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A B S T R A C T

Schizophrenia is a persistent neurological disorder profoundly affecting cognitive, emotional, and behavioral
functions, prominently characterized by delusions, hallucinations, disordered speech, and abnormal motor ac-
tivity. These symptoms often present diagnostic challenges due to their overlap with other forms of psychosis.
Therefore, the implementation of automated diagnostic methodologies is imperative. This research leverages
Functional Magnetic Resonance Imaging (fMRI), a neuroimaging modality capable of delineating functional
activations across diverse brain regions. Furthermore, the utilization of evolving machine learning techniques for
fMRI data analysis has significantly progressive. Here, our study stands as a novel attempt, focusing on the
comprehensive assessment of both classical and atypical symptoms of schizophrenia. We aim to uncover asso-
ciated changes in brain functional activity. Our study encompasses two distinct fMRI datasets (1.5T and 3T), each
comprising 34 schizophrenia patients for the 1.5T dataset and 25 schizophrenia patients for the 3T dataset, along
with an equal number of healthy controls. Machine learning algorithms are applied to assess data subsets,
enabling an in-depth evaluation of the current functional condition concerning symptom impact. The identified
voxels contribute to determining the brain regions most influenced by each symptom, as quantified by symptom
intensity. This rigorous approach has yielded various new findings while maintaining an impressive classification
accuracy rate of 97 %. By elucidating variations in activation patterns across multiple brain regions in individuals
with schizophrenia, this study contributes to the understanding of functional brain changes associated with the
disorder. The insights gained may inform differential clinical interventions and provide a means of assessing
symptom severity accurately, offering new avenues for the management of schizophrenia.

1. Introduction

Schizophrenia, an intricate and chronic psychiatric condition
impacting a vast global population, remains an enigmatic mystery for
researchers and clinicians. The patients affected with schizophrenia
endure a diverse array of distressing symptoms, including hallucina-
tions, delusions, and disorganized behavior, arising from impaired
cognitive and motor processes. While traditional nosological thinking
may categorize symptoms into psychotic, cognitive, and negative types,
it is important to recognize that many individuals with schizophrenia
experience a combination of these symptom categories. This overlap
underscores the need for a more nuanced understanding of the disorder
Tandon et al. (2013); Potuzak et al. (2012). The diagnosis of

schizophrenia primarily occurs during late adolescence and early
adulthood, with males exhibiting an earlier onset compared to females
Häfner et al. (1992). The Diagnostic and Statistical Manual of Mental
Disorders (DSM-V) mandates the presence of two or more symptoms,
such as delusions, hallucinations, disorganized speech, catatonic
behavior, or negative symptoms, persisting for at least one month, with
delusions, hallucinations, or disorganized speech being pivotal criteria
Tandon et al. (2013). Beyond the primary symptoms, individuals with
schizophrenia grapple with secondary symptoms, including anxiety,
abnormal movements, depression, and impaired abstract thinking,
which contribute to the challenge of accurate diagnosis due to symptom
overlap with other neurological conditions. The etiology of schizo-
phrenia is multifactorial, involving genetic, environmental,

* Corresponding author.
E-mail address: i.chatterjee@mmu.ac.uk (I. Chatterjee).

Contents lists available at ScienceDirect

Psychiatry Research: Neuroimaging

journal homepage: www.elsevier.com/locate/psychresns

https://doi.org/10.1016/j.pscychresns.2024.111870
Received 3 May 2023; Received in revised form 20 February 2024; Accepted 6 August 2024

mailto:i.chatterjee@mmu.ac.uk
www.sciencedirect.com/science/journal/09254927
https://www.elsevier.com/locate/psychresns
https://doi.org/10.1016/j.pscychresns.2024.111870
https://doi.org/10.1016/j.pscychresns.2024.111870
https://doi.org/10.1016/j.pscychresns.2024.111870
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pscychresns.2024.111870&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Psychiatry Research: Neuroimaging 344 (2024) 111870

2

birth-related, and social or personal factors that collectively contribute
to its development Chatterjee and Mittal (2020). Recent advances in
genetic research have shed light on 108 genes associated with schizo-
phrenia, offering fresh insights into the underlying mechanisms
Jawanjal and Chatterjee (2021); Li et al. (2007). However, the true
impact of schizophrenia lies in the cognitive impairments and emotional
fluctuations that significantly impair daily functioning. Cognitive defi-
cits encompass attention, memory, reasoning, and processing speed, and
remarkably, these impairments are evident even before the clinical onset
of the illness Keefe and Harvey (2012); O’Carroll (2000); Elvevag and
Goldberg (2000). Moreover, individuals with schizophrenia face diffi-
culties in perceiving and expressing emotions, affecting their ability to
recognize and experience emotions fully Kring and Elis (2013); Kring
and Caponigro (2010); Kee et al. (2003). A profound understanding of
the complex interplay of these symptoms is critical in comprehending
the multi-faceted nature of schizophrenia and devising effective treat-
ment modalities.

Functional magnetic resonance imaging (fMRI) has emerged as a
potent tool for unraveling aspects of the pathophysiology of schizo-
phrenia by revealing functional activations in various brain regions
Chatterjee et al. (2018); Chatterjee et al. (2020). Machine learning (ML)
approaches have gained prominence in fMRI data analysis, facilitating
feature selection and modeling. However, research focusing on identi-
fying brain areas linked to distinct stages of symptoms remains limited
Su et al. (2015). Existing studies have explored the effectiveness of brain
networks concerning schizophrenia symptoms, revealing significant
findings concerning small-world network metrics Su et al. (2015). Other
investigations have identified brain activation patterns and abnormal-
ities in verbal working memory systems, providing potential insights
into the neurological basis of specific symptoms Shad and Keshavan
(2015), Hashimoto et al. (2010). Data-driven ML approaches have been
employed to classify schizophrenia patients based on brain activations,
showing promise in potentially correlating these activations with
symptom severity M. Bleich-Cohen et al. (2014). Additionally,
comparative studies between schizophrenia patients and healthy con-
trols have shed light on alterations in brain networks and functional
connectivity associated with positive and negative symptoms (Vanes
et al., 2019), M. Bleich-Cohen et al. (2014). Particularly, the relationship
between negative symptoms and anterior cingulate cortex (ACC)
dysfunction has been identified, adding valuable dimensions to the
understanding of schizophrenia symptomatology Nelson et al. (2015).
Explorations of the theory of mind (ToM) network and functional con-
nectivity have also offered intriguing insights Brüne et al. (2011).
Furthermore, ML-based investigations have examined specific brain
regions, highlighting changes in functional connectivity associated with
default-mode and salience networks, as well as neural responses linked
to threat-related effects and affective symptom improvement (Bohater-
ewicz et al., 2021), Tolmeijer et al. (2018). Non-invasive neuroimaging
techniques have shown promise in the diagnosis of schizophrenia
(Steardo Jr et al., (2020), although it is essential to note that these
techniques may excel in sensitivity while exhibiting variable specificity.
Additionally, research has unveiled connectivity impairments in intra-
and inter-hemispheric connections (Li et al., 2019), shedding light on
the complexity of the disorder.

Despite these advances in understanding schizophrenia and the
increasing application of ML algorithms in fMRI data analysis (Chat-
terjee et al., 2023), a significant research gap remains unexplored.
Specifically, no study has comprehensively explored symptomatic
functional changes in the brain using ML algorithms. This creates a
unique opportunity for the present study to contribute novel insights to
the field of schizophrenia research. By employing ML algorithms to
address crucial research questions related to schizophrenia symptoms,
this study aims to bridge the gap in the existing literature and provide a
comprehensive understanding of the neurobiological underpinnings of
the disease.

In this study, our primary focus was to understand the changes in

functional activities in the brain related to a set of symptoms, including
anxiety, depressive symptoms, negative symptoms, and other cognitive
and behavioral aspects, which are often considered nonspecific but play
a crucial role in the overall manifestation and complexity of schizo-
phrenia. While core symptoms like hallucinations, delusions, and
disorganization are undeniably important, our research aimed to shed
light on a broader spectrum of schizophrenia’s clinical presentation,
providing valuable insights into the disorder’s neural underpinnings.
Motivated by the pressing need to comprehensively understand
schizophrenia symptoms, this study endeavors to explore how the brain
processes information in schizophrenia. By identifying the underlying
causes of severe impacts, this research holds the potential to develop
more targeted and effective treatment strategies. The utilization of ML
algorithms in analyzing fMRI data offers a promising avenue for
uncovering valuable insights and advancing diagnostic and therapeutic
approaches for this debilitating mental illness.

Our hypothesis postulates that ML algorithms, when applied to fMRI
data, can effectively identify alterations in functional brain activation
associated with these specific symptoms of schizophrenia. In pursuit of
this hypothesis, our study sets forth several objectives. Firstly, we aim to
analyze fMRI data using ML algorithms to discern significant brain
voxels associated with distinct symptom categories. Secondly, we seek
to create a three-way dataset for differentiation, enabling us to identify
alterations in functional brain activation related to specific symptoms.
Thirdly, we aspire to contribute novel insights by employing ML algo-
rithms to explore symptomatic alterations in functional activities in the
brains of schizophrenia patients. To achieve these objectives, we will
conduct rigorous statistical testing to identify significant brain voxels
and utilize Linear Discriminant Analysis for feature selection. Our study
will leverage two separate fMRI datasets with varying intensity levels,
allowing us to pinpoint affected brain regions associated with different
symptoms. The 1.5T dataset will analyze twelve symptoms, while the 3T
dataset will focus on eight symptoms, ensuring a comprehensive
investigation into the alterations in functional activation within brain
regions.

This study embarks on an original exploration of the symptomatic
aspects of schizophrenia using an fMRI-based ML approach. By identi-
fying functional brain changes associated with specific symptoms, this
research stands to enrich our understanding of schizophrenia and offer
new opportunities for targeted and effective interventions. As the first
study to comprehensively analyze symptomatic changes in functional
activities in the brain using ML algorithms, this research holds immense
promise in advancing the frontiers of schizophrenia research and
improving the lives of those affected by this complex and challenging
mental illness Su et al. (2015).

2. Methods and materials

2.1. Dataset details

The dataset was obtained from the Function BIRN Data Repository
(FBIRN). The FBIRN repository has a multi-site fMRI dataset that in-
cludes schizophrenia and healthy individuals. In this study, we have
used the BOLD fMRI data having the Auditory Oddball task Chatterjee
et al. (2018). As per the FBIRN repository, the functional scans utilized
T2*-weighted gradient EPI (Echo Planar Imaging) sequences. These se-
quences adhered closely to pulse sequence parameters determined
through pilot studies conducted by the FBIRN research group. These
parameters included orientation along the anterior
commissure-posterior commissure line, a slice count of 27, 4 mm slice
thickness, a repetition time (TR) of 2 s, an echo time (TE) of 40ms for 1.5
T scanners, a matrix size of 64 × 64, a field of view measuring 22 cm,
and a flip angle of 90◦.

Before our analysis, we confirmed from the relevant source, that all
subjects had normal hearing and adequate eyesight, and they could
complete basic cognitive activities. If a healthy person had a current or
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previous history of a head injury or severe medical ailment, they were
excluded from the research. Only patients with schizophrenia and
schizoaffective disorders who met the DSM-IV criteria were eligible to
take part in this study Chatterjee (2018).

2.2. Task details

Since auditory hallucination is frequently observed in schizophrenia
patients, an auditory-oddball (AUD) test is a common approach for
detecting these abnormalities in brain activity patterns that can help
distinguish schizophrenia from healthy people. In this particular task,
the respondent receives a continuous stream of sound to identify the
sequence of discrete stimuli, including standard and aberrant (i.e.,
oddball) tones. In 95 % of trials, standard tones, such as 1000 Hz, are
heard. Deviant (1200 Hz) tones occur occasionally and are distinct from
regular tones (5 % of trials). The FBIRN conducted the AUD test, which
consisted of four experimental runs lasting 280 s each Chatterjee et al.
(2018). During each trial, the participant stares at a grey screen with a
black fixation cross in the center. Participants push button ’1′whenever
they hear a deviant tone while focusing on the cross and listening to the
tones. The practice begins with 15 s of quiet fixation. Following that, a
succession of standard tones (duration = 100 ms) is played. Every 6 – 15
s (duration = 100 ms), the aberrant tone plays. After each workout,
there is a 15-second period of silence. Each trial had 140 brain scans
with a 2-second TR. We analyzed the AUD task data for the patients and
control groups in this investigation.

2.3. Dataset preparation

Dataset preparation is one of the key uniqueness of this study. As
mentioned, we have taken two fMRI datasets with 1.5T (D1) and 3T (D2)
intensity. The dataset D1 contains the brain volumes of 34 schizophrenia
patients and 34 healthy participants. We have used four different runs of
each subject’s scan. Twelve symptoms have been taken into account,
namely, anxiety (minor/moderate); abstract thinking (minor/moder-
ate); Athe degree of abnormal movement (none/mild); observed
depression (absent/mild); lack of judgment (absent/minimum/mild);
primary negative symptoms (yes/no); the current treatment status
(current outpatient/no treatment); stable negative symptoms (yes/no);
suicidal tendency (absent/mild); the presence of two negative symptoms
of severity or more (yes/no); duration of the illness (high/low); and
gender difference as in male or female. The demographics of dataset D1
are listed in Table 1. In the case of “severity of disorder” mentioned in
Tables 1 and 2, we curated the FBIRN Phase II dataset, accessed from the
’AssessmentData_20080213′ folder, to categorize patients into ’Mild,’
’Moderate,’ and ’Severe’ based on the ’SCID_PC13b: Current Severity’
score. We verified data accuracy and selected a specific patient subset
for analysis, ensuring a robust foundation for our study on overall illness
severity in schizophrenia patients.

The dataset D2 contains 3T fMRI data from 25 schizophrenia patients
and 25 healthy participants. Similarly, we have used four different runs
of each subject’s scan. Here, eight different symptoms have been
considered, namely, abstract thinking (minor/moderate); the severity of
abnormal movements (none/mild); anxiety (minor/moderate);
observed depression (absent/mild); lack of judgment (minor/moderate);

suicidal tendency (absent/mild); duration (high/low); and male/female.
The demographics of the dataset are shown in Table 2.

Apart from these, Table 3 displays the symptom-wise data distribu-
tion for schizophrenia patients only for dataset D1, whereas Table 4
shows the same for dataset D2. According to the class division, the
sample size of the schizophrenia patients in each group has been noted
as S1 and S2. Table 5 and Table 6 show the details of the subset of data
used in this study for datasets D1 and D2, respectively, where the con-
tent of each subset of the data is denoted with a specific dataset name.
These dataset names have been used thoroughly in the following
sections.

In our investigation of the intricate relationship between functional
brain changes and symptomatology in schizophrenia, we intentionally
focused on a set of twelve symptoms that encompass various dimensions
of the disorder. The symptom measures utilized in this study were
derived from the Structured Clinical Interview for DSM Disorders
(SCID). This structured clinical interview has been widely employed for
diagnosing psychiatric disorders and assessing symptom severity.
Notably, our decision to exclude positive symptoms, such as hallucina-
tions and delusions, was driven by our specific research goals. While
acknowledging the undeniable significance of positive symptoms in the
schizophrenia spectrum, we aimed to contribute to the understanding of
less-explored aspects of the disorder, particularly non-specific symp-
toms. By concentrating on these less-explored dimensions, we aspire to
provide a nuanced understanding of the comprehensive clinical pre-
sentation of schizophrenia, offering insights that complement the
existing body of research focused on positive symptoms.

2.4. Data preprocessing

Initially, the raw data was preprocessed using the Statistical Para-
metric Mapping version 12 (SPM12) toolbox, available in Matlab. Dur-
ing the acquisition of the scans, the raw images were taken with voxel
sizes of 3.4 × 3.4 × 4 mm3. As a part of data preprocessing, we have
performed a pipeline starting with re-alignment. The first fMRI scanned
image of a subject was used as a reference to realign them. Following the
re-alignment, slice timing correction was used to compensate for
possible errors induced by temporal variations during acquisition. After
that, the fMRI images were spatially normalized into the standard
Montreal Neurological Institute (MNI) space using an echo planar im-
aging (EPI) template supplied in SPM12. It reduced the size of the
original voxel to 3 × 3 × 3 mm3 and provided each brain volume with a
dimension of 53 × 63 × 46 voxels. Finally, the smoothed volumes were
produced by a spatial smoothing technique using a Gaussian kernel with
a full width at half maximum (FWHM) filter of size 9 × 9 × 9 mm3

Chatterjee et al. (2018); Chatterjee et al. (2020).

2.5. Proposed methodology

2.5.1. Step 1: general linear model approach
In the first stage of the proposed methodology, the general linear

model (GLM) approach has been employed. We have performed the
GLM analysis using the SPM12 toolbox in Matlab2020a (Chatterjee
et al., 2018; Chatterjee, 2018) using the preprocessed data. During the
GLM analysis, we received two kinds of activation maps, viz. contrast

Table 1
Dataset details for D1 (1.5 T fMRI). X, Y, Z, NDA denote the number of patient data available for the severity of the disorder, where X=Mild; Y=Moderate, Z=Severe;
NDA=No data available.

Subject Sample
size

Age (Mean &
Std)

Sex
(M/F)

Handedness (R/
L)

Age of Onset
(Median)

Severity of disorder Current Treatment Status Smoking (Yes/
No)

Healthy 34 40.4 (±12.29)
years

24/10 30/4 NA NA NA 10/24

Schizophrenia 34 42.3 (±10.81)
years

27/7 28/6 22 years X = 10; Y = 14; Z = 2;
NDA=8

Under medication=22;
Untreated=12

25/9

I. Chatterjee and B. Hilal
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maps and beta maps. To construct a contrast map in GLM, we first create
a contrast matrix that shows areas that respond more significantly in one
condition than the other, in this case, whether the participants listen to
an oddball sound or not. A contrast in the GLM is represented by a set of
weights, one for each, that are used to establish an inequality. This
produces a sequence contrast vector of [1 − 1 1 − 1… so on], where 1
represents the onset (as the stimulus) and − 1 represents the baseline
condition. After this, it generates a beta map and a contrast map as
separate statistical maps to mask the contrasting overlay. Beta maps
provide beta values for all categories scaled by parameter estimations.
We may construct a contrast estimate for each voxel in the brain by

Table 2
Dataset details for D2 (3T fMRI). X, Y, Z, NDA denote the number of patient data available for the severity of the disorder, where X=Mild; Y=Moderate, Z=Severe;
NDA=No data available.

Subject Sample size Age (Mean & Std Dev) Sex (M/F) Handedness (R/L) Age of Onset (Median) Severity of disorder Smoking (Yes/No)

Healthy 25 37.76 (±12.25) years 15/10 22/3 NA NA 10/24
Schizophrenia 25 39.76 (±10.8) years 19/6 23/2 23 years X = 11; Y = 8; Z = 0; NDA=6 25/9

Table 3
Symptom-wise data distribution for preparation of data subsets for Dataset D1.
The second and third columns show the number of schizophrenia patients for
each subtype of a symptom in the first column. For each subgroup of the dataset,
we have taken an equal number of healthy controls maintaining the
demographics.

Symptoms Schizophrenia
subjects (S1)

Schizophrenia
subjects (S2)

Duration (Long/Short) [D11] 16 18
Observed depression (Absent/Mild)
[D12]

19 15

Severity of abnormal movements
(None/Mild) [D13]

25 9

Lack of judgment (Min/Mild) [D14] 17 17
Present treatment status (Current
outpatient/ No treatment) [D15]

22 12

Suicidal tendency (Absent/Mild)
[D16]

28 6

Anxiety level (Min/Mod) [D17] 21 13
Stable negative symptoms (Yes/No)
[D18]

24 10

Abstract thinking (Min/Mod) [D19] 15 19
Presence of two or more negative
severe symptoms (yes/no) [D1a]

21 13

Negative symptoms are primary
(yes/no) [D1b]

23 11

Male/Female [D1c] 27 7

Table 4
Symptoms-wise data distribution for preparation of data subsets for Dataset D2.
The second and third columns show the number of schizophrenia patients for
each subtype of a symptom in the first column. For each subgroup of the dataset,
we have taken an equal number of healthy controls maintaining the
demographics.

Symptoms Schizophrenia
subjects (S1)

Schizophrenia
subjects (S2)

Duration (long/Short) [D21] 12 13
Observed depression (absent/
mild) [D22]

15 10

Severity of abnormal movements
(None/Mild) [D23]

11 4

Lack of judgment (Min/Mild)
[D24]

13 12

Suicidal tendency (Absent/Mild)
[D25]

16 9

Anxiety level (min/mod) [D26] 12 13
Abstract thinking (min/mod)
[D27]

12 13

Male/Female [D28] 19 6

Table 5
Detailed symptom-wise content for each data subset under the dataset D1 (1.5T)
used in this study. These dataset nomenclatures are used thoroughly in the rest
of the paper.

Dataset Dataset Details

D11 S1
H1

Long duration of illness v/s healthy controls

D11 S2
H2

Short duration of illness v/s healthy controls

D11 S1 S2 Long duration v/s short duration of illness
D12 S1
H1

Absent observed depression of illness v/s healthy controls

D12 S2
H2

Mild observed depression v/s healthy controls

D12 S1 S2 Absent observed depression of illness v/s mild observed depression
D13 S1
H1

No severity of abnormal movements v/s healthy controls

D13 S2
H2

Mild severity of abnormal movements v/s healthy controls

D13 S1 S2 No severity of abnormal movements v/s mild severity of abnormal
movements.

D14 S1
H1

Minimum lack of judgment v/s healthy controls

D14 S2
H2

Mild lack of judgment v/s healthy controls

D14 S1 S2 Minimum lack of judgment v/s mild lack of judgment
D15 S1
H1

Current outpatient v/s healthy controls

D15 S2
H2

No treatment v/s healthy controls

D15 S1 S2 Current outpatient v/s No treatment
D16 S1
H1

Absence of suicidal tendency v/s healthy controls

D16 S2
H2

Mild suicidal tendency v/s healthy controls

D16 S1 S2 Absence of suicidal tendency v/s mild suicidal tendency
D17 S1
H1

Minimum anxiety level v/s healthy controls

D17 S2
H2

Moderate anxiety level v/s healthy controls

D17 S1 S2 Minimum anxiety level v/s moderate anxiety level
D18 S1
H1

Stable negative symptoms v/s healthy controls

D18 S2
H2

Absence of stable negative symptoms v/s healthy controls

D18 S1 S2 Stable Negative Symptoms v/s Absence of stable negative symptoms
D19 S1
H1

Minimum abstract thinking v/s healthy controls

D19 S2
H2

Moderated abstract thinking v/s healthy controls

D19 S1 S2 Minimum abstract thinking v/s moderated abstract thinking
D1a S1 H1 Presence of two or more negative symptoms of severity v/s healthy

controls
D1a S2 H2 Absence of two or more negative symptoms of severity v/s healthy

controls
D1a S1 S2 Presence of two or more negative symptoms of severity v/s Absence
D1b S1
H1

Primary negative symptoms v/s healthy controls

D1b S2
H2

Non-primary negative symptoms v/s healthy controls

D1b S1 S2 Primary negative symptoms v/s non-primary negative symptoms
D1c S1 H1 Male patients v/s healthy controls
D1c S2 H2 Female patients v/s healthy controls
D1c S1 S2 Male patients v/s female patients

I. Chatterjee and B. Hilal
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estimating a beta weight for the incongruent condition and a beta weight
for the congruent condition, for example. This generates a contrast map
for each voxel.

While we perform the GLM analysis on a single brain volume
captured over time (4D), it maps the voxels at each time point to analyze
the pattern of activation over time. After mapping those voxels, it cre-
ates a 3D activation map having the same resolution as the brain vol-
ume. This activation map highlights the voxels being significantly
activated during the time frame. In this study, we considered the 3-D
activation maps. These activation maps represent a single 3-D volume
of a brain showing the activations in various parts of the brain as per the
BOLD signals. Thus, we obtained a brain volume by removing the
complexity of the temporal dimension. As a vector of OnSet values, we
have considered the subject’s performance during the AUD task, thus the
four-dimensional fMRI data were transformed into a three-dimensional
contrast map. When employing GLM analysis, the value for each voxel
indicates the difference in activation of that voxel for the specific task
performance. A voxel with a zero value denotes that the particular voxel
was not activated throughout the AUD task.

The design matrix was generated by defining a few key parameters
and entering them into the GLM algorithm. We set the repetition time to
2 s while we described the task stimulus onsets and the task’s duration.
The function was then forwarded to the first-level analysis, which
assessed the design matrix for task regressors, movement parameter
regressors, and constant regressors. The final steps required analyzing
the voxels that were most likely to be involved in the AUD task.

The use of GLM resulted in around 55,000 activated voxels out of
153,594 voxels (the initial dimension of a single 3D volume of data was
53 × 63 × 46). A single 3-D spatial map of the active voxels was con-
structed using the average of four contrast maps created for each
participant.

Although, GLM is widely used as the first-level analysis to remove
statistically irrelevant information from brain images, even though it is
incapable of identifying significant voxels at the core without any as-
sumptions. In fMRI analysis, ML overcomes this problem by identifying
the most significant changes in functional activities in the brain
regardless of condition. Thus, in this study, we proposed two more
stages of feature selection, followed by GLM.

2.5.2. Step 2: statistical testing
In the second step of the proposed approach, the 3-D activation maps

were subjected to a two-sample t-test to identify significant and relevant
features. The student’s paired t-test was employed to determine the
statistical significance of two sets of data. The t-test was performed to
determine the true difference between the two group means by dividing
the difference in group means by the pooled standard error of both
groups.

The t-value represents the number of observations in each group. A
higher t-value shows that the group’s mean difference is more signifi-
cant than the pooled standard error, reflecting a more considerable
difference. We have considered the level of significance (α) as 0.05. At α
= 0.05, the null hypothesis (H0), that the mean value of a voxel of the
two groups (patients and controls) is the same, is tested. We may assess
whether the obtained t-value is more significant than what would be
expected by chance by comparing it to the figures in a critical value
chart. In that instance, the null hypothesis might be disproved, and the
two groups might be distinguished. Following the t-test, we selected
only the voxels with statistical significance at p < 0.05. We received
approximately 4000 and 8000 statistically significant voxels (varies for
each symptom). As a result, we were able to successfully filter the
irrelevant voxels from around 55,000 voxels obtained from the GLM
analysis. T-test results helped us significantly narrow our search space
before further reducing the feature space with LDA.

2.5.3. Feature selection using linear discriminant analysis
Linear discriminant analysis (LDA) is a technique used to find a

linear combination of characteristics that distinguishes two or more
classes of objects or events. Its goal is to reduce dimensionality. It is
similar to principal component analysis (PCA) but concentrates on
increasing the separability between known categories. This method
projects a dataset into a lower-dimensional space with strong class
separability to avoid overfitting and reduce computational costs. The
resulting combination can be used to reduce dimensionality before
classification. LDA is primarily concerned with projecting features from
higher-dimensional space to lower-dimensional space. This can be
accomplished in three steps: first, we determined the separability be-
tween classes, defined as the distance between the mean of distinct
classes or between-class variance, using the following formula (Eq. (1)).

Sb =
∑g

i=1
Ni

(

xi − x
)(

xi − x
)T

(1)

Second, we determined the distance between each class’s mean and
sample or the within-class variance using the following way (as shown in
Eqs. (2) and (3)).

Sw =
∑g

i=1
(Ni − 1) (2)

Si =
∑g

i=1

∑Ni

j=1

(

Xi,j − Xi

)(

Xi,j − Xi

)τ

(3)

Finally, we created a lower-dimensional space that optimizes the
variance between classes while minimizing the variance within classes.
Here, Fisher’s criterion (P) was employed in this case, which is a lower-
dimensional space projection approach that evaluates the difference
between class means (encoded in the between-class scatter matrix)
normalized by a within-class scatter matrix measure. P was calculated
using the following formula, as given in Eq. (4).

Plda = arg
⃒
⃒PTsbp

⃒
⃒

⃒
⃒PTswp

⃒
⃒

(4)

After decomposing our square matrix into eigenvectors and eigen-
values, we interpreted it. To identify which eigenvector(s) should be
eliminated for our lower-dimensional subspace, we required looking at

Table 6
Detailed symptom-wise content for each data subset under the dataset D2 (3T)
used in this study. These dataset nomenclatures are used thoroughly in the rest
of the paper.

Dataset Dataset Details

D21 S1 H1 Long duration of illness v/s healthy controls
D21 S2 H2 Short duration of illness v/s healthy controls
D21 S1 S2 Long duration v/s short duration of illness.
D22 S1 H1 Absence of observed depression v/s healthy controls
D22 S2 H2 Mild depression v/s healthy controls
D22 S1 S2 Absence of observed depression v/s mild depression
D23 S1 H1 Absence of abnormal movement v/s healthy controls
D23 S2 H2 Mild abnormal movement v/s healthy controls
D23 S1 S2 Minimal abnormal movement v/s mild abnormal movement
D24 S1 H1 Minimum lack of judgment v/s healthy controls
D24 S2 H2 Moderate lack of judgment v/s healthy controls
D24 S1 S2 Minimum lack of judgment v/s moderate lack of judgment
D25S1 H1 Absence of suicidal tendency v/s healthy controls
D25 S2 H2 Mild suicidal tendency v/s healthy controls
D25 S1 S2 Absence of suicidal tendency v/s mild suicidal tendency
D26S1 H1 Minimum anxiety level v/s healthy controls
D26 S2 H2 Moderate anxiety level v/s healthy controls
D26 S1 S2 Minimum anxiety level v/s moderate anxiety level
D27S1 H1 Minimum abstract thinking v/s healthy controls
D27 S2 H2 Moderate abstract thinking v/s healthy controls
D27 S1 S2 Minimum abstract thinking v/s moderate abstract thinking
D28 S1 H1 Male patients v/s healthy controls
D28 S2 H2 Female patients v/s healthy controls
D28 S1 S2 Male patients v/s female patients
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the eigenvalues of the eigenvectors. We had to reject the eigenvectors
with the lowest eigenvalues since they convey the least amount of in-
formation about the data distribution.

After ranking the eigenvectors by their associated eigenvalues from
highest to lowest, the top ’k’ eigenvectors were picked by carefully
selected criteria ranging from the top 20 % – 50 %. Then we discovered
that the top 25 % of features produced the best results. As a conse-
quence, for each dataset, the top 2000 to 3000 features were chosen for
further classification.

2.5.4. Classification
After LDA, the final subset of data was utilized to identify between

schizophrenia patients (S1/S2), vis-a-vis schizophrenia and healthy
people (S1H1, S2H2) using two classifiers viz. support vector machine
(SVM) and random forest (RF). The classification tasks were performed
using the leave-one-out cross-validation (LOOCV) method. Each epoch
of the proposed algorithm takes an n-1 sample for training and one
unseen sample for testing, where n is the total number of samples for a
particular data subset.

2.5.4.1. Classification using SVM. SVM is a supervised learning tech-
nique used to solve classification issues. The algorithm aims to find a
hyperplane in N-dimensional space (N — the number of features) that
distinguishes between data points. In this study, we have used the linear
kernel of the SVM. The linear SVM learns the hyperplane by changing
the problem using linear algebra. For a linear kernel, Eq. (5) was used to
estimate a new input using the dot product of the input (X) and each
support vector (Xi):

f(x) = B0 + SUM(Ai ∗ (X, Xi)) (5)

The purpose of this equation is to compute the inner products of a
new input vector (X) with all support vectors in training data. The
learning algorithm must calculate the coefficients B0 and Ai from the
training data (for each input).

As part of parameter tuning, we have tuned two parameters for an
optimized result: regularization parameter and gamma. Here, we have
employed the C-Support Vector Classification (C-SVC) settings. After
analyzing the values of C from 0.01 to 1000 in 10-step increments, the
regularization parameter C was fine-tuned at C = 100. C-SVC uses the
following loss function (as in Eq. (6)):

minω, b, ε
1
2

ωTω + C
∑k

i=1
εi (6)

Subject to yi
(
ωT∅(xi) + b

)
≥ 1 − εi, where εi > 0 and i = 1, 2, 3, …,

kwhere ∅(xi) maps xi into a space of high dimension, ω is the vector
variable, εi are the slack variables, and C > 0 is the regularization
parameter.

2.5.4.2. Classification using RF. A random forest is another ensemble
learning-based categorization approach. During the training phase, it
constructs a large number of decision trees. Each tree assigns a category,
which is referred to as the tree’s "vote." The classification that receives
the most votes is chosen by the forest. The RF is made up of several
decision trees that have the same nodes but different inputs, resulting in
diverse leaves. It integrates the results of multiple decision trees to get a
single solution that is the average of all.

Gini Index = 1 −
∑C

i=1
(Pi)

2 (7)

When performing random forests based on categorization data, we
used the Gini index criteria (as indicated in Eq. (7)) to determine how
nodes on a decision tree branch should be sorted. Based on class and
probability, this formula computes the Gini of each branch on a node,
determining which branch is most likely to occur. Pi represents the

class’s relative frequency, while C. represents the number of classes.
In this case, we adjusted two parameters to achieve the best results.

We set nBag (bag number) to 10 and enabled the OOB (out of the bag)
classification. Although replacement sampling (LOOCV) was performed,
one data sample was excluded from the bag sample and was not used to
train the model. We ran our model on this data sample right away to
assess how it would perform on the test dataset.

2.5.5. Identification of brain regions
Following classification, we chose features or voxels that demon-

strated good classification accuracy while distinguishing between
healthy and schizophrenic participants. We obtained the final set of
voxels after conducting the two stages of feature selection, excluding
GLM. These voxels were fed into ML classifiers to train the model to
classify healthy controls, schizophrenia patients, and groups of symp-
toms. These voxels retain the most distinct information, which can aid in
distinguishing differences in functional activations.

We used brain backtracking to determine the names of the brain
regions corresponding to the selected voxels. We had to find the exact
spatial location of the selected voxels in the brain to locate the regions.
First, we converted the indices of the identified voxels into cartesian
coordinates. The resulting cartesian coordinates were then transformed
into Montreal Neurological Institute (MNI) space using the Echo Plane
Imaging (EPI) template. Finally, using the Talairach Daemon toolbox, all
MNI coordinates were transformed into Talairach space coordinates. We
utilized the MANGO tool to construct a mask of the identified voxel
positions, which we then placed on top of a normalized template fMRI
image. Finally, for each subset of data for each analyzed symptom, we
retrieved the names of the impacted brain areas indicated by our pro-
posed approach.

3. Results

Each stage in our methodology was repeated n times on all subject
data (n being the number of subjects in each data subset). We utilized
two classifiers to achieve the best results. For dataset D1 (1.5 T), the
highest classification accuracy obtained was 100 % (D14S1S2), 97.5 %
(D1cS1S2), 95 % (D13S1h1, D15S1S2), 94 % (D1aS1S2) using SVM; and 84%
(D1cS1S2), 85.33 % (D16S1S2), 79 % (D1aS1h1), 78.33 % (D13S1S2) using
RF. Table 7 has the results for all subgroups of data based on the D1
dataset.

Similarly, for dataset D2 (3T), we obtained the highest classification
accuracies of 100 % (D29S1h1), 96.667 % (D23S1S2), 93.33 % (D21S1S2)
using SVM; and 95 % (D28S1h1), 83.33 % (D22S1h1), 81.667 % (D25S1S2)
using RF. Table 8 shows the result for each subgroup of data based on the
D2 dataset.

As mentioned, Tables 7 and 8 show the classification accuracy,
sensitivity, and specificity of each of the subsets of dataset D1 and D2,
respectively. To interpret this result, we may consider an instance. For
example, when comparing the ’minimum’ v/s ’moderate’ intensity of
anxiety level (as shown in Table 7) using the voxels selected by our
proposed approach, we obtained classification accuracy of 88.33 % and
70 % for SVM and RF, respectively. It also shows that SVM and RF have
sensitivity and specificity of 0.769, 0.952, 0.461, and 0.809, respec-
tively. It denotes the selected voxels for anxiety symptoms, be it (pa-
tients having minimum symptoms v/s moderate symptoms patients
having minimum symptoms v/s healthy controls or patients having
moderate symptoms v/s healthy controls). Here healthy controls act as a
baseline for those who have no history of any kind of psychotic
symptoms.

Backtracking the detected features from our proposed approach to
Talairach’s space revealed the brain regions typically impacted in
schizophrenia, demonstrating its effectiveness. The findings show
higher alterations in the brain areas associated with each symptom.
Fig. 1 depicts the ratio of brain areas that are predominantly present in
data D1 subgroups. The top five prominent brain areas were selected for
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Table 7
Classification accuracy, sensitivity, and specificity of each of the subsets of
dataset D1.

Dataset SVM RF Sensitivity
(SVM/RF)

Specificity
(SVM/RF)

ANXIETY
Min/Mod 88.33

%
70 % 0.769/0.461 0.952/0.809

Min/Healthy 85 % 75 % 0.923/0.769 0.769/0.692
Mod/Healthy 76.50

%
59.50
%

0.761/0.619 0.761/0.571

ABSTRACT THINKING
Min/Mod 80.83

%
70 % 0.6/0.8 0.947/0.631

Min/Healthy 63.33
%

80 % 0.33/0.733 0.8/0.866

Mod/Healthy 74.17
%

68 % 0.842/0.736 0.631/0.631

SEVERITY OF
ABNORMAL
MOVEMENTS

Mild/None 92.50
%

78.33
%

0.667 /0.44 1.0/0.88

Mild/Healthy 95 % 70 % 1.0/0.778 0.88/0.66
None/Healthy 78 % 76 % 0.8/0.8 0.76/0.72
OBSERVED
DEPRESSION

Absent/Mild 85.83
%

74 % 1.0/0.894 0.66/0.533

Absent/Healthy 80 % 71.67
%

0.842/0.736 0.736/0.736

Mild/Healthy 86.66
%

63.33
%

0.1/0.733 0.733/0.533

LACK OF JUDGEMENT
Min/Mod 100 % 71.67

%
1.0 /0.823 1.0/0.647

Min/Healthy 85.83
%

66.67
%

0.882/0.764 0.823/0.588

Mod/Healthy 81.67
%

60 % 0.823/0.705 0.823/0.470

MALE/ FEMALE
Female/Male 97.50

%
84.17
%

0.857 /0.428 1.0/0.962

Female/Healthy 85 % 75 % 1.0/0.857 0.714/0.571
Male/Healthy 74 % 71 % 0.814/0.740 0.666/0.666
PRIMARY NEGATIVE
SYMPTOMS

No/Yes 90.83
%

73.33
%

1.0 /0.869 0.727/0.454

No/Healthy 75.50
%

68.50
%

0.826/0.695 0.695/0.652

Yes/Healthy 86.67
%

75 % 1.0/0.636 0.727/0.818

CURRENT
TREATMENT STATUS

No treatment/
Outpatient

95 % 75.83
%

0.8333 /0.5 1.0/0.666

No treatment/Healthy 90 % 68.33
%

0.916/0.5 0.833/0.5

Outpatient 74 % 62.50
%

0772/0.727 0.681/0.545

STABLE NEGATIVE
SYMPTOMS

No/Yes 88.33
%

77.17
%

0.958/0.958 0.7/0.2

No/Healthy 81 % 65 % 0.791/0.708 0.8333/0.583
Yes/Healthy 85 % 75 % 0.8/0.8 0.9/0.7
SUICIDE
Absent/Mild 89.17

%
85.33
%

1.0 /0.1 0.33/0.167

Absent/Healthy 73.33
%

68.67
%

0.821/0.607 0.607/0.642

Mild/Healthy 100 % 65 % 1.0/0.66 1.0/0.666
TWO NEGATIVE
SYMPTOMS

No/Yes 94.17
%

65 % 1.0/0.809 0.846/0.384

Table 7 (continued )

Dataset SVM RF Sensitivity
(SVM/RF)

Specificity
(SVM/RF)

No/Healthy 78.50
%

79 % 0.904/0.809 0.666/0.761

Yes/Healthy 81.67
%

71.67
%

0.848/0.846 0.769/0.538

DURATION
High/Low 87.50

%
70 % 0.812/0.812 0.944/0.611

High/Healthy 75.83
%

61.67
%

0.866/0.625 0.687/0.625

Low/Healthy 83.33
%

75 % 0.944/0.833 0.722/0.666

Table 8
Classification accuracy, sensitivity, and specificity of each of the subsets of
dataset D2.

Dataset SVM RF Sensitivity
(SVM/RF)

Specificity
(SVM/RF)

ABSTRACT THINKING
Min/Mod 81.67

%
78.33
%

0.8333/0.75 0.769/0.769

Min/Healthy 80 % 70 % 0.75/0.75 0.8333/0.75
Mod/Healthy 86.67

%
70 % 0.923/0.769 0.846/0.615

SEVERITY OF
ABNORMAL
MOVEMENTS

Mild/None 96.67
%

60 % 0.928/0.857 1.0/0.272

Mild/Healthy 86.66
%

73.33
%

1.0/0.733 0.714/0.714

None/Healthy 76.67
%

68.33
%

0.928/0.857 0.818/0.545

ANXIETY
Min/Mod 83.33

%
63.33
%

0.666/0.75 1.0/0.461

Min/Healthy 78.33
%

76.67
%

0.833/0.833 0.75/0.75

Mod/Healthy 81.67
%

68.33
%

0.769/0.692 0.846/0.615

OBSERVED
DEPRESSION

Absent/Mild 100 % 78.33
%

1.0 /1.0 1.0/0.5

Absent/Healthy 80 % 83.33
%

0.866/0.86 0.75/0.8

Mild/Healthy 85 % 65 % 0.7/0.7 1.0/0.7
MALE-FEMALE
Female/Male 81.67

%
75 % 0.33 /0.33 0.947/0.894

Female/Healthy 100 % 95 % 1.0/1.0 1.0/0.8333
Male/Healthy 73.33

%
70 % 0.631/00.842 0.842/0.578

LACK OF JUDGEMENT
Min/Mod 75 % 68.66

%
1.0/0.846 0.5/0.5

Min/Healthy 76.67
%

71.67
%

0.769/0846 0.769/0.615

Mod/Healthy 76.67
%

75 % 0.75/0.833 0.75/0.666

SUICIDE
Absent/Mild 75 % 81.67

%
0.937/0.937 0.555/0.55

Absent/Healthy 74.17
%

62.50
%

0.812/0.625 0.625/0.625

Mild/Healthy 75 % 75 % 0.77/0.889 0.889/0.66
DURATION
High/Low 93.33

%
65 % 0.8333/0.75 1.0/0.769

High/Healthy 78.33
%

66.67
%

0.75/0.75 0.8333/0.583

Low/Healthy 68.33
%

71.67
%

0.692/0.769 0.615/0.165
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each dataset. The pie chart illustrates which brain areas link with which
symptoms in schizophrenia and healthy individuals.

Similarly, Fig. 2 depicts the brain areas that are identified during the
analysis of dataset D2 subgroups. In each dataset, the five most promi-
nent brain regions were considered. The pie graphic illustrates the parts
of the brain that are involved with specific symptoms in schizophrenia
and healthy individuals.

When the voxels are finally identified and plotted on a sample fMRI
image, we can trace the spatial location of brain regions with distinct
changes in functional activities. Figs. 3 and 4 depict the areas of the
brain affected by each symptom under consideration. Figures depict a
subset of datasets D1 and D2. The name of the dataset is indicated by the
label beneath each figure. The mask was created using the identified
voxels that represent the difference in activation between the various
symptoms, healthy subjects, and schizophrenia subjects.

To ensure the reliability of our findings, we implemented family-wise
error rate (FWE) correction as a robust method for controlling Type I
error in our neuroimaging analyses. The significance threshold was set
at 0.05, aligning with widely accepted standards in the field. In addition,
we carefully considered the cluster extent, applying a voxel extent
threshold of 20 contiguous voxels to enhance the robustness of our re-
sults. These thresholds were chosen based on established best practices,
aiming to strike a balance between sensitivity and specificity. These
enhancements have been incorporated into our revised analysis and are
presented in Figs. 3 and 4.

4. Analysis of the effect of antipsychotics on symptoms and
functional brain changes in schizophrenia

Upon a thorough analysis of the D15S1S2 dataset, we have discerned
noteworthy disparities in the functional activations of five specific brain
regions. These regions, namely the caudate, inferior frontal gyrus,
middle frontal gyrus, insula, and culmen, exhibited distinguishable
differences in their activation patterns. These findings shed light on the
potential impact of antipsychotic medication on the functional dynamics
of these brain regions among individuals with schizophrenia.

In this segment, we present a meticulous appraisal of the impact of
antipsychotic medication on brain regions in individuals diagnosed with
schizophrenia. Specifically, our focus is directed towards five brain re-
gions: the caudate, inferior frontal gyrus, middle frontal gyrus, insula,
and culmen. The primary objective is to scrutinize whether antipsy-
chotic medication exerts a momentous effect on the functional activa-
tion of these regions, independent of the particular symptoms under
examination.

We have conducted a comparative analysis encompassing two
distinct groups of schizophrenia patients: Group A (n = 22), comprising
patients administered antipsychotic medication, and Group B (n = 12),
consisting of untreated patients. The fMRI data were obtained for all
participants, and regions of interest (ROIs) were delineated in the
caudate, inferior frontal gyrus, middle frontal gyrus, insula, and culmen,
guided by previous literature and neuroanatomical atlases. An analysis
of variance (ANOVA) was executed to assess discrepancies in mean
activation levels between Group A and Group B for each of the five brain
regions. The results of the ANOVA are explained in Table 9.

The results of antipsychotic medication on these brain regions may
hold significance for the associated symptoms in individuals with
schizophrenia. The caudate is vital for cognitive functions like motor
control, reward processing, and procedural learning. Antipsychotic
medication increased caudate activation in Group A compared to un-
treated Group B, potentially improving executive function and motor
coordination Fornito et al. (2013). The inferior frontal gyrus is critical
for language processing, decision-making, and inhibitory control. Anti-
psychotic medication correlated with elevated activation in Group A,
suggesting possible improvements in language processing and cognitive
control Takashima et al. (2006). The middle frontal gyrus, essential for
working memory and attention, showed increased activation in Group
A, potentially indicating improved cognitive functions Jonides et al.
(1998). The insula, involved in emotional processing and
self-awareness, displayed heightened activation in Group A, suggesting
potential improvements in emotional processing and self-awareness
with medication Uddin et al. (2014). The culmen, a cerebellar compo-
nent for motor coordination, exhibited increased activation in Group A,
raising the possibility of improved motor coordination and balance
Walther et al. (2011).

Apart from this, the recent investigation’s results concerning brain
regions and symptomatology explored in patients with schizophrenia
resonate with earlier works. Brain areas such as the Culmen, Cuneus,
Precuneus, Middle Frontal Gyrus, Precentral Gyrus, Inferior Frontal
Gyrus, Lentiform Nucleus, Superior Temporal Gyrus, Cingulate Gyrus,
Medial Frontal Gyrus, Superior Frontal Gyrus, and Anterior Cingulate
have consistently been entangled in schizophrenia research Turetsky

Fig. 1. The distribution of the selected voxels across the whole brain for dataset
D1 that distinguishes between schizophrenia patients and healthy patients. The
results are shown in terms of identified brain regions for each symptom.
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et al. (2000); Glahn et al. (2005); Kim et al. (2009); Kasai et al. (2003);
Ellison-Wright and Bullmore (2010). These regions serve indispensable
roles in cognitive processing, sensory perception, and emotional regu-
lation, with their malfunctions linked to diverse schizophrenia symp-
toms Kubicki et al. (2007); Ellison-Wright et al. (2008); Thermenos et al.
(2004). For example, the Superior Temporal Gyrus is associated with
auditory hallucinations, while the Inferior Frontal Gyrus contributes to
language deficits observed in certain schizophrenia patients Chatterjee
et al. (2018); Ellison-Wright and Bullmore (2010).

Regarding the impact of antipsychotic agents on the identified
symptoms and functional brain alterations in schizophrenia, extant
research advocates for employing these pharmacotherapies to target
specific symptom groups. Antipsychotics have gained widespread
recognition as the cornerstone of schizophrenia treatment, with their
effectiveness in alleviating positive symptoms like hallucinations and
delusions Chatterjee and Mittal (2020); Chatterjee and Chatterjee

(2023); Gong et al. (2016). Notably, atypical antipsychotics have
showcased superior efficacy in addressing negative symptoms, depres-
sion, anxiety, and cognitive impairments Gong et al. (2016). In-
vestigations have indicated that atypical antipsychotics such as
Clozapine and olanzapine (Zyprexa) surpass typical antipsychotics in
enhancing negative symptoms and cognitive function in schizophrenia
patients Chatterjee and Mittal (2020); Chatterjee and Chatterjee (2023).
Particularly, Clozapine has been renowned for its profound impact on
ameliorating negative symptoms and cognitive impairments Chatterjee
and Chatterjee (2023).

Research has further underscored that antipsychotic treatment can
stimulate functional brain changes, including alterations in brain acti-
vation patterns within regions associated with specific symptoms
Chatterjee and Chatterjee (2023); Gong et al. (2016). For instance,
olanzapine (Zyprexa) treatment has been found to restore prefrontal
cortex activation in schizophrenia patients experiencing cognitive

Fig. 2. The distribution of the selected voxels across the whole brain for dataset D2 that distinguishes between schizophrenia patients and healthy patients. The
results are shown in terms of identified brain regions for each symptom.
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impairments Shi et al. (2016); Matsuda et al. (2019). Moreover, indi-
vidual antipsychotic medications have demonstrated distinct effects on
brain regions implicated in specific symptoms. In a study by Paulzen
et al. (2014), olanzapine (Zyprexa) administration in schizophrenia
patients led to augmented gray matter volume in the hippocampus,
implying potential neuroplastic changes in this region about cognitive
enhancements Chatterjee and Chatterjee (2023); Paulzen et al. (2014).
Another investigation evinced that the utilization of Clozapine was
linked to heightened functional connectivity between the thalamus and
prefrontal cortex, indicating its potential impact on cognitive control
processes Gong et al. (2016); de Kloet et al. (2021).

The findings from the present study concerning precise brain regions
associated with schizophrenia symptoms provide invaluable insights
into potential targets for customized therapeutic interventions. By
addressing symptom-specific brain areas with appropriate antipsychotic
medications, a more effective treatment outcome may ensue, as exem-
plified by the observed enhancement in functional activation patterns
Bansal and Chatterjee (2021); Chatterjee and Chatterjee (2023). The
research emphasizes the significance of contemplating the individual-
ized symptomatology of schizophrenia when designing treatment ap-
proaches to maximize patient benefits.

However, it is imperative to acknowledge that antipsychotic medi-
cations may not yield uniform efficacy across all individuals with
schizophrenia. A meta-analysis by Correll et al. (2017) unveiled signif-
icant variations in treatment response among different antipsychotic
medications, thereby underscoring the necessity for personalized ther-
apeutic strategies Correll et al. (2017). Consequently, further research is
warranted to explore individual patient profiles and discern predictors
of treatment response to optimize therapeutic outcomes.

Antipsychotic medications employ considerable influence over
symptoms and functional brain alterations in schizophrenia. Atypical
antipsychotics, in particular, have demonstrated efficacy in addressing
negative symptoms, depression, anxiety, and cognitive deficits. Indi-
vidual antipsychotic medications may exert distinctive effects on brain
regions linked to specific symptoms, thereby supporting the concept of
tailored treatment approaches. Comprehending the intricate neural
circuits underpinning schizophrenia and the response to antipsychotic
medications can foster the development of novel therapeutic strategies
to enhance overall patient outcomes. A careful interpretation of these
findings is imperative, and due consideration must be given to potential
confounding factors such as illness duration, symptom severity, and
individual responses to medication. Nevertheless, this quantitative

analysis provides valuable insights into the plausible effects of anti-
psychotic medication on specific brain regions and their associations
with symptomatology in schizophrenia.

5. Discussions

The present study conducted several experimental runs on datasets
D1 and D2 to investigate the brain regions associated with different
symptoms. Specifically, twelve symptomswere examined for dataset D1,
which included male and female differences. The study identified voxels
that effectively differentiated schizophrenia patients from healthy par-
ticipants, reflecting the brain regions associated with the symptoms
examined. The present findings contribute to our understanding of the
neural mechanisms underlying schizophrenia and have implications for
developing targeted treatments. The results of this study provide further
support for the importance of considering the specific symptoms of
schizophrenia when investigating the neural basis of this disorder.

Upon analyzing the impact of abstract thinking symptoms, it was
found that affected voxels were predominantly located in regions such as
Culmen, Cuneus, and Precuneus. Notably, mild to severe symptoms
were associated with the Culmen and middle temporal gyrus, whereas in
healthy individuals, the Culmen and Middle Frontal Gyrus were
observed. Similarly, comparing anxiety levels in schizophrenia patients
with mild and severe symptoms (S1S2) revealed the involvement of
areas such as the Precentral Gyrus and Inferior Frontal Gyrus. However,
comparing moderate symptoms to controls (S1H1) highlighted the
Middle Temporal Gyrus and Precentral Gyrus, while S2H2 demonstrated
the Lentiform Nucleus and Inferior Frontal Gyrus. These findings shed
light on the specific brain regions associated with varying degrees of
symptom severity and may inform the development of targeted in-
terventions for individuals with schizophrenia.

After conducting an extensive review of the literature, we noted that
the regions identified in our study align with those found in prior
schizophrenia studies. However, we were unable to locate any research
that included symptomatic comparisons with fMRI data. While most
studies exploring symptomatic differences concentrate on either cogni-
tive or structural changes, Delfinade Achával et al. (de Achával et al.,
2012) observed regions such as the Inferior Frontal Gyrus and Middle
Frontal Gyrus in their study. The results of their investigation revealed
that regions such as the Superior Temporal Gyrus and Cuneus are
implicated when comparing individuals with mild and severe symptoms
in terms of the absence of judgment (S1S2). When studying S1H1, the

Fig. 3. For each subset of dataset D1, the mask was generated using the identified voxels that mark the difference in activation between healthy and schizo-
phrenia subjects.
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Cingulate Gyrus, Middle Frontal Gyrus, and Medial Frontal Gyrus are
observed, whereas, with S2H2, the Superior Temporal Gyrus and Cuneus
are observed. Similarly, Tao Li et al. (Li et al., 2017) found that 90 % of
the functional connectivity changes occurred in the Frontal Lobe.
Comparing S1S2 with primary negative symptoms (mild (S1) and none
(S2)) yields brain regions such as the Superior Frontal Gyrus and Pre-
cuneus. When S1H1 was investigated, the Inferior Parietal Lobule and
Middle Frontal Gyrus were shown, while S2H2 revealed the Lentiform
Nucleus and Middle Temporal Gyrus. Areas such as the Superior Tem-
poral Gyrus and the Middle Temporal Gyrus were found to be associated
with negative symptoms in schizophrenia by Nicola G. Cascella et al.
Cascella et al. (2010).

Examining the stable negative symptom for S1S2 results in regions
such as the Cuneus and Superior Temporal Gyrus, whereas S1H1 dem-
onstrates the Middle Frontal Gyrus, Inferior Parietal Lobe, and Superior
Frontal Gyrus, and S2H2 shows the Lentiform Nucleus and Superior

Temporal Gyrus. In a study involving schizophrenia patients, D Antonius
et al. (Antonius et al., 2011) reported white matter anomalies in the
Superior and Middle Frontal Gyrus. Analyzing the patients’ group with
mild and absent suicidal tendencies (S1S2) shows regions such as the
Middle Frontal Gyrus and Middle Temporal Gyrus. When comparing
S1H1, regions such as the Middle Frontal Gyrus and Cingulate Gyrus are
observed, whereas when comparing with S2H2, the Superior Temporal
Gyrus and Lentiform Nucleus are observed.

Comparing current outpatients with patients without treatment
(S1S2) reveals the Middle Frontal Gyrus and Insula as results, whereas
S1H1 shows the Middle Frontal Gyrus and Superior Temporal Gyrus,
and S2H2 shows the Cuneus and Cingulate Gyrus. Aside from symptoms,
examining the brain images of male (S1) and female (S2) schizophrenia
patients reveals affected brain regions such as the Declive and Lingual
Gyrus. Comparing male schizophrenia patients to healthy (S1H1)
revealed the Precentral Gyrus and Middle Frontal Gyrus, and comparing

Fig. 4. For each subset of dataset D2, the mask was generated using the identified voxels that mark the difference in activation between healthy and schizo-
phrenia subjects.
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female schizophrenia patients to healthy (S2H2) showed the Cingulate
Gyrus and Anterior Cingulate.

Even though there is no fMRI-based study involving the evaluation of
brain areas for distinct symptoms in schizophrenia patients, our findings
are consistent with several earlier studies (Chen et al., 2023; Yan et al.,
2022; Lee et al., 2022) other than symptomatic investigations. Thus, in
addition to the correlating findings of our proposed approach and the
existing literature, we uncovered several regions that had not been
identified in any earlier studies, demonstrating functional changes due
to symptom severity. These areas could indicate additional investigation
into the neuropsychological and pathophysiology aspects of schizo-
phrenia. This study revealed variations in activation patterns in

numerous brain regions in schizophrenia patients. This schizophrenia
symptom-related study serves as a foundation for additional research on
the disorder. These functional deteriorations may be attributed to the
disorder’s progression or to the administration of several antipsychotics
to ameliorate the severity of symptoms Bansal and Chatterjee (2022).
The assessment of functional activation patterns in schizophrenia pa-
tients may aid in the determination of differential clinical therapy while
also evaluating the severity of symptoms.

Multiple brain regions (as stated in Table 10), including the cuneus,
precuneus, fusiform gyrus, insula, and superior temporal gyrus, have
been linked to schizophrenia Turetsky et al. (2000); Glahn et al. (2005);
Kim et al. (2009); Kasai et al. (2003); Ellison-Wright and Bullmore
(2010). These areas have been linked to a variety of tasks such as visual
processing, attention, social cognition, and auditory processing.
Table 10 provides a quick summary of the major brain areas implicated
in schizophrenia, as well as the functional abnormalities associated with
them. These areas are critical for cognitive, sensory, and emotional
processing, and structural and functional abnormalities in these areas
have been regularly found in schizophrenia studies. The table covers the
symptoms or functions affected by each brain region’s malfunction, as
well as the amount of functional impairment associated with schizo-
phrenia. The incorporation of p-values and t-statistics for each region
gives the findings statistical significance. This table underlines the need
to understand the complex brain circuits that underpin schizophrenia, as
well as the necessity for a multi-modal strategy that incorporates
numerous imaging methods and clinical examinations to gain a better
understanding of the condition. A greater understanding of the neuro-
logical basis of these tasks and how they may be disrupted in schizo-
phrenia may give insight into the pathophysiology of the condition and
lead to the development of new therapies Kubicki et al. (2007); Elli-
son-Wright et al. (2008); Thermenos et al. (2004). Furthermore, these
findings could have far-reaching implications for the diagnosis and
treatment of schizophrenia, as well as the identification of people at risk
of developing the disorder. The findings of this study, together with
earlier studies, lend more credence to the need for innovative

Table 9
This table displays the results of the quantitative analysis examining the effect of
antipsychotic medication on brain regions in schizophrenia patients. The mean
activation levels in specific brain regions (caudate, inferior frontal gyrus, middle
frontal gyrus, insula, and culmen) were compared between patients receiving
antipsychotic medication (Group A) and those without treatment (Group B). The
F-value and p-value were calculated from the analysis of variance (ANOVA) to
determine the significance of the differences between the two groups.

Brain Region Mean Activation in
Group A

Mean Activation in
Group B

F-
value

p-
value

Caudate 0.42 0.27 7.81 0.01
Inferior Frontal
Gyrus

0.36 0.24 5.45 0.03

Middle Frontal
Gyrus

0.51 0.31 9.67 0.006

Insula 0.38 0.26 6.20 0.02
Culmen 0.28 0.19 4.10 0.047

The outcomes of the ANOVA indicate substantive disparities in the mean acti-
vation levels of the caudate (F-value = 7.81, p = 0.01), inferior frontal gyrus (F-
value = 5.45, p = 0.03), middle frontal gyrus (F-value = 9.67, p = 0.006), insula
(F-value = 6.20, p = 0.02), and culmen (F-value = 4.10, p = 0.007) between
schizophrenia patients under antipsychotic medication (Group A) and those
devoid of treatment (Group B).

Table 10
Table emphasizing important brain areas involved in schizophrenia and their related functional abnormalities, as well as the amount of functional disability connected
to schizophrenia. P-values and t-statistics are provided for each location, highlighting the statistical importance of the findings.

Brain Regions Core Functions Importance in Schizophrenia Research Symptoms/Functions
Affected

p-
value

t-stat

Middle frontal
gyrus

Cognitive and structural
changes

Implicated in schizophrenia, WM anomalies (Turetsky et al., 2000; Glahn et al.,
2005; Kim et al., 2009)

Lack of judgment,
abstract thinking

0.001 − 3.55

Superior
temporal
gyrus

Language processing,
auditory perception

Associated with negative symptoms (Turetsky et al., 2000; Glahn et al., 2005;
Kasai et al., 2003)

Negative symptoms 0.027 − 2.12

Cingulate gyrus Emotional processing,
attention

Implicated in schizophrenia, affected by suicidal tendencies (Turetsky et al.,
2000; Glahn et al., 2005; Ellison-Wright and Bullmore, 2010)

Suicidal tendencies 0.003 − 3.12

Precuneus Visual-spatial processing,
self-processing

Predominantly affected in individuals with abstract thinking symptoms (Glahn
et al., 2005; Kubicki et al., 2007)

Abstract thinking 0.011 − 2.68

Middle temporal
gyrus

Language processing,
semantic memory

Associated with abstract thinking symptoms (Turetsky et al., 2000; Ellison-Wright
et al., 2008)

Abstract thinking 0.002 − 3.33

Precentral gyrus Motor control Implicated in schizophrenia, WM anomalies, affected in suicidal tendencies (
Glahn et al., 2005; Kim et al., 2009; Kubicki et al., 2007)

Lack of judgment 0.001 − 3.67

Lentiform
nucleus

Movement control, reward
processing

Associated with different symptom severities, affected in female schizophrenia
patients (Kim et al., 2009; Kasai et al., 2003; Ellison-Wright and Bullmore, 2010)

Negative symptoms 0.009 − 2.85

Inferior frontal
gyrus

Language processing,
cognitive control

Implicated in schizophrenia, affected in abstract thinking symptoms (Glahn et al.,
2005; Kubicki et al., 2007)

Lack of judgment 0.004 − 3.02

Inferior parietal
lobule

Visuospatial processing,
attention

Affected in different symptom severities (Glahn et al., 2005; Thermenos et al.,
2004)

Lack of judgment 0.014 − 2.6

Medial frontal
gyrus

Cognitive control,
emotional processing

Affected in different symptom severities (R. Zhang et al., 2013) Lack of judgment 0.001 − 3.53

Cuneus Visual processing Predominantly affected in individuals with stable negative symptoms (Thermenos
et al., 2004; X. Zhang et al., 2013)

Negative symptoms 0.022 − 2.24

Declive Cognitive control, attention Found to be affected in male schizophrenia patients compared to healthy
individuals (Jiang et al., 2015)

NA 0.003 − 2.71

Lingual gyrus Visual processing Found to be affected in female schizophrenia patients compared to healthy
individuals (Wang et al., 2014)

NA 0.002 − 2.36

Insula Interoceptive awareness,
emotion regulation

Implicated in schizophrenia, affected in patients with and without treatment (
Turetsky et al., 2000; Glahn et al., 2005; Shi et al., 2016)

Lack of emotions 0.012 − 4.29
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therapeutics for cognitive impairment in schizophrenia to target these
specific brain areas.

In addition to the insights gained from our study, it is essential to
acknowledge a few limitations that offer avenues for future research.
First, we recognize that the specificity of some of our classifiers may be
limited. This challenge is not uncommon in ML approaches, particularly
in the context of complex psychiatric conditions characterized by
overlapping symptoms. Future research may explore advanced
modeling techniques or incorporate additional data sources to enhance
classifier specificity.

Furthermore, our study primarily focused on individuals with
schizophrenia and did not include other psychiatric groups that might
share symptomatology with schizophrenia. While our primary aim was
to investigate the associations between symptom severity and functional
brain changes within the schizophrenia population, we acknowledge the
importance of future comparative analyses that encompass a broader
spectrum of psychiatric conditions. Such investigations can contribute to
a more comprehensive understanding of diagnostic accuracy and the
potential for misidentification.

The modest sample size and cross-sectional design open avenues for
larger-scale longitudinal studies to establish more robust and general-
izable findings, especially to identify the effect of antipsychotics.
Additionally, while focusing on functional activation provided mean-
ingful results, incorporating structural and connectivity analyses could
offer a comprehensive understanding of the neurobiological mecha-
nisms underlying schizophrenia. Our findings shed light on the intricate
interplay of symptoms in schizophrenia, with many patients presenting
a combination of psychotic, cognitive, and negative symptoms. This
complexity challenges traditional diagnostic approaches and highlights
the importance of individualized assessment and treatment plans. By
addressing these limitations, future investigations can further advance
our knowledge and pave the way for more targeted and effective in-
terventions in schizophrenia.

6. Conclusion

In this paper, we examine a variety of symptoms to observe any
differences in functional activation between schizophrenia patients and
healthy controls. As mentioned in the study’s motivation, understanding
the brain changes related to each symptom is essential. To investigate
the current functional state of the brain in terms of the affected brain
regions, different symptoms were studied among subgroups of data
using cutting-edge machine-learning techniques. The voxels that were
found were used to determine which brain regions were most affected.
This study found that individuals with mild or severe symptoms have a
greater impact on functional activation differences than healthy in-
dividuals and early-detected schizophrenia patients. This study discov-
ered variations in activation patterns in multiple brain regions in
schizophrenia patients. This research could lead to a better under-
standing of the symptoms of this disorder.
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