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The Affective Audio Dataset (AAD) for
non-musical, non-vocalized, audio emotion research

Harrison Ridley, Stuart Cunningham, John Darby, John Henry, and Richard Stocker

Abstract—The Affective Audio Dataset (AAD) is a new and
novel dataset of non-musical, non-anthropomorphic sounds in-
tended for use in affective research. Sounds are annotated for
their affective qualities by sets of human participants. The dataset
was created in response to a lack of suitable datasets within the
domain of audio emotion recognition.

A total of 780 sounds are selected from the BBC Sounds
Library. Participants are recruited online and asked to rate a
subset of sounds based on how they make them feel. Each sound
is rated for arousal and valence. It was found that while evenly
distributed, there was bias towards the low-valence, high-arousal
quadrant, and displayed a greater range of ratings in comparison
to others.

The AAD is compared with existing datasets to check its
consistency and validity, with differences in data collection
methods and intended use-cases highlighted. Using a subset of
the data, the online ratings were validated against an in-person
data collection experiment with findings strongly correlating. The
AAD is used to train a basic affect-prediction model and results
are discussed.

Uses of this dataset include, human-emotion research, cultural
studies, other affect-based research, and industry use such as
audio post-production, gaming, and user-interface design.

Index Terms—Affect, arousal, audio emotion recognition,
dataset, sound, valence.

I. INTRODUCTION

OUND design for film often makes use of audio for

narrative or functional purposes, but also to elicit an
affective response in a film’s audience. Following research that
discussed the use of audio in this way with film sound pro-
fessionals [1], the authors investigated existing sound datasets
with affective labelling.

Whilst there are a small number of affective audio datasets
in the field, almost all include musical and/or human vocal-
izations, which may skew data or not be of use when editing
sound for movie and TV scenes. For example, IADS-2 [2] and
its more recent derivative IADS-E [3]. Both datasets include
sounds of musical instruments and human vocalization, such
as moaning or burping. In audio post-production music has
typically been considered and chosen for scenes in advance,
and will be the key emotional driver. Human-vocalized sounds
are not typically used in any manner other than to drive the
story through dialogue [1], [4].
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TADS-2 contains 167 sounds, relatively few compared to the
International Affective Picture System (IAPS), which contains
1,182 pictures [5] and less still when compared to MER
datasets, such as AMG1608 [6] or DEAM [7] with 1608 and
1802 sounds, respectively. IADS-E [3] intended to increase the
distribution of sounds in the bi-dimensional affective space of
arousal and valence, since IADS-2 is skewed towards high-
arousal, low-valence sounds. IADS-E did achieve a wider
spread of data, however, it was found that results were still
skewed towards high-arousal, low-valence, much in the same
way as IADS-2. Further, IADS-E made significant use of
sounds of a musical nature (N = 170) and of human origin
(N = T74), equating to 26% of its total samples.

Accounting for these limitations, and compounded by the
relative scarcity of datasets for AER in general, it was decided
that creating a novel dataset of affect-labelled audio files that
purposefully exclude sounds identified as being musical or
human vocalizations would be beneficial to the affective audio
research community.

This article describes a sound affect-rating data collection,
similar to those conducted by the aforementioned datasets,
with particular care taken to omit musical and human sounds.
These are omitted to control for potential bias and to make
the dataset more usable in the sound-for-moving image in-
dustries and related research fields. A novel dataset of 780
affect-labelled, non-musical, non-anthropomorphic sounds are
presented as the culmination of this data-collection and its
potential uses are explored in the sections that follow.

II. BACKGROUND AND RELATED WORK

A. Music and Audio Emotion Recognition

Music Emotion Recognition (MER) is a well-established
research discipline, investigating the relationship between
musical stimuli and human affective responses, predicting
responses to stimuli for use in a multitude of fields that may
include music recommendation, retrieval, generative composi-
tion, psychotherapy and more [8], [9]. MER makes extensive
use of Machine Learning (ML) techniques to predict emotional
responses [10]-[14]. To support this there are many datasets
available for training ML algorithms [15]-[19] and these are
exclusively music-based.

Audio Emotion Recognition (AER) is similar to MER but
differs in focus, by studying non-musical sounds. AER is less
established and is an emerging field of research. Where MER
may be useful in generative composition, music recommenda-
tion, etc., AER may be useful in User Interface (UI) design,
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audio post-production for film, TV, radio, advertising, com-
puter gaming, speech recognition [20], and has overlapping
uses with MER, such as psychotherapy.

Whilst many researchers are making use of ML techniques
within AER, there are limited datasets with large numbers
of either sounds or human annotator participants available
for use. One notable AER dataset is the Emotional Sound
Database [21], consisting of 390 sound clips. The Emotional
Sound Database made use of musical instruments and human
sounds, although it was annotated by only four participants.
The researchers made use of a regressor to predict the arousal
(r = 0.61) and valence (r = 0.49) values of sounds with
varying performance across the underlying classes of sound
in the database.

Drossos et al. [22], [23] used arousal and valence data
from the TADS-2 dataset to train ML algorithms to classify
sounds into quadrants in the arousal-valence space. They
then went further to extract typical audio features to use
in training and validation of both support vector machines
and Artificial Neural Networks (ANN) to predict a more
accurate placement in the quadrant. Cunningham et al. [24]
also made use of ITADS-E to successfully train regressors and
ANNG to predict affective response for arousal (R? = 0.644)
and valence (R? = 0.654). Further, Choi et al. [25] were
able to successfully classify sounds from IADS-2 into the
emotional factors of ‘happiness’, ‘sadness’ and ‘negativity’
with an 88.9% accuracy rate.

B. Models of Emotion

There are two primary models of emotion utilized in the
field, continuous and discrete models [26].

Discrete models are those such as Ekman’s [27]-[29] and
Roseman’s [30] that describe defined, labelled emotions and
are often based on facial expressions. They are useful in
organizing the emotional tendencies of people and simplifying
data [31].

Continuous models of emotion, such as Russell’s Circum-
plex Model of Affect [32], which measures arousal and va-
lence, and Thayer’s Model, which measures stress and energy
[33], do not label emotions but give numerical values for
each dimension. Such models propose that all affective states
can be determined using these neurophysical attributes [26].
The continuous approach allows detachment from labelled
emotions and study of individual dimensions as and when
necessary, such as in research conducted by Drossos et al. [23],
where the authors examined only the relationship between
arousal and rhythmic qualities of sounds.

III. METHOD
A. Sound Stimuli

The sounds were manually selected by the principal au-
thor from the 33,066 sounds in the BBC Sounds Library
(https://sound-effects.bbcrewind.co.uk) by applying selection
criteria that sounds must be: non-musical; non-human; and that
they could reasonably be utilized in a film or TV production.
Sounds needed to be short enough to not evolve in their
complexity or content (for example, simpler sounds such as

TABLE I
PERCENTAGE OF AAD SOUNDS CATEGORIZED BY GROUP
Category Contribution Examples
Daily Life 23% Washing Dishes, Footsteps
Industry/Machinery 19% Printing Press, Circular Saw
Animals 13% Sheep Baa-ing. Dog Bark
Transport/Aircraft 12% Tyre Screech, Plane Flyby
Atmosphere/Weather 11% Wind, Thunderclap
Electronics 9% Phone Ringing, Mains Hum
Bells/Alarms/Clocks 4% Church Bell, Fire Alarm
Military/Destruction 4% Gunshots, Rubble Falling
Sports and Toys 3% Tennis Hits, Swimming
Fire 1% Crackling Fire, Gas Burner
Other 1% Heartbeat, Comedy Boing

footsteps or a car engine running should be used). They should
all be of similar loudness in relation to one another (so that
peak volume was not a factor in participants ratings) and be
easily distinguishable when played through numerous audio
reproduction devices. Selected sounds were categorized by the
principal researcher to enable users of the dataset to understand
the content of sounds used. Table I shows the distribution of
sounds across these groups. The categories are loosely based
on those already utilized by the BBC Sounds Library, with
some merged to condense the table.

Where necessary sounds were truncated in length to be as
close to six seconds as reasonably possible (some, such as
thunderclaps, were left longer to enable capturing of the whole
instance). The longest sound was nine seconds and the shortest
was three seconds, with the average duration 6.27 seconds.
The target duration was set at six seconds to enable compar-
ison with other datasets such as IADS-2, IADS-E [2], [3],
and Emo-Soundscapes [34], in which similar averages were
realized. Other comparable research, such as Lopes, Liapis and
Yannakakis’ ‘Modelling Affect for Horror Soundscapes’ [35],
and the Emotional Sound Database [18] contain sounds with
a duration range of five to ten seconds (Horror Soundscapes),
and average of 3.5 seconds (Emotional Sound Database) and
so the AAD is in-line with ad-hoc standards in the field. Other
datasets, such as AudioSet [36] and AMG1608 [6], contain
sounds of a longer average duration (10 and 30 seconds,
respectively). However, they contain little non-musical, non-
anthropomorphic sounds, so a target duration of six seconds
was decided for the AAD.

Due to a mixture of stereo and mono files in the source
data, all stereo files were summed to mono to enable playback
on most devices and to eliminate stereo spread/movement
as a factor in participant ratings. All files were then LUFS
(Loudness Units Full Scale)-normalized using Adobe Audition
to -23 LUFS (as per ITU-R BS.1770-4 recommendation for
measuring programme loudness and true-peak audio levels
[37]) and exported to 44.1 kHz, 16-bit uncompressed WAV
files. No further manipulation of the audio files was under-
taken. Figure 1 summarizes the steps taken in preparing the
audio for rating, illustrating the selection, processing, and
output steps.
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Fig. 1. Flowchart depicting audio standardisation workflow.

B. Participants

Participants were recruited using the Amazon Mechanical
Turk (AMT) online ‘crowdworking’ platform [38]. AMT al-
lows the researchers to set parameters for the ‘workers’ to
satisfy. AMT has been used to collect data for affective audio
research purposes [6], [39] and has been determined to be a
suitable alternative to traditional methods [40]. Workers were
selected for participation if they met the inclusion criteria of:
residing in a country considered to have a ‘Western’ culture;
were aged 18 or over; and could make use of headphones
or external speakers. As the research aims to aid Western
sound research, workers residing in countries typically not
considered to be of Western culture were excluded from the
data collection.

Participants were required to have an AMT ‘master’ qual-
ification, meaning that they had consistently demonstrated a
high degree of success in their tasks across a variety of work
in AMT in the past. This characteristic was chosen to reduce
the risk of abuse of the AMT task.

All participants were given a small monetary reward through
AMT for satisfactorily completing their batch of ratings.

Following approval from the researchers’ institutional ethics
committee, a total of 867 participants took part in the data
collection and submitted ratings that were used in the forma-
tion of the dataset. To ascertain the diversity of participants,
demographic data was collected. Gender was relatively evenly
split, with 49% identifying as female, 50% identifying as
male and the remaining participants identifying as non-binary
or preferred not to give their gender identity. 97.92% of
participants resided in the USA, 0.57% in the UK, 0.35% in
Italy, 0.46% in Brazil, 0.46% in Canada, and 0.23% in Mexico.
Participants had an average age of 43.2 years with a range of

® 505 @6069 @ 70+

® 30-39

@ 18-29 40-49

Fig. 2. Pie-chart showing age distribution of participants.

18-74. The complete age range distribution is shown in the
pie chart (Figure 2).

Participants were given an outline of the research, its
intended purpose and how the data they provided would be
used. They were made aware of the anonymization process,
their rights as a participant and how the data would be
stored in accordance with the laws in force at the time of
its collection. Participants were told how to raise a complaint
with the researchers and/or the University or withdraw from
the research at any point during the data collection, or in the
future, should they wish to do so.

Participants took part in the data collection remotely using
their own equipment, which it was recognized may vary,
especially in terms of audio reproduction and playback. As
such, participants were asked to wear headphones whenever
possible to reduce any effect that different acoustic environ-
ments and related background noise may have on their rating.
Overall, 19.77% of participants did not use headphones. The
researchers acknowledge that this may have some effect on
their ability to hear, and thus rate, the sounds effectively [41].

C. Measuring Emotion

The complete set of sounds would take a long time for any
one participant to rate and be at high risk of inducing fatigue.
As such, the sounds were divided into batches of 60, each to
be rated by 40 participants. It was originally planned that 900
sounds would be rated in this manner to match the number
of sounds more closely with that of IADS-E. However, time
constraints meant that the final two batches of data collection
did not proceed, and the researchers continued with the 780
sounds annotated up to this point.

A dedicated web site for the data collection was designed
by the research team, making use of the Affective Slider
[42] as the tool for users to give a response for arousal and
valence by using a simple, two slider interface. The Affective
Slider allows values between O and 1, with granularity of
two decimal places (effectively 101 possible ratings for each
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Please listen to the sound and then rate it using BOTH the sliders (their order of appearance will change randomly).
Don’t think too much about it, just rate how you feel when listening to it.

> o 0:00 o) ——

Level of arousal

Level of pleasure

— - —

Fig. 3. Example of the Affective Slider interface, as used in data collection.

of arousal and valence). This was chosen as an alternative
to the Self-Assessment Manikin (SAM) [43] used in other
research, such as IADS-2 and IADS-E. The Affective Slider
allows for more granularity and has been shown to be quick
and easy to use, without the need for detailed instructions
to participants [42]. Further, the Affective Slider has been
found to give comparable results to SAM while presenting
a more modern interface that compensates for the general
contemporary desensitization toward highly arousing content
[42]. Participants were asked to rate how each of the 60 sounds
made them feel at that time. They were asked to do so by
selecting a point on each of the Affective Slider scales for
arousal and valence for each sound, as in Figure 3.

D. Procedure

Participants were instructed to complete the whole task
(rating 60 sounds) in one sitting. They were introduced to
the project, given information to enable them to contact the
researchers or University should they wish to for any reason,
shown instructions for the task, and then asked to complete a
practice rating task to familiarize themselves with the interface
and to allow them to set their volume to a comfortable level.

Once the participants understood the task and use of the
Affective Slider, they were asked to listen to each sound
in its entirety (average 6.27 seconds) and rate how it made
them feel (induced emotion) using the sliders for arousal and
valence. Participants were free to listen to each sound as many
times as they wished. When the participants were satisfied
with their answer, they could continue to the next sound at
their leisure. In total there were 870 participants, with each
individual allowed to complete no more than two batches of
sounds over the duration of the data collection period.

The sounds in each batch were presented in a dynamically
randomized sequence to prevent the order of sounds having
any effect on the ratings [44]. The mean time taken to complete
a batch over all participants was 16 minutes.

E. Data Validation

1) In-Person Validation: To verify the viability of the data
collected utilizing the AMT platform, a single batch was
repeated with in-person participants. The research team invited
students and staff at their institution to take part in a controlled
environment (a usability lab). The method replicated that of the
AMT version with minor technical differences in execution.

TABLE 11
COMPARISON OF IN-PERSON AND AMT COLLECTED DATA
In-Person AMT
Arousal ~ Valence  Arousal  Valence
Mean 0.57 0.45 0.54 0.42
SD 0.24 0.23 0.22 0.21

Data collection took place using a local emulator to host the
website to rate sounds instead of hosting the website online.
Participants all used the same audio equipment to play back
sounds: a MacBook Pro paired with a Universal Audio Volt
4 audio interface and a pair or Beyerdynamic DT 770 Pro
headphones (80 Ohm version). 27 participants were asked the
same preliminary questions and filtered in the same way as
the AMT workers, except for having to hold an AMT master
qualification. Participants were given equivalent vouchers to
use at University food outlets instead of a monetary reward.

The data was processed in the same manner as the online
data collection with the ratings provided from each partici-
pant subsequently being averaged in the arousal and valence
response for each sound to provide an overall summary.

The results of the in-person set were compared to the same
batch in the online data collection and found to be strongly
correlated. Pearson’s correlation coefficient was calculated,
showing a strong positive correlation of » = 0.740 for arousal
and r = 0.882 for valence, with strong statistical significance
(p < 0.00001) in both dimensions. Mean values were com-
pared for the in-person and AMT batches, shown in Table II.
The table shows a small positive shift in overall ratings of both
arousal and valence when conducted in person, albeit with a
slightly wider spread. Generally, it can be concluded that in-
person rating and online rating gave very similar results.

2) Emotion Classification from Sound Descriptors: The
BBC Sound Library gives text descriptors for each sound
and it was considered this may be a point of validation. One
batch was selected to test the descriptors affective content
against the rated arousal and valence. Each of the sounds’
descriptors was classified to determine the most likely of
Ekman’s Basic Emotions [45] using a fine-tuned version of the
DistilRoBERTa-base for Emotion Classification model [46].

Figure 4 shows the sounds from this validation set in
arousal-valence space, with colors representing each of Ek-
man’s Basic Emotions that they were classified as. The loca-
tions of the basic emotions [47] on the arousal-valence plane
are super-imposed on the chart to help identify how well the
text-classified sounds match their AAD.

The audio ratings were compared against the quadrants on
the arousal-valence space that the text classifier predicted they
should sit in. Results showed that the text classifier quadrant
agreed with the audio rating for 30% of the sounds, with
‘disgust’ being the most accurate of the classifications at 50%
agreed and ‘sadness’ being least accurate with no agreements
(although only two sounds were categorized as ‘sadness’ in
this batch). ‘Joy’, which had the most text-classified sounds in
the batch (23 sounds), only agreed in the case of four sounds.
This short validation exercise suggests that the text data may
not be very useful in assisting the emotion prediction.
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Text-Classifier Results Against Arousal-Valence

Anger e Disgust e Fear e Joy e Sadness e Surprise

05 .

Arousal

0 0.5 1

Valence

Fig. 4. Scatter chart of average arousal and valence of sounds in batch 1,
and their text-predicted basic emotions.

3) Arousal and Valence Prediction from Sound Descriptors:
To further explore the potential of the AAD sounds’ text
descriptors as predictors of the emotions they would induce, a
more capable, large language model was used. One restriction
of the fine-tuned version of the DistilRoBERTa-base model
used in the previous sub-section is that it performs emotion
classification, whereas AAD represents emotion using contin-
uous values of arousal and valence, thus being intended for
regression-oriented ML tasks.

In this case, the ChatGPT API (https://platform.openai.
com/docs/api-reference/introduction) was provided with the
descriptors for all 780 sounds in the AAD and prompted to
respond with arousal and valence values for each. The GPT-4
model was called via the API in system mode and provided
with the prompt:

You will be provided with a text string
associated with an audio sample. Based
only on each text string, output the
values of induced affect for the arousal
and valence dimensions between 0 (low) and
1 (high). Respond in the following format:
%X, y where x and y are the continuous
values of arousal and valence that must
be between 0 (low) and 1 (high).

The GPT-4 default hyper-parameters were used (maximum
tokens = 256, diversity via nucleus sampling ‘top-p’ = 0.5,
frequency penalty = 0, presence penalty = 0), with the ex-
ception of temperature, which was reduced so that the model
is likely to generate more deterministic, consistent predic-
tions (temperature = 0.1). However, recent studies in other
application domains (semantic tasks, medical examinations,
legal bar examinations, and multiple choice question problem-

Total Average

05 ey s

Arousal

0 0.5 1
Valence

Fig. 5. Scatter chart of average arousal and valence of sounds in the AAD.

solving tasks), indicate that output from GPT models is often
unaffected by variations in temperature [48]-[51].

The arousal and valence output generated by GPT-4 was
compared to the mean AAD annotations obtained via the
AMT workers. Pearson’s correlation coefficient and Mean
Absolute Error (MAE) were calculated for the data. This
showed a weak positive correlation for arousal » = 0.335,p <
0.00001, M AE = 0.20 and a moderate correlation for valence
r = 0.402,p < 0.00001, M AE = 0.16. Overall, this supports
findings of the experimentation with the DistilRoBERTa-base
model, namely that the text descriptions do not seem to be
especially useful in helping predict the emotions induced by
sounds in the AAD.

A minor limitation encountered was that, during pilot testing
of this approach, the GPT-4 model was found to produce
arousal and valence scores with only one decimal place of
accuracy, even when prompted to generate ratings to two or
three places. As such, there is a loss of precision that accounts
for some of the difference between its arousal and valence
values and those of the AAD. An interesting side note is that
the GPT-4 API was also asked to generate perceived ratings,
which were identical to those for induced emotion in 77.82%
of arousal and 77.31% of valence ratings.

IV. RESULTS AND COMPARISONS

Arousal and valence ratings for each sound in the AAD
have been averaged and are displayed in Figure 5.

As in previous studies [2], [3], [34], [52], Cronbach’s alpha
was calculated for the AAD sounds using all participants’
ratings, yielding o = 0.885 for arousal and = 0.854
for valence, showing good level of reliability [53]. However,
in comparison to previous AER datasets, such as IADS-
E, AAD’s internal reliability is slightly lower. It is notable,
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TABLE III
AROUSAL AND VALENCE DESCRIPTIVE STATISTICS OF AAD
Arousal  Valence
Mean 0.57 0.41
SD 0.10 0.14
Cv 17.51% 33.43%
Mean (scaled 1-9) 5.56 4.28
SD (scaled 1-9) 1.80 2.12

however, that IADS-E’s Cronbach’s alpha was calculated using
approximately 10% of their participants’ data, whereas the a-
scoring for this work was calculated using ratings from all
participants.

The Coefficient of Variation (CV) and Standard Deviation
(SD) were calculated for arousal and valence of the AAD
and are shown in Table III. Mean arousal and valence scores
of AAD sounds are compared alongside those of IADS-2
and IADS-E in Table IV, with their standard deviations. To
compare absolute ratings across all three datasets, some of
which used 9-point SAM scales, the authors have calibrated
the AAD ratings to a 9-point scale.

The scaled CV values for arousal and valence (C'Vyousal =
32.37T%CVyaience = 49.53%) are notably higher in
this set of ratings than that of IADS-E (CVirousati =
21.04%, CVyaience = 31.23%), showing wider variance in
responses than in other datasets. It also shows a similar pattern,
as found in IADS-E and TADS-2, that arousal ratings are more
agreeable than valence ratings between participants.

A. Limitations

Comparing the scaled SD scores and CV values to that of
TADS-E and IADS-2, as in Tables III and IV, it is evident that
the ratings in this research may be less consistent than those of
previous studies. IADS-E reported SD values of 1.00 and 1.54
for arousal and valence, whereas IADS-2 reported values of
1.16 and 1.76 respectively. While not directly comparable due
to the difference in focus of the sounds in this research and
numbers of participants involved, it does suggest that remote
data collection may not be as reliable as in-person methods.
On balance, the mean figures for arousal and valence are close
to other studies, with greater variance in arousal than valence.
However, there may be other factors causing this, such as:

o The AAD sounds are different than in other datasets. For
example, IADS-2 and IADS-E use sounds that are the
same with IADS-E adding more sounds to the original set
of sounds in IADS-2. Whereas AAD uses sounds sourced
only from the BBC Sounds Library.

o The participants may be more diverse in AAD as the
only limitation was that participants must have considered
themselves to have normal hearing. IADS-E, for exam-
ple, included participants that were exclusively students
within a Japanese university.

o The number of participants providing ratings is greater
in AAD than many other datasets. For example, IADS-
E had 207 participants, whereas AAD had 870 online
participants and 27 in-person participants.

o« When examining the arousal-valence relationship, it is
evident that sounds in the low-valence space are often

TABLE IV
COMPARISON OF AROUSAL AND VALENCE RELIABILITY VALUES
BETWEEN AAD, IADS-E AND IADS-2

Dimension AAD (Scaled) TADS-E IADS-2

Mean 5.56 5.85 5.84

Arousal SD 1.8 1.00 1.16
Ccv 32.37% 21.04% 19.86%

Mean 4.28 4.40 478

Valence SD 2.12 1.54 1.76
CvV 49.53% 31.23% 35.82%

TABLE V
DISTRIBUTION OF SOUNDS’ MEAN RATINGS IN THE AROUSAL-VALENCE
SPACE

Low Valence High Valence | Total

High Arousal 477 109 586
Low Arousal 121 73 194
Total 598 182 780

rated with a higher arousal, whereas the spread of arousal
ratings in the high valence space is more even. This
is consistent with previous research [2], [3], [54] and
indicates that negative stimuli are generally perceived as
more arousing than positive ones.

o Table V shows the spread of ratings within each quadrant
of the arousal-valence space. It is clear that most AAD
sounds belong to the low-valence, high-arousal class.

Further comparisons of participants, split by gender identity
were carried out. Correlation coefficients were calculated for
arousal and valence comparing female (49% of participants)
with male (51% of participants) responses. Results were:
arousal » = (0.781 and valence r = 0.858 with both significant
p < 0.0001. The strong positive correlation indicates that
both genders agree on the induced emotions for sounds in the
AAD. Figures 6, 7, and 8 display the non-binary, male and
female ratings graphically, showing a very similar distribution
across the gender identities. It is of note that as a small
percentage (< 1%) of participants identified as non-binary,
each participant identifying as such rated a different batch
of sounds. Therefore, it was not possible to average results
and raw data is displayed for the non-binary identifying
participants.

The relationship between arousal and valence values for
each sound was also investigated, with a correlation coefficient
of r = —0.427,p < 0.0001, indicating a moderate trend
towards becoming less arousing the higher the valence. This
is similar to other research [3] in which it was noted that the
lowest scoring valence sounds typically had a higher arousal
rating.

The overall arousal-valence averages for all participants and
sounds are shown in Figure 5, which also shows the clustering
of sounds in the high-arousal, low-valence quadrant.

Table VI compares the content of AAD with other datasets
in the fields of emotional audio and Table VII compares
AAD to emotional speech datasets. Both tables show the
total number of audio instances, and Table VI also shows the
total number of non-musical and non-anthropomorphic sounds
in each. This was omitted in Table VII as only AAD has
this data. Where data was not available in the accompanying
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TABLE VI
COMPARISON OF AAD AND OTHER EMOTIONAL AUDIO DATASETS
% Non-musical, Average . Categorical
Dataset No. of non- Duration Ratings or Dimensions Categories
Sounds . per sound . .
anthropomorphic  (seconds) Dimensional
AAD 780 100% 63 40 Dimensional Arousal n/a
Valence
Dimensional and Arousal Happiness
IADS-E [3] 930 74% 6.7 22 C . Valence Sadness
ategorical .
Dominance Fear
Arousal
TADS-2 [2] 167 69% 6.7 100 Dimensional Valence n/a
Dominance
. Not . Non-emotional
AudioSet [36] 1,789,621 44% 10.0 Categorical n/a .
defined (e.g, music, glass)
Horror Arousal
Not 5-10 . .
Soundscapes 97 defined (range) 10 Dimensional Valence n/a
[35] g Tension
Emotional Arousal
Sound 390 65% 3.5 4 Dimensional Valence n/a
Database [18]
AMG1608 [6] 1,608 0% 30.0 15-32 Dimensional frousal n/a
Valence
Emo-Soundscapes Not Not . . Arousal
[34] 1,213 defined 6.0 defined Dimensional Valence n/a
Non-Binary Values Male Average
1 1
= ; |
3 05 g 05 I A A e —
< < !
0 0
0 05 1 0 05 1

Valence

Fig. 6. Scatter chart of raw arousal and valence of each sound in AAD as
rated by non-binary participants.

manual or research paper, ‘not defined’ denotes this. For
example, there was no reference found to ratings per sound in
Emo-Soundscapes [34], and so ‘not defined’ is placed in the
associated cell.

Comparing the total number of sounds, AAD is a smaller
dataset in the field, but is the only one that contains exclusively
non-musical, non-anthropomorphic content. Emotional speech
datasets were included to show the disparity in total data

Valence

Fig. 7. Scatter chart of raw arousal and valence of each sound in AAD as
rated by male participants.

collected between these fields. Typically, emotional speech
datasets contain more samples than emotional audio datasets.

It is noteworthy that AudioSet [36] groups sounds into more
than one category and therefore the number of non-musical,
non-anthropomorphic sounds may be less than shown. Data for
this table was collated using the respective datasets’ published
categories, and AudioSet’s non-musical, non-anthropomorphic
sounds total was assumed using their ‘music’ category only.
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TABLE VII
COMPARISON OF AAD AND EMOTIONAL SPEECH DATASETS

No. of Average Duration Ratings Categorical or . . .
Dataset . . Dimensions Categories
Sounds (seconds) per sound Dimensional
AAD 780 6.3 40 Dimensional Arousal n/a
Valence
CMU-MOSEI [55] 23,500 73 Not defined  Categorical n/a Happiness, Sadness, Anger,
Disgust, Surprise, Fear
. Happiness, Sadness, Anger,
CREMA-D [56] 7,442 2.6 10 Categorical n/a Disgust, Fear, No Emotion
. Neutral, Calm, Happy,
RAVDESS [57] 7,356 1.8 319 Categorical n/a Sad, Angry, Fearful
ESD [58] 3,500 3.0 Not defined  Categorical n/a Nevira , EapPy: Sal,
ngry, Surprise
SEWA [59] 1,990 79.0 5 Dimensional Arousal n/a
Valence
Arousal Agreement, Disagreement,
RECOLA [60] 23 300.0 2 Both Dominance, Engagement,
Valence
Performance, Rapport
Female Average rate, spectral centroid, spectral bandwidth, rolloff, and Root
1 Mean Square (RMS) loudness values of the sounds.
The dataset was separated into training and testing seg-
ments, according to an 80/20 split. A systematic approach
: to testing multiple ANNs variants was taken to evaluate the
) K effectiveness of varying amounts of hidden layers and neurons
SR . at predicting arousal and valence values. As in previous
(_"..,"-J:'; R Rt . research [24], tests were undertaken on an ANN consisting
A :.:_.".‘-'_f R . of one hidden layer with 2, 4, 8 and 16 neurons. Further,
= ‘?‘4'-.:, mee Soge . ANNSs consisting of 4, 8, and 16 hidden layers with 128, 256
3 05 .}.:.}',":,ﬁ“; AR and 512 neurons in each layer were also tested. The results
< N ‘._-.-:‘_. er e P from these variations are shown in Table VIIIL.
IRERE PO Comparing the various iterations of the ANN, the single-
. . . layer variants performed poorly, with negative R? values as
’ low as -10.750 for arousal prediction and -4.867 for valence
prediction (1-layer, 4-neurons), indicating that the models were
a very poor fit for the data. However, of the variants that
produced positive R? values, the 8- and 16-layer versions
performed best for in both Root Mean Square Error (RMSE)
° 5 o8 ] and R? metrics. For arousal prediction, the 8-layer, 512-neuron

Valence

Fig. 8. Scatter chart of raw arousal and valence of each sound in AAD as
rated by female participants.

It should also be highlighted that Emo-Soundscapes has a
total of 1,213 sounds derived from a source of 613 sounds
[34] and annotates for perceived, not induced, emotion.

B. Testing AAD for Audio Emotion Recognition

Previous research [24] found that utilising an Artificial
Neural Network (ANN) gave good results in predicting arousal
and valence in sound. Based on this previous success, an
ANN was built to provide a baseline platform for preliminary
testing of the AAD dataset for use in AER. Audio features
utilized in the previous research were extracted from the 780
sounds in AAD and stored. Extracted features included 20
Mel-Frequency Cepstral Coefficients (MFCCs), zero-crossing

ANN gave the lowest RMSE and the highest R? value. For
valence prediction, the 16-layer, 512-neuron ANN gave both
the lowest RMSE and highest R? values.

Scatter charts depicting the best-performing arousal and
valence predictor outputs are shown in figures 9 and 10. The
best fit lines clearly shows arousal prediction to be more
accurate than that of valence.

As in previous research [21], [24], valence proved more
difficult to predict than arousal using the features extracted
from the AAD sounds. However, while previous research
suggested that varying the amount of neurons did little to
improve R? values, in this case a general trend of improving
R? values with increasing neurons in each layer presented
itself, and is shown in Table VIII.

The R? values across testing are generally low, but are con-
sistent with other research [21], [24] in the AER field. As this
ANN was designed only to produce a baseline performance
metric using the AAD, no fine-tuning or advanced weighting
of features was undertaken. Further tuning of the ANN and
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TABLE VIII
ANN TEST: RMSE AND R? FOR AAD (BEST-PERFORMING VALUES IN
BOLD).
Layers  Neurons Arousal Arousal Valence Valence
RMSE R2 RMSE R2

1 4 0.327 -10.750 0.322 -4.867
1 8 0.151 -1.505 0.216 -1.627
1 16 0.017 -2.039 0.187 -0.969
2 128 0.156 -1.665 0.167 -0.581
2 256 0.129 -0.832 0.149 -0.253
2 512 0.287 -0.289 0.143 -0.148
4 128 0.091 0.080 0.139 -0.099
4 256 0.102 -0.138 0.135 -0.039
4 512 0.082 0.263 0.129 0.055
8 128 0.092 0.065 0.133 -0.006
8 256 0.085 0.199 0.134 -0.018
8 512 0.081 0.279 0.130 0.044
16 128 0.092 0.067 0.132 0.003
16 256 0.087 0.158 0.132 0.013
16 512 0.082 0.259 0.128 0.073

True vs Predicted Values - Arousal

0.8+ e Predicted vs True
—_—y=x
== Best Fit Line

0.7

0.6 1

Predicted Values

0.5 7

0.4 4

0.4 0.5 0.6 0.7 0.8
True Values

Fig. 9. True vs Predicted arousal using 8-layer ANN with 512 neurons per
layer.

investigation into feature importance should be carried out to
understand if the ANN accuracy can be improved, alongside
application of other ML techniques.

V. CONCLUSIONS AND FUTURE WORK

In this article 780 sounds were collected based on their
suitability for use in film and/or TV soundtracks. Their affec-
tive qualities have been rated and standardized in batches by
870 participants. Results showed that a relatively large dataset
of sounds, accurately annotated for affective qualities via
dimensional scales can be provided to the wider affective audio
research community. Although male, female, and non-binary
annotators had some variance in affective rating, the difference
was minor. Further research should take into consideration

True vs Predicted Values - Valence
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0.8 Y=x
— = Best Fit Line
°
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Fig. 10. True vs Predicted valence using 16-layer ANN with 512 neurons
per layer.

the gender-identity variation in ratings in affective responses
wherever possible and appropriate.

It is well known that real-use cases of emotion evocation
in film and TV will be caused by a combination of the visual
and sonic elements [4], [54], [61], [62] as well as any other
sensory modalities. The effective use of affective audio may
enable post-production teams to enhance or guide the emotive
responses of audiences as they see fit for their story or project
[24].

While it is important to remember the intended use of the
AAD is somewhat different to others before it, the authors
have recognized limitations to this research, including:

e The distribution of sound stimuli in the arousal-valence
space is not even and is heavily skewed towards the high-
arousal, low-valence space. This may present issues of
imbalance or cause limitations in using the AAD in AER
applications.

 Participant ratings are more variable than that of com-
parable datasets. This may be caused by multiple factors
including the stimulus materials (no human vocalization
or musical sounds were used in AAD), the data collection
methodology is different (data was collected remotely
in AAD, against in-person in others), and cultural dif-
ferences may have an effect, as IADS-E identified a
significant difference in valence ratings based on cultural
background [3].

o No capture of basic emotion responses was undertaken
as part of this research, as in others. It may, however, be
possible to determine basic emotions for each sound by
mapping their mean arousal-valence scores to pre-defined
values [63].

The authors plan future research using this dataset to involve
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the training and fine-tuning of affect-recognition models, such
as the ANNs described in this article, to predict the affective
responses of listeners to non-musical, non-vocalized sounds.
The use of other ML predictors alongside ANNs are also
suggested, alongside deep learning methods.

It is the principal author’s intent that using an effective
audio emotion prediction model, an affect prediction tool may
then be created and tested for use in the audio post-production
profession. Through this research the AAD may enable further
comparison of results across other auditory disciplines, as
well as in research and professional applications, such as
AER and film, media studies, advertising, and more. Other
potential uses of this dataset may include, but are not limited
to: psychology and sound; user interface development and
design; sonic interaction; game sound; audio processing; and
cultural studies.
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