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Abstract—The use of wearable technology in game-based
approaches is a topic of research that has gained growing
interest over the past decade, which in part can be attributed
to the increased adoption of wearable technology. Our paper
investigates the validity of off-the-shelf wearable technology as
game input, focusing on exergames as an application. Qur paper
explores how off-the-shelf wearable technology compares with
medical grade wearable technology and consider the potential for
applications based on our results, highlighting how a variability
in measurements may affect the applicability of the technology
for serious games in health. Our paper also investigates the
potential for the adoption of wearable-driven exergames while
also considering the participant’s insight on the usability and fun
of the gaming experience. We highlight the areas for future work
and identify the need to continue assessing wearable technology
for game-based applications and for future work to investigate
the requirements for wearable-driven game experiences when
applied to younger age groups.

Index Terms—wearable technology, heart rate, sensor valida-
tion, exergames, serious games, games for health

I. INTRODUCTION

Wearable technology considers a wide range of devices,
including smartphones, smartwatches and other devices that
can be categorised under the umbrella term of mobile com-
puting [1]. Wearable technology can be considered to be
widely accepted by the general public, given the units sold
I, Similarly, the range of consumer wearable devices has ex-
panded 2, further accelerating the adoption of the technology.
These factors have promoted new research to consider how
wearable technology may improve healthcare applications [2],
monitor vulnerable adults [3] and introduce new experiences
in exergaming [4].

In the field of game-based solutions, wearable technology
has been utilised to help monitor biofeedback during gameplay
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[5], towards designing adaptive gaming experiences [6], and
towards biofeedback-controlled game experiences [2], [4].
Commonly, the application for these game-based approaches
centres around healthcare and the wider academic discipline
of serious games for health. Games for health harness the
immersive qualities of game experiences and apply them to
health care applications either towards preventative care [7]—
[9], rehabilitation [10]-[12] or more [13].

While new research directions in wearable technologies
for games and game-based approaches are being noted in
the literature [14], there is limited work that considers the
applicability of wearable technology [15]-[17], with a focus
on the validity of the readings reported from the sensors and
how significant a level of inaccuracy in the sensors readings
may be towards a specific game experience.

Our paper focuses in particular on smart trackers, such as
heart rate monitors and smartwatches in relation to wearable
technology. With previous research already considering how
games may use wearable technology as game input [4], our
paper presents how viable wearable technology may be as an
option for sole game input and sets the following research
questions in this paper:

o How valid are the measures of heart rate from an off-
the-shelf smartwatch, and how do they compare with
medical-grade equipment?

« How would people perceive a game experience based on
wearable technology as sole input?

We present our findings around these questions, using a
combination of data sourced while playing a game controlled
through heart rate alone, heart rate data from a medical-grade
sensor and questionnaire data post-game play sourcing the
opinions of each participant.

II. BACKGROUND

The growth in the popularity and adoption of wearable
technology [14] has led to new research considering how
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Fig. 1. Literature return from Google Scholar when searching for Smart
Serious Games and Smart Gamification as terms, presented per publisher.
Dark color represents the data for Smart Serious Games and the light colour
represents the data for Smart Gamification.

wearable technology may benefit a wide range of application
areas [18]-[20]. Our paper focuses on the impact wearable
technology is having on games, gamification, serious games,
and game-based approaches in the following section.

Research into wearable technology for game experiences
relates to a larger line of research that investigates how sensor
interconnectivity may improve existing solutions and improve
our understanding in the applications for serious games and
gamification [21]. Similarly, research has considered how the
Internet of Things (IoT), which describes the sensor ecosystem
that enables machine to machine communication and internet
connect services and devices to coexist [22], may interact and
integrate with serious games and gamification [23]-[26].

As research into sensor-based game experiences continues,
it is crucial that future research considers the limitations of the
hardware and software that allow for the direct connectivity
between game experience and body, not solely from a game
experience perspective but from the validity of the solutions
being developed for serious applications.

A. Sensors and Games

Sensor technology has increased in availability and adoption
over recent years, which in part has led to an increase in
research activity that investigates how sensors may improve
gaming experiences or help create new ones [4], [14], [21].
IoT has enabled smart technologies to improve healthcare
approaches [27] but has also furthered our understanding in
sensor connectivity [28].

The combination of Serious Games and Gamification with
IoT has been termed as Smart Serious Games and Smart
Gamification respectively [26]. While these terms are not seen
as frequently in published literature, as seen in Fig. 1, they
describe the combination of IoT and game-based approaches
extensively, and as such, these terms are considered in our
paper. Smart Serious Games has seen the development of
applications for education [23], exercise [4], healthcare [13],
and more. Similarly, Smart Gamification has seen research
consider new approaches to tourism incentives [29], shopping

[30] and others. Sensor integration with game experiences
is not limited to academic literature alone. Sony has used
sensors to help improve player input when using the VR2 3.
In addition, Sony also patented Heart sensors into PlayStation
controllers *. HypeRate, have created software that streamline
the connectivity of wearable technology . Based on the trends
seen in the games industry and academia, we envisage further
developments and game experiences that integrate closely with
biofeedback.

B. Wearable technology in games

Wearable technology in games has seen research consider
how the data extracted from sensors may provide improved
data insights for healthcare applications and improved game
experiences during gameplay in games for health. Research
into wearable technology that monitored heart rate during
gameplay noted the significance of biofeedback on improving
immersion [31]. Similarly, research into game mechanics that
could be tailored to biofeedback sourced from smartwatches
to feedback and improve participant performance [32] in an
exergame application.

While the research into wearable technology and game
experiences is indicating promise in new application areas,
we highlight the significance of appropriate testing of wearable
technology and biofeedback data when applied towards game-
based experiences. Research into the validity of wearable
controlled games shown off-the-shelf technology can be used
effectively for monitoring wrist range of motion [15]. A
review on the validity of measures from a range of wearables
reported mixed results, depending on the manufacturer of
the wearable [17], highlighting the need to contextualise the
readings obtained from wearable technology when embedded
into game experiences. Similarly, research has considered our
understanding of the generalisability of the classification of
heart rate signals, which can be used towards adaptivity in
games experiences [33]. Our research builds on the existing
knowledge by considering the validity of the Fitbit wearable
for heart rate driven games.

III. VALIDATING A WEARABLE DEVICE FOR GAMES INPUT

Our paper considers how the presented methodology may
generalise and reproduce the results presented . Firstly, the
parameters for validating the technology were set. Our experi-
ments focused on the validity of the heart rate signals obtained
from a Fitbit Versa 2 ©, as this is the same sensor used in an
early prototype of a wearable controlled exergame [4].

The related exergame game was produced by Henry et al.
[4], called Cardia. The game is driven solely by the user’s
heart rate, while they are pursued by a monster, in which the

3https://blog.playstation.com/2023/02/06/playstation-vr2-the-ultimate-faq/,
Accessed 05/03/2024

“https://www.freepatentsonline.com/20200054940.pdf, Accessed
13/03/2024

Shttps://www.hyperate.io/, Accessed 22/03/2024

Ohttps://www.fitbit.com/global/us/products/smartwatches/versa, ~Accessed

11/03/2024



higher the heart rate, the faster the player will move. The game
has 2 states:

o Win state: the player keeps their BPM high enough to
outrun the monster and get to the exit.

o Lose state: the player could not maintain a high BPM,
and the monster caught the player.

Players will also have to run on the spot to charge a jump in
which the monster will still follow. This is to encourage the
player to move faster. For full details, see the original works
[4].

The same exergame was used as a vehicle for measuring
heart rate over a period of time during exertion to determine
the feasibility of the wearable device as game input. Secondly,
a medical grade sports sciences device was used that is
used in sports sciences,accounting for the nature of the game
experience used in the experiment. The Polar H10 heart rate
sensor ’ met the requirements of the study and allowed us to
extract the heart rate data into CSV, enabling us to compare
between the Fitbit Versa 2 and the Polar H10 heart rate
measures.

A. Participant Recruitment

Participants were recruited through a play test sessions,
one held at Coventry University and an identical play test
session held at Manchester Metropolitan University, followed
by smaller play test sessions held during the first academic
semester of the 2023/2024 academic year at Manchester
Metropolitan University. We aimed to recruit adults (aged
18 and above) rather than target any particular age band to
generalise the data outputs from the experiment. Participants
were approached through social media posts on LinkedIn and
Twitter/X, emails, and through a taught unit that promotes
industry engagement in the second year of all computing-
related undergraduate degrees. In total, we recruited n=174
participants across all play test events. We recognise that
this number limits how generalisable our insights may be,
and as such, further play test events are being carried out
in May 2024. Any further findings from the latest round of
experiments collectively in a future, expanded publication.

B. Experiment Protocol

At the beginning of the experiments, participants were
provided with a participant information sheet detailing the
experiment process and a consent form. Following consent,
participants were asked to wear the Fitbit Versa 2 and the
Polar H10 devices, after receiving guidance on how to wear the
devices. Once participants stated they were ready to proceed,
we placed them in front of a TV with Cardia running and
synchronised the start time of measuring the data between
both devices to the best of our ability. Fig 2 illustrates the set
up of the experiment in the physical space.

At the end of the experiment, the heart rate signals mea-
surements from the Polar device were stopped to create as

7https://www.polar.com/uk-en/sensors/h10-heart-rate-sensor, Accessed

11/03/2024
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Fig. 2. An illustration of the physical set up of the game detailing how the
game is played

similar a data long between the two sensors as possible. The
Fitbit auto stops recording on the game’s completion. After
participants removed the wearables from their body, they were
asked to complete a questionnaire that sourced their opinions
on the usability and fun aspects of the game experience
and on the adoption of the technology. The three key areas
were considered to examine whether the game experience
distressed participants, whether the combination of wearable
technology and game experiences are positively received by
participants and whether the concept of a heart-rate driven
game would be welcomed by the participants. The data from
the questionnaires was also analysed to test if they provided
further insights into the sensor-sourced data.

IV. DATA PROCESSING

Data from the related experiments were processed in two
stages. In the first stage, the data recorded from the Fitbit
within the Unity game engine and the Polar data recorded
via an iPad application was aligned, achieved in a two-fold
stage 8. Firstly, each data stream provides a timestamp of when
the recording started, which was used to align the combined
start time. This stage aids data sanitization and the removal of
repeat runs, where a participant may have two separate runs
recorded through the game but one longer Polar session.

Following, an automatic testing procedure was completed to
measure the perceived lag in data trends and alignment. Firstly,
both of the participants’ files were read from the systems,
where one file corresponds to each of the data streams detailed
above. 0 Beats Per Minute (BPM) values where the Polar or
Fitbit were set up were removed, as these have no bearing
on the true heart rate of the participant and could cause an

8https://apps.apple.com/us/app/polar-flow/id717172678, Accessed

06/03/2024



incorrect reduction in the validity of the Fitbit. The Fitbit
data was processed to only 1 in 30 data points, as heart rate
was recorded at a fixed 30 Frames Per Second (FPS), thus 30
data points per second from Unity were recorded, whereas 1
data point per second was recorded from the Polar heart rate
monitor.

A standard signal processing cross-correlation 1 was per-
formed to calculate a discrete correlation between the Unity
and Polar data.

k=Y antkTn )

7= e T @)

\/(no —ny)(no — nz)

6> d?
n(n? —1)

Following, the data was arranged to process the maximum
time lag between the Fitbit BPM and the Polar BPM, enabling
us to track the trend of heart rate events over the specific BPM
given.

The two streams of data were cropped to the same length
for further statistical analysis. Three additional analyses were
performed:

e Kendall Tau Eq 2 [34]: Measures the significance of the
rank correlation of two data streams. The metric ranges
from 1 for exact similarity, O for no similarity and -1 for
reverse similarity.

o Spearman Rho Eq 3 [35]: Utilises a monotonic function
to measure the rank of the data streams. The metric
complements the Kendall Tau metric and follows the
same scoring techniques.

o Dynamic Time Warping (DTW) [36]: Measures the sim-
ilarity between two sequences. This produces a value
between 1 for high similarity and O for no similarity.
This metric allows for a focus on trends in the data with
some impact from the difference in heart rate scale.

To highlight the difference in the device BPM scale, the
mean and standard deviation of the BPMs were calculated.
As such, we demonstrate Fitbit’s ability to track both BPM
trends and the overall scale of the BPM.

p=1- 3

V. RESULTS

The presented results are split into two main sections: a
device analysis where the reliability of the Fitbit against the
Polar medical-grade Heart Rate monitor in terms of lag was
tested, BPM trends, and BPM Scale between the two devices.
Then, a survey analysed that was given to the participants to
provide feedback on the Cardiac game.

A. Device analysis

1) Time Lag analysis: Fig 3 highlights the correlation
between the trends in BPM activity and Fitbit, where the
ideal value is 0, meaning no time difference between the two
devices, creating a pyramid shape showing that one device
will occasionally detect before the other. Our results present

a majority peaking at 0, showing a symmetric detection of
BPM trends in both devices. However, it also highlights that
Fitbit has experienced a significant delay in its trend detection
and Polar in several cases, compared to the natural decline
of the early detection. A reason for the significant delay in
some cases is that Fitbit requires some start time to sync with
the game, plus the 5-second delay that is implemented in the
Cardia game [4].
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Fig. 3. The time lag between the Fitbit and Polar trends.
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Fig. 4. The Kendal and Spearman analysis scores on the aligned data.

2) Trend analysis: Fig 4 highlights that in both cases, the
mean is above 0.5, indicating that in most cases, there is a
good similarity between the Unity Fitbit and the Polar data,
with the majority of results presenting a 0.2 - 0.8 similarity.
However, in some cases, there is either no correlation or an
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Fig. 5. The score of the DTW analysis on the aligned data.

inverse similarity, e.g. the data streams had the data trend
inverted.

Fig 5 highlights a close similarity in the majority of cases
with a compact deviation with a DTW distance that does not
exceed 4000. Our results, however, do highlight two cases
where a server disconnect between the two streams of data.
As the mean DTW distance is below 2000 the majority of the
data stream has good similarity between the different devices.
Our results highlight that in terms of BPM trends, the two
devices are comparable, allowing increases and decreases in
BPM to be identified.

3) Scale analysis: As highlighted in Fig 6, Fitbit tends to
predict a lower BPM than Polar, with a more concentrated
range of values. However, the Polar data demonstrates a mean
far beyond the Fitbit’s, with only outliers within the Fitbit
range. Our data shows, in terms of scale, the Polar is able to
track a wider array of BPM range within a normal BPM for
individuals performing exercise.

Fig 7, illustrates a similar reaction where the Polar allows
for a more dynamic range of BPM activity compared to the
Fitbit. This also highlights that Polar is capable of tracking
the BPM increase more effectively as the prolonged running
commences. Our results determine, in terms of scale, that the
two devices are not comparable in a significant way.

B. Questionnaire analysis

The presented experiments received 14 participants’ ques-
tionnaires with the answers to 9 questions:

1) Usability, Fun and Adoption (QI-Q3): Fig 8 shows
the Likert scores on three questions with respect to usability
(Q1), fun (Q2) and adoption (Q3). It highlights almost all the
participants were satisfied with three aspects: usability 11 in
5s and 2 in 4s, fun 5 in 5s and 6 in 4s and adoption 12 in
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g. 6. The mean captured BPM of both Unity Fitbit and the Polar.
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Fig. 7. The Standard deviation of the BPM in both Unity Fitbit and the Polar.

5s and 2 in 4s. Although no Is and only 1 in 2s out of the
three aspects were noted, more space could be improved on
how fun the game was with fewer 5s compared to the other
two aspects.

2) Exercise Promotion (Q4-Q5): TimeLMs [37] was used
to measure the answers’ polarity, a SOTA transformers-based
sentiment analysis model trained on around 124M tweets.
Fig 9 highlights that the majority agrees the developed game
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Fig. 8. Bar chart of 14 participants’ data on questions that sourced the par-
ticipant opinion around usability, fun, and adoption. Categories are presented
on the Y axis and the number of Likert scores received on the X axis.

is promoting and engaging people to exercise regardless of
age. The only negative answer suggests that young kids would
be uncomfortable with the game, while the neutral answers
suggest similar points.

3) Game Features (Q6-Q7): Fig 10 presents participants’
opinions on their experience of two game features. Half of the
participants were encouraged to run by a pursuing monster.
Several negative and neutral answers stated they did not
find the monster immersive or realistic enough to push them
forward. Over half of the participants appreciated showing
the heart rate. All participants submitted a Yes answer about
showing the heart rate during the game. The only answer with
negative polarity suggests the game could have an explanation
about the heart rate to the players, which is the main trigger
of the developed game.

4) Improvements and Free-form Comments (Q8-Q9): A
standard English stopwords list was applied to clean the data
and KeyBERT [38] was used with Keyphrase Vectorizer [39]
to extract the key phrases from the participants’ answers. The
following generated word clouds are used to visualise the
expected improvements and comments from the participants.
Fig 11 highlights the interest from the participants in using
heart rate in games, and they expect further development and
improvements on the monsters, levels and variety (e.g. danc-
ing, different movements). Fig 12, shows that most participants
have positive game experiences and give further suggestions
on performance, graphics and accessibility considerations.

VI. DISCUSSIONS

Our paper provides insights into the validity of heart rate
measures from an off-the-shelf smartwatch compared with
medical grade equipment (RQ1) and the perception of par-
ticipants on a game experience driven by wearable technology
(RQ2). Regarding RQ1, the results in our paper indicate that
the Fitbit device is suitable as game input for an exergame,
providing the limitations of the technology are considered as
part of the game experience. The Fitbit does not have the
same ability to track heart rate as medical grade equipment,
therefore we do not recommend the use of such technology
for clinical-based experiences where heart rate is used towards
monitoring patient recovery or other medical insights. A
similarity is noted in heart rate trends that does enable the use
of off-the-shelf wearables, such as the Fitbit, to track heart rate
to a level of accuracy that can be considered for exergames.
One potential solution for overcoming the technical limitations
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Fig. 9. Bar chart of 14 participants’ polarity on questions that sourced the
participant opinion on promoting exercises for two age groups. Age groups
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of the Fitbit could be sampling the heart rate over a short
period of time and using the average of the sample as a ground
truth. This will not correct the overall inaccuracy noted in our
results, but it can reduce smaller irregularities in individual
samples.

Considering RQ2, our results also indicate that the concept
of heart rate driven games for exergames is welcomed by
adults, encouraging further research in the design and develop-
ment of such experiences. Participants expressed uncertainty
about how well the related exergame could be applied to
children, something that should be considered as a future
direction of research.

A. Limitations

The limitations are categorised into two groups: technical
limitations and procedure limitations. Firstly, the difference
in sampling rate between the two devices was a technical
limitation. Although the data was processed and mapped to the
Polar Data’s higher sampling rate of Fitbit, future research may
embed Polar HR into the same game experience to remove any
issues around incorrect monitoring times and synchronise the
sampling rate of the devices. Secondly, the experience does
not record the baseline heart rate of each individual, a metric
that could provide a clearer insight into the performance of the
Fitbit on an individual basis. Furthermore, the study does not
compare wearable technology as a whole by sampling several
wearables. Our paper focuses on the hardware being used in
an existing study but recommend future research consider a
broader investigation of a variety of off-the-shelf wearables as
game input for exergames.

On procedure limitations, the questionnaires did not source
demographic information, an insight that would allow us to
investigate the validity across demographic groups. Existing
research does highlight bias in the technology [40], and as
such, this is a limitation in our understanding of the data.

Finally, the sample size n=174 does limit the statistical signif-
icance of our findings, but we will address this limitation by
continuing to gather data and publishing and expanded version
of our paper in future.

B. Future Work

Future work should continue validating the wearable tech-
nology used towards games input, to ensure that the serious
goals they set through the game experience are not limited
by technological restrictions. We suggest that future research
considers defining a methodology for validating wearable
devices across a range of game experiences, particularly for
healthcare applications.

Our future work will consider how the related technology
can be applied towards improving motor skill competency in
young children. Further validation will be required to assess
the validity of the heart rate readings in young children and
how any inaccuracy could be accommodated during game
design. Future work will also define a design methodology
framework for sensor embedded games, with co-design work-
shops scheduled for May 2024.

VII. CONCLUSION

Our paper presents the results of experiments that aimed
to identify how valid the measures of an off-the-shelf smart-
watch were, compared with medical grade equipment, to
test the effectiveness of a Fitbit device as game input, and
the results on the adoption of wearable technology as game
input. Our empirical results identified that though there is an
inconsistency in the reported heart rate between an off-the-
shelf wearable device and a medical grade device, there is a
similarity in the heart rate trend, allowing off-the-shelf devices
to be used as game input, where the heart rate would not be
considered as data used towards medical applications. We also
discovered that participants welcomed the adoption of wear-
able technology as game input, as noted by the questionnaire
results presented in our Discussions section, particularly when
focusing on RQ2, but they highlighted the need for careful
consideration and future research before the concept could be
applied to children. Our presented insights are limited by the
sample size n=14 and are continuing experiments to increase
the sample size and statistical validity of our results.
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