate Rmin, C5 ensures that the active
antennas allocated for each IoT device offer fairness among IoT devices and save the RF
cost, C6 ensures that the allocation of the subcarrier is carried out, and one subcarrier can
be multiplexed by at most U IoT devices and C7 ensures that u-th DIoT

k,u,s is connected to the
k-th BS.

This problem is non-convex and combinatorial. In the next subsection, we present an
efficient optimization approach based on relaxation and successive convex approximation
to find high-quality solutions.

4.2. Non-Linear Optimization

The formulated EE maximization problem Q1 is non-convex due to the fractional objec-
tive function and coupled optimization variables. To tackle this, we apply the dual domain
decomposition method to convert the fractional problem into an equivalent subtractive
linear form as seen in Equation (25).

Q2 : max
P,t,N,C,x

{Rtot(P, t, N, C, x)− ηEEEtot(P, t, N, C, x)}. (25)

s.t C1 : 0 ≤ Pk ≤ Pbs,max, ∀ k ∈ K.

C2 : 0 ≤ tk ≤ Tmax, ∀ k ∈ K.
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C3 : 0 ≤
Ek,u,s

T − tk
≤ Puser,max, ∀ k ∈ K, u ∈ U, s ∈ S.

C4 : Rk,u,s≥ Rmin, ∀ k ∈ K, u ∈ U, s ∈ S.

C5 : Nk,u,s ∈ {1, 2, . . . .Mk} ∀ k ∈ K, u ∈ U, s ∈ S.

C6 : ck,u,s ∈ {0, 1},
U

∑
u=1

ck,u,s ≤ U. ∀ k ∈ K, u ∈ U, s ∈ S.

C7 : xu,k ∈ {1, 2, . . . , BSk },
K

∑
k=1

xu,k ≤ BSk. ∀ k ∈ K, u ∈ U, s ∈ S.

With respect to Q2, there is a non-zero duality gap between the primal problem and
dual problem. To solve this problem, constraints C5 and C6 were relaxed to continuous
values. Thus, C5 and C6 was replaced by N†

k,u,s and c†
k,u,s. Q3 can be transformed into Q3,

as shown in Equation (26):

Q3 : max
P,t,N,C,x

{
Rtot

(
P, t, N†, C†, x

)
− ηEEEtot

(
P, t, N†, C†, x

)}
. (26)

s.t C1 : 0 ≤ Pk ≤ Pbs,max, ∀ k ∈ K.

C2 : 0 ≤ tk ≤ Tmax, ∀ k ∈ K.

C3 : 0 ≤
Ek,u,s

T − tk
≤ Puser,max, ∀ k ∈ K, u ∈ U, s ∈ S.

C4 : Rk,u,s≥ Rmin, ∀ k ∈ K, u ∈ U, s ∈ S.

C5 : N†
k,u,s ∈ {1, 2, . . . .Mk} ∀ k ∈ K, u ∈ U, s ∈ S.

C6 : c†
k,u,s ∈ {0, 1},

U

∑
u=1

c†
k,u,s ≤ U. ∀ k ∈ K, u ∈ U, s ∈ S.

C7 : xu,k ∈ {1, 2, . . . , BSk },
K

∑
k=1

xu,k ≤ BSk. ∀ k ∈ K, u ∈ U, s ∈ S.

The principle of strong duality theory guarantees that the asymptotically optimal
solution for Q3 may be obtained, according to the optimal solution offered by the dual
domain. The allocation strategy of resource allocation can be optimized by solving Q3 in
an iterative manner. By running such an iterative process, the optimal solution for resource
allocation and ηEE can be obtained. The proposed energy-efficient resource allocation
scheme is implemented through the iterative algorithm outlined in Algorithm 2 where the
key steps for jointly optimizing the resources and UE–BS connections are provided.

Algorithm 2: Energy Efficient Resource Allocation Scheme.

Input: K, U, M, S, h, X, Pmax, Pbs, Puser, T, Rmin, Pbs,max, Puser,max, αk,u, and ηEE
Output: x, P, t, N, and C
1. Initialize x, P, t, N, and C
2. Calculate channel rates Rk,u,s based on h, P, and N
3. while not converged do
4. Update X to optimize UE–BS connections
5. Update P to maximize EE under Pmax constraint
6. Update t to allocate WPT and WIT time
7. Update N for optimal antenna selection
8. Update C for subcarrier assignment
9. Calculate UE rates Rk,u,s based on current P, t, N, and C
10. end while
return x, P, t, N, and C
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The algorithm takes the network parameters, channel gains, and connections as the
input. It iteratively optimizes the power, time, antenna selection, and subcarrier allocation
to maximize EE while satisfying QoS constraints. The output is the optimized resource
allocation policies.

4.3. Distributed ADMM Approach

We propose a distributed solution based on the ADMM to solve the EE maximization
problem. ADMM allows decomposing the original problem into smaller subproblems that
can be solved in parallel [35]. The relaxed problem is still non-convex due to the objective
function. To apply ADMM, we introduce local copies of the optimization variables at each
BS, as shown in Equations (27)–(29).

t̂k = tk (27)

n̂k,u,s = N†
k,u,s (28)

ĉk,u,s = c†
k,u,s (29)

The global consensus problem with the local variable copies is given as Q4 and it is
shown in Equation (30).

Q4 : max
P,t,N,C,x

(
P,

∼
t ,

∼
N,

∼
C,

∼
x
)

. (30)

s.t
∼
C1 : 0 ≤ Pk ≤ Pbs,max, ∀ k ∈ K.

∼
C2 : 0 ≤

∼
t k ≤ Tmax, ∀ k ∈ K.

∼
C3 : 0 ≤

Ek,u,s

T −
∼
t k

≤ Puser,max, ∀ k ∈ K, u ∈ U, s ∈ S.

∼
C4 :

∼
Rk,u,s≥ Rmin, ∀ k ∈ K, u ∈ U, s ∈ S.

∼
C5 :

∼
Nk,u,s ∈ {1, 2, . . . .Mk} ∀ k ∈ K, u ∈ U, s ∈ S.

∼
C6 :

∼
c k,u,s ∈ {0, 1},

U

∑
u=1

∼
c k,u,s ≤ U. ∀ k ∈ K, u ∈ U, s ∈ S.

∼
C7 :

∼
xu,k ∈ {1, 2, . . . , BSk },

K

∑
k=1

∼
xu,k ≤ BSk. ∀ k ∈ K, u ∈ U, s ∈ S.

Q4, the global consensus problem, is then transformed to Q5, as shown in Equation (31).

Q5 : max
P,t,N,C,x

(
P, t̂, N̂, Ĉ, x̂

)
. (31)

s.t Ĉ1 : P̂k = Pk, ∀ 1 ≤ k ≤ K.

The ADMM framework splits this global problem into local subproblems at each BS by
forming the augmented Lagrangian, as given by Equation (32).

ς
({

Pk, tk, nk,u,s, ck,u,s, xk,u,s
}

, {λk}
)
=

K

∑
k=1

gk
(

Pk, tk, nk,u,s, ck,u,s, xk,u,s
)
+

K

∑
k=1

λk
(

Pk − Pk
)

(32)

The resource allocation variables are updated in an iterative fashion by solving the
local subproblems in parallel and then by coordination to reach a consensus on the global
solution. To maintain a uniform interference level and consistent EE, each BS updates the
global variables at the beginning of an iteration. Following that, each BS handles the self-
subproblems

(
P, t̂, N̂, Ĉ, x̂

)
on its own. The Lagrange multipliers are then updated at the

BSs by gathering and using the local CSI of IoT devices. After achieving local convergence,
the BSs trade power and IoT UE and BS connection values with one another in order to
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find the best option and modify the local resource allocation in the ensuing cycle. There is
less signaling overhead when such an interactive and iterative method is used. There is no
requirement for the BSs and IoT devices to exchange CSIs. Additionally, a large problem
is divided up into a number of distributed little problems. This may then be resolved
simultaneously, increasing the effectiveness of addressing the optimization problem [36].
Key steps in the distributed optimization approach are outlined in Algorithm 3.

Algorithm 3: Energy-Efficient Resource Allocation with Distributed ADMM

1: Objective: Maximize system energy efficiency (EE)
2: Input:
3: Local CSI:
4: hk—Local channel gain matrix at BS k
5: Nk—Local antenna selection at BS k
6: Rk—Local UE rate matrix at BS k
7: Resource constraints:
8: Pmax, tmin, tmax, Rmin, and Cmax—Local max connections per subcarrier
9: 1. Initialization:
10: Initialize local copies of optimization variables at each BS k and local dual variables
11: xk = 0
12: Pk = Pmax/K
13: tk = T/2
14: Nk = M/K
15: Ck = S/K
16:

∣∣∣λ̃k

∣∣∣ = 0 // For consensus on global UE–BS connections x
17: |µ̃k| = 0 // For consensus on global power allocation P
18: ṽk = 0 // For consensus on global energy efficiency EE
19: 2. Repeat until convergence:
20: 3. Each BS k updates local variables to maximize local EE
21: xk = arg max EE(xk, Pk, tk, Nk, and Ck) s.t. local constraints
22: Pk = arg max EE(xk, Pk, tk, Nk, and Ck)
23: tk = arg max EE(xk, Pk, tk, Nk, and Ck)
24: Nk = arg max EE(xk, Pk, tk, Nk, and Ck)
25: Ck = arg max EE(xk, Pk, tk, Nk, and Ck)
26: 4. Update local dual variables
27: λ̃k = λ̃k + ρ∆λ̃

28: µ̃k = µ̃k + ρ∆µ̃ṽk
29: ṽk = ṽk + ρ∆ṽ
30: 5. Exchange updates with neighbors
31: Share xk, Pk, λ̃k, µ̃k, and ṽk
32: 6. Master node reaches consensus
33: x = ∑t

k xk/K
34: P = ∑t

k Pk/K
35: 7. Broadcast consensus to BSs
36: Send xk, Pk to all BSs
37: 8. Until convergence criteria met
38: return Optimized x, P, t, N, and C

Overview of the Computational Complexity of Distributed ADMM

Carrying out the computational complexity analysis of the distributed ADMM scheme
over the existing scheme from the work [10] is very important to analyze the performance
of both systems [37,38]. Table 1 provides a comprehensive comparison between the two
scenarios, emphasizing the advantages of Scenario 2 (mEE-RAS) over Scenario 1 (EE-RAS).
It highlights the improvements in co-channel interference mitigation, energy efficiency, and
joint optimization achieved through the integration of the UE–BS connection model.
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Table 1. Comparative overview of mEE-RAS against EE-RAS schemes for complexity deliberation.

Aspect EE-RAS Scheme mEE-RAS Scheme

Optimization Problem Resource allocation in NOMA MIMO with WPT Resource allocation in NOMA MIMO with WPT and
UE–BS connection model

Constraints
C1–C6 (max power, energy transfer time, power
non-negativity, rate, antenna control, and subcarrier
allocation)

C1–C7 (max power, energy transfer time, power
non-negativity, rate, antenna control, subcarrier
allocation, and UE–BS connection)

Iterative Algorithm ADMM (Alternating Direction Method of
Multipliers)

D-ADMM (Distributed Alternating Direction
Method of Multipliers)

Number of Iterations (K) Problem-specific Problem-specific

Complexity of Solving
Subproblems Problem-specific, may involve matrix operations Problem-specific, may involve matrix operations

Overall Computational
Complexity

K∗Complexity of solving x-subproblem +
Complexity of solving z-subproblem)

K∗(Complexity of solving x-subproblem +
complexity of solving z-subproblem)

Size of Optimization Variables Max
P,t,N,C,x

∧
(

P, t̂, N̂, Ĉ, and x̂
)
. Max

P,t,N,C,x
∧
(

P,
∼
t ,

∼
N,

∼
C, and

∼
x
)

.

UE–BS Connection Model
Integration Not applicable Integrated for joint optimization of parameters

Joint Optimization of Parameters Not applicable Joint optimization of transmit power, time allocation,
antenna selection, and subcarrier assignment

Co-channel interference
Mitigation

Conventional WPT to mitigate co-channel
interference during the wireless charging phase

UE–BS connection model used to assign each UE to a
single BS for WPT to mitigate co-channel interference
during the wireless charging phase

Energy-Efficient Resource
Allocation Not applicable Energy-efficient resource allocation scheme

integrated with the UE–BS connection approach

Comparative Analysis Standard resource allocation model with ADMM
Enhanced model with UE–BS connection, joint
optimization, interference mitigation, and energy
efficiency

Advantages of Scenario 2 over
Scenario 1

Mitigates co-channel interference during the wireless
charging phase, energy-efficient resource allocation,
and joint optimization of multiple parameters

Offers additional benefits of UE–BS connection,
interference mitigation, and energy efficiency in
resource allocation.

Model equation for solving
x-problem argmin x

((
f (x) + ρ

2

∥∥∥Ax + Bzk − c + yk
∥∥∥2

)
100

)
argmin x

((
f (x) + ρ

2

∥∥∥Ax + Bzk − c + yk
∥∥∥2

)
10−2

)
.

Model equation for solving
z-problem argmin x

((
f (x) + ρ

2

∥∥∥Axk+1 + Bz − c + yk
∥∥∥2

)
100

)
argmin x

((
f (x) + ρ

2

∥∥∥Axk+1 + Bz − c + yk
∥∥∥2

)
10−2

)

It can be observed that the mEE-RAS has the following advantages [38]:

1. Mitigates co-channel interference during the wireless charging phase;
2. Introduces an energy-efficient resource allocation scheme;
3. Integrates the UE–BS connection model for joint optimization;
4. Addresses additional constraints related to UE–BS connections (C7).

From Table 1, it is noteworthy that the mEE-RAS scheme introduces additional features
and constraints compared to EE-RAS. But these do not significantly increase the overall
computational complexity. The use of a distributed algorithm (D-ADMM) and the potential
for parallelism ensure that the additional complexity remains manageable, resulting in
approximately the same complexity for both schemes.

5. Performance Evaluation
5.1. Simulation Setup

In this subsection, we evaluate the performance of the proposed energy-efficient
resource allocation scheme with the UE–BS connection model for WPT-based massive
MIMO–NOMA networks (denoted as mEE-RAS), using numerical simulations. The simu-
lation parameters used are presented in Table 2.
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Table 2. Simulation Parameters.

S/N Parameter (unit) Value

1 Base stations, K 6

2 No of users, U 15

3 Cell radius (m) 500

4 Subcarrier, S 20–40

5 Pbs.max (dBm) 46

6 Puser.max (dBm) 23

7 Rmin (bit/s/Hz) 0.1

8 αk,u 1/75

9 Pmin (mW) 20.3

10 PLNA (mW) 20

11 η 0.8

12 e 10−7

13 B (Hz) 1

14 PDAC (mW) 10

15 PADC (mW) 10

16 Pfilr (mW) 2.5

17 Ptilt (mW) 2.5

18 Psyn (mW) 50

19 PIFA (mW) 3

We average the results over random UE locations and channel realizations. The
resource allocation problems are solved using standard nonlinear solvers in MATLAB.
The distributed ADMM algorithm is implemented based on the consensus optimization
framework in [36–38]. Such algorithm reduces computational complexities at the network
edges [39].

5.2. Results and Discussion

In this section, we evaluate the performance of the proposed mEE-RAS and compare
it with a benchmark scheme from the work of [10] without UE–BS connections. We use
“EE-RAS” to denote the benchmark scheme without UE–BS connections [10]. The impact
on system EE is analyzed under different network configurations. The EE-RAS optimizes
the transmit power, time, antenna, and subcarrier allocation variables but does not explic-
itly optimize the UE–BS connections. The proposed scheme additionally optimizes the
continuous UE–BS connection variables xu,k along with the resource allocation variables.

We simulate a multicell massive MIMO–NOMA network based on the parameters
described in Section 5.1. We average the results over multiple channel realizations to
evaluate the performance gains.

Key aspects analyzed through simulations:

• Impact of UE–BS connection on system EE;
• Performance under imperfect CSI;
• Trends with the number of BS antennas;
• Convergence of the distributed ADMM algorithm.

The results demonstrate the effectiveness of the proposed UE–BS connection model in
providing significant EE gains across diverse network scenarios. Next, we discuss the key
observations from the simulation results.
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5.2.1. UE–BS Connection and EE

First, we evaluate the impact of the proposed UE–BS connection model on the system
EE. Figure 3 compares the EE achieved by the proposed mEE-RAS with optimized UE–BS
connections against the EE-RAS under both perfect and imperfect CSI through NOMA. It
is observed that establishing dedicated UE–BS connections provides significant EE gains.
By mitigating CCI during WPT, more useful energy can be harvested by the UEs. This
additional harvested energy translates to higher UE transmit powers and data rates, thereby
improving the system EE. From Figure 4, mEE-RAS achieved an EE improvement of 24.72%
over the EE-RAS, having an average EE value of 4.23 × 10−4 bits/J/Hz in the case of perfect
CSI. In the case of imperfect CSI, mEE-RAS achieved an EE improvement of 33.76%, having
an EE value of 3.12 × 10−4 bits/J/Hz. The results demonstrate that explicitly optimizing
the UE–BS connections is highly beneficial in improving WPT efficiency and the system EE.
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5.2.2. Imperfect CSI Impact on EE

Next, we analyze the impact of imperfect CSI on the system EE. The BSs estimate the
channels during uplink training and the MMSE estimator is applied. Channel estimation
error parameters (σ2Ek,u,s) represent the CSI estimation accuracy. Figure 4 illustrates the
system EE versus the distance between IoT UE and BS while considering various channel
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errors for the proposed mEE-RAS and EE-RAS. As expected, the EE degrades with increas-
ing σ2Ek,u,s due to inaccurate beamforming as a result of channel estimation error. However,
the proposed scheme shows stronger resilience and retains higher EE across the σ2Ek,u,s
range. With perfect CSI (σ2Ek,u,s = 0), the mEE-RAS achieved improvement in terms of
EE by 12.75%, having an average EE of 7.95 × 10−4 bits/J/Hz. Also, under imperfect
CSI, the mEE-RAS outperformed the EE-RAS with percentage improvements of 10.25%,
8.50%, and 6.97% while having corresponding average EE values of 3.32 × 10−4 bits/J/Hz,
4.21 × 10−4 bits/J/Hz, and 5.34 × 10−4 bits/J/Hz when the channel estimation errors
were 0.7, 0.5, and 0.3, respectively. The robustness can be attributed to the unique UE–BS
links. Beamforming optimization can adapt more easily to channel uncertainties when
interference from other BSs is intrinsically avoided.

Subsequently, this means establishing explicit UE–BS connections that continue to
provide EE enhancements under imperfect CSI. However, the marginal benefits reduce as
the CSI quality degrades.

5.2.3. EE vs. Number of Antennas (MIMO and Massive MIMO)

We now evaluate the EE for conventional MIMO and massive MIMO configurations.
Figure 5 plots the system EE against Mk for both proposed mEE-RAS and EE-RAS schemes.
It is observed that the rate at which system EE increases slows down as the total num-
ber of antennas increases; however, the system EE for those MIMO configurations with
higher antenna numbers remains significantly higher. This is because, with a higher an-
tenna number, the algorithm can fairly assign the optimal antenna number to IoT UEs.
The mEE-RAS achieved EE improvement of 30.13%, 26.89%, 10.79%, and 123.12%, hav-
ing corresponding average EE values of 1.42 × 10−4 bits/J/Hz, 2.59 × 10−4 bits/J/Hz,
2.86 × 10−4 bits/J/Hz, and 7.19 × 10−4 bits/J/Hz when Mk was 2, 4, 8, and 64 over EE-RAS
in the conventional MIMO configuration. The mEE-RAS also achieved improvements in
massive MIMO configuration of 38.14%, 26.28%, and 20.63%, with corresponding average
EE values of 1.14 × 10−3 bits/J/Hz, 2.80 × 10−3 bits/J/Hz, and 3.47 × 10−3 bits/J/Hz
when Mk was set to 128, 256, and ∞, respectively.
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By implication, optimizing UE–BS connections lowers the required number of antennas
to achieve maximal EE. Appreciable EE gains are obtained across the Mk range, with higher
benefits for low and moderate Mk. Dedicated WPT links enhance interference management
even with fewer antennas.
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5.2.4. Convergence Analysis

Finally, we analyze the convergence of the mEE-RAS and the EE-RAS schemes in
solving the EE maximization problem. Figure 6 plots the EE versus iteration index for
different convergence parameter ρ values. It is observed that larger ρ leads to faster
convergence at the cost of the optimality gap. The proposed mEE-RAS achieves a higher EE
objective but follows similar convergence behavior as the EE-RAS. The mEE-RAS achieved
an EE improvement of 11.31%, having an average EE of 5.45 × 10−4 bits/J/Hz when ρ was
set to 0.068. The mEE-RAS also improved the EE-RAS by 7.09%, having an average EE of
7.15 × 10−4 bits/J/Hz when ρ was 0.088.
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Therefore, distributed optimization enables scalable implementation for massive
MIMO–NOMA networks integrated with WPT capabilities. The ADMM approach provably
converges to achieve high-quality solutions while reducing computational complexity.

6. Conclusions

In this paper, we have proposed a UE–BS connection model to mitigate CCI in wireless-
powered massive MIMO–NOMA networks. An energy-efficient resource allocation scheme
was developed that integrates the UE–BS connection approach with joint optimization of
transmit power, time, antenna, and subcarrier allocation. Simulation results demonstrate
significant improvements in system EE by establishing dedicated UE–BS connections for
WPT. Reducing CCI allows more efficient wireless charging of the UE, which translates
to higher uplink data rates and EE performance. Appreciable gains are maintained even
under imperfect CSI due to the unique UE–BS links.

In conclusion, the UE–BS connection model offers a promising technique to mitigate
CCI that leverages the system topology and associations. Integrating it with energy-
efficient resource allocation unlocks substantial EE enhancements in WPT-enabled massive
MIMO–NOMA networks. Important future work includes investigating a resource allo-
cation scheme that considers security and that can accommodate different IoT UE QoS
requirements as well as exploring unmanned aerial vehicle-assisted or intelligent reflection
surfaces-enabled massive MIMO–NOMA to improve the EE of the WPT-based networks.
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