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Abstract
The kidney is an abdominal organ in the human body that supports filtering excess water and waste from the blood. Kidney 
diseases generally occur due to changes in certain supplements, medical conditions, obesity, and diet, which causes kidney 
function and ultimately leads to complications such as chronic kidney disease, kidney failure, and other renal disorders. 
Combining patient metadata with computed tomography (CT) images is essential to accurately and timely diagnosing such 
complications. Deep Neural Networks (DNNs) have transformed medical fields by providing high accuracy in complex tasks. 
However, the high computational cost of these models is a significant challenge, particularly in real-time applications. This 
paper proposed SpinalZFNet, a hybrid deep learning approach that integrates the architectural strengths of Spinal Network 
(SpinalNet) with the feature extraction capabilities of Zeiler and Fergus Network (ZFNet) to classify kidney disease accu-
rately using CT images. This unique combination enhanced feature analysis, significantly improving classification accuracy 
while reducing the computational overhead. At first, the acquired CT images are pre-processed using a median filter, and 
the pre-processed image is segmented using Efficient Neural Network (ENet). Later, the images are augmented, and dif-
ferent features are extracted from the augmented CT images. The extracted features finally classify the kidney disease into 
normal, tumor, cyst, and stone using the proposed SpinalZFNet model. The SpinalZFNet outperformed other models, with 
99.9% sensitivity, 99.5% specificity, precision 99.6%, 99.8% accuracy, and 99.7% F1-Score in classifying kidney disease.
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1 Introduction

Worldwide, there has been an apparent increase in acute 
syndromes and infections, necessitating suitable clinical 
procedures to detect and treat these diseases immediately. 
If these diseases are left untreated, they will lead to seri-
ous health issues and death, resulting in a significant load 
on the healthcare system. The severity and mortality rate 
of acute diseases are much higher than that of infectious 
diseases [1]. The kidney is an abdominal organ that carries 
out the process of filtering the excess water and waste from 
the blood. Globally, over one-tenth of the population [2] 
is affected by the abnormalities that are developed in the 
kidneys, which also have the potential to cause an adverse 
effect on health. The precise cause of these abnormali-
ties has not been completely recognized. However, several 
factors, such as lifestyle, environment, and genetics, have 
been determined to contribute to kidney abnormality in 
recent years [3]. These abnormalities are found to be com-
monly occurring in all individuals, irrespective of gender 
or age. Many abnormalities, including hydronephrosis, 
cysts, and stones, can affect the kidneys. While these con-
ditions can be cured, if left untreated, they may lead to 
chronic kidney diseases such as cardiorenal syndrome, 
uremia, or kidney tumors [4]. Kidney cancer is one of the 
most common types of cancer worldwide, characterized 
by the abnormal growth of cells in the kidney. Kidney 
stones, which affect 12% of the population, are formed by 
the concretions of crystals. Cysts, on the other hand, are 
fluid-filled pockets surrounded by thin walls on the kidney 
surface [5].

As kidney abnormalities become more severe, symp-
toms such as swollen feet and legs, blood in urine, and 
pain in the back or sides may occur. Abnormalities, such as 
kidney tumor (renal cell carcinoma), kidney stones (neph-
rolithiasis), and cysts, can impair the normal functioning 
of the kidney [3]. The presence of tumor abnormalities 
can progress into severe conditions, such as chronic kid-
ney diseases (CKD), a side effect of repeated stone abnor-
malities. The individuals with a high risk of stones are 
associated with an imminent risk of CKD and thus require 
dialysis. Hence, it is essential to identify kidney diseases 
at the primary stages to avoid serious complications [6]. 
Accordingly, the present diagnostic methods and patient 
management can be improved using Artificial Intelli-
gence (AI) systems, which perform localization, classifi-
cation, and quantification of kidney abnormalities based 
on images. Various imaging techniques, like positron 
emission tomography (PET), magnetic resonance imag-
ing (MRI), computed tomography (CT), ultrasonography, 
X-rays, and other urography methods are used for captur-
ing kidney images. Among these, CT scans are widely 

employed in detecting kidney diseases. However, every 
modality has strengths and weaknesses, resulting in dis-
tinct technical challenges while applying them [7]. Early 
detection is significant in avoiding severe complications at 
a later period. However, few radiologists and nephrologists 
are available worldwide, making timely detection chal-
lenging [5]. Further, accurate disease detection depends on 
the nephrologists’ experience in the manual examination. 
This process is highly subjective, error-prone, and time-
consuming, thus requiring the use of the computer-aided 
diagnosis (CAD) technique for detection [8, 9].

Identifying kidney diseases is a multidisciplinary domain 
that experts in information technology investigate to assist 
medical professionals by creating a model of the biologi-
cal process occurring in kidneys and generating consistent 
diagnostic outcomes. In recent years, an increased occur-
rence of imaging datasets has been noted due to the ability 
to store massive data and the coincidence of sophisticated 
machine learning (ML) and deep learning (DL) methods 
[10]. Recently, ML techniques have been employed to ana-
lyze diseases efficiently by discovering the people at risk 
in the early stages. ML-based algorithms are currently the 
most extensively used approach to kidney disease detection 
[11]. These techniques learn and improve when vast amounts 
of data are integrated to learn the decision rules explicitly. 
DL approaches have also contributed to the sophisticated 
progress in AI, and these methods involve tuning multi-layer 
artificial neural networks (ANN) on massive databases [12, 
13]. The incorporation of DL and computer vision schemes 
has been successfully applied in various medical domains, 
such as lesion detection [14] classification [15], and imaging 
segmentation. Medical professionals use robust approaches 
to detect cancer and cardiac diseases [16]. Recently, con-
volutional neural networks (CNNs), a DL approach, have 
enhanced the accuracy of various computer vision pro-
cesses, like semantic segmentation, object detection, and 
image recognition. The CNNs can also capture complex tis-
sue patterns successively and have been extensively applied 
in biomedical imaging for segmentation and classification 
processes [17].

The contribution of this research is as follows:

i) A hybrid SpinalZFNet technique is proposed to classify 
kidney disease accurately from CT images. The Spi-
nalZFNet was devised as a combination of SpinalNet 
and Zeiler Fergus Network (ZFNet).

ii) Preprocess the images using a median filter to remove 
the noise from the data. The preprocessed image is seg-
mented using an Efficient Neural Network (ENet).

iii) For feature extraction, different methods are used, such 
as weber local descriptor (WLD) based discrete wavelet 
transform (DWT) with histogram of oriented gradients 
(HOG) extracted used for feature extractors. The kidney 
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disease is finally classified from the extracted features 
into normal, cyst-tumor, and stone using the designed 
SpinalZFNet model.

iv) The performance of SpinalZFNet is evaluated based on 
the following: Sensitivity, Specificity, Precision, Accu-
racy, F1-Score, and Confusion matrix.

v) A comparative analysis was conducted comparing 
VGG + DN with KNN, DenseAUXNet201, MLP-ANN, 
and DRDC. The proposed model achieved a better 
99.8% accuracy, 99.9% sensitivity, 99.5% specificity, 
99.6% precision, and 99.7 F1-Score than the state-of-
the-art models.

The paper workflow is as follows: Sect. 2 describes the 
related work overview. Section 3 presents detailed explana-
tions of our proposed method. Section 4 describes the exper-
imental datasets, evaluation metrics, and results. Section 5 
discusses our findings. The conclusion is provided in Sect. 6.

2  Literature Review

This section summarizes the literature on different prevail-
ing methods used for kidney cancer detection using images. 
Rajinikanth et al. [1] developed Visual Geometry Group 
(VGG) + DenseNet (DN) with K-nearest neighbor (KNN) 
to accurately classify renal CT images from healthy cancer 
classes. This model effectively removed the artefacts from 
the CT slices using a threshold filter-supported pre-pro-
cessing method to obtain high performance. This approach 
produced high recognition accuracy with minimal compu-
tational complexity, but it required manual verification of 
the threshold while implementing the threshold filter. Mah-
mud et al. [7] designed a DenseNet201-based approach with 
auxiliary losses (DenseAUXNet201) for kidney cancer clas-
sification using CT images. This approach determined the 
cancer stage, the tumor volume, and standard demographic 
features to determine suitable surgical procedures. The Den-
seAUXNet201 attained a minimal count of missed cases, 
and further, the output was not biased by the kind of cancer. 
Moreover, the data augmentation did not completely address 
the problem of data imbalance, which resulted in no signifi-
cant improvement in performance. Cai et al. [18] utilized 
an improved version of AlexNet that incorporated fused 
features. Their unique approach mitigated overfitting and 
demonstrated impressive performance, even with smaller 
datasets. This research paper presents a significant advance-
ment in deep learning applications, particularly in limited 
data availability. While the model has shown increased resil-
ience to overfitting, the study did not observe a substantial 
rise in classification accuracy. However, this should not 
discourage us. The researchers propose significantly boost-
ing classification accuracy with additional modifications or 

complementary techniques. Shehata et al. [19] introduced 
multilayer perceptron-ANN (MLP-ANN) to determine 
whether the renal tumor is malignant or benign. It also 
decided on the sub-type of malignancy to provide optimal 
medical management. The surface complexity between the 
various tumors was effectively captured using morphological 
features, contributing to accurately determining malignancy 
status. However, the MLP-ANN did not consider including 
demographics, like sex and age, to improve performance.

Islam et al. [5] proposed a novel approach using a shifted 
window (Swin) Transformer with the visual geometry 
group (VGG)-16 architecture. This approach reduced train-
ing time while successfully capturing low-level features 
and enhancing their applications’ outcomes. Integrating the 
Swin Transformer with VGG-16 represents a significant 
stride in efficiently processing complex visual data. Despite 
these advancements, the approach required high computa-
tional resources and involved many parameters. This high 
computational potential limitation, especially for deploy-
ment in environments with limited processing capabilities, 
points towards an area for future optimization. Patro et al. 
[16] introduced the deep kronecker neural network (DKN) 
model, exhibiting a noteworthy capacity to avoid overfit-
ting, a common issue in deep learning models. The DKN 
was particularly effective in detecting even minuscule kid-
ney stones, marking a substantial advancement in medical 
imaging. However, the efficiency of this approach was lim-
ited by the poor quality of the input images. The depend-
ency on high-quality imaging indicates that inconsistency 
in imaging quality could affect the model’s performance, 
emphasizing the need for consistent, high-quality input 
data for optimal results. Badawy et al. [8] developed the 
dualistic renal disease classification (DRDC) framework. 
This reliable system can produce promising outcomes even 
with limited data, making it useful in data-scarce situations. 
However, the DRDC framework did not explore the possibil-
ity of enhancing classifier performance by tuning classifier 
parameters with various optimization techniques. This gap 
suggests a potential area for future research where applying 
optimization techniques and hybrid models could improve 
the model’s accuracy and efficiency.

Bhandari et al. [3] designed a lightweight CNN scheme 
to find abnormalities in the kidney, such as tumors, stones, 
and cysts. This method required minimal parameters and 
produced consistent results even with non-uniform sample 
distributions. However, this method was evaluated with lim-
ited CT images, which affected its performance. The issues 
endured by the available techniques for kidney cancer detec-
tion using images are as follows: VGG + DN with kNN pro-
posed in [1], which required an artifact removal technique, 
and no image enhancement approach was considered to aug-
ment the accuracy of disease detection. The generalization of 
the dataset limited the DenseAUXNet201 [7], as the dataset 
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did not encompass all the information required to make the 
classifier robust. Further, the method should have considered 
developing a balanced dataset with numerous diverse cases 
for the approach to apply to a large population. In [19], DKN 
was a method that effectively detected kidney stones. How-
ever, the method suffered from high computational overhead, 
and no optimization technique was considered to reduce the 
computational effort. The DRDC framework developed in 
[8] achieved high classification accuracy with minimum mis-
classifications. Still, it was futile to consider combining vari-
ous classifiers to improve detection efficiency and deploying 
the approach on the smartphone to make it more accessible. 
Several deep-learning techniques were proposed for clas-
sifying kidney diseases. However, these methods required 
high computational effort to produce superior performances. 
Moreover, insufficient data to train these networks affects the 
classification accuracy.

3  SpinalZFNet for Kidney Disease 
Classification Using CT Images

This research presents a hybrid DL model SpinalZFNet 
designed to classify kidney diseases from CT images. Ini-
tially, the input is acquired from the dataset and forwarded to 
the median filter. [20], which pre-processes the input images 
to denoise the input CT image. Later, kidney area segmenta-
tion is carried out with the help of the efficient neural net-
work (ENet) [21] from the background image. Image aug-
mentation is performed by padding, rotation, and translation 
to increase the image samples, thereby avoiding overfitting. 
This process is followed by feature extraction, where shape 
features, like area, solidity, eccentricity, perimeter, and pri-
mary axis length, as statistical features, such as mean ( � ), 
entropy (H), correlation ( Cr ), and contrast Ct [22], speeded 
up robust features (SURF) [23], weber local descriptor 
(WLD) [24] based discrete wavelet transform (DWT) [25] 
with Histogram of Oriented Gradients (HOG) [26] extri-
cated. Finally, kidney disease classification into (i) Normal, 
(ii) Cyst, (iii) Tumor, and (iv) Stone is accomplished based 
on hybrid SpinalZFNet, which is the combination of Spinal-
Net [27] and ZFNet [28], where layers are modified.

3.1  Dataset Description

The CT Kidney dataset [5] is collected from patients who 
have already been diagnosed with kidney stones, normal, 
cyst, or tumor findings in Dhaka, Bangladesh, by picture 
archiving and communication system (PACS). The contrast 
and non-contrast studies are performed for the urogram 
and abdomen to ensure a more in-depth capture of kid-
ney details. The finalized dataset contains 12,446 distinct 
images. A breakdown of images includes 3709 images of 

cysts, 5077 of normal kidneys, 1377 of kidney stones, and 
2283 showcasing tumors.

3.2  Image Acquisition

The classification of kidney diseases is performed initially 
by acquiring CT images from the dataset.

Here are the CT images provided as input, which are 
donated as Kl.

3.3  Image Pre‑Processing

The naturally available noises in the input CT image Kl are 
effectively removed by pre-processing using a median fil-
ter [20]. It is a nonlinear method that helps preserve useful 
information and remove noises in CT images by consider-
ing statistics. During pre-processing using a median filter, 
the actual pixel grey value is converted into grey values of 
pixels. The median is calculated by sorting all the pixel val-
ues of the neighborhood window into numerical order and 
replacing the pixel considered with the middle (median) 
pixel value. The median is calculated by the expression as 
follows:

Here, the input CT image given to the median filter is 
signified as Kl(k, l) , and Pl(u, v) denotes the output CT image 
obtained while pre-processing using the median filter, which 
is further fed into ENet for image segmentation.

3.4  Kidney Area Segmentation Using Enet

The pre-processed CT image Pl is segmented from the 
kidney area from the background images using Enet [21]. 
The Enet is highly utilized for performing low latency 
operations, which also perform efficiently and require fewer 
parameters. In general, the view of Enet is constructed on a 
highly efficient convolutional network architecture tailored 
for rapid processing without compromising accuracy. Fur-
thermore, Enet integrates bottleneck modules to minimize 
computational costs while maintaining robustness in seg-
mentation tasks. Moreover, if the bottleneck is downsam-
pling, the bottleneck modules and the max pooling to the 
main branch are considered. The activations are zero-padded 
to match the total feature maps. The model performs full, 
regular, or dilated convolutions with filters, but sometimes, 
the convolutional operations are replaced with asymmetric 
convolutions.

A single block is presented at the initial stage of ENet, 
where the bottleneck blocks are shown in stage 1. Moreover, 

(1)K = {K1,K2,K3,K4,… ,Kl}

(2)Pl(u, v) = Kl(k, l)
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stages 2 and 3 have the same structure, but downsampling 
the input is not performed in stage 3. Stages 4 and 5 belong 
to the decoder, whereas the other initial three stages are 
encoders. The overall memory operations and kernel calls 
are reduced by not utilizing bias terms in any projections. 
Also, batch normalization is performed among each non-
linear convolutional layer. In the decoding phase, max pool-
ing is substituted with max unpooling, while padding gives 
way to spatial convolution devoid of bias. Pooling indices 
were not employed in the ultimate upsampling module due 
to the initial block processing of the input frame’s three 
channels, in contrast to the final output featuring C feature 
maps representing object categories. Moreover, due to effi-
ciency considerations, we opted to integrate only a singular 
full convolution at the network’s end. This alone consumes a 
significant part of the decoder’s processing duration. ENet’s 
advanced features are essential for effectively segmenting 
the pre-processed CT images Pl.

3.5  Image Augmentation

The segmented CT image output So obtained using ENet 
allows image augmentation to avoid overfitting issues and 
increase diversity by randomly transforming the image 
samples. The different image augmentation approaches [5], 
like padding, rotation, and transformation, are performed 
in segmented CT image output So . The process carried out 
during augmentation is briefly enumerated further in detail. 
First, the padding adds pixels to the sides of the segmented 
CT imageSo . It is the total number of pixels added to the 
segmented image while processing among kernels of CNN, 
where the resultant padding augmented image is represented 
asWo . Secondly, the rotation augments the segmented CT 
image So by altering its orientation. This involves pivoting 
the image around its center to analyze the direction of the 
image along the angles between 1◦ and359◦ . The term Wl 
represents the augmented CT image output obtained during 
rotation. Translation is applied for the movement of objects 
available in the segmented CT image So from one position 
to another. The images are preserved or randomized by 
translating them into black or white along X and Y  direc-
tion or towards X or Y  direction at the same time, where, 
during translation, the position bias is adjusted towards the 
up, down, right, and left directions. The resultant transla-
tion augmented CT image is represented asW  . Therefore, 
W = [W1,W2,W3,… ,Wn] is the final augmented CT image 
obtained during the augmentation of the segmented CT 
imageSo.

3.6  Features Extraction

Advanced methods are used to extract pertinent infor-
mation from the images during feature extraction. 

Specifically, features such as mean ( � ), entropy (H), cor-
relation ( Cr ), and contrast Ct [22], SURF [23], WLD [29] 
based DWT [25] with HOG [26] are used for extraction 
of features from augmented CT images W  . The extraction 
process performed is explained below.

3.6.1  SURF

The augmented CT image W  is fed into SURF to extract 
textural features. The SURF is a local feature commonly 
used to locate interesting points and determine descriptors.

Localization of interest point: in general, the SURF 
detector is based on the Hessian matrix:

where, Lxx(Z, �) is the convolution of Gaussian second order 
of derivative in point Z , which is also similar for Lxy(Z, �) 
and Lyy(Z, �) . The Hessian is determined for selecting inter-
est point scale and location, whereas non-maximum suppres-
sion is applied for localizing the interest points in image and 
scale space. Moreover, the interpolation of image and scale 
space is performed finally to identify the local maxima of 
the appropriate Hessian matrix.

Descriptor interest point: in this phase, a unique ori-
entation is assigned to the former, and image rotation is 
performed by gaining invariance by constructing a cir-
cular region around the detected point of interest. The 
orientation is computed using Haar wavelet responses in 
both x and y . The Haar wavelets are quickly computed 
via integral images, similar to the Gaussian second-order 
approximated box filters. The dominant orientation is esti-
mated and included in the interest point information. In the 
next step, square regions are extracted around the point of 
interest for constructing the SURF descriptor. The spatial 
data is retained by splitting the windows into sub-regions, 
where Haar wavelets are extracted in each sub-region. The 
polarity information of image intensity changes is obtained 
by summing the absolute values. Therefore, the vector V  
used to underline the intensity patterns of the sub-regions 
is given in the following expression:

where, dx and dy signifies the wavelet response over horizon-
tal and vertical directions. The Haar wavelets are invariant 
to contrast and are also invariant to illumination bias while 
normalizing the resultant descriptor vector, and the extracted 
SURF feature is signified as Jl.

(3)H(Z, �) =

[
Lxx(Z, �) Lxy(Z, �)

Lxy(Z, �) Lyy(Z, �)

]

(4)V =

[∑
dx,

∑
dy,

∑||dx||,
∑|||dy

|||
]
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3.6.2  WLD‑Based DWT with HOG

The discrete wavelet transform (DWT) refers to linear trans-
formation, a function of the data vector, the length of which 
is associated energy. In the wavelet transformation, two steps 
are used to isolate the function of different natural image 
subbands and isolate image wavelet coefficients. The expres-
sion used to compute the mean value of DWT coefficients 
is given in Eq. (5):

where, the determined inference value from the initial value 
is represented as �t . The DWT splits the augmented CT 
image W  into three subbands, as Low-Low (LL) �1 , Low‐
High (LH) �2 , and High‐High (HH) �3 . The split subbands 
are separately fed into WLD for further augmented image 
extraction. Further, the WLD used a simple yet robust local 
texture descriptor for digital images, which Weber’s Law 
inspired. It is composed of two components: differential 
excitation and orientation. The differential excitation of 
the present pixel is determined using the expression given 
below:

Here, fh signifies the present pixel. fi represents the i-th 
neighboring pixel of fh and the total amount of neighbor 
are represented as t . Moreover, the present pixels’ gradient 
orientation component is determined by Eq. (7):

(5)�t = mean(DWT)

(6)g
(
fh
)
= arctan

[
t−1∑
i=0

fi − fh

fh

]

(7)�
(
fh
)
= arctan

[
�(11)

�(10)

]

where the output obtained from the two filters is assumed 
as �(11) and �(10) . The subbands are obtained from DWT by 
filtering the image using the kernels depicted as follows:

Also, the orientation w(p, q) as well magnitude v(p, q) is 
determined using the expression using the Eq. (9) as follows:

Here, the vertical and horizontal gradients are represented 
as Ay and Ax , and the final extracted feature obtained by 
WLD-based DWT with HOG feature extractor is signified 
as J2 . Moreover, the extracted textural features are given by 
J = [J1, J2] , which further allows the extraction of the most 
significant vector features using shape and statistical feature 
extractors.

3.6.3  Shape Features

Shape features, like area, perimeter, major axis length, 
minor axis length, and convex hull, are used to calculate 
the shape and find its value. Details of shape features are 
provided as follows: The shape is extracted using compact-
ness, which is calculated by using the ratio of perimeter, 
and the extracted area feature is signified as H1 . The extent 
to which the shape is concave or convex is determined 
using solidity [30], which is computed by:

(8)Yo = (−1, 0, 1) and Ys =

⎛
⎜⎜⎝

−1

0

1

⎞
⎟⎟⎠

(9)w (p, q) =
√

(A2
x
+ A2

y
) and v (p, q) = Ay∕Ax

(10)H2 =
�

�

Fig. 1  Block diagram of SpinalZFNet used for kidney disease classification
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where the object area is represented as � , the convex hull 
is an outside line that covers all the points and is signified 
as � , and the extracted solidity feature is signified as H2 . 
Eccentricity is the calculation of the length of the central 
axis as a proposition to the length of the minor axis [30], 
given by expression as:

Here, the extracted eccentricity feature is symbolized 
as H3 , the minor axis is signified as � and the major axis is 
denoted as � . Perimeter is the summation of pixels at all 
the sides of an image’s shape. This distance, represented 
by Eq. (12), measures the shape’s size in the respective 
dimension:

where, the endpoints are represented as 
(
a1, b1

)
 and (a2, b2) 

and the extracted major axis length is signified as H4 . Thus, 
the extracted shape features are finally given by the expres-
sion: Hshape = {H1,H2,H3,H4}.

(11)H3 =
�

�

(12)H4 =

√
(a2−a1)

2 + (b2−b1)
2

3.6.4  Statistical Features

The different statistical feature extractors, like mean, 
entropy, correlation, and contrast are extracted from the 
augmented CT images. The extraction process performed 
is briefly described as follows: The pixels available in the 
image under a certain dimension are termed mean [5], 
which is computed using:

Here, the image pixel is signified as I , and H5 indicates 
the extracted mean feature. The pixel with high infor-
mation is determined using entropy [5]. The formula is 
expressed as follows:

p(c, d) is the probability of occurrence of pixel value c, d in 
the image and H6 signifies the extracted entropy feature. The 
correlation [22] is used to describe the correlation of a pixel 
with another pixel of the image, where the expression gives 
the correlation feature:

(13)H5 =
1

R

R∑
c=i

Ic

(14)H6 =
∑
c,d

p(c, d)logp(c, d)

Fig. 2  Structure of SpinalNet Model
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where, c and d indicates section, Ψ signifies mean, the stand-
ard deviation is represented as L , the Grey-Level Co-occur-
rence Matrix (GLCM) is symbolized as � , and the extracted 
correlation feature is given by H7 . Contrast is the extent 
reduced level arrangement of a neighborhood in the image 
and is given in Eq. (16) as

where the extracted contrast feature is signified as H8 . Here 
Hstat = {H5,H6,H7,H8} is the final extracted shape given in 
the expression. Finally, all features are extracted further to 
classify the kidney disease.

3.7  Kidney Disease Classification Using SpinalZFNet

The abnormalities available in the kidney can potentially 
cause an adverse effect on health. Hence, it is necessary 
to detect the exact kidney disease to provide accurate 
treatment for kidney disease. Thus, the SpinalZFNet 
model is designed in this research to precisely classify 
kidney disease into normal, cyst, tumor, and stone to 
provide early diagnosis. Here, the SpinalZFNet model 
is initially processed by the SpinalNet model, which is 
trained to recognize complex patterns associated with 
kidney conditions. This preliminary stage acts as a filter, 
refining the input and preparing it for more detailed anal-
ysis. Then, the extracted feature H along with the output 
obtained from SpinalNet C1 is sent to SpinalZFNet layer 
to obtain C2 . This layer facilitates the fusion of technolo-
gies from SpinalNet [27] and ZFNet [28], employing a 
fully connected (FC) [31] setup for regression modelling, 
which aims to identify relationships among the inputs 
and perform the fusion. This FC setup is particularly 
well-suited for tasks involving various integral and deriv-
ative calculations due to its dense network of node con-
nections. It effectively integrates and extracts high-level 
features from the data, enhancing the model’s capabil-
ity to handle complex information processing. Conse-
quently, the output C2 obtained from the SpinalZFNet 
layer is sent to the ZFNet model for the final kidney 
disease classification. The final classified output of C3 
is obtained, which is classified as (i) Normal, (ii) Cyst, 
(iii) Tumor, and (iv) Stone by forwarding the output C2 
obtained from SpinalZFNet layer to ZFNet model. The 
ZFNet model component improved the model’s flexibil-
ity, maintainability, and potential for fine-tuning. The 
ZFNet model is a pre-trained feature extraction module 
easily integrated into the SpinalNet model, using transfer 

(15)H7 =
∑
c,d

(c − Ψc)(d − Ψd)�c,d

LcLd

(16)H8 =
∑
c,d

|c − d|2�c,d

learning principles to enhance the model’s performance. 
The block diagram of SpinalZFNet used for kidney dis-
ease classification is displayed in Fig. 1.

3.7.1  SpinalNet Model

The SpinalNet model [27] is designed by considering 
the function of the human spinal cord, where the input 
Kl CT image are given to the SpinalNet continuously in 
a step-by-step format. The global and local output sends 
a modulated input version pass through each SpinalNet 
layer. The model structure contains input sub-layer, inter-
mediate sub-layer, and output layer. The input is split and 
forwarded to multiple hidden layers known as intermedi-
ate network layers. The intermediate split layer of Spi-
nalNet generally acquires two components, one from the 
previous intermediary layer split outcome and one from 
the present input split outcome. The weighted outputs 
of intermediate splits are passed and added with each 
layer’s output split. The hidden layers of intermediate 
splits comprise two neurons, where the expression gives 
the output of the neuron in the hidden layer,

Here, the threshold value of bi represents the bias asso-
ciated with the neuron in the hidden layer. This bias helps 
adjust the output and the weighted sum of the inputs to 
the neuron. The weights wi correspond to the signifi-
cance of each input qi and the summation runs over all N 
inputs to that neuron. The depth and architecture of the 
SpinalNet model enable it to effectively identify intricate 
patterns and relationships within the input data, making 
it particularly suited for identification of kidney diseases 
once the input CT image is fed into the SpinalNet model. 
The structure of SpinalNet model is depicted in Fig. 2. 
The model integrates the outputs from various stages of 
the network, including the convolutional blocks (Conv-
1, Conv-2, MaxPooling2D, BLOCK-1 to BLOCK-5) and 
the dense operators (Dense_1 to Dense_4). The convo-
lutional blocks extract local features from the input data, 
while the dense operators process the flattened output 
from the convolutional blocks. The concatenation opera-
tions (tf.Concat_1 to tf.Concat_5) combine these feature 
representations at different levels, allowing the SpinalNet 
model to leverage multi-scale information.

3.7.2  SpinalZFNet Layer

The resultant output C1 obtained from the SpinalNet 
model and the extracted features H  is fed into Spi-
nalZFNet layer for the fusion of SpinalNet [27] and 

(17)C1 =

N∑
i=1

(wi)qi + bi
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ZFNet [28]. The FC [31] is used for regression modeling 
in SpinalZFNet layer to perform fusion by determining 
the relationship between the given inputs. FC generally 
provides solutions to various integral and derivative 
tasks by establishing dense node connections. These 
layers integrate information, capturing high-level fea-
tures from the input data. In the context of the provided 
equation, the fusion computes the weighted sum of fea-
tures from different intervals or sources. Layers at p-th 
interval leverage this weighted approach to better capture 
the intricacies and patterns across multiple data points. 
Specifically, p is given in Eq. (18),

Here, the available total amount of features is indicated 
as t, s indicates total available data, the weight coefficient is 
signified as X . At (p – 1)-th interval the expression gives the 
SpinalZFNet layer output,

where, the statistical feature is represented as HST . Moreo-
ver, the output of SpinalZFNet layer at (p-2)-th interval is 
designated as,

where HSN signifies shape.

Equation (21) is given by

(18)p =

2∑
I=1

s∑
F=1

t∑
G=1

HIFG × XIFG

(19)p1 =

4∑
E=1

HST × XE

(20)p2 =

4∑
E=1

HSN × XE

(21)U = f (p, p1, p2)

(22)
C2 = U × p +

1

2
U × p1 +

1

6
(1 − U) × p2 +

1

24
(1 − U)(2 − U) × C1

Thus, applying the value of p, p1 and p2 , Eq.  (22) 
becomes.

Equation (23) is the SpinalZFNet layer’s final resultant 
output, which is forwarded to the ZFNet model for kidney 
disease classification.

(23)
C2 = U ×

[ 2
∑

I=1

s
∑

F=1

t
∑

G=1
HIFG × XIFG

]

+ 1
2
U ×

[ 4
∑

E=1
HST × XE

]

+ 1
6
(1 − U)

[ 4
∑

E=1
HSN × XE

]

+ 1
24

(1 − U)(2 − U) × C1

Fig. 3  Structure of ZFNet model

Fig. 4  Experimental image outcomes. a Input, b pre-processed, c seg-
mented, d translation, e rotation, and f padding augmented CT image
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3.7.3  ZFNet Model

A type of CNN, the ZFNet model [28, 32] is introduced by 
visualizing the intermediate feature maps. The ZFNet struc-
ture consists of convolutional and fully connected (FC) layers, 
where the output is fed into the subsequent layer for further 
processing and refinement. This hierarchical structure ensures 
a progressive refinement of features as the data traverses 
through the network. The kernel map of the second layer is 
connected to the kernel of the third convolutional layer, and 
the fully connected layer neurons are connected to the neu-
rons of the preceding layer. In addition, next to the first and 
second convolutional layers, the response-normalization layer 
is connected. Followed by the response-normalization layer 
and the fifth convolution, the max pooling layer is connected. 
Rectified Linear Units (ReLU) non-linearity is applied to the 
convolutional and fully connected layer output. The kidney 
disease classification process carried out in the ZFNet model 
is explained below.

The output obtained from the SpinalZFNet layer, C2 , is 
fed initially into a convolutional layer that forwards the out-
put in a successive or sequential form via interconnected 
convolutional layers. Here, the input is convolved with ker-
nels for the creation of feature maps, and the convolution 
operation performed in a convolutional layer is designated 
as:

From the expression, the

The activation function is signified as t , and the matrix is 
represented as L . The down-sampling of feature maps avail-
able in the channels is performed in the max-pooling layer. 
Moreover, the summation is performed for the determination 
of main features, and finally, a stride J × J is used to gener-
ate a reduced subset after the output obtained from the con-
volutional layer is fed into the max pooling layer, which is 
expressed as

(24)� = C2�

(25)L = t(�) = t(C2�)

o ∶ L → �

Here, the reduced subset is signified as � and fa indicates 
the pooling operation carried out in channels. The max-pool-
ing operation is performed by considering the highest pooling 
value and is designated as

Here, the max-pooling function is represented as Bmax and 
is formulated as

where the identity matrix is signified as Γmax(O)�R
f2

J2
×f 2

In the ZFNet model, the flattening layer is used for the 
conversion of feature maps into a set of elements before 
forwarding it to the fully connected layers

(26)Rf 2×fa
→ R

f2

J2
×fa

(27)� = Bmax

(
t
(
C2�

))

(28)Bmax = Γmax(O)O

z =
[
v1, v2,… , vf

]

(29)= [Γ1v1,Γ2v2,… ,Γf vf ]

Table 1  Details of the 
hyperparameters used in the 
SpinalZFNet

Hyperparameter Variables Randomly used

Optimizer Adam, Nadam, SGD, RMSProp Adam, SGD, RMSProp
Batch size 12, 16, 32, 64 32
Epochs [55, 65, 100, 120, 150] 100
Learning rate 0.01, 0.001, 0.0001 Learning rate adjusted 

based on the training 
progress

Fig. 5  Training and validation accuracy and loss curves on the CT 
images of the SpinalZFNet model
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where, the f-th max pooling layer output of the pooling layer 
and the flattening operation executed in the flattened layer 
is given in Eq. (30).

The dense layer performs linear operation by determin-
ing the relationship between the inputs. Thus, the resulting 
output is designated as

The expression gives the final output of CNN,

The weight and activation functions are denoted as Dk 
and Gk at the k-th FC layer, respectively. Activation function 
output is donated as

The activation function is indicated E3C3 The structure of 
the output of the ZFNet model is presented in Fig. 3.

4  Result

This section discusses the results obtained by applying the 
SpinalZFNet model to classify kidney diseases. Our goal 
was to leverage the advantages of the spinal architecture 
and the ZFNet model to achieve a more precise and compre-
hensive classification. We conducted experiments that dem-
onstrated its effectiveness. The SpinalZFNet was designed 
to classify kidney disease using the CT kidney dataset [5].

4.1  Experimental Image Results

The resultant images recorded by SpinalZFNet during kid-
ney disease classification display in Fig. 4. The input CT 
image show in Fig. 4a, b depicts the pre-processed CT 
image, and Fig. 4c gives the segmented CT image. Moreo-
ver, Fig. 4d–f portray the translation, rotation, and padding 
augmented CT image. Given the dataset, such as kidney dis-
ease images, calculate the number of features each method 
extracts from a single image as follows:

(1) Speeded-up robust features (SURF): the image is of a 
kidney disease segment image based on a black background. 
SURF detects only a few key points due to the high contrast 
and small area of interest. SURF detects five key points. 

(30)z = F[z] =

⎡
⎢⎢⎢⎣

v1
v2
⋮

vf

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

Γ1v1
Γ2v2
⋮

Γf vf

⎤
⎥⎥⎥⎥⎦

(31)z = F[z] = FΓnNnr
(
C2�n

)

(32)C3 = Gk

(
Dk …G2(D2G1

(
(D1G

))
…)

(33)
E3C3 = E

(
Dk …G1(D1 × Γ2N2[Γ1N1(C

f1
2
�
1
)]f2�2)…�n

)

With a descriptor length of 64, that would be 320 features (5 
key points 64 × 64 descriptor length). (2) WLD-based DWT 
with HOG (Wavelet-Local Binary Patterns with Histogram 
of Oriented Gradients): after applying DWT, approximation 
coefficients (cA) and detail images (cH, cV, cD) are all con-
sidered for HOG feature extraction. With an HOG descriptor 
window size of 64 × 64 pixels, 8 × 8 cells, and 9 histogram 
bins per cell, get a feature vector of length 7 × 7 × 9 = 441 
from a single channel (due to the downscaling effect of 
DWT). (3) Shape features: given that the image’s shape is 
simple, calculate one value each for area, perimeter, major 
axis length, minor axis length, and convex hull. This results 
in 5 shape features. (4) Statistical features: the image’s 
region has some statistical measures: mean intensity, entropy 
(calculated from the histogram of pixel intensities), correla-
tion, and contrast (from a gray-level co-occurrence matrix, 
(GLCM)). This extracts 4 statistical features.

4.2  Training and Implementation

This study trained the proposed SpinalZFNet model using 
100 epochs on the Google Colab platform. The training was 
conducted on a single 12 GB NVIDIA Tesla K80 GPU with 
a maximum continuous usage limit of 12 h. The GPU mode 
was utilized for faster execution. However, the completion 
time of the training process depended on factors such as 
network speed and dataset size.

Table 1 presents a comprehensive overview of the hyper-
parameters used in the SpinalZFNet model. We employed 
random hyperparameters to train the proposed model. 
We utilized multiple optimizers such as Adam, SGD, and 
RMSProp for the random hyperparameters. We set the 
default learning rate to 0.001. During the training, we incor-
porated critical features such as a reduced learning rate, 
model checkpoint, and early stopping. The reduced learn-
ing rate helped adjust the learning rate dynamically based 
on the training progress. The monitoring of the validation 
accuracy was conducted, and if it did not exhibit improve-
ment for five consecutive epochs, with a minimum change 
of 0.0001, the present learning rate was halved. This process 
continued until the last epoch.

We also utilized the model checkpoint callback to 
store the weights of the top-performing model, which was 
determined by its validation accuracy. Early stopping was 
employed to ascertain the optimal number of epochs 
required for the training process. After 50 epochs, if no per-
formance improvement was observed, the training process 
was stopped to avoid overfitting. The batch size, another 
essential hyperparameter, was set to 32 in the SpinalZFNet 
model, as it yielded satisfactory results. Larger batch sizes 
allow for better parallelization, which may negatively affect 
the model’s generalization ability. The study employed the 
SoftMax cross-entropy loss function, which is well-suited 
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for addressing multiclass classification problems—quantify-
ing the discrepancy between the output of the network and 
its corresponding labels.

Figure 5 presents the learning curves of the SpinalZFNet 
model on the CT dataset. The curves for training and vali-
dation, as well as the loss curves, show an effective conver-
gence across the dataset. The training process was stopped 
after 80 epochs to avoid overfitting, as no improvement in 
performance was observed for five consecutive epochs. The 

optimal number of epochs was utilized for training. This 
means that the data used for training the model is a good 
representation of the data used for validation. The fact that 
the training and validation curves are close to each other 
suggests that the model is reliable when tested. This provides 
evidence that the SpinalZFNet model is not overfitting.

Fig. 6  Performance analysis of SpinalZFNet using K-fold (a sensitivity, b specificity, c accuracy) and learning set, (d sensitivity, e specificity, 
and f accuracy)
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4.3  Performance Metrics

Various performance metrics [33, 34] are utilized to iden-
tify SpinalZFNet’s superiority, including the classification 
performance, which are explained below.

Accuracy: is the relationship between the original and 
expected outcome obtained by SpinalZFNet during kidney 
disease conditions.

where nTP, nTN, nFP, nFN represent the number of true posi-
tives, true negatives, false positives, and false negatives, 
respectively.

Sensitivity: the positive samples classified precisely by 
SpinalZFNet from the input total positive samples is called 
sensitivity, where the sensitivity is given by

(34)Accuracy =
nTP + nTN

nFP + nFN + nTP + nTN

Precision: the precision is defined as the positive samples 
falsely classified SpinalZFNet from the total positive sam-
ples and is defined as

Specificity: the specificity is defined as the negative sam-
ples precisely classified by SpinalZFNet from the total input 
negative samples and is expressed by

F1-Score: Precision and Sensitivity are used by Spi-
nalZFNet for F1-Score calculation.

(35)Sensitivity =
nTP

nTP + nFN

(36)Precision =
nTP

nTP + nFP

(37)Specificity =
nTN

nTN + nFP

Fig. 7  Comparative analysis of SpinalZFNet using K-fold: sensitivity, specificity, accuracy, and F1-score
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(38)F1 − Score = 2 ×
Precision × Sensitivity

Precision + Sensitivity

4.4  Performance Assessment

The K-fold value and percentage learning set are used to 
determine SpinalZFNet’s classification performance during 
kidney disease classification.

Fig. 8  Comparative analysis of SpinalZFNet using learning set: sensitivity, specificity, accuracy, and F1-score

Table 2  Comparative analysis 
of SpinalZFNet with state-of-
the-arts models

Bold values highlight the highest value

Variations Parameters VGG + DN
with KNN

DenseAUXNet201 MLP-ANN DRDC SpinalZFNet

Learning set Sensitivity(%) 76.4 80.5 80.9 86.7 98.9
Specificity(%) 72.3 72.5 72.5 76.4 98.8
Precision(%) 73.3 74.6 74.6 78.6 97.7
Accuracy(%) 74.5 76.0 75.4 78.4 98.4
F1-Score(%) 74.9 77.5 77.7 82.5 98.0

K-Fold Sensitivity(%) 81.7 84.5 85.0 89.4 99.9
Specificity(%) 73.0 79.3 79.4 81.0 99.6
Precision(%) 74.6 80.3 80.4 82.4 99.6
Accuracy(%) 80.5 80.7 82.1 83.5 99.8
F1-Score(%) 78.0 82.4 82.7 85.8 99.7
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4.4.1  Analysis Using K‑fold

The performance validation of superiority used for kidney 
disease classification using K-fold is illustrated in Fig. 6. 
The model’s accuracy progression over different epochs is 
presented in Fig. 6a. It can be observed that with the increase 
in epochs, there is a consistent improvement in accuracy. For 
a K-fold value 10, the recorded sensitivity for epochs 10 to 
80 is 80.9%, 86.3%, 87.1%, 88.0%, and 99.0%, respectively, 
highlighting the model’s learning capability and stability 
over extended training. In Fig. 6b, the 78.1%, 79.8%, 81.9%, 
83.1%, and 85.13% specificity is recorded by SpinalZFNet 
for K-fold values 10 for 10 to 80 epochs. Also, in Fig. 6c 
the evaluation of performance using accuracy is depicted. 
For K-fold value 10, the SpinalZFNet measured accuracy 
for epochs 10 to 80 is 79.9%, 81.3%, 83.1%, 85%, and 99%.

4.4.2  Analysis Using Learning Set

The analysis of the performance of SpinalZFNet utilized 
for the classification of kidney disease using a learning set 
is shown in Fig. 6. In Fig. 6d, the performance analysis 
using sensitivity is portrayed. For learning a set of 90%, 
the SpinalZFNet obtained a sensitivity of 81.2–98.3% for 
10–80 epochs. Figure 6e shows that the model achieved a 
specificity of 75–98.1% on 10–80 epochs. Figure 6f shows 

the model’s performance using accuracy. The SpinalZFNet’s 
accuracy was measured for epochs 10 with a value of 79.5% 
and for 80 epochs with a value of 98.4%, respectively.

4.5  Comparative Analysis

Traditional classification models have been used to ana-
lyze data, including VGG + DN with KNN [1], Den-
seAUXNet201 [7], MLP-ANN [18], and DRDC [8]. In this 
study, SpinalZFNet was compared to these models using 
the K-fold value and percentage of the learning set. Metrics 
such as sensitivity, specificity, precision, accuracy, F1-score, 
confusion matrix, and ROC curve were used to evaluate 
performance.

4.5.1  Analysis Using K‑fold

The comparative analysis of SpinalZFNet efficiency using 
the K-fold value during kidney disease classification rep-
resents in Fig. 7. The performance analysis is based on the 
sensitivity, specificity, accuracy, and F1-Score of various 
approaches used for kidney disease classification. The sen-
sitivity measured by SpinalZFNet is 99.9% for the K-fold 
value of 10. The classical classification approaches, like 
VGG + DN with KNN, DenseAUXNet201, MLP-ANN, 
DRDC, and proposed SpinalZFNet recorded sensitivity 

Fig. 9  Performance analysis using confusion matrix of SpinalZFNet with state-of-the-art models and ROC curves for SpinalZFNet
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of 83.2%, 86.2%, 86.7%, 89.4%, and 99.9%, as shown in 
Fig. 7. The specificity 99.6% is notably higher in Spi-
nalZFNet, indicating fewer false positives and more reli-
able performance in distinguishing non-disease cases. 
Precision is highest for SpinalZFNet at 99.6%, suggest-
ing its predictions are highly trustworthy. The accuracy 
measured for K-fold value of 10 by the disease classifi-
cation approaches is 80.8% by VGG + DN with KNN, 
82.3% by DenseAUXNet201, 83.0% by MLP-ANN, 
86.5% by DRDC, and 99.8% by SpinalZFNet. The analy-
sis proved that SpinalZFNet attained better performance 
than the prevailing DRDC model. The F1-Score for K-fold 
value 10 is 78% by VGG + DN with KNN, 82.4% by Den-
seAUXNet201, 82.7% by MLP-ANN, 85.8% by DRDC, 
and 99.7% by SpinalZFNet. The analysis proved that 
SpinalZFNet performed better than the state-of-the-art 
models.

4.5.2  Analysis Using Learning Set

The validation of the performance of SpinalZFNet used for 
kidney disease classification by varying percentages of the 
learning set is displayed in Fig. 8. Figure 8 presents the eval-
uation of classification techniques using sensitivity, specific-
ity, precision, accuracy, and F1-Score. The methods used 
for the classification of kidney disease sensitivity measured 
by SpinalZFNet, VGG + DN with KNN, DenseAUXNet201, 
MLP-ANN, and DRDC are 98.9%, 76.4%, 80.56%, 80.97%, 
and 86.7%, respectively. The specificity recorded for 50% 
of the learning set by SpinalZFNet is 98.8%. Similarly, the 
traditional classification techniques, such as VGG + DN with 
KNN, DenseAUXNet201, MLP-ANN, and DRDC, obtained 
specificity of 72.3%, 72.5%, 72.5%, and 76.4%. It is proven 
that the SpinalZFNet achieved the best performance of 
97.7% compared to the traditional VGG + DN with KNN, 
DenseAUXNet201, MLP-ANN, and DRDC approaches, 
regarding precision, 73.3%, 74.6%, 74.68%, and 78.69% 
achieved values for classification approaches. Moreover, the 
analysis of kidney disease classification approaches shows 
that the accuracy measured by SpinalZFNet for learning set 
value is 98.4%, and the accuracy measured by prevailing 
kidney disease classification models, such as VGG + DN 
with KNN, DenseAUXNet201, MLP-ANN, and DRDC, 
is 74.5%, 76%, 70.54%, and 78.4%. Lastly, the F1-score of 
VGG + DN with KNN is 74.9%, DenseAUXNet201 77.5%, 
MLP-ANN 77.7%, DRDC 82.5%, and SpinalZFNet 98.0%. 
The analysis revealed that the SpinalZFNet performed better 
than the prevailing state-of-the-art models used for disease 
classification.

5  Comparative Discussion

The classification performance of SpinalZFNet is deter-
mined by validating the performance with prevailing tech-
niques used for the classification of kidney disease. The 
results obtained by the classification approaches for differ-
ent performance metrics validated using a learning set, and 
K-fold are given in Table 2. Based on experimental investiga-
tion, it is proven that the SpinalZFNet, with the learning set 

Fig. 10  A sample visualizations of the ZFNet model

Table 3  Performance 
comparative analysis of 
proposed SpinalZFNet with 
state-of-the-arts models

Bold values highlight the highest value

Architecture Parameters
(millions)

FLOPs
(billions)

Training time
(h)

Inference
time (ms)

VGG + DN with KNN 138 19.6 12 50
DenseAUXNet201 18 4.0 10 30
MLP-ANN 60 12.0 15 45
DRDC 45 9.0 13 35
SpinalZFNet 23 5.2 9 28
SpinalNet 5 1.5 8 25
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evaluation, emerges as the most competent model in terms 
of sensitivity, specificity, precision, accuracy, and F1-Score 
at 98.9%, 98.8%, 97.7%, 98.4%, and 98.0%. With K-Fold 
evaluation, the SpinalZFNet maintains the best performance 
with a maximum sensitivity of 99.9%, specificity of 99.6%, 
precision of 99.6%, accuracy of 99.8%, and F1-score of 
99.7%. In contrast, during kidney disease classification, the 
SpinalZFNet effectively solves complexity issues using its 
pre-trained architecture. Similarly, it utilizes highly efficient 
feature maps to enhance classification accuracy by eliminat-
ing the undesired features that lead to incorrect predictions. 
The comparison of the provided confusion matrices for the 
models MLP-ANN, DRDC, SpinalZFNet, VGG + DN with 
KNN, and DenseAUXNet201 yields several insights into 
their performance in classifying the four classes: cyst, nor-
mal, stone, and tumor. SpinalZFNet stands out as the best 
model, particularly for the critical “Tumor” classification, 
where it has the highest number of true positives and lowest 
false negatives, making it the most suitable model among 
those compared for classifying the CT images of Cyst, Nor-
mal, Stone, and Tumor. SpinalZFNet model performance 
comparison with all models using a confusion matrix pro-
vides in Fig. 9. The ROC curve illustrates the performance 
of the SpinalZFNet, a classifier handling multiple classes. 
The curves for individual classes: class 0 cyst, class 1 nor-
mal, class 2 stone, and class 3 tumor, all show high AUC val-
ues, with classes 1 and 3 achieving perfection with an AUC 
of 1.00%. This indicates an exceptional discriminative power 
where true positives are maximized, and false positives are 
minimized or nonexistent, especially for classes 1 and 3. 
Additionally, the micro-average and macro-average ROC 
curves indicate a high overall performance across classes, 
with both curves achieving AUCs around 0.995%, signify-
ing the model’s consistent and robust classification ability. 
The dashed line represents the baseline of a random chance 
classifier, which all the individual ROC curves significantly 
outperform, demonstrating the classifier’s effectiveness. 

The sample visualization of the ZFNet model process rep-
resents in Fig. 10. The following figure shows the process of 
training the ZFNet model and categorizing the images based 
on extracted features, which are highlighted by the model 
to explain how the procedure helps to classify the disease 
necessary for classifying the images in training.

The performance comparison  of the proposed Spi-
nalZFNet with state-of-the-art models is provided in Table 3. 
The SpinalZFNet achieves this superior performance with 
significantly fewer parameters and lower computational 
costs than other state-of-the-art models. However, Spinal-
Net demonstrates even better efficiency than the proposed 
model SpinalZFNet.

6  Conclusion

This research introduces a hybrid deep learning model, Spi-
nalZFNet, to classify kidney disease accurately from CT 
images. The median filter is initially used to pre-process 
the acquired input CT images, and the pre-processed image 
is segmented using ENet. The segmented image further 
allows for image augmentation, and the different features are 
extracted from the augmented image using feature extrac-
tors. Finally, the SpinalZFNet is used to classify kidney 
disease into four distinct categories: normal, cyst, tumor, 
and stone. Moreover, we evaluated the model’s performance 
using preferred quality metrics. Our SpinalZFNet outper-
forms the existing models and achieved 99.9% sensitivity, 
99.6% specificity, 99.8% accuracy, and 99.7% F1-Score. Our 
experimental results prove that the SpinalZFNet can accu-
rately classify four different classifications of kidney disease 
using CT images.

Acknowledgements There is no funding source for this work. “For the 
purpose of open access, the author(s) has applied a Creative Commons 
Attribution (CC BY) licence to any Author Accepted Manuscript ver-
sion arising from this submission.”

Author contributions Faiqa Maqsood: conceptualization, methodol-
ogy, formal analysis, Faiqa Maqsood and Muhammad Mumtaz Ali: 
the original draft, writing, review and editing, Wang Zhenfei, Raheem 
Sarwar, and Baozhi Qiu: supervision. all authors read, gave sugges-
tions, and agreed to the published version of the manuscript.

Data availability The publicly available dataset used in this manuscript.

Declarations 

Conflict of interest The authors declare that they have no known com-
peting financial interests, funding, or personal relationships that could 
have appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Rajinikanth V, Vincent PMDR, Srinivasan K et  al (2023) A 
framework to distinguish healthy/cancer renal CT images using 
the fused deep features. Front Public Health 11:1109236. https:// 
doi. org/ 10. 3389/ fpubh. 2023. 11092 36

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpubh.2023.1109236
https://doi.org/10.3389/fpubh.2023.1109236


 Interdisciplinary Sciences: Computational Life Sciences

 2. Kovesdy CP (2022) Epidemiology of chronic kidney disease: an 
update 2022. Kidney Int Suppl 12:7–11. https:// doi. org/ 10. 1016/j. 
kisu. 2021. 11. 003

 3. Bhandari M, Yogarajah P, Kavitha MS et al (2023) Exploring the 
capabilities of a lightweight CNN model in accurately identifying 
renal abnormalities: cysts, stones, and tumors, using LIME and 
SHAP. Appl Sci 13:3125. https:// doi. org/ 10. 3390/ app13 053125

 4. Wu Yu, Yi Z (2020) Automated detection of kidney abnormalities 
using multi-feature fusion convolutional neural networks. Knowl-
Based Syst 200:105873. https:// doi. org/ 10. 1016/j. knosys. 2020. 
105873

 5. Islam MN, Hasan M, Hossain MK et al (2022) Vision transformer 
and explainable transfer learning models for auto-detection of 
kidney cyst, stone and tumor from CT-radiography. Sci Reports 
12:11440. https:// doi. org/ 10. 1038/ s41598- 022- 15634-4

 6. Sudharson S, Kokil P (2021) Computer-aided diagnosis system 
for the classification of multi-class kidney abnormalities in the 
noisy ultrasound images. Comput Methods Programs Biomed 
205:106071. https:// doi. org/ 10. 1016/j. cmpb. 2021. 106071

 7. Mahmud S, Abbas TO, Mushtak A et al (2023) Kidney cancer 
diagnosis and surgery selection by machine learning from CT 
scans combined with clinical metadata. Cancers 15:3189. https:// 
doi. org/ 10. 3390/ cance rs151 23189

 8. Badawy M, Almars AM, Balaha HM et al (2023) A two-stage 
renal disease classification based on transfer learning with hyper-
parameters optimization. Front Med 10:1106717. https:// doi. org/ 
10. 3389/ fmed. 2023. 11067 17

 9. Raji CG, Anand, et al (2017) Computer-based prognosis model 
with dimensionality reduction and validation of attributes for 
prolonged survival prediction. Inform Med Unlocked 9:93–106. 
https:// doi. org/ 10. 1016/j. imu. 2017. 07. 002

 10. Gharaibeh M, Alzubi D, Abdullah M et al (2022) Radiology imag-
ing scans for early diagnosis of kidney tumors: a review of data 
analytics-based machine learning and deep learning approaches. 
Big Data Cog Comp 6:29. https:// doi. org/ 10. 3390/ bdcc6 010029

 11. Chen G, Ding C, Li Y et al (2020) Prediction of chronic kidney 
disease using adaptive hybridized deep convolutional neural net-
work on the internet of medical things platform. IEEE Access 
8:100497–100508. https:// doi. org/ 10. 1109/ ACCESS. 2020. 29953 
10

 12. Suarez-Ibarrola R, Hein S, Reis G et al (2020) Current and future 
applications of machine and deep learning in urology: a review 
of the literature on urolithiasis, renal cell carcinoma, and bladder 
and prostate cancer. World J Urology 38:2329–2347. https:// doi. 
org/ 10. 1007/ s00345- 019- 03000-5

 13. Yu K-H, Beam AL, Kohane IS (2018) Artificial intelligence in 
healthcare. Nat Biomed Engine 2:719–731. https:// doi. org/ 10. 
1038/ s41551- 018- 0305-z

 14. Kijowski R, Liu F, Caliva F et al (2020) Deep learning for lesion 
detection, progression, and prediction of musculoskeletal disease. 
J Magn Res Imaging 52:1607–1619. https:// doi. org/ 10. 1002/ jmri. 
27001

 15. Patro KK, Jaya Prakash A, Jayamanmadha Rao M et al (2022) 
An efficient optimized feature selection with machine learning 
approach for ECG biometric recognition. IETE J Res 68:2743–
2754. https:// doi. org/ 10. 1080/ 03772 063. 2020. 17256 63

 16. Patro KK, Allam JP, Neelapu BC et al (2023) Application of 
kronecker convolutions in deep learning technique for automated 
detection of kidney stones with coronal CT images. Info Sci 
640:119005. https:// doi. org/ 10. 1016/j. ins. 2023. 119005

 17. Tabibu S, Vinod PK, Jawahar CV (2019) Pan-renal cell carcinoma 
classification and survival prediction from histopathology images 
using deep learning. Sci Rep 9:10509. https:// doi. org/ 10. 1038/ 
s41598- 019- 46718-3

 18. Cai J, Liu M, Zhang Q et al (2022) Renal cancer detection: fusing 
deep and texture features from histopathology images. BioMed 
Res Int 2022:e9821773. https:// doi. org/ 10. 1155/ 2022/ 98217 73

 19. Shehata M, Alksas A, Abouelkheir RT et al (2021) A compre-
hensive computer-assisted diagnosis system for early assessment 
of renal cancer tumors. Sensors 21:4928. https:// doi. org/ 10. 3390/ 
s2114 4928

 20. Maheshan CM, Prasanna Kumar H (2019) Performance of image 
pre-processing filters for noise removal in transformer oil images 
at different temperatures. SN Appl Sci 2:67. https:// doi. org/ 10. 
1007/ s42452- 019- 1800-x

 21. Paszke A, Chaurasia A, Kim S et al (2016) ENet: a deep neural 
network architecture for real-time semantic segmentation. arXiv. 
https:// doi. org/ 10. 48550/ arXiv. 1606. 02147

 22. Sharma A, Yadav DP, Garg H et al (2021) Bone cancer detection 
using feature extraction based machine learning model. Comput 
Math Methods Med 2021:e7433186. https:// doi. org/ 10. 1155/ 
2021/ 74331 86

 23. Murillo AC, Guerrero JJ, Sagues C (2007) SURF features for 
efficient robot localization with omnidirectional images. In: Pro-
ceedings 2007 IEEE International Conference on Robotics and 
Automation. pp 3901–3907. https:// doi. org/ 10. 1109/ ROBOT. 
2007. 364077

 24. Zhang D, Li Q, Yang G et al (2017) Detection of image seam 
carving by using weber local descriptor and local binary patterns. 
J Inf Secur Appl 36:135–144. https:// doi. org/ 10. 1016/j. jisa. 2017. 
09. 003

 25. Chilakala LR, Kishore GN (2021) Optimal deep belief network 
with opposition-based hybrid grasshopper and honeybee opti-
mization algorithm for lung cancer classification: a DBNGHHB 
approach. Int J Imaging Syst Technol 31:1404–1423. https:// doi. 
org/ 10. 1002/ ima. 22515

 26. Antonik P, Marsal N, Brunner D et  al (2019) Human action 
recognition with a large-scale brain-inspired photonic com-
puter. Nat Mach Intell 1:530–537. https:// doi. org/ 10. 1038/ 
s42256- 019- 0110-8

 27. Kabir HMD, Abdar M, Khosravi A, Jalali SMJ et al (2023) Spi-
nalNet: deep neural network with gradual input. IEEE Trans Artif 
Intell 4:1165–1177. https:// doi. org/ 10. 1109/ TAI. 2022. 31851 79

 28. Fu L, Feng Y, Majeed Y et al (2018) Kiwifruit detection in field 
images using faster R-CNN with ZFNet. IFAC-Pap 51:45–50. 
https:// doi. org/ 10. 1016/j. ifacol. 2018. 08. 059

 29. Chen J, Shan S, He C et al (2010) WLD: a robust local image 
descriptor. IEEE Trans Pattern Anal Mach Intell 32:1705–1720. 
https:// doi. org/ 10. 1109/ TPAMI. 2009. 155

 30. Kasim A, Harjoko A (2017) Batik classification with artificial 
neural network based on texture-shape feature of main ornament. 
Int J Intell Syst Appl 9:55–65. https:// doi. org/ 10. 5815/ ijisa. 2017. 
06. 06

 31. Al Khalil Y, Amirrajab S, Lorenz C et al (2023) Reducing seg-
mentation failures in cardiac MRI via late feature fusion and 
GAN-based augmentation. Comput Biol Med 161:106973. https:// 
doi. org/ 10. 1016/j. compb iomed. 2023. 106973

 32. Nguyen H-T, Li S, Cheah CC (2022) A layer-wise theoretical 
framework for deep learning of convolutional neural networks. 
IEEE Access 10:14270–14287. https:// doi. org/ 10. 1109/ ACCESS. 
2022. 31478 69

 33. Raji CG, Vinod Chandra SS (2016) Prediction and survival analy-
sis of patients after liver transplantation using rbf networks. Data 
Mining and Big Data. Springer, Cham, pp 147–155

 34. Raji CG, Chandra SSV (2017) Various medical aspects of liver 
transplantation and its survival prediction using machine learning 
techniques. Indian J Sci Technol 10(13):1–17. https:// doi. org/ 10. 
17485/ ijst/ 2017/ v10i13/ 94111

https://doi.org/10.1016/j.kisu.2021.11.003
https://doi.org/10.1016/j.kisu.2021.11.003
https://doi.org/10.3390/app13053125
https://doi.org/10.1016/j.knosys.2020.105873
https://doi.org/10.1016/j.knosys.2020.105873
https://doi.org/10.1038/s41598-022-15634-4
https://doi.org/10.1016/j.cmpb.2021.106071
https://doi.org/10.3390/cancers15123189
https://doi.org/10.3390/cancers15123189
https://doi.org/10.3389/fmed.2023.1106717
https://doi.org/10.3389/fmed.2023.1106717
https://doi.org/10.1016/j.imu.2017.07.002
https://doi.org/10.3390/bdcc6010029
https://doi.org/10.1109/ACCESS.2020.2995310
https://doi.org/10.1109/ACCESS.2020.2995310
https://doi.org/10.1007/s00345-019-03000-5
https://doi.org/10.1007/s00345-019-03000-5
https://doi.org/10.1038/s41551-018-0305-z
https://doi.org/10.1038/s41551-018-0305-z
https://doi.org/10.1002/jmri.27001
https://doi.org/10.1002/jmri.27001
https://doi.org/10.1080/03772063.2020.1725663
https://doi.org/10.1016/j.ins.2023.119005
https://doi.org/10.1038/s41598-019-46718-3
https://doi.org/10.1038/s41598-019-46718-3
https://doi.org/10.1155/2022/9821773
https://doi.org/10.3390/s21144928
https://doi.org/10.3390/s21144928
https://doi.org/10.1007/s42452-019-1800-x
https://doi.org/10.1007/s42452-019-1800-x
https://doi.org/10.48550/arXiv.1606.02147
https://doi.org/10.1155/2021/7433186
https://doi.org/10.1155/2021/7433186
https://doi.org/10.1109/ROBOT.2007.364077
https://doi.org/10.1109/ROBOT.2007.364077
https://doi.org/10.1016/j.jisa.2017.09.003
https://doi.org/10.1016/j.jisa.2017.09.003
https://doi.org/10.1002/ima.22515
https://doi.org/10.1002/ima.22515
https://doi.org/10.1038/s42256-019-0110-8
https://doi.org/10.1038/s42256-019-0110-8
https://doi.org/10.1109/TAI.2022.3185179
https://doi.org/10.1016/j.ifacol.2018.08.059
https://doi.org/10.1109/TPAMI.2009.155
https://doi.org/10.5815/ijisa.2017.06.06
https://doi.org/10.5815/ijisa.2017.06.06
https://doi.org/10.1016/j.compbiomed.2023.106973
https://doi.org/10.1016/j.compbiomed.2023.106973
https://doi.org/10.1109/ACCESS.2022.3147869
https://doi.org/10.1109/ACCESS.2022.3147869
https://doi.org/10.17485/ijst/2017/v10i13/94111
https://doi.org/10.17485/ijst/2017/v10i13/94111


Interdisciplinary Sciences: Computational Life Sciences 

Authors and Affiliations

Faiqa Maqsood1 · Wang Zhenfei1 · Muhammad Mumtaz Ali1 · Baozhi Qiu1 · Naveed Ur Rehman1 · Fahad Sabah2 · 
Tahir Mahmood3 · Irfanud Din4 · Raheem Sarwar5 

 * Raheem Sarwar 
 R.Sarwar@mmu.ac.uk

 Faiqa Maqsood 
 faiqamaqsood@gs.zzu.edu.cn

 Wang Zhenfei 
 iezfwang@zzu.edu.cn

 Muhammad Mumtaz Ali 
 muali@gs.zzu.edu.cn

 Baozhi Qiu 
 iebzqiu@zzu.edu.cn

 Naveed Ur Rehman 
 naveed@gs.zzu.edu.cn

 Fahad Sabah 
 fahad.sabah@emails.bjut.edu.cn

 Tahir Mahmood 
 tahirmahmood@dongguk.edu

 Irfanud Din 
 irfan@newuu.uz

1 School of Computer and Artificial Intelligence, Zhengzhou 
University, Zhengzhou 450001, China

2 Beijing University of Technology, Beijing 100124, China
3 Division of Electronics and Electrical Engineering, Dongguk 

University, Seoul 04620, South Korea
4 Department of Computer Science, New Uzbekistan 

University, Tashkent 100174, Uzbekistan
5 OTEHM, Faculty of Business and Law, Manchester 

Metropolitan University, M15 6BH Manchester, UK

http://orcid.org/0000-0002-0640-807X

	Artificial Intelligence-Based Classification of€CT Images Using a€Hybrid SpinalZFNet
	Abstract
	Graphical Abstract

	1 Introduction
	2 Literature Review
	3 SpinalZFNet for€Kidney Disease Classification Using CT Images
	3.1 Dataset Description
	3.2 Image Acquisition
	3.3 Image Pre-Processing
	3.4 Kidney Area Segmentation Using Enet
	3.5 Image Augmentation
	3.6 Features Extraction
	3.6.1 SURF
	3.6.2 WLD-Based DWT with€HOG
	3.6.3 Shape Features
	3.6.4 Statistical Features

	3.7 Kidney Disease Classification Using SpinalZFNet
	3.7.1 SpinalNet Model
	3.7.2 SpinalZFNet Layer
	3.7.3 ZFNet Model


	4 Result
	4.1 Experimental Image Results
	4.2 Training and€Implementation
	4.3 Performance Metrics
	4.4 Performance Assessment
	4.4.1 Analysis Using K-fold
	4.4.2 Analysis Using Learning Set

	4.5 Comparative Analysis
	4.5.1 Analysis Using K-fold
	4.5.2 Analysis Using Learning Set


	5 Comparative Discussion
	6 Conclusion
	Acknowledgements 
	References


