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Abstract: This paper is concerned with finding solutions to free-boundary inverse coefficient prob-
lems. Mathematically, we handle a one-dimensional non-homogeneous heat equation subject to initial
and boundary conditions as well as non-localized integral observations of zeroth and first-order heat
momentum. The direct problem is solved for the temperature distribution and the non-localized
integral measurements using the Crank–Nicolson finite difference method. The inverse problem is
solved by simultaneously finding the temperature distribution, the time-dependent free-boundary
function indicating the location of the moving interface, and the time-wise thermal diffusivity or
advection velocities. We reformulate the inverse problem as a non-linear optimization problem and
use the lsqnonlin non-linear least-square solver from the MATLAB optimization toolbox. Through
examples and discussions, we determine the optimal values of the regulation parameters to en-
sure accurate, convergent, and stable reconstructions. The direct problem is well-posed, and the
Crank–Nicolson method provides accurate solutions with relative errors below 0.006% when the
discretization elements are M = N = 80. The accuracy of the forward solutions helps to obtain
sensible solutions for the inverse problem. Although the inverse problem is ill-posed, we determine
the optimal regularization parameter values to obtain satisfactory solutions. We also investigate
the existence of inverse solutions to the considered problems and verify their uniqueness based on
established definitions and theorems.

Keywords: parabolic heat equation; finite-difference method (FDM); Crank–Nicolson method; inverse
coefficient identification problem; optimization tool; MATLAB; free-boundary problem

MSC: 65K05; 65K10; 65R30; 65R32; 65Y15; 65Y15; 65N12

1. Introduction

Partial differential equations (PDEs) subject to various non-local initial and boundary
conditions are common expressions of mathematical models that arise when solving real-
world problems. These real-world applications emerge in several scientific and engineering
disciplines and fields, including geology, hydrodynamics, biological fluid dynamics, vibra-
tion materials, heat transfer, control theory, and thermoelastic problems [1–7]. Recent work
on flow, heat, and thermal conductivity considers essential physical aspects, including
Thompson and Troian slip effects on ternary hybrid nanofluid flow across a porous plate
with a chemical reaction [8].

Due to the difficulty of obtaining analytical solutions, researchers employ various
mathematical, statistical, and computer vision techniques to generate numerical approxi-
mated values to determine PDE systems’ direct and inverse solutions. The sought solutions
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are represented by various physical quantities and medium properties, such as potential
and damping parameters [9], the force source function [4], constant voltage and values of
contact impedance [10], and reaction coefficients [5]. Such quantities appear as unknown
time- and space-dependent coefficients or functions in the model, turning the problem into
inverse coefficient problems (ICPs). Many empirical and theoretical studies focused on
adapting and applying numerical techniques to solve ICPs. These include implicit finite dif-
ference methods [11,12], lattice-free finite difference methods [13], Fourier regularization to
solve one-dimensional non-local coefficient heat problems [14], the collocation method [15],
and iterative boundary element methods [16,17].

In this work, we consider solving ICPs with free-boundary (non-local) conditions.
These conditions can mathematically represent phase-changing processes such as the
freezing of water or the ground, solidifying of metals, melting of ice, forming of crystals,
evaporation of chemicals, and so on, in which the heat associated with the phase change
is either generated or absorbed [18–20]. Finding the solutions means determining the
domain’s temperature distribution, the location of the movable boundaries and dynamic
interface, and the unknown functions of time-wise thermal diffusivity or time- and space-
dependent diffusion. This process poses a significant computational challenge, requiring
numerical strategies to accurately estimate free boundaries and complex energetic interfac-
ing. Because these inverse problems are ill-posed, we ensure that the solutions exist and are
unique (locally) by aligning the considered cases with previous theoretical studies [21–23].
To investigate the inverse problem with non-localized conditions, we structure the model as
a non-homogeneous one-dimensional heat equation subject to a set of initial and boundary
conditions plus over-determined conditions of the zeroth and first-order heat momentum.

In this study, we apply the Crank–Nicolson (CN) finite difference method to solve the
free-boundary (non-local) problem. We then utilize Tikhonov regularization techniques to
stabilize the inverse problem and sort out the non-linearity issue by using the MATLAB
R2023a optimization toolbox lsqnonlin. We find the time-dependent free-boundary func-
tion, which indicates the location of the moving interface, the temperature distribution
at the boundaries, and the time-wise thermal diffusivity or advection velocities simulta-
neously. There are many alternative techniques to solve similar problems. For example,
Martín-Vaquero and Sajavičius [24] used the two-level finite difference method (FDM) to
solve one-dimensional parabolic equations subject to initial conditions represented in non-
local discrete integrals and other homogeneous boundary conditions. A minimal surface
equation, a two-dimensional nonlinear elliptic equation subject to additional boundary
non-local integral conditions, has been solved iteratively using a system of difference
equation approximations [2]. A novel iteration scheme based on the domain decomposition
method is applied to determine the time-dependent coefficients in heat and Volterra integral
equations, as presented in [7,25]. Recently, Huntul and Lesnic [26,27] used multilevel finite
difference approximations to retrieve unknown time-dependent intensity and convection
coefficients in free-boundary two-dimensional heat problems. We have previously used
this numerical approach to identify the temperature distribution and other time-dependent
parameters, such as the intensity of reaction, perfusion, and radioactive coefficients, based
on over-specified conditions of Stefan-type, zeroth-order heat momentum [28,29].

This paper is organized as follows. In Section 2, the mathematical formulations of the
problem are set up, including ensuring that the existence and uniqueness requirements
are satisfied. The use of the CN technique to identify the problem’s forward solutions is
demonstrated in Section 3. We calculate the inverse solutions in Section 4; this section
covers the CN solver, Tikhonov’s regularization method, and the lsqnonlin MATLAB solver.
A couple of numerical examples (simulations) are discussed and investigated in Section 5.
Section 6 summarizes the findings and suggests further research.

2. Mathematical Formulation

Consider the domain DT = {(x, τ) : 0 < x < s(τ), 0 < τ < T} for the following
mathematical problem. The primary goal of this research is to find the free boundary
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s(τ), and the time-wise thermal diffusivity a(τ) or advection velocity b(x, τ). Thermal
diffusivity is the heat transfer property of a medium; the advection velocity refers to the
flow of molecules in the examined medium.

∂

∂τ
u(x, τ) = a(τ)

∂2

∂x2 u(x, τ) + b(x, τ)
∂

∂x
u(x, τ) + c(x, τ)u(x, τ) + f (x, τ), in DT , (1)

is subject to the initial and non-homogeneous Dirichlet boundary conditions

u(x, 0) = φ(x), 0 ≤ x ≤ s(τ), (2)

u(0, τ) = γ1(τ), u(s(τ), τ) = γ2(τ), 0 ≤ τ ≤ T, (3)

where {c(x, τ), f (x, τ), φ(x), γ1(τ), γ2(τ)} are given functions and {u(x, τ), s(τ), a(τ), b(x, τ)}
are unknown functions that will be numerically approximated.

If the functions {s(τ), a(τ), b(x, τ)} are given, Equations (1)–(3) form a direct well-
posed problem. If some or all of the function terms (s(τ), a(τ)) or (s(τ), b(x, τ)) of
Equations (1)–(3) are not defined, the above set of equations is insufficient to determine
them uniquely. Such a situation leads to handling a solution of the inverse ill-posed
problem [21]. In this case, we must impose additional data to retain uniqueness:

∫ s(τ)

0
xℓu(x, τ)dx = γ3+ℓ(τ), τ ∈ [0, T], ℓ ∈ {0, 1}. (4)

Equation (4) represents the zeroth (ℓ = 0) and first-order (ℓ = 1) heat momentum.
To solve the inverse ill-posed problem in Equations (1)–(4), we first convert the free domain
function s(τ) to a fixed domain by setting η = x

s(τ) and τ = τ. This implies that u(x, τ) =

u(ηs(τ), τ) = v(η, τ) and QT = {(η, τ) : 0 < η < 1, 0 < τ < T}. Therefore, using the
previous transformation, Equations (1)–(4) can be rewritten in compact notation as

vτ =
a(τ)
s2(τ)

vηη +
b(ηs(τ), τ) + ηs′(τ)

s(τ)
vη + c(ηs(τ), τ)v + f (ηs(τ), τ), (η, τ) ∈ QT , (5)

v(η, 0) = φ(s(0)η), η ∈ [0, 1], (6)

v(0, τ) = γ1(τ), v(1, τ) = γ2(τ), τ ∈ [0, T], (7)

sℓ+1(τ)
∫ 1

0
v(η, τ)dη = γ3+ℓ(τ), τ ∈ [0, T], ℓ ∈ {0, 1}. (8)

Based on well-established theories on the uniqueness of this inverse problem [21–23],
we assume the problem in Equations (5)–(8) requires the existence and uniqueness criteria
as follows.

Definition 1. The solution of the inverse problem in Equations (5)–(8) can be:
Case 1. When b(ηs(τ), τ) is known, it is the triplet class (a(τ), s(τ), v(η, τ)) ∈ C[0, T] ×
C1[0, T]× C2,1(QT).
Case 2. If a(τ) is given and b(ηs(τ), τ) only depends on time (b(ηs(τ), τ) = b(τ)), it is the
triplet class (s(τ), b(τ), v(η, τ)) ∈ C1[0, T]× C[0, T]× C2,1(QT), where a(τ) > 0 and s(τ) > 0
for τ ∈ [0, T].

Theorem 1. Consider the case where b(ηs(τ), τ) is known (Case 1) and assume the input data for
the problem in Equations (5)–(8) satisfy the following three conditions:

1. γi ∈ C1[0, T], γi(τ) > 0, for i = 1, 4, γ′
4(τ) > 0, s(τ)ux(0, τ) − γ2(τ) + γ1(τ) > 0,

b(0, τ)γ1(τ) + γ′
3(τ) ≤ 0, for τ ∈ [0, T].

2. φ ∈ C2[0, s(0)], φ(x) > 0, φ′(x) > 0, for x ∈ [0, s(0)], where s0 = s(0) > 0 by the
solution of

∫ s0
0 h(0)φ(ηs(0))dη = γ3(0).
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3. b, c, f ∈ C1,0([0, H1]× [0, T]), f (x, τ) ≥ 0, b(x, τ) ≥ 0, c(x, τ)− bx(x, τ) ≥ 0, for (x, τ) ∈

[0, H1]× [0, T] where, H1 = max γ3(τ)
τ∈[0,T]

(
min

(
min φ(x)

x∈[0,s0]

, min γ1(τ)
τ∈[0,T]

, min γ2(τ)
τ∈[0,T]

))−1

.

4. φ(0) = γ1(0), φ(s(0)) = γ2(0) and s2(0)
∫ 1

0 ηφ(s(0)dη = γ4(0).

Then, there exists a unique solution for the inverse problem in Equations (5)–(8) where τ0 ∈ [0, T]
is defined as input data for this problem.

To solve the inverse problem in Equations (5)–(8) in Case 1, with given b(ηs(τ), τ),
we start by finding the initial values of the unknown quantities a(0) and s′(0). This step is
essential to find stable numerical reconstructions later. Then, we derive the derivative of
the integral equations of the over-determination condition in Equation (4) concerning time:

γ′
3+ℓ(τ) = sℓ(τ)γ2(τ)s′(τ) +

∫ s(τ)

0
xℓuτ(x, τ)dx. ℓ ∈ {0, 1}. (9)

To obtain the second term on the right-hand side of Equation (9), we integrate the
one-dimensional parabolic governing Equation (1) over the interval [0, s(τ)] with respect
to space x. To get the second term on the right-hand side of Equation (9) when ℓ = 1, we
multiply Equation (1) by x and integrate over the same period

∫ s(τ)

0
uτdx = a(τ)[ux(s(τ), τ)− ux(0, τ)] +

∫ s(τ)

0

[
b(x, τ)ux + c(x, τ)u + f (x, τ)

]
dx, (10)

multiplying by x

∫ s(τ)

0
xuτdx = a(τ)[s(τ)ux(s(τ), τ)− γ2(τ) + γ1(τ)]

+
∫ s(τ)

0
x
[

b(x, τ)ux + c(x, τ)u + f (x, τ)

]
dx. (11)

Finally, by substituting Equation (10) into (9) (ℓ = 0), Equation (11) into (9) (ℓ = 1),
and conducting some re-arrangements taking into account that s′(τ) and a(τ) are unknown
functions, we obtain

γ2(τ)s′(τ) + [ux(s(τ), τ)− ux(0, τ)]a(τ) = γ′
3(τ)− δ1(τ) := L3(τ),

s(τ)γ2(τ)s′(τ) + [s(τ)ux(s(τ), τ)− γ2(τ) + γ1(τ)]a(τ) = γ′
4(τ)− δ2(τ) := L4(τ).

The above equations can be written in matrix form as[
γ2(τ) ux(s(τ), τ)− ux(0, τ)

s(τ)γ2(τ) s(τ)ux(s(τ), τ)− γ2(τ) + γ1(τ)

][
s′(τ)
a(τ)

]
=

[
L3(τ)
L4(τ)

]
(12)

where

δ1(τ) =
∫ s(τ)

0

(
b(x, τ)ux + c(x, τ)u + f (x, τ)

)
dx,

δ2(τ) =
∫ s(τ)

0
x
(

b(x, τ)ux + c(x, τ)u + f (x, τ)

)
dx.

To obtain a unique solution of the above 2× 2 system, the determinant must not vanish
in [0, T],
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∆1(τ) =

∣∣∣∣ γ2(τ) ux(s(τ), τ)− ux(0, τ)
s(τ)γ2(τ) s(τ)ux(s(τ), τ)− γ2(τ) + γ1(τ)

∣∣∣∣
= γ2(τ)[s(τ)ux(s(τ), τ)− γ2 + γ1]− s(τ)γ2[ux(s(τ), τ)− ux(0, τ)]

= s(τ)γ2(τ)ux(s(τ), τ)− γ2
2(τ) + γ2(τ)γ1(τ)− s(τ)γ2(τ)ux(s(τ), τ) + s(τ)γ2(τ)ux(0, τ)

= −γ2
2(τ) + γ2(τ)γ1(τ) + s(τ)γ2(τ)γ2(τ)ux(0, τ).

Therefore,

s′(τ) =
L4(τ)ux(0, τ) + s(τ)L3(τ)ux(s(τ), τ)− L4(τ)ux(s(τ), τ) + L3(τ)γ1(τ)− L3(τ)γ2(τ)

∆1(τ)
,

a(τ) =
γ2(τ)L4(τ)− γ2(τ)s(τ)L3(τ)

∆1(τ)
,

and making τ = 0 in the last two expressions results in

s′(0) =
L4(0)ux(0, 0) + h(0)L3(0)ux(h0, 0)− L4(0)ux(h0, 0) + L3(0)γ1(0)− L3(0)γ2(0)

∆1(0)
, (13)

a(0) =
γ2(0)L4(0)− γ2(0)h0L3(0)

∆1(0)
. (14)

Theorem 2. Consider the case where a(τ) = 1, the function b(ηs(τ), τ) = b(τ) is unknown
(Case 2), and the following conditions are satisfied:

1. γi(τ) ∈ C1[0, 1], γi(τ) > 0, i = 1, 4 and f ∈ C([0, ∞) × [0, T]), f (x, τ) ≥ 0 for
x ∈ [0,+∞), τ ∈ [0, T]. Also, φ ∈ C2[0, s(0)], φ′(x) > 0 for x ∈ [0, h(0)].

2. The compatibility conditions are

φ(0) = γ1(0), φ(s(0)) = γ2(0),

γ′
1(0) =

1
s2(0)

φ′′(0) +
b(0)
s(0)

φ′(0) + c(0, 0)φ(0) + f (0, 0),

γ′
2(0) =

1
s2(0)

φ′′(s(0)) +
[

b(0)
s(0)

+
s′(0)
h(0)

]
φ′(h(0)) + c(s(0), 0)φ(s(0)) + f (s(0), 0).

Then, we can determine T1 ∈ (0, T] such that there exists a local solution to the inverse problem in
Equations (1)–(4) or (5)–(8) for (y, τ) ∈ QT1 .

Theorem 3. Assume the following conditions hold for the previous case:

1. f , c ∈ C1,0([0,+∞)× [0, T]),
2. φ(x) ≥ φ0 and f (x, τ) ≥ 0, for x ∈ ([0,+∞)× [0, T]),
3. γi(τ) > 0, i = 1, 4 for τ ∈ [0, T] and φ′(x) > 0 for x ∈ [0, h0].

Then, the problem in Equations (5)–(8) cannot have more than one solution in the domain QT1 .

It is necessary to calculate the values of s′(0) and b(0) in Case 2 to find the inverse
solution of Equations (5)–(8). We apply the same approach used for Case 1. We find the
equations corresponding to Equation (9) when ℓ ∈ {0, 1} and substitute a(τ) = 1, b(x, τ) =
b(τ) into the equations corresponding to Equations (10) and (11), respectively. This yields
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∫ s(τ)

0
uτdx =

∫ s(τ)

0

[
uxx + c(x, τ)u + f (x, τ)

]
dx + b(τ)

∫ s(τ)

0
uxdx,

∫ s(τ)

0
xuτdx =

∫ s(τ)

0
x
[

uxx + c(x, τ)u + f (x, τ)

]
dx + b(τ)

∫ s(τ)

0
xuxdx.

Then, we apply integration by parts to calculate the exact values of the latest τ terms
in the previous equations, which leads to the following equations. In addition, we replace
them with Equation (9) (ℓ ∈ {0, 1}):

γ2(τ)s′(τ) + [γ2(τ)− γ1(τ)]b(τ) = γ′
3(τ)−

∫ s(τ)

0
[uxx + c(x, τ)u + f (x, τ)]dx = L1(τ),

s(τ)γ2(τ)s′(τ) + [s(τ)γ2(τ)− γ3(τ)]b(τ) = γ′
4(τ)−

∫ s(τ)

0
x[uxx + c(x, τ)u + f (x, τ)]dx = L2(τ).

To join the previous differential equations, we express them in the following ma-
trix form: [

γ2(τ) γ2(τ)− γ1(τ)
γ2(τ)s(τ) s(τ)γ2(τ)− γ3(τ)

][
s′(τ)
b(τ)

]
=

[
L1(τ)
L2(τ)

]
,

where

s′(τ) =
(γ1(τ)− γ2(τ))L2(τ) + L1(τ)(s(τ)γ2(τ)− γ3(τ))

γ2(s(τ)γ1(τ)− γ3(τ))
τ ∈ [0, T],

b(τ) =
−s(τ)L1(τ) + L2(τ)

s(τ)γ1(τ)− γ3(τ)
τ ∈ [0, T],

and setting τ = 0 results in

s′(0) =
(γ1(0)− γ2(0))L2(0) + L1(0)(s(0)γ2(0)− γ3(0))

γ2(0)(s(0)γ1(0)− γ3(0))
, (15)

b(0) =
−s(0)L1(0) + L2(0)
s(0)γ1(0)− γ3(0)

. (16)

Equations (15) and (16) are both required for compatibility with Condition 2 of Theo-
rem 2 to prove the existence of the solutions to the problem in Equations (5)–(8).

3. Applied CN Method to Obtain the Direct Solutions to the Problem

In this section, we take into account the initial boundary value problem in Equations
(5)–(7), where {a(τ), b(ηs(τ), τ), c(ηs(τ), τ), φ(ηs(0)), γi(τ)} with i = 1, 2 are known func-
tions that meet the existence and uniqueness conditions in Theorems 1–3. We seek to
compute the direct solution v(η, τ). Furthermore, we can figure out the numerical values
of Equation (8) (ℓ ∈ {0, 1}) by employing the CN finite difference method. This method
is unconditionally stable, and the solutions have second-order accuracy in the time and
spatial dimensions.

To discretize the domain QT = (0, 1)× (0, T), we divide it into small M and N intervals
of equally spaced length ∆η and ∆τ, denoting the uniform space and time increments by
∆η = 1

M and ∆τ = T
N , respectively. We refer to the solution at the node point (i, j) as

vi,j = v(ηi, τj), a(τj) = aj, b(ηi, τj) = bi,j, c(ηi, τj) = ci,j, and f (ηi, τj) = fi,j, where ηi = i∆η,
τj = j∆τ for i = 0, M, j = 0, N [4,30].

We rename the right-hand side of Equation (5) as Θ(τ, η, v, vη , vηη), i.e.,

Θ(τ, η, v, vη , vη) =
a(τ)
s2(τ)

vηη +

(
b(ηs(τ), τ) + s′(τ)η

s(τ)

)
vη + c(ηs(τ), τ)v + f (ηs(τ), τ), (η, τ) ∈ QT .
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By discretizing the previous equation using the FDM, we obtain

Θi,j =

(
a(τj)

s2(τj)

)
vi+1,j − 2vi,j + vi−1,j

∆η2 +

(
b(ηis(τj)) + s′(τj)yi

s(τj)

)
vi+1,j − vi−1,j

2∆η

+ ci,jvi,j + fi,j, i = 0, M, j = 0, N.

Benefiting from the fact that CN techniques are unconditionally stable and provide
convergence of the second order in time and space for such problems [12,31,32], we apply
them to Equations (5)–(7) to obtain

vi,j+1 − vi,j

∆τ
=

1
2
(Θi,j+1 + Θi,j), (17)

v(ηi, 0) = φ(ηis(0)), i = 0, M, (18)

v(0, τj) = γ1(τj), v(1, τj) = γ2(τj), j = 0, N. (19)

By substituting Θi,j and Θi,j+1 into Equation (17), we obtain the system of equations

− Ai,j+1vi−1,j+1 + [1 − Bi,j+1]vi,j+1 − Ci,j+1vi+1,j+1 =

Ai,jvi−1,j + [1 + Bi,j+1]vi,j + Ci,jvi+1,j +
∆τ

2
( fi,j + fi,j+1), (20)

with the matrices Ai,j =
∆τ

2∆η2
aj

s2
j
− ∆τ

4∆η

bi,j+s′jηi
sj

, Bi,j =
∆τ
2 ci,j − ∆τ

∆η2
aj

s2
j
, and Ci,j =

∆τ
2∆η2

aj

s2
j
+

∆τ
4∆η

bi,j+s′jηi
sj

.
There are three values on the right-hand side of Equation (20): vi−1,j, vi,j, and vi+1,j.

Conversely, the values on the left-hand side remain unknown.
For j = 0 (i.e, the initial time) and i = 1, M − 1, Equation (20) represents a linear

system of M − 1 equations with M − 1 unknown variables, namely v1,1, v2,1, . . . , vM−1,1.
The first time steps in terms of the initial values v0,0, v1,0, . . . , vn,0 and from the Dirichlet
boundaries v0,1 and vM,1 have specific values γ1(τ0) and γ2(τ0), respectively. We perform a
similar procedure for the following iteration time step (τj) with j = 1, N − 1; that is, for each
time step τj for j = 1, N − 1.

We rewrite Equation (20) in metric form as a (M − 1)× (M − 1) system of algebraic
linear equations (that can be solved by the Gaussian elimination method) as follows:

Avn+1 = Bvn + d, (21)

where vn+1 = (v1,j+1, v2,j+1, ...., vM−1,j+1)
t, vn = (v1,j, v2,j, ...., vM−1,j)

t, and A and B are
(M − 1)× (M − 1) matrices as follows:

A =


1 − B1,j+1 −C1,j+1 0 . . . · · · 0 0 0
−A2,j+1 1 − B2,j+1 −C2,j+1 . . . 0 0

...
...

...
0 0 0 . . . − AM−2,j+1 1 − BM−2,j+1 −CM−2,j+1
0 0 0 . . . 0 −AM−1,j+1 1 − BM−1,j+1



B =


1 + B1,j C1,j 0 . . . 0 0 0

A2,j 1 + B2,j C2,j . . . 0 0 0
...

...
...

0 0 0 . . . AM−2,j 1 + BM−2,j CM−2,j
0 0 0 . . . 0 AM−1,j 1 + BM−1,j





Mathematics 2024, 12, 2629 8 of 21

d =


A1,j+1v0,j+1 + A1,jv0,j +

∆τ
2 ( f1,j + f1,j+1)

∆τ
2 ( f2,j + f2,j+1)

...
∆τ
2 ( fM−2,j + fM−2,j+1)

CM−1,j+1vM,j+1 + CM−1,jvM,j +
∆τ
2 ( fM−1,j + fM−1,j+1)

.

The trapezium rule (numerical integration) is applied to discretize Equation (8) (ℓ ∈
{0, 1}) into different equations:

γ3(τj) =
s(τj)

2N

(
v0,j + vM,j + 2

M−1

∑
i=1

vi,j

)
, j = 1, N, (22)

γ4(τj) =
s2(τj)

2N

(
η0v0,j + ηMvM,j + 2

M−1

∑
i=1

ηivi,j

)
, j = 1, N. (23)

4. Numerical Approximations of the Inverse Problems

In this section, we find the approximated solutions of different quantities of the
inverse problem in Equations (1)–(4) in Case 1 to obtain {(u(x, τ), a(τ), s(τ))} when b(x, τ)
is explicitly is given. Then, we find the corresponding solution of the inverse problem in
Equations (1)–(4) in Case 2, where {(u(x, τ), b(τ), s(τ))} require identification when a(τ)
is given.

Handling these inverse problems means solving non-linear optimization problems that
minimize the gap between measured data and computed solutions. The minimization of
the objective function, subject to the straightforward physical lower-bound constraint s > 0,
can be achieved by using the lsqnonlin non-linear least-square solver from the MATLAB
optimization toolbox, which applies the trust region reflective algorithm (TRR) [33,34].
The lsqnonlin solver aims to determine the minimum sum of squares by starting from
initial guesses. This toolbox routine does not require a supplement of the gradient of the
objective function. It uses the TRR algorithm [33,35,36], so it effectively relies on the interior-
reflective Newton method. Each iteration results in a large system of linear equations,
which we solve by applying the preconditioned conjugate gradient method [37,38].

As we mentioned earlier, Case 1 concerns finding the thermal diffusivity a(τ), the free-
boundary condition s(τ) > 0 of one-dimensional heat in Equation (1), and the temperature
distribution u(x, τ)/v(η, τ). Equations (14) and (13) are used to calculate a(0) and s′(0),
respectively, when the initial time is τ = 0. Given the ill-posed nature of the problem,
Tikhonov regularization (ridge regression) can be applied to ensure the suitability and
accuracy of the solution [39,40].

From the over-determination conditions in Equation (8) (ℓ ∈ {0, 1}), we reconstruct
Tikhonov’s regularization as follows:

J(a, s) :=
∥∥∥∥s(τ)

∫ 1

0
v(η, τ)dη − γ3(τ)

∥∥∥∥2

+

∥∥∥∥s2(τ)
∫ 1

0
ηv(η, τ)dη − γ4(τ)

∥∥∥∥2

+ β1∥s(τ)∥2 + β2∥a(τ)∥2. (24)

The previous Tikhonov regularization functional reconstruction can be expanded and
rewritten in the following form:

J(a, s) =
N

∑
j=1

(
sj

∫ 1

0
v(η, τj)dη − γ3(τj)

)2

+
N

∑
j=1

(
s2

j

∫ 1

0
ηv(η, τj)dη − γ4(τj)

)2

+ β1

N

∑
j=1

s2
j + β2

N

∑
j=1

a2
j . (25)
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J(a, s), which is subject to the physical constraints s > 0 (free boundary) and a > 0
(thermal diffusivity), is minimized using the optimization package lsqnonlin.

We apply the same procedure for Case 2, where a(τ) = 1, and we need to identify
b(x, τ) = b(τ) as well as the free boundary s(τ) and the temperature u(x, τ)/v(η, τ).
Again, we consider the first initial value for the time τ = 0, which helps to calculate b(0)
in Equation (16) and s′(0) in Equation (15). Moreover, we use the over-determination
conditions in Equation (8) (ℓ ∈ {0, 1}) to form the corresponding Tikhonov regularization:

G(s, b) :=
∥∥∥∥s(τ)

∫ 1

0
v(η, τ)dη − γ3(τ)

∥∥∥∥2

+

∥∥∥∥s2(τ)
∫ 1

0
ηv(η, τ)dη − γ4(τ)

∥∥∥∥2

+ β1∥s(τ)∥2 + β2∥b(τ)∥2, (26)

which can be rewritten as

G(s, b) =
N

∑
j=1

(
sj

∫ 1

0
v(η, τj)dη − γ3(τj)

)2

+
N

∑
j=1

(
s2

j

∫ 1

0
ηv(η, τj)dη − γ4(τj)

)2

+ β1

N

∑
j=1

s2
j + β2

N

∑
j=1

b2
j . (27)

Then, G(s, b) is minimized using the lsqnonlin solver. In both the examined cases,
βi ≥ 0 and i = 1, 2 are the regularization parameters identified and regulated according to
a specific selection procedure, and the norm is taken in the space L2[0, T].

To ensure the stability of the inverse solutions, we include random errors (noise) in
the input data for Equation (8) (ℓ ∈ {0, 1}) and monitor the effect of the change.

γϵ1
3 (τj) = γ3(τj) + ϵ1,j; γϵ2

4 (τj) = γ4(τj) + ϵ2,j, j = 0, N, (28)

where ϵ1 and ϵ2 are arbitrary vectors engendered from a Gaussian normal distribution that
has mean zero and standard deviations denoted as σ1 and σ2, respectively:

σ1 = p × max
τ∈[0,T]

|γ3(τ)|, σ2 = p × max
τ∈[0,T]

|γ4(τ)|. (29)

The quantity p refers to the percentage of added noise. The MATLAB bulletin function
normrnd was used to generate the random variables ϵ1 = (ϵ1,j) and ϵ2 = (ϵ2,j) for j = 0, N
as follows:

ϵ1 = normrnd(0, σ1, N), ϵ2 = normrnd(0, σ2, N).

5. Discussions and Numerical Examples for Cases 1 and 2

In this section, we calculate, discuss, and interpret the numerical results of the time-
dependent coefficients a(τ) and b(τ) along with s(τ) > 0 and the temperature distribution
v(η, τ). We compare the obtained direct solutions with the analytical ones. Because finding
the exact solutions to such a problem is not always possible, we run simulations after
applying a trim level of noise to the measurements of the direct solver. Then, we seek the
best value for the regulation parameters to ensure the accuracy, convergence, and stability
of the obtained inverse solutions (reconstructions). We also consider the root mean square
error (RMSE), which is given as follows:

RMSE(a) =

[
T
N

N

∑
j=1

(anumerical(τj)− aexact(τj))
2

] 1
2

, (30)
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RMSE(b) =

[
T
N

N

∑
j=1

(bnumerical(τj)− bexact(τj))
2

] 1
2

, (31)

RMSE(s) =

[
T
N

N

∑
j=1

(snumerical(τj)− sexact(τj))
2

] 1
2

. (32)

We use the RMSE regression method to understand the relationships between anumerical ,
bnumerical , and snumerical (the predicted values) and aexact, bexact, and sexact (the observed
values), respectively, for the jth observation. For simplicity, we fix T = 1 throughout the
simulations.

5.1. Numerical Example for Case 1

Considering the data inputs in the work of Hussein and Lesnic [41], we define

a(τ) =
√

1 + τ, c(x, τ) = 0, b(x, τ) = 0, s(τ) =
√

2 − τ, f (x, τ) = 8 − 2
√

1 + τ, (33)

u(x, τ) = 8τ + (1 + x)2.

Inserting the exact value of u(x, τ) into the integral in Equation (4) (ℓ ∈ {0, 1}) helps
to analytically compute γ3(τ) and γ4(τ). Thus,

γ3(τ) =
∫ s(τ)

0
u(x, τ)dx =

√
2 − τ(

5
3
+
√

2 − τ +
23τ

3
), (34)

γ4(τ) =
∫ s(τ)

0
xu(x, τ)dx = (2 − τ)(1 +

2
√

2 − τ

3
+

15τ

4
), (35)

and using the earlier transformation

η =
x

s(τ)
=

x√
2 − τ

allows us to analytically calculate the exact values of v(y, τ) and f (y, τ). This leads to

v(η, τ) = 8τ + (1 + η
√

2 − τ)2, f (η, τ) = 8 − 2
√

1 + τ, (36)

which involves the inchoate and boundary conditions in Equations (6) and (7) and results
in the following defined functions:

φ(η) = (1 +
√

2η)2; γ1(τ) = u(0, τ) = 1 + 8τ; γ2(τ) = u(s(τ), τ) = (1 +
√

2 − τ)2.

For the transformed direct problem in Equations (5)–(8), γ3(τ) and γ4(τ) can be
calculated numerically using the trapezium rule as shown in Equations (22) and (23).
Tables 1 and 2 compare the exact values of γ3(τ) and γ4(τ), which are defined in
Equations (34) and (35) respectively, and the corresponding numerical values approxi-
mated via CN techniques (Equations (22) and (23)) at equally-spaced time steps in the
interval τ ∈ (0, 1).

We focus on solving the inverse problem in Equations (5)–(8) in Case 1. When b(x, τ)
is given, the functions s(τ) and a(τ) must be detected using the previous data inputs. We
set initial guesses for s(τ) and a(τ) at τ = 0 to start the optimization procedure. We achieve
this by using Equations (13) and (14), respectively. Therefore, s(0) = s0 =

√
2 and a(0) = 1.

We work with this particular example because all of the conditions in Theorem 1 are met,
which ensures the existence and uniqueness of the inverse solutions.
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Table 1. Real and numerically approximated values of γ3(τ) at various times and mesh sizes.

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M = N = 10 2.2585 6.0973 6.8756 7.5906 8.2391 8.8176 9.3217 9.7466 10.0867
(Relative error) (57.01452%) (0.06565%) (0.05384%) (0.04481%) (0.03643%) (0.03176%) (0.02683%) (0.02155%) (0.01884%)

M = N = 20 5.2552 6.0943 6.8728 7.5881 8.2369 8.8155 9.3198 9.745 10.0853
(Relative error) (0.02093%) (0.01641%) (0.01309%) (0.01186%) (0.00971%) (0.00794%) (0.00644%) (0.00513%) (0.00496%)

M = N = 40 5.2544 6.0935 6.8721 7.5875 8.2363 8.815 9.3194 9.7446 10.0849
(Relative error) (0.00571%) (0.00328%) (0.00291%) (0.00395%) (0.00243%) (0.00227%) (0.00215%) (0.00103%) (0.00099%)

M = N = 80 5.2542 6.0933 6.872 7.5873 8.2361 8.8149 9.3193 9.7445 10.0848
(Relative error) (0.00190%) (0%) (0.00146%) (0.00132%) (0%) (0.00113%) (0.00107%) (0%) (0%)

Exact 5.2541 6.0933 6.8719 7.5872 8.2361 8.8148 9.3192 9.7445 10.0848

Table 2. Real and numerically approximated values of γ4(τ) at various times and mesh sizes.

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M = N = 10 4.3762 4.7761 5.1048 5.3624 5.549 5.6647 5.7098 5.6843 5.5885
(Relative error) (0.40610%) (0.33824%) (0.28683%) (0.24677%) (0.21310%) (0.18393%) (0.15963%) (0.13917%) (0.12362%)

M = N = 20 4.3629 4.764 5.0938 5.3525 5.5402 5.6569 5.7029 5.6783 5.5833
(Relative error) (0.10095%) (0.08403%) (0.07072%) (0.06169%) (0.05418%) (0.04598%) (0.03859%) (0.03347%) (0.0305%)

M = N = 40 4.3592 4.761 5.0911 5.3501 5.538 5.655 5.7012 5.6769 5.5821
(Relative error) (0.01606%) (0.02101%) (0.01769%) (0.01682%) (0.01445%) (0.01238%) (0.00877%) (0.00881%) (0.00896%)

M = N = 80 4.3588 4.7602 5.0904 5.3494 5.5374 5.6545 5.7008 5.6765 5.5817
(Relative error) (0.00689%) (0.00420%) (0.00393%) (0.00374%) (0.00361%) (0.00354%) (0.00175%) (0.00176%) (0.00179%)

Exact 4.3585 4.76 5.0902 5.3492 5.5372 5.6543 5.7007 5.6764 5.5816

We use the same data inputs above (Equation (33)) and consider the numerical estima-
tions of γ3 and γ4 when there is no noise applied to Equation (28). Then, we visualize the
minimized objective function in Equation (25) against the number of iterations when the
regularization parameters β1 and β2 are set to zero. Figure 1 shows a fast convergence on
the measured minimized objective function as the number of iterations rises, reaching a
monotonic stage in 31 iterations. The non-regularized objective function’s curve diminishes
rapidly in the first five iterations and then reaches a steady stage with a high order of
accuracy of O(10−9).
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Figure 1. Visualization of the minimized objective function defined in Equation (25) when no noise is
imposed and no regularization is applied.

The associated numerical solutions for the unknown functions s(τ) and a(τ) are
calculated simultaneously and plotted in Figure 2a and b, respectively.



Mathematics 2024, 12, 2629 12 of 21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

s
(

)

exact

Numerical M=N=40

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

a
(

)

exact

Numerical M=N=40

(b)

Figure 2. Exact solutions (solid lines) and numerical solutions (squares) for (a) s(τ) and (b) a(τ)
when noise and regularization are not applied.

We successfully retrieve an accurate and steady solution for the free-boundary function
s(τ). Figure 2 shows minor instability in the thermal diffusivity values of the function
a(τ) close to both edges. The oscillations are more evident on the left-hand side of the
approximated a(τ), increasing as the time gets closer to zero. Consequently, s(τ) does
not need to be regularized. Hence, we fix β1 = 0 in Equation (25) and use the Tikhonov
regularization method for a(τ).

Next, we find the inverse solution for Case 1 when a small level of noise of ϵ = 0.01%
is included in the over-determination conditions γ3(τ) and γ4(τ), as in Equation (28). We
emphasize that the regularization procedure has not yet been used to solve the problem.
Figure 3 shows the objective minimization function against the number of iterations when
noise is applied. The figure illustrates that the non-regularized objective function’s con-
vergence is fast in the first few iterations, settled in the next few, and then becomes steady.
The objective function reaches a stationary stage in 140 iterations, with a high order of
accuracy of O(10−7). Not considering the exact solutions of γ3(τ) and γ4(τ) and applying
some noise to them results in a slower convergence and a lower level of accuracy, as seen by
comparing the minimized objective functions shown in Figures 1 and 3.
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Figure 3. Visualization of the minimized objective function defined in Equation (25) when the noise
level ϵ = 0.01% is imposed and no regularization is applied.

Exploring the associated numerical results in Figure 4 illustrates that the free boundary
maintains stability, while the thermal diffusivity shows more severe oscillatory behavior
compared to Figure 2b.

Finally, we apply the Tikhonov regularization method to obtain a stable, accurate,
and efficient reconstruction for the unknown function a(τ). The L-curve method, the RMSE
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curve, and trial and error are used to identify the most appropriate regularization parameter
β2 [15,42–44].
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Figure 4. Real and numerically approximated values for (a) s(τ) and (b) a(τ) with noise level
ϵ = 0.01% and no regularization applied.

Finding the optimal value of the regularization parameter using the L-curve method
is impossible since we cannot see the L-shaped curve in the line graph in Figure 5. Instead,
we apply the RMSE regression method; as shown in Figure 6, the curve’s minimum
value occurs at β2 = 10−4. Thus, β2 is considered an optimal value of the regularization
parameter to obtain the best numerical values for a(τ).
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Figure 5. L−curve line graph where potential values for β2 are tested and the noise level ϵ = 0.01%
is imposed.
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Figure 6. Minimum RMSE line graph where potential values for β2 are tested and the noise level
ϵ = 0.01% is imposed.
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Figure 7 shows the calculated minimized objective functions using Equation (25)
against the number of iterations when the regularization parameter β2 is set to 10−3, 10−4,
and 10−5. The objective function with β2 = 10−4 converges faster than the others and
reaches a steady distribution in 10 iterations, taking 380 seconds. The objective functions
with β2 = 10−3 and β2 = 10−5 have slower convergences and reach their stationary
distributions in 12 iterations after 447 and 449 seconds, respectively.
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Figure 7. Visualization of the minimized objective function defined in Equation (25) when the noise
level ϵ = 0.01% is imposed and various regularization parameters are considered.

Figure 8 illustrates the reconstructions of the inverse solutions s(τ) and a(τ) in Case 1,
taking into account various regularization parameters, including the optimal value.
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Figure 8. Real and numerically approximated values for (a) s(τ) and (b) a(τ) with p = 0.01% noise
and various regularization parameters for Case 1.
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The free-boundary function s(τ) is estimated very well even when its corresponding
regularization parameter is set to zero, β1 = 0. Since the reconstruction is performed
simultaneously for all model parameters, selecting the best regularization parameter for
the thermal diffusivity a(τ) positively impacts the obtained free-boundary values; this
is evident in the right-hand side of the curve in Figure 8a. Moreover, β2 = 10−4 has
significantly smoothed a(τ) and increased the solutions’ accuracy compared to the other
examined regularization parameters.

5.2. Numerical Example For Case 2

In this section, we solve the inverse problem stated in Equations (5)–(8) for Case 2,
where s(τ) and b(τ) are unknown functions and the temperature is v(η, τ). We solve this
inverse problem with fed-in data:

φ(η) = (1 + η)2, γ1(τ) = 1 + 10τ, γ2(τ) = 10t + (2 + τ)2

f (η, τ) = 8 − 2(−1 − τ)(1 + (1 + τ)η),

γ3(τ) = (1 + τ)

(
7
3
+

35τ

3
+

τ2

3

)
, τ ∈ [0, T]

γ4(τ) =
∫ s(τ)

0
xu(x, τ)dx =

1
12

(1 + τ)2(17 + 74τ + 3τ2), τ ∈ [0, T].

The exact and numerical values for input data γ3 and γ4 with their relative errors
are listed in Tables 3 and 4, respectively. The conditions in Theorems 2 and 3 concerning
the uniqueness and existence of the solution hold. Therefore, the local existence and
uniqueness of the solution are guaranteed. The analytical solution of this problem is
provided as follows:

u(x, τ) = 10τ + (1 + x)2, b(τ) = −1 − τ, s(t) = 1 + τ,

and the transformed solution is

v(η, τ) = 10τ + (1 + (1 + τ)η)2, b(τ) = −1 − τ, s(τ) = 1 + τ. (37)

At the beginning of our investigation, we started with a noise-free case, i.e., p = 0 in
Equation (28). Figure 9 shows the objective function in Equation (27) as a function of the
number of iterations where no regularization is applied, i.e., β1 = β2 = 0. The figure shows
the speedy convergence of the minimization problem toward local minima with a meagre
value of order O(10−9) in 19 iterations. The corresponding numerical results are presented
in Figure 10. From this figure, we can see the overlap between the exact and numerical
solutions of the unknown functions s(τ) and b(τ), which indicates an excellent agreement
with RMSE(b) = 7.9 × 10−4 and RMSE(h) = 4.9 × 10−5 from Equations (31) and (32),
respectively.

Table 3. Real and numerically approximated solutions of γ3(τ) at various times and mesh sizes for
the direct problem.

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N = M = 10 3.8559 5.6189 7.626 9.8792 12.3806 15.1322 18.1359 21.3937 24.9078
(Relative error) (0.05709%) (0.05164%) (0.04854%) (0.04557%) (0.04525%) (0.04562%) (0.04523%) (0.045361%) (0.04619%)

N = M = 20 3.8542 5.6167 7.6232 9.8758 12.3764 15.127 18.1297 21.3864 24.8992
(Relative error) (0.01297%) (0.01246%) (0.01181%) (0.01114%) (0.01131%) (0.01124%) (0.01103%) (0.01122%) (0.01165%)

N = M = 40 3.8538 5.6162 7.6226 9.875 12.3754 15.1258 18.1282 21.3846 24.897
(Relative error) (0.00259%) (0.00356%) (0.00394%) (0.00304%) (0.00323%) (0.00331%) (0.00276%) (0.00281%) (0.00282%)

N = M = 80 3.8537 5.616 7.6224 9.8747 12.3751 15.1254 18.1278 21.3842 24.8965
(Relative error) (0%) (0%) (0.00131%) (0%) (0.00081%) (0.00066%) (0.00055%) (0.00094%) (0.00080%)

Exact 3.8537 5.616 7.6223 9.8747 12.375 15.1253 18.1277 21.384 24.8963
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Table 4. Real and numerically approximated solutions of γ4(τ) at various times and mesh sizes for
the direct problem.

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N = M = 10 2.4715 3.8413 5.5732 7.7085 10.2895 13.3591 16.9606 21.1381 25.9361
(Relative error) (0.32881%) (0.28457%) (0.26085%) (0.24448%) (0.23282%) (0.22507%) (0.21981%) (0.21667%) 0.21406%)

N = M = 20 2.4654 3.8331 5.5623 7.6944 10.2716 13.3366 16.9327 21.1038 25.8946
(Relative error) (0.08119%) (0.07049%) (0.06476%) (0.06112%) (0.05844%) (0.05627%) (0.05495%) (0.05405%) (0.05371%)

N = M = 40 2.4639 3.8311 5.5596 7.6909 10.2671 13.3309 16.9257 21.0953 25.8842
(Relative error) (0.02029%) (0.01827%) (0.01619%) (0.01561%) (0.01461%) (0.01350%) (0.01359%) (0.01375%) (0.01352%)

N = M = 80 2.4635 3.8306 5.5589 7.69 10.266 13.3295 16.9239 21.0931 25.8816
(Relative error) (0.0041%) (0.00522%) (0.00359%) (0.00390%) (0.00389%) (0.00300%) (0.00295%) (0.00332%) (0.00348%)

Exact 2.4634 3.8304 5.5587 7.6897 10.2656 13.3291 16.9234 21.0924 25.8807
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Figure 9. The objective function in Equation (27) when noise and regularization are not applied in
Case 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

s
(

)

exact

numerical

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

b
(

)

exact

numerical

(b)

Figure 10. Actual and numerically approximated solutions for (a) s(τ) and (b) b(τ) when noise and
regularization are not applied in Case 2.

Figure 10b displays the numerical solution of s(τ), which nearly follows their corre-
sponding precise solutions, with some noticeable small instability despite not yet applying
any errors/noise in the inputs. When we add p = 0.01% noise to the input data in
Equation (28), the solutions often follow the same pattern as in Case 1. As shown in
Figure 11, we obtain an accurate and stable solution for s(τ) and an unstable solution for
b(τ), indicating that regularization is necessary.

We expect such unusable behavior of the calculated solution because we are investi-
gating an ill-posed problem. A small error in the input data (γ3, γ4) leads to major errors
in the output solutions (s(τ), b(τ)). Regularization should be applied to overcome this
difficulty. We apply Tikhonov regularization by adding a penalty term (β1∥s∥2 + β2∥b∥2)
to the objective function in Equation (27).
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Similar to the corresponding case in Case 1, noise does not affect s(τ). By contrast, b(τ)
applies regularization on b(τ) only and fixes β1 = 0. To obtain the optimal regularization
parameter β2, which gives accurate and stable results, different selection methods were
considered. These include the L-curve method, minimum RMSE, and trial and error using
Equations (31) and (32). Figures 12 and 13 present the L-curve plot and the minimum RMSE
values as a function of the regularization parameter β2, respectively. From these figures, it
can be concluded that the best choice for β2 is 10−3, which has the lowest value of RMSE(b).
The objective function in Equation (27) is plotted for some β2 ∈ {10−5, 10−4, 10−3, 10−2} in
Figure 14.
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Figure 11. Actual and numerically approximated solutions for (a) s(τ) and (b) b(τ) where p = 0.01%
noise is included and no regularization is applied in Case 2.
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Figure 12. L−curve plot for the second inverse problem with p = 0.01% noise and regularization for
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From Figures 12 and 13, one can conclude that the optimal choice for β2 is 10−3; this is
also clear in Figure 15.
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Figure 14. The regularized objective function in Equation (27) for the second inverse problem with
p = 0.01% noise (potential measurement errors) and regularization for Case 2.
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6. Conclusions

This research describes a successful approach to finding the numerical solutions (tem-
perature distributions, free boundary, and thermal diffusivity or advection velocities) to
time-dependent free-boundary inverse coefficient problems while ensuring the approxi-
mations’ existence, uniqueness, and reliability. First, we converted the moving boundary
function to a fixed domain function by choosing a simple transformation. Then, due
to the unconditional stability and convergence of the Crank–Nicholson finite difference
scheme, we used it to solve the forward problem (an initial boundary value problem).
The obtained numerical values of non-localized integral observations, γ3(τ) and γ4(τ)
in the over-determined conditions, are used to generate and feed in the reconstruction
code, which uses the lsqnonlin non-linear least-square optimization routine. This MATLAB
toolbox uses the trust region reflective algorithm based on the inner-reflective Newton
technique and does not call for an additional gradient for the objective function. We
used the Tikhonov regularization approach (ridge regression) to overcome the problem’s
ill-posed nature, ensuring the solution’s applicability and correctness. We also used the
root mean square error and L-curve to test and select the optimal values for the regular-
ization parameters to obtain excellent approximations, as the numerical examples show.
The numerical approach in this paper could be extended to two- or three-dimensional prob-
lems. Additionally, future studies could consider time- and spatial-dependent coefficient
identification problems. Moreover, deep learning techniques could be integrated into the
mathematical methods used in this work to increase the speed and accuracy of solutions
for such inverse problems.
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