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SPORTS PERFORMANCE

A two-year examination of the relation between internal and external load and heart 
rate variability in Australian Rules Football
Fergus K. O’Connor a, Thomas M. Doering b, Neil D. Chapman a, Dean M. Ritchie a and Jonathan D. Bartlett c

aBond Institute of Health and Sport, Faculty of Health Sciences and Medicine, Bond University, Queensland, , Australia; bSchool of Health, Medical and 
Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia; cInstitute of Sport, Manchester Metropolitan University, 
Manchester, UK

ABSTRACT
The relationship between heart rate variability (HRV) and training load in team-sport is unknown. We 
therefore assessed relations between completed training-load in the previous 1-, 3- and 7-days and 
waking HRV in professional Australian Rules Football. Linear-mixed models analysed changes in HRV, 
considering training load from the previous 1-, 3- and 7-days. Total Distance (TD), distance >14.4 km ‧ h−1 
(HSR) and >24.9 km ‧ h−1 (Sprint-Distance), duration >85% max heart rate and Rating of Perceived 
Exertion were included as independent variables. Sub-group analysis of season-phase and years of 
professional experience was also conducted. Increased three-day Sprint-Distance reduced HRV in the 
first 8-weeks of pre-season (−13.1 ms, p = 0.03) and across the data collection period (−3.75 ms, p = 0.01). 
In first-year players, higher previous-day (−63.3 ms, p=0.04) and seven-day TD (−38.2 ms, p = 0.02) 
reduced HRV, whilst higher seven-day HSR increased HRV (34.5 ms, p = 0.01). In players with five-to- 
seven years of professional experience, higher three-day (−14.4 ms, p = 0.02) and seven-day TD (−15.7 ms, 
p = 0.01) reduced HRV, while higher three-day HSR increased HRV (12.5 ms, p = 0.04). In players with 
greater than eight years of professional experience, higher previous-day Sprint-Distance reduced HRV 
(−13.1 ms, p < 0.008). Completed training load across the previous 7-days influences HRV, but the relation 
between variables is complex and influenced by professional experience and season-phase.
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Introduction

The monitoring of athlete training load is an integral practice 
within professional team-sport (Bartlett et al., 2017; F. O’Connor 
et al., 2019; F. K. O’Connor et al., 2020). The advent of global 
positioning systems (GPS) has enabled sports science practi-
tioners to accurately quantify the external load completed by 
individual athletes in each training session or game (Bartlett 
et al., 2017; F. O’Connor et al., 2019; F. K. O’Connor et al., 2020). 
Further, the integration of GPS-derived external load with sub-
jective (rating of perceived exertion) and objective (heart rate) 
internal load measures provides sports science practitioners 
with detailed insights into the physiological and psychometric 
stimulus of both training and competition (Bartlett et al., 2017).

Conversely, to capture the recovery response to training 
and/or competition (i.e., 24–72-h post) practitioners often use 
subjective wellness questionnaires (Gallo et al., 2017) neuro-
muscular fatigue monitoring techniques (Cormack et al., 2013) 
and in some cases salivary or blood markers (i.e., cortisol (Maso 
et al., 2004) and creatine kinase (Berriel et al., 2020)). While 
these methods provide meaningful insights, they are not with-
out limitation, making their implementation problematic in 
professional team-sport environments. For example, athlete- 
specific psychometric questionnaires can be lengthy and repe-
titive in nature (Kellmann, 2002) which leads to challenges with 
compliance (Gallo et al., 2017) and many athletes choose to 

report data dishonestly due to a myriad of reasons (Coventry 
et al., 2023). Further, neuromuscular fatigue monitoring can be 
time consuming to implement within large cohorts, and saliva 
and blood markers can be highly variable and inconsistent 
(Baird et al., 2012; Nunes & Macedo, 2013). Accordingly, emer-
ging technologies have led to novel recovery monitoring tech-
niques within the field (Hornsby et al., 2022) with one such 
technique being the monitoring of heart rate variability (HRV). 
Indeed, while not without limitations (e.g., complications in 
deciphering practically meaningful changes from day-to-day 
variation (Buchheit, 2014)), the accurate quantification of inter-
nal load measures (i.e., HRV) in response to a given external 
load has direct implications for the optimisation of training load 
within specific training blocks and throughout competitive 
periods (Buchheit, 2014).

Heart rate variability reflects cardiac modulation by the 
sympathetic and vagal components of the autonomic nervous 
system, whereby the monitoring of HRV offers a non-invasive 
way to assess the balance between sympathetic and parasym-
pathetic autonomic nervous system activity (Yugar et al., 2023). 
In periods of high stress, activation of the sympathetic nervous 
system increases heart rate and decreases HRV, whereas in 
periods of recovery, parasympathetic activity decreases heart 
rate and increases HRV (Berntson et al., 1997). As a result of the 
ability of HRV to provide non-invasive estimates of the balance 
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between stress (sympathetic activity) and recovery (parasym-
pathetic), HRV monitoring has emerged as a tool to monitor 
training and recovery adaptations in sport (Dong, 2016). Thus, 
the accurate recording of HRV may provide sports scientists 
and coaches with a means to evaluate autonomic function in 
response to an imposed training load, where increases in HRV 
measures have been shown to be related to positive training 
adaptations (Plews et al., 2013), and conversely reductions in 
HRV measures have been related to increased stress responses, 
recovery status (Buchheit, 2014) and overall health and well-
being (Flatt & Howells, 2019; Flatt et al., 2019). Indeed, short- 
term (i.e., one-week to four-months) observations have shown 
HRV to be sensitive to fluctuations in team-sport training load 
(Buchheit et al., 2011; Chen et al., 2021; Flatt & Esco, 2015; Flatt 
& Howells, 2019; Flatt et al., 2019, 2020; González-Fimbres et al.,  
2021; Lechner et al., 2023; Lukonaitienė et al., 2020, 2021; 
Muñoz-López & Naranjo-Orellana, 2020; Muñoz-López et al.,  
2021; Naranjo et al., 2015; Nakamura et al., 2023; Piedra et al.,  
2021; Rabbani et al., 2019; Sánchez-Sánchez et al., 2021; Thorpe 
et al., 2015; Villafaina et al., 2022) with recent advancements in 
smartphone-based photoplethysmography (PPG) technology 
emerging as a practical means of quantifying HRV in the field 
(Holmes et al., 2020). This is simply done by placing the finger-
tip of the index finger over a smartphone camera lens (Plews 
et al., 2017) or by utilising a specifically designed fingertip 
optical pulse sensor (Holmes et al., 2020; Heathers, 2013). 
Accordingly, the recording of PPG HRV via smartphone applica-
tions presents a simple-to-use, non-invasive technology 
whereby volumetric variations in fingertip blood circulation 
are quantified (Castaneda et al., 2018). This method has been 
shown to have acceptable agreement with electrocardiogram- 
derived HRV (technical error of estimate 3.8%) (Heathers, 2013; 
Plews et al., 2017) and is related to changes in subjective 
training intensity in general population settings (Altini & 
Plews, 2021) and in response to short-term autonomic nervous 
system changes following resistance exercise (Holmes et al.,  
2020).

To the best of our knowledge, only one study has directly 
assessed the utilisation of fingertip waking PPG HRV monitor-
ing in a team-sport environment. However, this study 
assessed the relation between environmental conditions and 
training and recovery variables (F. K. O’Connor et al., 2020) 
and not the relation between training load and changes in 
HRV. Nonetheless, the authors reported a reduction in 
a common measure of HRV (root mean sum of the squared 
differences between each successive heart beat [rMSSD]) 48 
h post-training when training was undertaken when exposed 
to high levels of solar radiation (F. K. O’Connor et al., 2020). Of 
note, high solar radiation exposure was also associated with 
significant reductions in external training load, despite no 
changes in perceived exertion. This may indicate that the 
autonomic stress response for a given external workload is 
exacerbated when exposed to increasingly challenging envir-
onmental conditions; however, this notion remains unre-
solved and required further investigation. Nonetheless, it 
appears likely that waking fingertip PPG HRV monitoring pre-
sents as a simple to administer monitoring tool that is of 
benefit to practitioners in the field to manage fatigue and 
recovery in team-sport settings. However, the utility of 

smartphone derived PPG HRV to assess the physiological 
response to exercise in a large-scale longitudinal study in 
team-sport environments has not been assessed. To address 
this critical knowledge gap, the aim of this study was to 
evaluate relationships between internal and external training 
load and waking HRV, as assessed via photoplethysmography, 
across a two-season period in an elite team-sport setting 
(Australian Rules Football [ARF]). We hypothesised that peri-
ods of increased training load would be followed by decre-
ments in waking HRV, and this effect would be magnified 
when higher training loads were completed over the previous 
3- and 7-day periods.

Materials and methods

Participants

Forty-six professional male athletes (mean ± standard deviation 
[SD]); age: 26 [3] years, height: 190 [8] cm, body mass: 89.5 
[9.8] kg, maximal aerobic speed 17.6 [0.8] km · h−1, from one 
ARF club participated in this study. As we recruited 
a professional ARF team, the sample was limited to the number 
of professional players contracted to the ARF team across the 
two-seasons of the data collection period. Individual athlete 
years of experience within the professional ARF system was 
categorised for each season in the data collection period, for 
use as a covariate in statistical analyses. For individual data to 
be included within the analysis, participants had to have com-
pleted a minimum of three waking HRV recordings in the 
previous 7-days.

Experimental protocol

Internal and external training loads were captured across an 18- 
month period that comprised two pre-season periods and two 
in-season periods. A total of 5338 waking rMSSD recordings 
(111 [72] per player) and 7082 training and game observations 
(144 [80] per player) were included in the final analysis. To 
facilitate sub-group analyses, players were grouped according 
to their years of experience within the professional ARF system, 
as having one, two-to-four, five-to-seven or greater than eight 
years of professional experience. Data were grouped for each 
separate season, resulting in some observations for a single 
player being classified separately in Season 1 and Season 2 
(accounted for within statistical analyses approach).

External load monitoring

External training and competition loads were captured via 
global position systems (GPS) for each participant and down-
loaded in accordance with previous methods (Bartlett et al.,  
2017). Participants used the same valid and reliable (coefficient 
of variation <5%) GPS device (S5, Catapult Sports, Melbourne, 
Australia) for each session to mitigate inter-unit measurement 
errors (Coutts & Duffield, 2010). Total distance and distance at 
velocities greater than 14.4 km‧h−1 (High-Speed Running [HSR]) 
and 24.9 km‧h−1 (Sprint Distance) (F. O’Connor et al., 2019) were 
analysed. Individual Total Distance, HSR and Sprint Distance 
were summated over 1-, 3- and 7-day periods.
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Internal load monitoring

Within-training Heart Rate (HR) data was collected via chest 
strap HR monitors (T34, Polar Electro, Espoo, Finland). HR data 
was analysed by quantifying the total training duration where 
HR was greater than 85% of an individual’s HR maximum. 
Maximum heart rate was ascertained by quantifying the high-
est heart rate achieved within training or games, when a new 
maximum heart rate was achieved, this was recorded and heart 
rate percentile zones were recalculated. Ratings of perceived 
exertion (RPE) was obtained 10–30 min following the comple-
tion of each training session using Borg’s CR-10 scale (Borg,  
1982). RPE was multiplied by session duration to obtain ses-
sion-RPE training load (sRPE) (Foster et al., 2001). Individual HR 
data and sRPE were summated over 1-, 3- and 7-day periods.

Monitoring internal recovery

Objective measures of heart-rate variability (HRV) were 
assessed upon waking each morning by R-R series recording 
via photoplethysmography using a valid and reliable, commer-
cially available smartphone application (HRV4Training) (Plews 
et al., 2017). Data was included within the analysis if it was 
deemed “optimal” by the smartphone application software 
(less than 6% artefacts) (Plews et al., 2017). Waking HRV data 
was subsequently analysed for the root mean sum of the 
squared differences (rMSSD) between each successive heart-
beat, and compared to baseline data obtained from a rolling 
average of the prior 7-days. As a result of the complexities of 
HRV monitoring (Buchheit, 2014) especially when considering 
the known “bell-shaped” HRV response to training witnessed 
within elite endurance athlete cohorts (Buchheit, 2014) where 
cardiac autonomic regulation improves as “fitness” is acquired 
and then decreases as more intense training is completed 
(Buchheit, 2014) it was deemed appropriate to analyse data 
over 1-, 3- and 7-day time frames. Moreover, rMSSD was chosen 
as the HRV variable of interest due to the relationship with 
vagal activity (Malik et al., 1996) and greater reliability com-
pared to other spectral indices (Al Haddad et al., 2011).

Statistical analyses

Intraindividual weekly coefficient of variation (CV) in rMSSD was 
calculated as the standard deviation divided by the mean 
multiplied by 10020 to determine whether fluctuations in train-
ing load lead to variation in rMSSD across the training week. To 
explore how training load may influence waking HRV, linear 
mixed models were applied to internal and external load vari-
ables incorporating the individual as a random effect in 
R (v.4.2.2). The outcome variable of interest was the change in 
waking HRV from the previous 7-day mean, with training load 
metrics (Total Distance, HSR, sRPE and total training duration 
where HR was greater than 85% of an individual’s HR maxi-
mum) included as fixed effects. A random intercept for each 
participant was included to account for repeated observations. 
Data were analysed across the whole experimental period and 
within pre-season (pre-season phase one [PS1], pre-season 
phase two [PS2]) and in-season (in-season phase one [IS1], in- 
season phase two [IS2], in-season phase three [IS3]) (Juhari 

et al., 2018) periods. Additional sub-group analysis was under-
taken whereby years of professional ARF experience was 
accounted for within the analysis. These groups were defined 
as players with one, two-to-four, five-to-seven and greater than 
eight years of professional experience. The adequacy of the 
model structures was determined via visual inspection of diag-
nostic plots of the homoskedasticity and normality of residuals 
(fixed and random effects) and quantified using standard mea-
sures of intraclass correlations and coefficients of determina-
tion. Variables are reported using standardised regression 
coefficients (β), allowing assessment of practical significance 
where the β for each variable was multiplied by the standard 
deviation of change in dependent variable to obtain the abso-
lute change in the units of measurement (Nieminen et al.,  
2013). p < 0.05 was deemed to be a statistically significant 
difference.

Results

Weekly coefficient of variation in rMSSD was not associated 
with the cumulative sum of any load variable in a given week 
(all p > 0.05).

Associations between HRV and training load in the 
previous 1-, 3- and 7-days across the entire collection 
period

An increase in cumulative Sprint Distance over a three-day 
period was associated with a reduction in waking rMSSD 
(−3.75 ms [CI = −0.6 to −6.3 ms], β = −0.06, p = 0.01). No further 
relations were evident between recorded load measures in the 
previous 1-, 3- and 7-days and a change in waking rMSSD at any 
time point within group-level analysis (all p > 0.05, Table 1).

Associations between HRV and training load within 
specific season phases

During PS1, an increase in Sprint Distance over a three-day 
period was associated with a decrease in waking rMSSD 
(−13.1 ms [CI = −0.7 to −24.6 ms], β = −0.17, p = 0.03). No 
further relationships were evident between recorded load mea-
sures and a change in waking rMSSD at any time point during 
the season (all p > 0.05).

Associations between HRV and training load as a factor of 
years of professional ARF experience

In players with one year of professional ARF experience, an 
increase in Total Distance completed on the previous day was 
associated with a reduction in waking rMSSD (−63.3 ms [CI = −1.25 
to −125 ms], β = −1.01, Table 2, p = 0.04). An increase in cumula-
tive seven-day Total Distance was associated with a decrease in 
waking rMSSD (−38.2 ms [CI = −69.5 to −7.52 ms], β = −0.61, p =  
0.02). However, an increase in cumulative HSR across the previous 
seven-days was associated with an increase in waking rMSSD 
(34.5 ms [CI = 7.52 to 60.8 ms], β = 0.55, p = 0.01). No other training 
load variable was associated with waking rMSSD at any time point 
in players with one year of professional ARF experience 
(all p > 0.05). For players with two-to-four years of professional 
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ARF experience, no load measures were associated with changes 
in waking rMSSD in (Table 3, all p > 0.05). For players with five-to- 
seven years of professional ARF experience, an increase in cumu-
lative Total Distance over the previous three-days was associated 
with a reduction in waking rMSSD (−14.4 ms [CI = −1.88 to −2.6  
ms], β = −0.23, Table 4, p = 0.02), but an increase in HSR completed 
during the previous three-days was associated with an increase in 
waking rMSSD (12.5 ms [CI = −0.63 to 24.4 ms], β = 0.20, p = 0.04). 
Moreover, an increase in Total Distance across the previous seven- 
days was associated with a reduction in waking rMSSD (−15.7 ms 
[CI = −3.76 to −28.2 ms], β = −0.25, p = 0.01). No other load vari-
able was associated with changes in waking rMSSD in players with 
five-to-seven years of professional ARF experience (all p > 0.05). 
For players with greater than eight years of professional ARF 
experience, an increase in previous day Sprint Distance was asso-
ciated with a reduction in waking rMSSD (−13.1 ms [CI = −3.76 to 

−23.2 ms], β = −0.21, Table 5, p = <0.008); no other load variable 
was associated with waking rMSSD (all p > 0.05).

Discussion

This study aimed to determine the relation between frequently 
utilised measures of training and competition load and waking 
heart rate variability as assessed by a commercially available 
smartphone application in a professional team-sport setting 
across a two-year period. On a group level, these data show 
that an increase in cumulative 3-day distance completed at 
velocities greater than 24.9 km‧h−1 was associated with 
a decrease in waking HRV. Moreover, the magnitude of this 
effect was increased during pre-season phase one (i.e., the first 
8-weeks of pre-season preparation), even when accounting for 
the years of experience within the professional ARF system. 

Table 1. Associations between completed and change in rMSSD from seven-day mean across the entire playing squad.

Predictors std. Beta std. CI (95%) Δ rMSSD (ms) 95% CI (ms) p-value

One-Day Cumulative 
Load

(Intercept) 0.00 −0.06 – 0.07 0.00 −3.76 – 4.38 0.88
Total Distance −0.07 −0.26 – 0.11 −4.38 −16.3 – 6.89 0.43
HSR 0.12 −0.00 – 0.23 7.52 −0.00 – 14.4 0.05
Sprint Distance −0.03 −0.10 – 0.03 −1.88 −6.26 – 0.03 0.32
sRPE −0.05 −0.18 – 0.09 −3.13 −11.3 – 5.64 0.51
Duration >85% HRmax −0.02 −0.09 – 0.06 −1.25 −5.64 – 3.76 0.66

Three-day cumulative 
Load

(Intercept) −0.00 −0.04 – 0.04 −0.00 −2.51 – 2.51 0.45
Total Distance −0.05 −0.16 – 0.06 −3.13 −10.0 – 3.76 0.36
HSR 0.07 −0.03 – 0.17 4.38 −1.88 – 10.6 0.17
Sprint Distance −0.06 −0.10 – −0.01 −3.76 −6.26 – −0.63 0.01*
sRPE −0.01 −0.07 – 0.05 −0.63 −4.38 – 3.13 0.77
Duration >85% HRmax −0.02 −0.07 – 0.03 −1.25 −4.38 – 1.88 0.36

Seven-day Cumulative Load (Intercept) −0.00 −0.04 – 0.04 −0.00 −2.51 – 2.51 0.18
Total Distance −0.06 −0.17 – 0.05 −3.76 −10.6 – 3.13 0.28
HSR 0.04 −0.07 – 0.14 2.51 −4.38 – 8.77 0.49
Sprint Distance −0.03 −0.08 – 0.01 −1.88 −5.01 – 0.63 0.18
sRPE 0.00 −0.06 – 0.07 0.00 −3.76 – 4.38 0.95
Duration >85% HRmax −0.01 −0.06 – 0.04 −0.63 −3.76 – 2.51 0.78

std. Beta: standardised regression coefficient (beta), Δ rMSSD: change in root mean sum of the squared differences between each successive heart-beat, ms: 
milliseconds, 95% CI, 95% confidence interval, HSR: distance completed at velocities greater than 14.4 km‧h-1, Sprint Distance: distance completed at velocities 
greater than 24.9 km‧h-1, *: p < 0.05.

Table 2. Players with one year of professional ARF experience: association between completed load and change in rMSSD from seven-day mean.

Predictors std. Beta std. CI (95%) Δ rMSSD (ms) 95% CI (ms) p-value

One-Day Cumulative 
Load

(Intercept) 0 −0.26 – 0.27 0.00 −16.3 – 16.9 0.48
Total Distance −1.01 −2.00 – −0.02 −63.3 −125 – −1.25 0.04*
HSR 0.44 −0.00 – 0.89 27.6 0.00 – 55.7 0.05
Sprint Distance −0.01 −0.27 – 0.26 −0.63 −0.27 – 0.26 0.94
sRPE 0.58 −0.19 – 1.36 36.3 −11.9 – 85.2 −0.14
Duration >85% HRmax 0.20 −0.12 – 0.53 12.5 −7.52 – 33.2 0.22

Three-day cumulative 
Load

(Intercept) −0.40 −0.17 – 0.17 −25.1 −10.6 – 10.6 0.95
Total Distance 0.29 −0.85 – 0.05 18.2 −53.2 – 3.13 0.08
HSR 0.02 −0.13 – 0.71 1.25 −8.14 – 44.5 0.17
Sprint Distance 0.17 −0.18 – 0.22 10.6 −11.3 – 13.8 0.84
sRPE −0.04 −0.10 – 0.44 −2.51 −6.26 – 27.6 0.21
Duration >85% HRmax −0.40 −0.27 – 0.20 −25.1 −16.9 – 12.5 0.75

Seven-day Cumulative Load (Intercept) 0.02 −0.17 – 0.20 1.25 −10.6 – 12.5 0.65
Total Distance −0.61 −1.11 – −0.12 −38.2 −69.5 – −7.52 0.02*
HSR 0.55 0.12 – 0.97 34.5 7.52 – 60.8 0.01*
Sprint Distance −0.03 −0.21 – 0.15 −1.88 −13.2 – 9.39 0.77
sRPE 0.10 −0.18 – 0.37 6.26 −11.3 – 23.2 0.49
Duration >85% HRmax −0.01 −0.25 – 0.23 −0.63 −15.6 – 14.4 0.93

std. Beta: standardised regression coefficient (beta), Δ rMSSD: change in root mean sum of the squared differences between each successive heart-beat, ms: 
milliseconds, 95% CI, 95% confidence interval, HSR: distance completed at velocities greater than 14.4 km‧h-1, Sprint Distance: distance completed at velocities 
greater than 24.9 km‧h-1, *: p < 0.05.
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Table 3. Players with two-to-four years of professional ARF experience: association between completed load and change in rMSSD from seven-day mean.

Predictors std. Beta std. CI (95%) Δ rMSSD (ms) 95% CI (ms) p-value

One-Day Cumulative 
Load

(Intercept) 0.00 −0.11 – 0.12 0.00 −6.89 – 7.52 0.83
Total Distance −0.09 −0.44 – 0.25 −5.64 −27.6 – 15.7 0.58
HSR 0.17 −0.03 – 0.38 10.6 −1.88 – 23.8 0.10
Sprint Distance −0.04 −0.14 – 0.06 −2.51 −8.77 – 3.76 0.45
sRPE −0.05 −0.29 – 0.19 −3.13 −18.2 – 11.9 0.69
Duration >85% HRmax −0.07 −0.20 – 0.05 −4.38 −12.5 – 3.13 0.25

Three-day cumulative 
Load

(Intercept) 0.00 −0.08 – 0.08 0.00 −5.01 – 5.01 0.11
Total Distance 0.12 −0.06 – 0.30 7.52 −3.76 – 18.8 0.18
HSR −0.06 −0.24 – 0.11 −3.76 −15.0 – 6.89 0.48
Sprint Distance −0.08 −0.17 – 0.01 −5.01 −10.6 – 0.63 0.07
sRPE −0.05 −0.16 – 0.06 −3.13 −10.0 – 3.76 0.35
Duration >85% HRmax 0.04 −0.06 – 0.13 2.51 −3.76 – 8.14 0.42

Seven-day Cumulative Load (Intercept) −0.01 −0.10 – 0.07 −0.63 −6.26 – 4.38 0.95
Total Distance 0.07 −0.10 – 0.25 4.38 −6.26 – 15.7 0.41
HSR −0.16 −0.34 – 0.02 −10.0 −21.3 – 1.25 0.08
Sprint Distance −0.01 −0.10 – 0.07 −0.63 −6.26 – 4.38 0.72
sRPE 0.01 −0.11 – 0.12 0.63 −6.89 – 7.52 0.91
Duration >85% HRmax 0.03 −0.07 – 0.13 1.88 −4.38 – 8.14 0.55

std. Beta: standardised regression coefficient (beta), Δ rMSSD: change in root mean sum of the squared differences between each successive heart-beat, ms: 
milliseconds, 95% CI, 95% confidence interval, HSR: distance completed at velocities greater than 14.4 km‧h-1, Sprint Distance: distance completed at velocities 
greater than 24.9 km‧h-1, *: p < 0.05.

Table 4. Players with five-to-seven years of professional ARF experience: association between completed load and change in rMSSD from seven-day mean.

Predictors std. Beta std. CI (95%) Δ rMSSD (ms) 95% CI (ms) p-value

One-Day Cumulative 
Load

(Intercept) 0.00 −0.11 – 0.11 0.00 −6.89 – 6.89 0.98
Total Distance 0.04 −0.23 – 0.32 2.51 −14.4 – 20.0 0.76
HSR −0.04 −0.24 – 0.15 2.51 −15.0 – 9.39 0.66
Sprint Distance 0.06 −0.06 – 0.18 3.76 −3.76 – 11.3 0.31
sRPE −0.10 −0.31 – 0.10 −6.26 −19.4 – 6.26 0.33
Duration >85% HRmax −0.01 −0.14 – 0.13 −0.63 −8.77 – 8.14 0.90

Three-day cumulative 
Load

(Intercept) 0.00 −0.11 – 0.11 0.00 −6.89 – 6.89 0.09
Total Distance −0.23 −0.44 – −0.03 −14.4 −27.6 – −1.88 0.02*
HSR 0.20 0.01 – 0.39 12.5 0.63 – 24.4 0.04*
Sprint Distance −0.06 −0.16 – 0.05 −3.76 −10.0 – 3.13 0.31
sRPE −0.06 −0.19 – 0.06 −3.76 −11.9 – 3.76 0.32
Duration >85% HRmax 0.03 −0.08 – 0.15 1.88 −5.01 – 9.39 0.58

Seven-day Cumulative Load (Intercept) 0.00 −0.07 – 0.07 0.00 −4.38 – 4.38 <0.001
Total Distance −0.25 −0.45 – −0.06 −15.7 −28.2 – −3.76 0.01*
HSR 0.16 −0.02 – 0.34 10.0 −1.25 – 21.3 0.08
Sprint Distance −0.03 −0.11 – 0.06 −1.88 −6.89 – 3.76 0.52
sRPE −0.08 −0.20 – 0.04 −5.01 −12.5 – 2.51 0.20
Duration >85% HRmax 0.00 −0.10 – 0.10 0.00 −6.26 – 6.26 0.97

std. Beta: standardised regression coefficient (beta), Δ rMSSD: change in root mean sum of the squared differences between each successive heart-beat, ms: 
milliseconds, 95% CI, 95% confidence interval, HSR: distance completed at velocities greater than 14.4 km‧h-1, Sprint Distance: distance completed at velocities 
greater than 24.9 km‧h-1, *: p < 0.05.

Table 5. Players with greater than eight years of professional ARF experience: association between completed load and change in rMSSD from seven-day mean.

Predictors std. Beta std. CI (95%) Δ rMSSD (ms) 95% CI (ms) p-value

One-Day Cumulative 
Load

(Intercept) 0.00 −0.13 – 0.13 0.00 −0.13 – 0.13 0.57
Total Distance 0.06 −0.39 – 0.51 3.76 −24.4 – 31.9 0.78
HSR 0.23 −0.03 – 0.49 14.4 −1.88 – 30.7 0.08
Sprint Distance −0.21 −0.37 – −0.06 −13.1 −23.2 – −3.76 0.008*
sRPE −0.12 −0.46 – 0.22 −7.52 −28.8 – 13.8 0.49
Duration >85% HRmax −0.05 −0.21 – 0.11 −3.13 −13.2 – 6.89 0.52

Three-day cumulative 
Load

(Intercept) 0.00 −0.12 – 0.12 0.00 −7.52 – 7.52 0.50
Total Distance 0.00 −0.27 – 0.28 0.00 −16.9 – 17.5 0.97
HSR 0.14 −0.11 – 0.38 8.77 −6.89 – 23.8 0.27
Sprint Distance −0.07 −0.21 – 0.07 −4.38 −13.2 – 4.38 0.35
sRPE −0.04 −0.23 – 0.15 −2.51 −14.4 – 9.39 0.69
Duration >85% HRmax −0.04 −0.18 – 0.10 −2.51 −11.3 – 6.26 0.56

Seven-day Cumulative Load (Intercept) 0.00 −0.10 – 0.10 0.00 −6.26 – 6.26 0.05
Total Distance 0.01 −0.26 – 0.27 0.63 −16.3 – 16.3 0.97
HSR 0.17 −0.08 – 0.42 10.7 −5.01 – 26.3 0.18
Sprint Distance −0.12 −0.24 – 0.01 −7.52 −15.0 – 0.63 0.06
sRPE 0.02 −0.17 – 0.21 1.25 −10.6 – 13.2 0.86
Duration >85% HRmax −0.01 −0.13 – 0.11 −0.63 −8.14 – 6.89 0.90

std. Beta: standardised regression coefficient (beta), Δ rMSSD: change in root mean sum of the squared differences between each successive heart-beat, ms: 
milliseconds, 95% CI, 95% confidence interval, HSR: distance completed at velocities greater than 14.4 km‧h-1, Sprint Distance: distance completed at velocities 
greater than 24.9 km‧h-1, *: p < 0.05.
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Furthermore, there was a general trend for increasing Total 
Distance specified across multiple time frames over the pre-
vious week to be associated with a reduction in waking rMSSD, 
and for an increase in HSR to be associated with an increase in 
waking rMSSD. However, there were no relationships between 
standard measures of internal load monitoring, and associated 
changes in waking heart rate variability. Together, we highlight 
the complexity of training and competition load monitoring in 
team-sport and raise awareness that changes in load in 
a professional team-sport environment appear to exert measur-
able changes on the autonomic nervous system.

A consistent finding of our analysis was that an increased 
accumulation of sprint distance over the previous three days 
was associated with a reduction in waking rMSSD. This relation-
ship was evidenced across the two-year data collection period 
as well as within specific season phases (at the commencement 
of the pre-season preparation period). Further, reductions in 
the change in waking rMSSD were evident in response to 
increased sprint distance over the previous three days in 
players with greater than eight years professional ARF experi-
ence. While we acknowledge these relationships appear small, 
they resulted in reductions in rMSSD upwards of ~13 ms and 
were consistent across all levels of analysis conducted in the 
current investigation. Thus, while we deem these findings to be 
practically important in the context of assessing the relation 
between training and competition load and HRV within team- 
sport, they should be interpreted within a holistic training load 
monitoring program, and not in isolation. Nonetheless, our 
findings are in agreement with Ye et. al. (2022) who showed 
that an increased sprint volume was associated with 
a reduction in HRV (Ye et al., 2022). Given that near-maximal 
sprinting requires a high metabolic demand (Gibala & Hawley,  
2017) which can induce high physiological stress (Peart et al.,  
2013) and neuromuscular fatigue (Baumert et al., 2021) it 
stands to reason that an increase in sprint distance would result 
in a reduction in HRV. Furthermore, during the early phases of 
the pre-season preparation period, when athletes are still build-
ing resilience to training load (and sprinting), athletes may be 
more susceptible to the negative side-effects (i.e., heightened 
fatigue) of increasing sprint workload and this was reflected in 
a significant reduction in the change in waking HRV. These data 
demonstrate that practitioners should monitor HRV during 
periods of increased or novel sprint work to allow for the 
manipulation of future training and recovery sessions in an 
attempt to optimise the training stimulus.

To this point, our results highlight an increase in sprint 
distance is associated with a greater reduction in waking HRV 
during the early pre-season phase (compared to all other sea-
son periods). This result could be reflective of a generalised 
training plan, whereby a greater emphasis is placed on total 
volume metrics in the early phases of pre-season (Fisher et al.,  
2022) as opposed to sprint distance and thus changes in sprint 
load may elicit greater physiological stress compared to other 
periods across the season. When conducting analysis account-
ing for years of professional experience within the professional 
ARF system, it is unclear why relationships between sprinting 
and change in waking HRV were only witnessed in athletes who 
had eight or more years of professional playing experience. 
However, while direct links between our data and the 

likelihood of injury cannot be made, previous investigations 
have shown increasing age is associated with greater risk of 
injury (Prior et al., 2009) where older athletes are 2.8 to 4.4 
times more likely to suffer a hamstring injury (Gabbe, Bennell, & 
Finch, 2006; Gabbe, Bennell, Finch, Wajswelner, et al., 2006) but 
also that reductions in HRV may be indicative of increased 
likelihood of musculoskeletal injury (Gisselman et al., 2016). 
Together, there is the potential that older athletes are less 
adept at recovering from central and/or peripheral fatigue 
induced by increased sprinting load. This maladaptive response 
could contribute to increased hamstring injury risk owing to 
changes in capacity of voluntary activation of muscle, excita-
tion-contraction coupling and contractile (force production) 
mechanisms (Bengtsson et al., 2018; Boyas & Guével, 2011; 
Marqués-Jiménez et al., 2017). However, this notion requires 
further investigation as associations from the current investiga-
tion and injury risk cannot be drawn. Nonetheless, we provide 
robust evidence that increased sprinting load leads to an imbal-
ance between sympathetic and parasympathetic autonomic 
nervous system activity, particularly within players with greater 
than eight years of experience within the professional ARF 
system. Appropriate planning and adjusting the emplaced 
sprint load (guided by HRV monitoring and other factors), 
accounting for an appropriate stimulus to minimise the like-
lihood of soft-tissue injury (F. O’Connor et al., 2019) presents as 
an important aspect of holistic training load programs. Further, 
during periods of heightened stress where training load is 
increased (and HRV is lowered), practitioners can use the pre-
sent results to guide the implementation of interventions that 
will accelerate recovery processes. This can be done by first and 
foremost promoting good sleep hygiene practices (Pitchford 
et al., 2017) (increasing sleep duration may increase HRV) 
(Mishica et al., 2021) and appropriate nutritional interventions 
to enhance recovery (Beck et al., 2015) among other mechan-
isms which may decrease overall stress and increase HRV.

When accounting for years of experience within the profes-
sional ARF system, greater total distance on the previous day 
and across the previous seven days resulted in a decrease in 
HRV in first-year players, and across the previous three- and 
seven-days in the fifth-to-seventh year players. It is plausible 
that greater load would result in a greater accumulation of 
fatigue within team-sport athletes, and given the known rela-
tionship between duration and total distance completed dur-
ing team-sport training (Bartlett et al., 2017) the reductions in 
HRV witnessed within our analysis are unsurprising. Moreover, 
owing to the increased demands of professional sporting envir-
onments, compared to elite youth pathways (Reynolds et al.,  
2021) First-Year players may be more susceptible to fluctua-
tions in load and the accumulation of load while resilience to 
the emplaced load is acquired. In addition, these known rela-
tionships may in part explain the increases in HRV we have 
witnessed following the completion of greater HSR distances 
within periods across the previous seven days, within specific 
training age groups. One possible explanation for this is that 
during training sessions there may have been a more inten-
tional redistribution of running towards that of HSR and less on 
overall total distance. When considering the known positive 
relationships between accumulation of fitness and HRV (Costa 
et al., 2022) it could be that players within this particular cohort 
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were accruing HRV-determined fitness adaptation during peri-
ods where there was a greater proportion of HSR completed 
(relative to Total Distance) within training sessions. However, it 
was beyond the scope of the current investigation to assess 
these relations.

In the current investigation, HRV was quantified via photo-
plethysmographic recording via a smartphone camera placed 
on top of the index fingertip. While it is acknowledged that this 
method of data capturing is not considered the gold standard 
in terms of heart rate variability monitoring typically utilised 
within clinical settings (Voss et al., 1995) it presents as a simple 
to administer and practical method of monitoring that can be 
employed on a daily basis in team sport environments. To the 
best of our knowledge, no other monitoring techniques that 
provide information regarding the balance of sympathetic and 
parasympathetic activity can be as efficiently and effectively 
employed within large athlete cohorts. Further, the method of 
HRV quantification utilised has been proven to be valid and 
reliable in comparison to chest strap monitoring and 12-lead 
ECG during laboratory trials and has been shown to be effective 
at evaluating changes in subjective training load in large-scale 
(five-year data acquisition, ~9 million measurements from 
28,175 users) general population settings (Altini & Plews,  
2021). Thus, our results suggest that smartphone PPG-derived 
HRV may be adequate for discriminating between fluctuations 
in training and competition load, and may be a feasible option 
that provides valuable information on the stress response in 
a professional team-sport environment if contextualised within 
an overall load monitoring program. Indeed, the information 
garnered from the appropriate administration of a PPG-derived 
HRV monitoring program has the potential to provide practi-
tioners with nuanced viewpoints regarding the stress-recovery 
response of individual athletes that alleviates many of the 
inherent limitations of self-report psychometric questionnaires 
(Coventry et al., 2023; Gallo et al., 2017) and more cumbersome 
and time-consuming neuromuscular fatigue monitoring 
techniques.

While our data highlight significant relations between load 
completed across a 7-day period, we acknowledge that the 
results may have been influenced by HRV being a measure of 
“overall stress” (encompassing psychological and physical 
stress) as opposed to physical training stress alone (Kim et al.,  
2018). For example, professional athletes are exposed to wide- 
ranging and divergent forms of psychological stress (Gulliver 
et al., 2015; Hammond et al., 2013) that can all lead to negative 
psychological wellbeing in acute and chronic forms. To the best 
of our knowledge, this is the first investigation to measure 
associations between load and HRV in an elite team-sport 
over a period encompassing two complete pre-seasons and in- 
season periods. Thus, while it was not possible to quantify 
psychological stress in the current investigation, athletes 
would have likely been exposed to varying degrees of psycho-
logical stress at points throughout the data collection period, 
that are not reflected in training load data. Moreover, our data 
only highlights the relation between on-pitch training load and 
waking-HRV responses, and thus does not encompass load 
accrued during other physiologically stressful activities com-
monly encountered by professional athletes, e.g., gym-based 
strength and conditioning sessions. Finally, we acknowledge 

that the findings are limited to this particular athlete cohort and 
may not be wholly representative of athlete responses within 
other professional sports, or within different professional ARF 
settings. Together, future investigations should endeavour to 
quantify relationships between gym-based training load (i.e., 
total tonnage lifted), on-pitch training load and where possible 
psychological stress and waking HRV to provide a holistic over-
view of the athlete's response to the demands of professional 
team-sport. Nonetheless, the information provided within this 
manuscript can be utilised by practitioners and coaches alike to 
appropriately plan, prescribe and monitor team-sport training 
load. Indeed, while we acknowledge that the results witnessed 
may be reflective of the athlete cohort monitored, we provide 
evidence to suggest that the utilisation of PPG derived HRV 
monitoring is sensitive to fluctuations in training load in profes-
sional team-sport athletes.

Conclusion

The data presented within this manuscript show the complex-
ity of load monitoring in team-sport environments. While we 
present significant relations between standard measures of 
load and changes in HRV, these relations are complex and 
require contextualisation. Nonetheless, we show the potential 
applicability of heart rate variability monitoring using 
a smartphone application that relies on photoplethysmogra-
phy data capturing techniques in a professional team-sport 
environment. The results presented within this manuscript 
may help guide practitioners in professional team-sport set-
tings to select appropriate monitoring techniques that will 
help inform training practices.
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